
Integrating Mixed-Integer Optimisation and Satisfiability Modulo

Theories: Application to Scheduling

M. Mistry and R. Misener∗

Department of Computing, Imperial College London, South Kensington Campus, SW7 2AZ, UK

Abstract

One way to address multi-scale optimisation problems is by integrating logic and optimisation. For

example, a scheduling problem may have two levels: (i) assigning orders to machines and (ii) sequencing

orders on each machine. In a minumum cost model, assigning orders to machines is a mixed-integer

optimisation problem, sequencing orders is a constraint satisfaction problem. The entire problem may be

reformulated as either an optimisation or logic problem, but this misses the chance to use optimisation and

logic synergistically. Hybrid optimisation/logic approaches have been developed combining mixed-integer

linear programming (MILP) and constraint programming (CP), but CP requires specialised, bespoke con-

straints. We consider modifying the hybrid method by replacing CP with satisfiability modulo theories

(SMT); SMT is a constraint satisfaction technique combining propositional satisfiability with a back-

ground theory. We find that a logic-based Benders decomposition approach combining MILP and SMT

works very well on a minimum cost model for scheduling and performs significantly better than either

MILP or SMT alone. But the hybrid MILP/SMT method is weaker than either MILP or SMT on a

minimum makespan model.

Keywords
Mixed-integer programming, satisfiability modulo theories, scheduling, logic-based Benders de-

composition

Introduction

A major challenge in process systems engineering is

integrating: (i) long-term strategic planning decisions,

(ii) medium-term tactical planning, and (iii) short-term

scheduling (Maravelias and Sung, 2009). One way to

address these multi-scale optimisation problems is by in-

tegrating logic and optimisation (Hooker and Ottoson,

2003). For example, a scheduling problem may have two

levels: (i) assigning orders to machines and (ii) sequenc-

ing orders on each machine (Jain and Grossmann, 2001).

In a minimum cost model, assigning orders to machines

is a mixed-integer optimisation problem, sequencing or-

ders is a constraint satisfaction problem. The entire

problem may be reformulated as either an optimisation

or logic problem, but this misses the chance to use op-

timisation and logic synergistically.

Hybrid optimisation/logic approaches have been de-

veloped combining mixed-integer linear programming

(MILP) and constraint programming (CP), e.g. Jain

and Grossmann (2001); Li and Womer (2008); Sitek

∗r.misener@imperial.ac.uk; Tel: +44 (0) 20759 48315

(2014). The hybrid formulations usually use logic-based

Benders decomposition (LBBD) (Hooker and Ottoson,

2003), a generalisation of Benders decomposition (Ben-

ders, 1962). The principles of Benders decomposition

remain: we have a master problem and a subproblem

which generates cuts if the solution from the master

problem is infeasible. The difference is that LBBD re-

quires a logic proof deriving an objective bound.

Hybrid MILP/CP methods are typically applied

scheduling and its variants (Sitek, 2014). This is reason-

able: CP is very good at assessing scheduling feasibility.

The problem with hybrid MILP/CP is that, if the appli-

cation does not have a suitable CP constraint, a hybrid

method may be poor since bespoke CP constraints take

full advantage of very specific mathematical structures.

This manuscript is to test satisfiability modulo theories

as an alternative to CP in the hybrid scheme.

Satisfiability Modulo Theories

Satisfiability modulo theories (SMT) is a constraint

satisfaction technique combining propositional satisfia-



bility (SAT) with a background theory (De Moura and

Bjørner, 2008). A background theory is a set of axioms

and symbols, e.g. the theory of arithmetic. An SMT

solver consists of a SAT solver and a theory solver. The

idea is to leverage the strength and robustness of modern

SAT solvers to search for a feasible solution. The mod-

elling framework exposed by SMT allows for Boolean

variables to be used with background theory variables,

e.g z → (x ≥ 0) where x is continuous and z is Boolean,

so SMT is a natural choice when logical decisions form

a part of the system being modelled.

SMT assesses the satisfiability of a model and, if the

model is satisfiable, the SMT solver returns a witness.

