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Abstract

One way to address multi-scale optimisation problems is by integrating logic and optimisation. For
example, a scheduling problem may have two levels: (i) assigning orders to machines and (ii) sequencing
orders on each machine. In a minumum cost model, assigning orders to machines is a mixed-integer
optimisation problem, sequencing orders is a constraint satisfaction problem. The entire problem may be
reformulated as either an optimisation or logic problem, but this misses the chance to use optimisation and
logic synergistically. Hybrid optimisation/logic approaches have been developed combining mixed-integer
linear programming (MILP) and constraint programming (CP), but CP requires specialised, bespoke con-
straints. We consider modifying the hybrid method by replacing CP with satisfiability modulo theories
(SMT); SMT is a constraint satisfaction technique combining propositional satisfiability with a back-
ground theory. We find that a logic-based Benders decomposition approach combining MILP and SMT
works very well on a minimum cost model for scheduling and performs significantly better than either
MILP or SMT alone. But the hybrid MILP/SMT method is weaker than either MILP or SMT on a

minimum makespan model.
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Introduction

A major challenge in process systems engineering is
integrating: (i) long-term strategic planning decisions,
(ii) medium-term tactical planning, and (iii) short-term
scheduling (Maravelias and Sung, 2009). One way to
address these multi-scale optimisation problems is by in-
tegrating logic and optimisation (Hooker and Ottoson,
2003). For example, a scheduling problem may have two
levels: (i) assigning orders to machines and (ii) sequenc-
ing orders on each machine (Jain and Grossmann, 2001).
In a minimum cost model, assigning orders to machines
is a mixed-integer optimisation problem, sequencing or-
ders is a constraint satisfaction problem. The entire
problem may be reformulated as either an optimisation
or logic problem, but this misses the chance to use op-
timisation and logic synergistically.

Hybrid optimisation/logic approaches have been de-
veloped combining mixed-integer linear programming
(MILP) and constraint programming (CP), e.g. Jain
and Grossmann (2001); Li and Womer (2008); Sitek
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(2014). The hybrid formulations usually use logic-based
Benders decomposition (LBBD) (Hooker and Ottoson,
2003), a generalisation of Benders decomposition (Ben-
ders, 1962). The principles of Benders decomposition
remain: we have a master problem and a subproblem
which generates cuts if the solution from the master
problem is infeasible. The difference is that LBBD re-

quires a logic proof deriving an objective bound.

Hybrid MILP/CP methods are typically applied
scheduling and its variants (Sitek, 2014). This is reason-
able: CP is very good at assessing scheduling feasibility.
The problem with hybrid MILP/CP is that, if the appli-
cation does not have a suitable CP constraint, a hybrid
method may be poor since bespoke CP constraints take
full advantage of very specific mathematical structures.
This manuscript is to test satisfiability modulo theories

as an alternative to CP in the hybrid scheme.

Satisfiability Modulo Theories

Satisfiability modulo theories (SMT) is a constraint

satisfaction technique combining propositional satisfia-



bility (SAT) with a background theory (De Moura and
Bjgrner, 2008). A background theory is a set of axioms
and symbols, e.g. the theory of arithmetic. An SMT
solver consists of a SAT solver and a theory solver. The
idea is to leverage the strength and robustness of modern
SAT solvers to search for a feasible solution. The mod-
elling framework exposed by SMT allows for Boolean
variables to be used with background theory variables,
e.g z — (¢ > 0) where x is continuous and z is Boolean,
so SMT is a natural choice when logical decisions form
a part of the system being modelled.

SMT assesses the satisfiability of a model and, if the
model is satisfiable, the SMT solver returns a witness.
If the model is unsatisfiable the SMT solver can return
an unsatisfiable core, a mutually unsatisfiable subset of
model constraints. An unsatisfiable core is a useful tool
when addressing why a model does not behave how we
expect or to understand why our model fails. Commonly
used SMT solvers include Z3 (De Moura and Bjgrner,
2008) and MathSAT (Cimatti et al., 2013).

Planning and Scheduling

See Table 1 for descriptions of the sets, parameters

and variables mentioned in the formulations.

MILP Models
The MILP formulation follows the Hooker (2007)

discrete time model; a continuous time formulation
(Tirkay and Grossmann, 1996), while smaller, is harder
to solve for the models considered in this manuscript.

The minimum cost model is:
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Equation (2) requires that a task is only assigned to
Equation (3)
characterises the resource constraints using the set 7.

a single machine and only starts once.

Equation (4) limits the time windows for a given task
as defined by r; and d;.
The makespan is the total schedule length. The

minimum makespan model is similar to minimum cost,

but minimum makespan requires an additional variable
M > 0, a new constraint bounding the makespan M
from below by the local makespan of each task:

M > ZZ(t-f—pij)ﬂfijt, Vied,

€L tET

(6)

and a different objective:
min M.

