Stochastic hybrid models for DNA replication

John Lygeros

Automatic Control Laboratory, ETH Zürich
WWW.CONTROL.ETHZ.CH
Outline

1. Hybrid and stochastic hybrid systems
2. Reachability & randomized methods
3. DNA replication
 - DNA replication in the cell cycle
 - A stochastic hybrid model
 - Simulation results
 - Analysis
4. Summary
Hybrid dynamics

• Both continuous and discrete state and input
• Interleaving of discrete and continuous
 – Evolve continuously
 – Then take a jump
 – Then evolve continuously again
 – Etc.
• Tight coupling
 – Discrete evolution depends on continuous state
 – Continuous evolution depends on discrete state
But what about uncertainty?

- Hybrid systems allow uncertainty in
 - Continuous evolution direction
 - Discrete & continuous state destinations
 - Choice between flowing and jumping
- “Traditionally” uncertainty worst case
 - “Non-deterministic”
 - Yes/No type questions
 - Robust control
 - Pursuit evasion game theory
- May be too coarse for some applications
Stochastic hybrid systems

• Richer models to allow probabilities
 – Continuous evolution (e.g. SDE)
 – Discrete transition timing (Markovian, forced)
 – Discrete transition destination (transition kernel)

• Stochastic hybrid systems

Shameless plug:

Control
• ODE
• Trajectories
• ...

Stochastic Hybrid Systems & Control

Stochastic analysis
• Stochastic DE
• Martingales
• ...

Computation
• Automata
• Languages
• ...

HYGEIA PhD School on Hybrid Systems Biology
Siena, Italy, July 20, 2007

ETH Zürich
Outline

1. Hybrid and stochastic hybrid systems
2. Reachability & randomized methods
3. DNA replication
 - DNA replication in the cell cycle
 - A stochastic hybrid model
 - Simulation results
 - Analysis
4. Summary
Reachability: Stochastic HS

State space

Terminal states

Initial states

Estimate “measure” of this set, P
Monte-Carlo simulation

- Exact solutions impossible
- Numerical solutions computationally intensive
- Assume we have a simulator for the system
 - Can generate trajectories of the system
 - With the right probability distribution
- "Algorithm"
 - Simulate the system N times
 - Count number of times terminal states reached (M)
 - Estimate reach probability P by $\hat{P} = \frac{M}{N}$
Convergence

- It can be shown that $\hat{P} \rightarrow P$ as $N \rightarrow \infty$
- Moreover …

Probability that $|\hat{P} - P| \geq \varepsilon$ is at most δ as long as

$$N \geq \frac{1}{2\varepsilon^2} \ln\left(\frac{2}{\delta}\right)$$

- Simulating more we get as close as we like
- “Fast” growth with ε slow growth with δ
- No. of simulations independent of state size
- Time needed for each simulation dependent on it
- Have to give up certainty
Not as naïve as it sounds

• Efficient implementations
 – Interacting particle systems, parallelism
• With control inputs
 – Expected value cost
 – Randomized optimization problem
 – Asymptotic convergence
 – Finite sample bounds
• Parameter identification
 – Randomized optimization problem
• Can randomize deterministic problems
Outline

1. Hybrid and stochastic hybrid systems
2. Reachability & randomized methods
3. DNA replication
 - DNA replication in the cell cycle
 - A stochastic hybrid model
 - Simulation results
 - Analysis
4. Summary
Credits

• ETH Zurich:
 – John Lygeros
 – K. Koutroumpas

• U. of Patras:
 – Zoe Lygerou
 – S. Dimopoulos
 – P. Kouretas
 – I. Legouras

• Rockefeller U.:
 – Paul Nurse
 – C. Heichinger
 – J. Wu

www.hygeiaweb.gr

HYGEIA
FP6-NEST-04995
Cell cycle

Synthesis → S → "Gap" → G2 → M → Mitosis → G1 → Segregation

Replication → G1
Process needs to be tightly regulated

Normal cell

Metastatic colon cancer
Origins of replication
Regulatory biochemical network

- CDK activity sets cell cycle pace [Nurse et.al.]
- Complex biochemical network, ~12 proteins, nonlinear dynamics [Novak et.al.]