If the model is unsatisfiable the SMT solver can return

an unsatisfiable core, a mutually unsatisfiable subset of

model constraints. An unsatisfiable core is a useful tool

when addressing why a model does not behave how we

expect or to understand why our model fails. Commonly

used SMT solvers include Z3 (De Moura and Bjørner,

2008) and MathSAT (Cimatti et al., 2013).

Planning and Scheduling

See Table 1 for descriptions of the sets, parameters

and variables mentioned in the formulations.

MILP Models

The MILP formulation follows the Hooker (2007)

discrete time model; a continuous time formulation

(Türkay and Grossmann, 1996), while smaller, is harder

to solve for the models considered in this manuscript.

The minimum cost model is:

min
∑
i∈I

∑
j∈J

∑
t∈T

Fijxijt (1)

s.t.
∑
i∈I

∑
t∈T

xijt = 1, ∀j ∈ J (2)∑
j∈J

∑
t′∈Tijt

cijxijt′ ≤ Ci, ∀i ∈ I, t ∈ T (3)

xijt = 0, ∀i ∈ I, j ∈ J , t ∈ T , (4)

t < rj or t > dj − pij
xijt ∈ {0, 1}, ∀i ∈ I, j ∈ J , t ∈ T . (5)

Equation (2) requires that a task is only assigned to

a single machine and only starts once. Equation (3)

characterises the resource constraints using the set Tijt.
Equation (4) limits the time windows for a given task

as defined by rj and dj .

The makespan is the total schedule length. The

minimum makespan model is similar to minimum cost,

but minimum makespan requires an additional variable

M ≥ 0, a new constraint bounding the makespan M

from below by the local makespan of each task:

M ≥
∑
i∈I

∑
t∈T

(t+ pij)xijt, ∀j ∈ J , (6)

and a different objective:

min M. (7)

Table 1. Model symbols (Hooker, 2007).

Name Description

Sets

I = {1, . . . ,m} Facilities

J = {1, . . . , n} Tasks

T = {1, . . . , p} Discrete time points

Tijt = {t′ | t− pij<t′≤ t} Start times: j is in

progress at t on i

H = {1, . . . , H − 1} Iteration indices; assume

that we are at iteration H

in the hybrid model

Jhi ⊆ J Local assignment of tasks

to i in iteration h in hy-

brid model

J̄hi ⊆ Jhi Tasks mutually reponsible

for infeasibility/local opti-

mality in hybrid model

Parameters

pij Processing time of j on i

cij Resource consumption of j on i

Ci Resource capacity on i

rj Release time of j

dj Due time of j

Fij Cost of assigning j to i (min cost only)

Variables

xijt Assign j to i starting at t (MILP, binary)

xij Assign j to i (hybrid, binary)

ζij Assign j to i (SMT, Boolean)

sj Start time of j (SMT & hybrid, continous)

c′j Resource ‘postition’ of j (SMT, continous)

M Makespan (min makespan only, continous)

Logical Models

As in the MILP case, a discrete logical formulation

can be very large when set T is large. But, for an SMT

solver, a discrete formulation loses information and is

therefore less favourable. Some inherent task properties

are the release, due and processing times which are not

directly present in the model. They would have to be

inferred from the constraints given by Eqs. (3) and (4),

and the set Tijt and may weaken the SMT theory solver.



A continuous time minimum cost model is:

min
∑
j∈J

fj (8)

s.t. sj ≥ rj , ∀j ∈ J (9)

ζij → (sj ≤ dj − pij), ∀i ∈ I, j ∈ J (10)

∨
i∈I

ζij ∧ ∧
i′ 6=i

¬ζi′j

 , ∀j ∈ J (11)

∧
j∈J ′

ζij→


∑

j∈J ′

cij ≤ Ci

∨∨
j,j′∈J ′

j′ 6=j

(sj + pij ≤ sj′)

, (12)

∀i ∈ I,J ′ ∈ P(J ) \ ∅

ζij → (fj = Fij), ∀i ∈ I, j ∈ J . (13)

The minimum makespan model is similar to the min-

imum cost model, but does not have variables fj or pa-

rameters Fij . Additional variable M ≥ 0 represents the

makespan and the minimum cost objective Eq. (8) is

replaced with the makespan objective:

min M. (14)

We also introduce the constraint which implies that if

task j is assigned to facility i then the makespan must

be greater than or equal to the task’s completion time:

ζij → (M ≥ sj + pij), ∀i ∈ I, j ∈ J . (15)

This logical formulation is flawed because the total

number of Eq. (12) constraints is exponential in the

number of tasks and, even for small problems, model

building time may become the bottleneck. Also, some

of these constraints may provide redundant information,

e.g. if a set of tasks cannot be scheduled on the same ma-

chine, any superset of these tasks cannot be scheduled.