Table 1. Model symbols (Hooker, 2007).

Name Description

Sets
Z=A{1,...,m} Facilities
J=A{1,...,n} Tasks
T=A{1,...,p} Discrete time points

Tije = {t' |t — pi; <t'<t} Start times: j is in
progress at ¢t on ¢

H={1,...,H-1} Iteration indices; assume
that we are at iteration H

in the hybrid model

T €T Local assignment of tasks
to ¢ in iteration h in hy-
brid model

Tni € Thi Tasks mutually reponsible
for infeasibility /local opti-
mality in hybrid model

Parameters

Dij Processing time of j on ¢

Cij Resource consumption of j on ¢

C; Resource capacity on ¢

T Release time of j

d; Due time of j

Fi; Cost of assigning j to ¢ (min cost only)

Variables

Tijt Assign j to i starting at ¢ (MILP, binary)

Tij Assign j to ¢ (hybrid, binary)

Gij Assign j to i (SMT, Boolean)

S; Start time of j (SMT & hybrid, continous)

c; Resource ‘postition’ of j (SMT, continous)

M Makespan (min makespan only, continous)

Logical Models

As in the MILP case, a discrete logical formulation
can be very large when set T is large. But, for an SMT
solver, a discrete formulation loses information and is
therefore less favourable. Some inherent task properties
are the release, due and processing times which are not
directly present in the model. They would have to be
inferred from the constraints given by Egs. (3) and (4),
and the set 7;;; and may weaken the SMT theory solver.



A continuous time minimum cost model is:
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The minimum makespan model is similar to the min-
imum cost model, but does not have variables f; or pa-
rameters Fj;. Additional variable M > 0 represents the
makespan and the minimum cost objective Eq. (8) is

replaced with the makespan objective:

min M. (14)

We also introduce the constraint which implies that if
task j is assigned to facility ¢ then the makespan must
be greater than or equal to the task’s completion time:

Gj— (M >s;+pj), VieIljeJ. (15)

This logical formulation is flawed because the total
number of Eq. (12) constraints is exponential in the
number of tasks and, even for small problems, model
building time may become the bottleneck. Also, some
of these constraints may provide redundant information,
e.g. if a set of tasks cannot be scheduled on the same ma-
chine, any superset of these tasks cannot be scheduled.

We improve the logical formulation by interpreting
time and resource consumption as separate dimensions
and thereby convert the planning and scheduling prob-
lem to a generalised two dimensional bin packing prob-
lem (Garey et al., 1976). The difference between this
conversion and 2BP is that the items (tasks) may not
have the same height and width when they are placed
in different bins (machines); the items are further con-
strained on one dimension (release and due times). We
convert Eq. (12) by modelling task j as an item with
height ¢;; and width p;; when placed on machine i. New

variable c; > 0 with upper bounding constraint:

Gj = (s <Ci—cyy), YieIjeJ (16)

accounts for the new dimension and Eq. (12) is replaced
with:

(s +pij < s5)V(sjr + pijr < 85)
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With this replacement, there are a quadratic rather
than exponential number of constraints. This formu-
lation is more meaningful when considering the SMT
unsatisfiable core since the tasks are related on a pair-
wise basis, e.g. an unsatisfiable core consisting of pairs
{(1,2),(1,3),(2,3)} would mean that these three tasks
are unsatisfiable when assigned to the same machine
whereas the exponential can return any constraint that
corresponds to a superset of {1,2,3}. The algorithm we
implement for pure SMT bounds the objective seeking
feasible solutions hence we do not get an unsatisfiable
core, but for the hybrid models we can get unsatisfiable

cores from which we derive cuts.

Novel Hybrid Model combining SMT and MILP

The hybrid MILP/SMT strategy splits the problem
into: the master problem and the subproblem. The mas-
ter problem optimises a less constrained problem; this
optimisation solution is checked in the subproblem for
correctness. If feasible then optimality is achieved, oth-
erwise a cut is derived to reject the current incumbent
(and possibly others) from the master problem and the
process is repeated.

For planning and scheduling, we adapt the Hooker
(2007) LBBD method developed for hybrid MILP/CP.
The formulations, cuts and relaxations listed below were
all formulated by Hooker (2007), we describe the differ-
ences in adapting the approach to hybrid MILP/SMT.
The problems are solved with a master problem (MILP)
that assigns tasks to facilities and a subproblem (SMT)
that assesses the feasibility (for minimum cost) or lo-
cal optimality (for minimum makespan). The solution
process iterates by solving the master problem for an as-
signment and then, having fixed these assignments, solv-
ing the subproblem and repeating until the termination
criteria is satisfied. On each iteration, the subproblem
derives Benders cuts to be added to the master problem,
these cuts prevent the current assignment from being re-
assessed and are typically strong enough to prune large
amounts of the search space. Hooker (2007) states that
‘experience shows that it is important to include a relax-

ation of the subproblem’; we use the same relaxations



when assessing the hybrid MILP/SMT approach.

