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Abstract

Price-based coordination can be used to coordinate (physically coupled) systems-of-systems (SoS) con-

sisting of competing subsystems that are not willing to share every necessary detail that is required to

compute the centralized solution. One example of such a SoS is a large integrated chemical production

site that consists of a central site coordinator and individually optimized processing plants, operated by

different business units and coupled by shared resource networks. One drawback of price-based coordina-

tion is its slow rate of convergence accompanied by many communication rounds between the coordinator

and subsystems, which is the bottleneck in applying price-based strategies to practical applications. The

rate of convergence can be improved with price updates computed from a quadratic approximation (QA)

of the responses of the subsystems to price incentives announced by the coordinator. However, this up-

date strategy relies on the assumption of unconstrained individual subsystems. In this contribution, we

propose an algorithm for updating the price based on QA with a simple heuristic that uses subgradient

updates, if one or more constraints of the subsystems become active. The advantages of the proposed

algorithm are demonstrated via a numerical example.
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Introduction

Large integrated chemical production sites can be re-

garded as physically coupled SoS, since there are usu-

ally many processing plants on site that are managed

and optimized by different competing business units or

companies, who pursue their own economic interests. To

operate the overall site resource and energy efficiently,

a central coordination is required, because the optima

of the individual subsystems are not necessarily coher-

ent with the site-wide optimum. Employing a central-

ized optimization that coordinates the subsystems’ de-

cisions, however, is not always possible due to technical

or managerial reasons. One of the reasons is the lack of

information on the site level, e.g., because the subsys-

tems are not willing to disclose their individual cost and

constraint information for the sake of confidentiality.
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For the distributed coordination of SoS there exists

a variety of available techniques in order to recover the

overall optimum (see e.g. Lasdon (2013)). The tech-

niques mainly differ in the degree of autonomy they

grant to the subsystems, the quality of shared infor-

mation, and the direction of the communication. For

instance, in proximal gradient methods additional ref-

erence signals are broadcasted (Parikh and Boyd, 2013)

or in cutting plane methods the (aggregate) cost func-

tion values need to be known Gatsis and Giannakis

(2013). Both might not be desirable in some appli-

cations. Distributed coordination strategies have at-

tracted an increased interest in different fields, for in-

stance in solving plant-wide MPC problems (Cheng

et al., 2007), management of oxygen distribution grids

(Mart́ı et al., 2013), coordination of populations of PEV

drivers (Grammatico et al., 2015) or the coordination of

unmanned vehicles (Cao et al., 2013).



Price-based coordination is a technique based on

market theory that can be used to recover the central-

ized solution from decentralized ones under certain as-

sumptions, while preserving a high level of confidential-

ity of to the subsystems. It is based on a Walrasian auc-

tion, in which there exists an equilibrium price such that

the supply and the demand of goods are equal and no

agent that takes part in the auction can further increase

its profit (Walker, 1987). In the auction a central coor-

dinator sends prices for the goods (shared resources) to

the subsystems, which–after they have optimized based

on the announced price—report their shared resource

utilization to the coordinator (see Figure 1). The co-

ordinator adjusts iteratively the prices in the so-called

tatônnement process until the equilibrium price vector

is found. The tatônnement process is known for a slow

rate of convergence, which is a drawback for practi-

cal applications. In Wenzel et al. (2016) a novel price

update strategy is proposed that uses QA of the net-

work imbalance as a function of the announced prices.

This approach however, relies on the assumption of in-

active constraints of the individual subsystems, which is

usually not the case in industrial environments, where

plants are often operated at their bounds.

In this contribution we propose an extension of the

strategy described in Wenzel et al. (2016) that uses a

simple heuristic in which subgradient-based updates are

used once the activeness of constraints is detected. The

rest of the paper is structured as follows. First, the

mathematical problem formulation is given, then price-

based coordination is discussed in more detail. After-

wards, the proposed algorithm is described and simula-

tion results for a numerical example are provided. Fi-

nally, conclusions are drawn and an outlook is given.