Hybrid Process!
Process “mechanics”

• Discrete
 – Firing of origins
 – Passive replication by adjacent origin

• Continuous
 – Forking: replication movement along genome
 – Speed depends on location along genome

• Stochastic
 – Location of origins (where?)
 – Firing of origins (when?)
Different organisms, different strategies

- Bacteria and budding yeast
 - Specific sequences that act as origins
 - With very high efficiency (>95%)
 - Process very deterministic
- Frog and fly embryos
 - Any position along genome can act as an origin
 - Random number of origins fire
 - Random patterns of replication
- Most eukaryots (incl. humans and S. pombe)
 - Origin sequences have certain characteristics
 - Fire randomly with some “efficiency”

Model data

• Split genome into pieces
 – Chromosomes
 – May have to split further
• For each piece need:
 – Length in bases
 – # of potential origins of replication (n)
 – $p(x)$ p.d.f. of origin positions on genome
 – $\lambda(x)$ firing rate of origin at position x
 – $\nu(x)$ forking speed at position x
Stochastic terms

- Extract origin positions $X_i \sim p(x)$, $i = 1, \ldots, n$
- Extract firing time, T_i, of origin i

$$P\{T_i > t\} = e^{-\lambda(X_i)t}$$
Different “modes”

i-1 i i+1

PreR
RB
RR
RL
PostR
PassR

Origin i
Discrete dynamics (origin i)

Guards depend on
• T_i, x_i^+, x_i^-
• x_{i-1}^+, x_{i+1}^-
Continuous dynamics (origin i)

- Progress of forking process

\[
\dot{x}_i^+ = \begin{cases}
 v(X_i + x_i^+) & \text{if } q(i) \in \{RB, RR\} \\
 0 & \text{otherwise}
\end{cases}
\]

\[
\dot{x}_i^- = \begin{cases}
 v(X_i - x_i^-) & \text{if } q(i) \in \{RB, RL\} \\
 0 & \text{otherwise}
\end{cases}
\]

Fission yeast model

• Instantiate: *Schizzosacharomyces pombe*
 – Fully sequenced [Bahler et.al.]
 – ~12 Mbases, in 3 chromosomes
 – Exclude
 • Telomeric regions of all chromosomes
 • Centromeres of chromosomes 2 & 3
 – 5 DNA segments to model

• Remaining data from experiments
 – C. Heichinger & P. Nurse

Experimental data input

- 863 origins
- Potential origin locations known, \(p(x) \) trivial
- "Efficiency", \(FP_i \), for each origin, \(i \)
 - Fraction of cells where origin observed to fire
 - Firing probability
 - Assuming 20 minute nominal S-phase

\[
FP_i = \int_0^{20} \lambda_i e^{-\lambda_i t} dt \Rightarrow \lambda_i = - \frac{\ln(1 - FP_i)}{20}
\]

- Fork speed constant, \(v(x) = 3 \text{ kbases/minute} \)
Simulation

- Piecewise Deterministic Process [Davis]
- Model size formidable
 - Up to 1726 continuous states
 - Up to 6^{863} discrete states
- Monte-Carlo simulation in Matlab
 - Model probabilistic, each simulation different
 - Run 1000 simulations, collect statistics
- Check statistical model predictions against independent experimental evidence
 - S. phase duration
 - Number of firing origins
Example runs

Replication time(1): 0

Replication time(2): 0

Created by
K. Koutroumpas
MC estimate: efficiency

Close to experimental
MC estimate: S-phase duration

Empirical: 19 minutes!
MC estimate: Max inter-origin dist.

Distribution of max distance of adjacent firing ORIs Genome-Wide

Random gap problem
Possible explanations

• Efficiencies used in model are wrong
 – System identification to match efficiencies
 – Not a solution, something will not fit

• Speed approximation inaccurate
 – “Filtering” of raw experimental data
 – Not a solution, something will not fit

• Inefficient origins play important role
 – Motivation for bioinformatic study
 – AT content, asymmetry, inter-gene, …
 – Also chromatin structure
 – Not a solution
Possible explanations (not!)

- Increasing efficiency
- Increasing fork speed
Possible explanations

- DNA replication continues into G2 phase
 - Circumstantial evidence S phase may be longer
 - Use model to guide DNA combing experiments
Possible explanations

- Firing propensity redistribution
 - Limiting “factor” binding to potential origins
 - Factor released on firing or passive replication
 - Can bind to pre-replicating origins
 - Propensity to fire increases in time
Firing propensity redistribution

![Bar chart 1: Completion Time of DNA replication in minutes](image1)

![Bar chart 2: Distribution of Number of Firing Origins Genome-Wide](image2)
Re-replication
Outline

1. Hybrid and stochastic hybrid systems
2. Reachability & randomized methods
3. DNA replication
 - DNA replication in the cell cycle
 - A stochastic hybrid model
 - Simulation results
 - Analysis
4. Summary
Concluding remarks

• DNA replication in cell cycle
 – Develop SHS model based on biological intuition & experimental data
 – Code model and simulate
 – Exposed gaps in intuition
 – Suggested new questions and experiments

• Simple model gave rise to many studies
 – System identification for efficiencies, filtering for fork speed estimation, bioinformatics origin selection criteria
 – DNA combing to detect G2 replication
 – Theoretical analysis
 – Extensions: re-replication

• Promote understanding, e.g.
 – Why do some organisms prefer deterministic origin positions?