Only the master problems are formulated here, the
subproblems consist of constraints associated with the
start times and resource limits where the Boolean vari-
ables are fixed according to the master problem assign-

ment. For minimising cost, the master problem is:
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The binary variables x;; represent task j being assigned
to machine 7. The master problem only contains the as-
signment variables and costs; task start times are in the
subproblem. The x;; values in a master problem solu-
tion have a one-to-one correspondence with subproblem
variables (;;, i.e. z;; =1 <= (; = True. Equa-
tion (20) are the Benders cuts added on each iteration.
Note that the task set is J,; which is derived by greed-
ily filtering tasks from [Jp; while keeping the local as-
signment infeasible. The SMT unsatisfiable core may
not necessarily return all unsatisfiable facilities under
the local assignment (it is more likely that the core will
only be associated with a single machine), be the core is
mutually unsatisfiable therefore it will satisfy the prop-
erties we want in J;. Equation (21) is the subproblem
relaxation where J(¢1,t3) contains all tasks that are re-
leased at or after ¢; and are due at or before to, there
are a finite number of (¢1,t3) pairs which can be de-
rived from the combinations of release and due times
across all tasks. Hooker (2007) gives an intuition for
this relaxation by referring to p;jc;; as the ‘energy’ of
task j on facility ¢ and C;(t2 — ¢1) as the total energy
available in time window [t1,t2] on facility i. Therefore
the total energy of the tasks j' € J(t1,t2), Ej, Dijr Cij’ s
must not exceed the total available energy. Given the
bin packing formulation, an alternative interpretation is
that p;;c;; is the area of task (item) j in facility (bin) ¢
and C;(t1 —t2) is the total available area of that window.

The master problem for minimising makespan differs
on the objective, Benders cuts and subproblem relax-
ation. As for the MILP and logical models, we introduce
the variable M > 0 and objective:

min M. (23)

The relaxation added to the problem is:

C;M > Z CijDijTij, VieT.
JjeT

(24)

The relaxation is similar to the minimum cost relaxation
however here the ‘total area’ is defined by the makespan.
If the assignment is feasible, the Benders cuts take the

form:

M > My; — Z(l — %ij)pij, Vi € Tn,h € H,
J€Tni

(25)

where M, is the optimal makespan achieved on facility
¢ with the assignment in iteration h. Similarly to min-
imum cost, the set Jj; represents a subset of all tasks
assigned to ¢ however here it is a set that results in M},
and removal of a task would cause M, to change. If
the assignment is infeasible, we add an Eq. (20) cut to
reject it. In SMT applying an algorithm to find such a
set is unnecessary since the unsatisfiable core results in
one. If the deadlines of the tasks in the set Jj; are not
all the same, we can add the stronger Benders cut (note

W 1S new):

M > My, — Z (1 = 245)pij — Whi, (26)
J€Ini
whi < (}él?}ii{dj} - j%l}fz{dj}) jeZJ: (1= 2ij), (27)
hi
< A _ mi )
Wy < jrrel%i(i{dj} J;él}ili{d]}, (28)
Whi Z 0, (29)

forallie Z,h e {1,...,H —1}.

Numerical Results

To solve the MILP and SMT models we used Gurobi
6.0.3 and Z3 (De Moura and Bjgrner, 2008), respectively.
The MILP models are in Pyomo (Hart et al., 2011,
2012); all further implementations are in Python (Z3
has a Python API). SMT assesses satisfiability rather
than optimality, so we model the objective with a con-
straint that is iteratively tightened via the last objective
found. All test cases were run on a HP EliteDesk 800
G1 TWR with 16GB RAM and an Intel® Core™ i7-
4770 @ 3.40Ghz running Ubuntu 16.04.1 LTS. The test
set, originally generated by Hooker (2007), can be found
online!. There are 335 total instances from 4 classes:
195 from ‘c¢’, 50 from ‘de’, 40 from ‘df’ and 50 from ‘e’.
The subsequent analysis consists of performance profiles

"http://web.tepper.cmu.edu/jnh/instances.htm



(Dolan and Moré, 2002) and average runtimes. We say
that an instance terminates if it proves infeasibility or
converges within the timelimit to the optimal solution.
The performance profiles discard instances with fewer
than 18 tasks as toy problems. Results for these toy test
cases may be biased towards implementation opposed to
algorithm performance. The total number of problems
after discarding toy instances is 230 among which there
are 135 ‘c’, 30 ‘de’, 30 ‘df’ and 35 ‘e’ instances. The av-
erage run times are given for a subset of the ‘c’ instances
these instances were chosen as they cover the boundary
at which some solvers begin to time out and are indica-
tive of how much of an improvement can be achieved
by using an alternative. Hooker (2007) found that a
hybrid MILP/CP method outperforms both MILP and
CP independently with respect to both in speed and in
tractability of problems. We see if a similar result can
be found with the use of hybrid MILP/SMT.