We improve the logical formulation by interpreting

time and resource consumption as separate dimensions

and thereby convert the planning and scheduling prob-

lem to a generalised two dimensional bin packing prob-

lem (Garey et al., 1976). The difference between this

conversion and 2BP is that the items (tasks) may not

have the same height and width when they are placed

in different bins (machines); the items are further con-

strained on one dimension (release and due times). We

convert Eq. (12) by modelling task j as an item with

height cij and width pij when placed on machine i. New

variable c′j ≥ 0 with upper bounding constraint:

ζij →
(
c′j ≤ Ci − cij

)
, ∀i ∈ I, j ∈ J (16)

accounts for the new dimension and Eq. (12) is replaced

with:

(ζij ∧ ζij′)→

(sj + pij ≤ sj′)∨(sj′ + pij′ ≤ sj)

∨(c′j + cij ≤ c′j′)∨(c′j′ + cij′ ≤ cj)
(17)

∀i ∈ I, j, j′ ∈ J , j < j′.

With this replacement, there are a quadratic rather

than exponential number of constraints. This formu-

lation is more meaningful when considering the SMT

unsatisfiable core since the tasks are related on a pair-

wise basis, e.g. an unsatisfiable core consisting of pairs

{(1, 2), (1, 3), (2, 3)} would mean that these three tasks

are unsatisfiable when assigned to the same machine

whereas the exponential can return any constraint that

corresponds to a superset of {1, 2, 3}. The algorithm we

implement for pure SMT bounds the objective seeking

feasible solutions hence we do not get an unsatisfiable

core, but for the hybrid models we can get unsatisfiable

cores from which we derive cuts.

Novel Hybrid Model combining SMT and MILP

The hybrid MILP/SMT strategy splits the problem

into: the master problem and the subproblem. The mas-

ter problem optimises a less constrained problem; this

optimisation solution is checked in the subproblem for

correctness. If feasible then optimality is achieved, oth-

erwise a cut is derived to reject the current incumbent

(and possibly others) from the master problem and the

process is repeated.

For planning and scheduling, we adapt the Hooker

(2007) LBBD method developed for hybrid MILP/CP.

The formulations, cuts and relaxations listed below were

all formulated by Hooker (2007), we describe the differ-

ences in adapting the approach to hybrid MILP/SMT.

The problems are solved with a master problem (MILP)

that assigns tasks to facilities and a subproblem (SMT)

that assesses the feasibility (for minimum cost) or lo-

cal optimality (for minimum makespan). The solution

process iterates by solving the master problem for an as-

signment and then, having fixed these assignments, solv-

ing the subproblem and repeating until the termination

criteria is satisfied. On each iteration, the subproblem

derives Benders cuts to be added to the master problem,

these cuts prevent the current assignment from being re-

assessed and are typically strong enough to prune large

amounts of the search space. Hooker (2007) states that

‘experience shows that it is important to include a relax-

ation of the subproblem’; we use the same relaxations



when assessing the hybrid MILP/SMT approach.

Only the master problems are formulated here, the

subproblems consist of constraints associated with the

start times and resource limits where the Boolean vari-

ables are fixed according to the master problem assign-

ment. For minimising cost, the master problem is:

min
∑
i∈I

∑
j∈J

Fijxij (18)

s.t.
∑
i∈I

xij = 1, ∀j ∈ J (19)∑
j∈J̄hi

(1− xij) ≥ 1, ∀i ∈ Ih, h ∈ H, (20)

∑
j∈J(t1,t2)

pijcijxij ≤ Ci(t2 − t1), (21)

xij ∈ {0, 1}, ∀i ∈ I,∀j ∈ J . (22)

The binary variables xij represent task j being assigned

to machine i. The master problem only contains the as-

signment variables and costs; task start times are in the

subproblem. The xij values in a master problem solu-

tion have a one-to-one correspondence with subproblem

variables ζij , i.e. xij = 1 ⇐⇒ ζij = True. Equa-

tion (20) are the Benders cuts added on each iteration.