Mathematical problem formulation

Consider N individually optimized subsystems with

quadratic cost functions

min
xi

(1/2)xTi Pixi + qTi xi

s.t. Gixi ≤ hi,
(1)

where xi ∈ Rnxi is the state vector of the subsystem,

the matrix Pi ∈ Rnxi×nxi is assumed to be symmetric

and positive definite (Pi � 0) and qi ∈ Rnxi is a vec-

tor. The subsystem can exchange quantities with other

subsystems via connection nodes. In physically coupled

systems-of-systems these can be streams of material or
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Figure 1. Schematic topology of the numerical example.

energy. The vector of exchanged quantities with other

subsystems ri ∈ Rnri is defined by a linear mapping

ri = Aixi, (2)

where Ai ∈ Rnri×nxi is a non-zero matrix. The overall

optimization of the system-of-systems with N subsys-

tems can be formulated as follows

min
x

(1/2)xTPx+ qTx

s.t. Gx ≤ h,∑N
i=1 ri + φr = 0,

(3)

where x ∈ Rnx is the vertical stack of the single

state vectors, P and G are block-diagonal matrices con-

structed from Pi and Gi, and q and h are vertically

stacked vectors of qi and hi, respectively. For the SoS it

is crucial that the networks of the exchanged quantities

are balanced. Note that the formulation of the network

constraint requires that nr = nri ,∀i. If some of the

subsystems are only connected to a subset of the avail-

able networks, the respective entries of ri are set to zero.

The offset φr represents a constant sink or source for the

networks and can be interpreted, e.g., as the amount of

electric power that is retrieved from the public grid.

Price-based coordination

We assume that each individual subsystem solves prob-

lem (1). We further assume that the subsystems do

not share their individual cost functions, cost values,

and constraints, but they share their resource utiliza-

tion vector ri. Communication is only allowed between

the subsystems and the coordinator, but not between

single subsystems as illustrated in Figure 1.



To apply coordination techniques to existing SoS

that are individually optimized in a semi-automated

fashion, possibly involving managers, engineers, or oper-

ating personnel, the change to the individual optimiza-

tion problems should be minimal. This ensures that the

individual costs functions maintain their structure and

remain intuitive to understand, which increases the ac-

ceptance of the coordination strategy.

A distribution coordination strategy that reflects the

above mentioned requirement is the use of Lagrangian

relaxation. By relaxing the constraint in Eq. (3), the

reformulated optimization can then be written as

min
x

L(x, λ)

s.t. Gx ≤ h,
(4)

with the Lagrangian

L(x, λ) := (1/2)xTPx+ qTx+ λT (
∑N
i=1 ri + φr), (5)

where λ ∈ Rnr is the vector of Lagrange multipliers that

can be interpreted as a price vector that is assigned to

a particular shared resource vector ri. Problem (4) can

be distributed and solved in parallel for a given price

vector λk, where k denotes the current iteration during

the tatônnement process. The optimal decision of an

individual subsystem x∗i is defined as

x∗i (λ
k) = arg min

xi
Li(xi, λk)

s.t. Gixi ≤ hi.
(6)

Every subsystem reports its optimal resource utiliza-

tion r∗i (λ∗) (Eq. (2)) to the coordinator, which an-

nounces a new price vector λk+1. The simplest price

update is the subgradient price update

λk+1 = λk + αk
(∑N

i=1 r
∗
i + φr

)
, (7)

with the step size parameter αk ∈ R. The choice of

the step size parameter αk is not trivial, if no infor-

mation about the subsystems is present. If the prices

have different orders of magnitude the update step can

be normalized as in Lau et al. (2007). The step size

parameter needs to be small enough to ensure conver-

gence, but from a practical point of view it should be

large enough to reduce the number of communication

rounds (Bertsekas, 2009). The coordinator iteratively

updates the prices until the network balance is achieved

and the equilibrium price vector λ∗ is found.

Link between prices and network imbalance

One of the drawbacks of the tatônnement process is its

slow rate of convergence. In Wenzel et al. (2016) a novel

price update strategy based on QA is proposed. It relies

on the assumption that around the site-wide (overall)

optimum the individual subsystems are unconstrained.

In this case, the residual of the network constraint for

the optimization problem in Eq. (4) is a quadratic func-

tion of the price vector:

fr(λ) =
∥∥∥∑N

i=1 r
∗
i + φr

∥∥∥2

2
= λTHλ+ sTλ+ t, (8)

with the matrix H ∈ Rnλ×nλ , the vector s ∈ Rnλ and

the scalar t ∈ R. Based on a minimum number of

nq,min = (nr+1)(nr+2)/2 points the function fr(λ) can

be approximated. The next price vector λk+1 is found

be minimizing the QA of fr (QA price update)

λk+1 = arg min
λ∈Λk

fr(λ), (9)

where Λk is a search space based on the distribution

of points (Gao et al., 2016). The QA is updated with

new information, i.e., responses of the subsystems to

announced prices, until convergence is achieved. This is

referred to as recursive quadratic approximation (RQA).

However, the assumption of inactive constraints

around the overall optimum is not always fulfilled, es-

pecially in real world industrial environments, where

it is common to operate at least some of the systems

within a system-of-systems at their maximum capacity

and Eq. (8) becomes piece-wise quadratic. Therefore,

in the following section an extension to the approach in

Wenzel et al. (2016) is proposed.