We analyse the results of minimising costs first. Re-
call that Figure 1 discards problems with fewer than
18 tasks as toy instances. The hybrid implementation is
fastest for more than half the test set and can solve close
to 90% of the problems (nearly all tractable problems).
We see that MILP is able to solve more problems in a
shorter time than SMT however, in terms of tractabil-
ity, the number of problems that are tractable by both
approaches are fairly similar (about 60%).

The average running time for some of the ‘¢’ in-
stances with 2, 3 and 4 facilities is presented in Table 2,
we exclude the larger instances as there are a fair amount
of timeouts beyond the instances shown. The hybrid
method is clearly superior for larger instances. SMT
appears to be slightly better than MILP, but the hybrid
formulation with the relaxation outperforms both.

The hybrid algorithm performs well for this objec-
tive because in each iteration we seek the next best as-
signment. This is handled by the MILP solver which
is able to efficiently find it since it is not constrained
by resource consumption or release and due times. The
subproblem just has to check a series of independent re-
source constrained scheduling problems. Therefore we
delegate parts of the problem in the correct locations.

We now analyse the makespan minimisation results.
The Figure 2 performance profile, similarly to the min-
imum cost tests, discards instances with fewer than 18
tasks as toy problems. SMT and MILP are compara-
ble in terms of the number of problems they can solve
fastest, but SMT solves more problems in the hour. The
hybrid method performs less well than MILP or SMT.

Table 3 records the average running time for some of the
‘c’ instances with 2, 3 and 4 facilities. Here, the hybrid
approach performs worse than SMT and, for some of
the larger instances, performs at least three times worse
than MILP. SMT seems to scale quite well as for the
larger instances, of Table 3, SMT is at least seven times

faster than either of the other two methods.
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Figure 1. Minimum cost performance profile for all

Hooker (2007) problems with at least 18 tasks (230/335
in the test set: 135 ‘c’, 80 ‘de’, 30 ‘df’, 35 ‘e’).

Table 2. Average minimum cost running times for the 5
‘e’ instances with #Z facilities and #J tasks. A ‘+’ in-
dicates that at least one instance timed out (limit 3600s).

#T #T MILP SMT Hybrid SMT
2 14 0.78 0.33 0.71
16 5.55 2.61 4.09
18 82.38 8.57 9.02
20 167.50 28.93 2.20
22 1160.114 1070.26+ 789.67+
316 5.38 1.48 7.84
18 65.90 3.68 12.06
20  739.59+ 11.53 4.09
22 945.38+ 31.37 8.07
24 1886.62+ 695.86 24.60
4 18 3.90 3.22 6.52
20 36.37 13.14 5.56
22 39.26 69.95 8.99
24 1800.25+ 1523.49+ 75.29
26 2964.38+ 2805.87+ 35.09

The SMT algorithm performs well here because there
is a tight coupling between constraints and objective, i.e.
past knowlegde from the last iteration could be used in

the current iteration. The hybrid algorithm does not



perform as well because the MILP solver only learns
about the feasible space through the Benders cuts hence
the idea of a next best assignment may not have as much
of an effect in the early iterations. Also the independent
analysis of each assignment prevents the SMT solver

from learning about relations across facilities.
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Figure 2.  Minimum makespan performance profile

for all Hooker (2007) problems with at least 18 tasks
(230/335 in the test set: 135 ‘c’, 30 ‘de’, 30 ‘df, 35 ‘€’).

Table 8. Average minimum makespan running times for
5 ‘¢’ instances with #Z facilities & #J tasks. A ‘+’ in-
dicates that at least one instance timed out (limit 3600s).

#I #T MILP SMT Hybrid SMT
2 14 0.32 0.18 4.37
16 9.47 3.05 82.40

18 130.90 2.69 289.86

20 769.88+ 2.58 309.85

22 1874.07+ 102.07 1713.52+

3 16 0.65 0.54 9.65
18 137.98 1.71 38.68

20 9.08 0.81 13.68

22 402.45 50.47 1540.65+

24 499.24 70.05 1457.06+

4 18 0.82 0.66 14.22
20 1.07 0.55 9.92

22 12.71 3.59 34.98

24 59.97 8.36 652.09

26  1447.05+ 7.66 275.57

Conclusions

This manuscript considers a logic-based Benders de-
composition technique combining MILP and SMT; prior

LBBD approaches use constraint programming rather

than SMT. We find that hybrid MILP/SMT techniques
are significantly stronger than either technique individ-
ually on minimum cost models of scheduling, but that

the hybrid is weaker for minimum makespan.
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