Note that the task set is J̄hi which is derived by greed-

ily filtering tasks from Jhi while keeping the local as-

signment infeasible. The SMT unsatisfiable core may

not necessarily return all unsatisfiable facilities under

the local assignment (it is more likely that the core will

only be associated with a single machine), be the core is

mutually unsatisfiable therefore it will satisfy the prop-

erties we want in J̄hi. Equation (21) is the subproblem

relaxation where J(t1, t2) contains all tasks that are re-

leased at or after t1 and are due at or before t2, there

are a finite number of (t1, t2) pairs which can be de-

rived from the combinations of release and due times

across all tasks. Hooker (2007) gives an intuition for

this relaxation by referring to pijcij as the ‘energy’ of

task j on facility i and Ci(t2 − t1) as the total energy

available in time window [t1, t2] on facility i. Therefore

the total energy of the tasks j′ ∈ J(t1, t2),
∑

j′ pij′cij′ ,

must not exceed the total available energy. Given the

bin packing formulation, an alternative interpretation is

that pijcij is the area of task (item) j in facility (bin) i

and Ci(t1−t2) is the total available area of that window.

The master problem for minimising makespan differs

on the objective, Benders cuts and subproblem relax-

ation. As for the MILP and logical models, we introduce

the variable M ≥ 0 and objective:

min M. (23)

The relaxation added to the problem is:

CiM ≥
∑
j∈J

cijpijxij , ∀i ∈ I. (24)

The relaxation is similar to the minimum cost relaxation

however here the ‘total area’ is defined by the makespan.

If the assignment is feasible, the Benders cuts take the

form:

M ≥M∗hi −
∑

j∈J̄hi

(1− xij)pij ,∀i ∈ Ih, h ∈ H, (25)

where M∗hi is the optimal makespan achieved on facility

i with the assignment in iteration h. Similarly to min-

imum cost, the set J̄hi represents a subset of all tasks

assigned to i however here it is a set that results in M∗hi
and removal of a task would cause M∗hi to change. If

the assignment is infeasible, we add an Eq. (20) cut to

reject it. In SMT applying an algorithm to find such a

set is unnecessary since the unsatisfiable core results in

one. If the deadlines of the tasks in the set J̄hi are not

all the same, we can add the stronger Benders cut (note

whi is new):

M ≥M∗hi −
∑
j∈Jhi

(1− xij)pij − whi, (26)

whi ≤
(

max
j∈Jhi

{dj} − min
j∈Jhi

{dj}
) ∑

j∈Jhi

(1− xij), (27)

whi ≤ max
j∈Jhi

{dj} − min
j∈Jhi

{dj}, (28)

whi ≥ 0, (29)

for all i ∈ I, h ∈ {1, . . . ,H − 1}.

Numerical Results

To solve the MILP and SMT models we used Gurobi

6.0.3 and Z3 (De Moura and Bjørner, 2008), respectively.

The MILP models are in Pyomo (Hart et al., 2011,

2012); all further implementations are in Python (Z3

has a Python API). SMT assesses satisfiability rather

than optimality, so we model the objective with a con-

straint that is iteratively tightened via the last objective

found. All test cases were run on a HP EliteDesk 800

G1 TWR with 16GB RAM and an Intel R© CoreTM i7-

4770 @ 3.40Ghz running Ubuntu 16.04.1 LTS. The test

set, originally generated by Hooker (2007), can be found

online1. There are 335 total instances from 4 classes:

195 from ‘c’, 50 from ‘de’, 40 from ‘df’ and 50 from ‘e’.

The subsequent analysis consists of performance profiles

1http://web.tepper.cmu.edu/jnh/instances.htm



(Dolan and Moré, 2002) and average runtimes. We say

that an instance terminates if it proves infeasibility or

converges within the timelimit to the optimal solution.

The performance profiles discard instances with fewer

than 18 tasks as toy problems. Results for these toy test

cases may be biased towards implementation opposed to

algorithm performance. The total number of problems

after discarding toy instances is 230 among which there

are 135 ‘c’, 30 ‘de’, 30 ‘df’ and 35 ‘e’ instances. The av-

erage run times are given for a subset of the ‘c’ instances

these instances were chosen as they cover the boundary

at which some solvers begin to time out and are indica-

tive of how much of an improvement can be achieved

by using an alternative. Hooker (2007) found that a

hybrid MILP/CP method outperforms both MILP and

CP independently with respect to both in speed and in

tractability of problems. We see if a similar result can

be found with the use of hybrid MILP/SMT.

We analyse the results of minimising costs first. Re-

call that Figure 1 discards problems with fewer than

18 tasks as toy instances. The hybrid implementation is

fastest for more than half the test set and can solve close

to 90% of the problems (nearly all tractable problems).

We see that MILP is able to solve more problems in a

shorter time than SMT however, in terms of tractabil-

ity, the number of problems that are tractable by both

approaches are fairly similar (about 60%).

The average running time for some of the ‘c’ in-

stances with 2, 3 and 4 facilities is presented in Table 2,

we exclude the larger instances as there are a fair amount

of timeouts beyond the instances shown. The hybrid

method is clearly superior for larger instances. SMT

appears to be slightly better than MILP, but the hybrid

formulation with the relaxation outperforms both.

The hybrid algorithm performs well for this objec-

tive because in each iteration we seek the next best as-

signment. This is handled by the MILP solver which

is able to efficiently find it since it is not constrained

by resource consumption or release and due times. The

subproblem just has to check a series of independent re-

source constrained scheduling problems. Therefore we

delegate parts of the problem in the correct locations.

We now analyse the makespan minimisation results.

The Figure 2 performance profile, similarly to the min-

imum cost tests, discards instances with fewer than 18

tasks as toy problems. SMT and MILP are compara-

ble in terms of the number of problems they can solve

fastest, but SMT solves more problems in the hour. The

hybrid method performs less well than MILP or SMT.

Table 3 records the average running time for some of the

‘c’ instances with 2, 3 and 4 facilities. Here, the hybrid

approach performs worse than SMT and, for some of

the larger instances, performs at least three times worse

than MILP. SMT seems to scale quite well as for the

larger instances, of Table 3, SMT is at least seven times

faster than either of the other two methods.

100 101 102 103
0

0.2

0.4

0.6

0.8

1

τ

ρ

SMT
MILP

Hybrid SMT
Can solve

Figure 1. Minimum cost performance profile for all

Hooker (2007) problems with at least 18 tasks (230/335

in the test set: 135 ‘c’, 30 ‘de’, 30 ‘df ’, 35 ‘e’).

Table 2. Average minimum cost running times for the 5

‘c’ instances with #I facilities and #J tasks. A ‘+’ in-

dicates that at least one instance timed out (limit 3600s).

#I #J MILP SMT Hybrid SMT

2 14 0.78 0.33 0.71

16 5.55 2.61 4.09

18 82.38 8.57 9.02

20 167.50 28.93 2.20

22 1160.11+ 1070.26+ 789.67+

3 16 5.38 1.48 7.84

18 65.90 3.68 12.06

20 739.59+ 11.53 4.09

22 945.38+ 31.37 8.07

24 1886.62+ 695.86 24.60

4 18 3.90 3.22 6.52

20 36.37 13.14 5.56

22 39.26 69.95 8.99

24 1800.25+ 1523.49+ 75.29

26 2964.38+ 2805.87+ 35.09

The SMT algorithm performs well here because there

is a tight coupling between constraints and objective, i.e.

past knowlegde from the last iteration could be used in

the current iteration. The hybrid algorithm does not



perform as well because the MILP solver only learns

about the feasible space through the Benders cuts hence

the idea of a next best assignment may not have as much

of an effect in the early iterations. Also the independent

analysis of each assignment prevents the SMT solver

from learning about relations across facilities.

100 101 102 103
0

0.2

0.4

0.6

0.8

1

τ

ρ

SMT
MILP

Hybrid SMT
Can solve

Figure 2. Minimum makespan performance profile

for all Hooker (2007) problems with at least 18 tasks

(230/335 in the test set: 135 ‘c’, 30 ‘de’, 30 ‘df, 35 ‘e’).

Table 3. Average minimum makespan running times for

5 ‘c’ instances with #I facilities & #J tasks. A ‘+’ in-

dicates that at least one instance timed out (limit 3600s).

#I #J MILP SMT Hybrid SMT

2 14 0.32 0.18 4.37

16 9.47 3.05 82.40

18 130.90 2.69 289.86

20 769.88+ 2.58 309.85

22 1874.07+ 102.07 1713.52+

3 16 0.65 0.54 9.65

18 137.98 1.71 38.68

20 9.08 0.81 13.68

22 402.45 50.47 1540.65+

24 499.24 70.05 1457.06+

4 18 0.82 0.66 14.22

20 1.07 0.55 9.92

22 12.71 3.59 34.98

24 59.97 8.36 652.09

26 1447.05+ 7.66 275.57

Conclusions

This manuscript considers a logic-based Benders de-

composition technique combining MILP and SMT; prior

LBBD approaches use constraint programming rather

than SMT. We find that hybrid MILP/SMT techniques

are significantly stronger than either technique individ-

ually on minimum cost models of scheduling, but that

the hybrid is weaker for minimum makespan.

Acknowledgments

The support of the EPSRC Centre for Doctoral
Training in High Performance Embedded and Dis-
tributed Systems (HiPEDS, EP/L016796/1) and a
Royal Academy of Engineering Research Fellowship to
R.M. is gratefully acknowledged.

References

Benders, J. F. (1962). Partitioning procedures for solv-

ing mixed-variables programming problems. Numerische

Mathematik, 4(1):238–252.

Cimatti, A., Griggio, A., Schaafsma, B., and Sebastiani, R.

(2013). The MathSAT5 SMT Solver. In TACAS, volume

7795 of LNCS. Springer.

De Moura, L. and Bjørner, N. (2008). Z3: An Efficient SMT

Solver, pages 337–340. Springer.

Dolan, E. D. and Moré, J. J. (2002). Benchmarking opti-

mization software with performance profiles. Math Pro-

gram, 91(2):201–213.

Garey, M. R., Graham, R. L., Johnson, D. S., and Yao, A. C.-

C. (1976). Resource constrained scheduling as generalized

bin packing. J Combin Theory, Ser A, 21(3):257 – 298.

Hart, W. E., Laird, C., Watson, J.-P., and Woodruff, D. L.

(2012). Pyomo–optimization modeling in Python, vol-

ume 67. Springer Science & Business Media.

Hart, W. E., Watson, J.-P., and Woodruff, D. L. (2011).

Pyomo: modeling and solving mathematical programs in

Python. Math Progam Comput, 3(3):219–260.

Hooker, J. N. (2007). Planning and scheduling by logic-based

Benders decomposition. Oper Res, 55(3):588–602.

Hooker, J. N. and Ottoson, G. (2003). Logic-based Benders

decomposition. Math Progam, 96(1):33–60.

Jain, V. and Grossmann, I. E. (2001). Algorithms for Hybrid

MILP/CP Models for a Class of Optimization Problems.

INFORMS J Comput, 13(4):258–276.

Li, H. and Womer, K. (2008). Scheduling projects with multi-

skilled personnel by a hybrid MILP/CP Benders decom-

position algorithm. J Sched, 12(3):281–298.

Maravelias, C. T. and Sung, C. (2009). Integration of produc-

tion planning and scheduling: Overview, challenges and

opportunities. Comput Chem Eng, 33(12):1919 – 1930.

Sitek, P. (2014). A hybrid CP/MP approach to supply chain

modelling, optimization and analysis. In Computer Sci-

ence and Information Systems (FedCSIS), pages 1345–

1352.

Türkay, M. and Grossmann, I. E. (1996). Logic-based

MINLP algorithms for the optimal synthesis of process

networks. Comput Chem Eng, 20(8):959 – 978.