Proposed price update algorithm

A QA of Eq. (8) fails, if the subsystems are insensi-

tive to changing price vectors λk, because the optimal

decision of at least one subsystem is governed by active

constraints in Eq. (6). Thus, we propose a simple heuris-

tic that checks whether the responses of the subsystems

change with the announced prices. If this is not the

case, the algorithm switches to subgradient-based up-

dates. Hence, Algorithm 1 is a combination of two dif-

ferent price update steps. At first, the initial price vector

is sent to the subsystems. These perform their individ-

ual optimization based on the announced price vector,

do a private update of their resource utilization r∗i , and

communicate the result to the coordinator. The coor-



Algorithm 1 Proposed price update algorithm.

1: Required: N , φr, kmax, εr, εξ, λ
0, α0

2: Initialize: k = 0, nSλ = 0, Sλ, ∆0
ξ > εξ

3: while ¬ Convergence do
4: for all subsystems i = 1 : N do
5: Find x∗i (λ

k) by solving problem (6),
6: r∗i ← Aix

∗
i (λ

k).
7: end for
8: ξk ←

∑N
i=1 r

∗
i + φr . Evaluate responses.

9: if (k == kmax) ∨ (
∥∥ξk∥∥2

2
< εr) then

10: Convergence = True
11: end if
12: if (∆k

ξ < εξ) ∧ (k > 0) then . see Eq. (10).
13: nSλ ← 0
14: Sλ ← ∅
15: else
16: Sλ ← Sλ ∪ (λk, ξk)
17: nSλ ← nSλ + 1
18: end if
19: if (k < nq − 1) ∨ (nSλ < nq − 1) then
20: λk+1 ← λk + αk ξk . See Eq. (7), αk = α0.
21: else
22: Find λk+1 by solving Eq. (9).
23: end if
24: k ← k + 1
25: end while

dinator evaluates the responses of the subsystems and

checks for convergence. If convergence is not achieved, a

simple heuristic is used to decide whether the next price

can be found by solving Eq. (9). The heuristic evalu-

ates for k > 0, whether there is a change from the last

response to the current response according to

∆k
ξ =

∥∥(ξk − ξk−1)/ξk−1
∥∥

2
, ξk =

∑N
i=1 r

∗
i (λk) + φr.

(10)

If the change is smaller than the user defined value εξ,

the number of already found points for the QA nSλ is set

to zero and the set of considered points Sλ is emptied.

This is done, because the recent collected data might

not be valid for the next piece-wise quadratic part of

the response surface with a different set of active con-

straints.. If the change is large enough, the current tuple

(λk, ξk) is taken into the set Sλ. In the next step the al-

gorithm evaluates the possibility to perform a QA. Two

conditions have to be fulfilled. On the one hand, the

minimum number of required points has to be available

and on the other hand, the set Sλ must contain enough

points. If one of the conditions is not met, a subgradient

update is performed according to Eq. (7). If both con-

ditions are met, then the new price vector λk+1 is found

by solving Eq. (9). The algorithm iterates until either

the maximum number of iterations kmax is reached or

the convergence criterion
∥∥ξk∥∥2

2
< εr is fulfilled.

Table 1. Model coefficients for the numerical example.

Plant Pi qi Gi hi Ai

Plant 1 2.0 1.5 −1.0 −0.5 2.0
Plant 2 3.0 1.2 1.0 −0.8 1.0
Plant 3 1.0 −0.5 1.0 −0.4 2.0
Plant 4 4.0 −1.8 −1.0 −0.6 3.0
Plant 5 0.5 0.8 1.0 −1.1 0.5

Numerical example

In this section, we present a numerical example of five

processing plants that are connected by one shared re-

source as depicted in Figure 1. The shared resource can

either be sent to the network (ri < 0) or taken from

the network (ri > 0). First, the models are described in

detail and the numeric settings of the simulation study

are given, then a comparison of price updates based on

subgradients and the proposed algorithm is done.

The coefficients of the N = 5 models of the form

given in Eq. (1) are listed in Table 1. The maximum

number of iterations is set to kmax = 100, the price

update parameter αk = 0.1, ∀k, has a fixed value.

Note that this value has not been optimized, but has

been chosen in the range where convergence is ensured

(for αk > 0.1) the simulation results showed diverging

behavior). It is assumed that the coordinator has no

knowledge about the subsystem models and constraints.

The tolerance for convergence is set to εr = 1× 10−6.

For the decision of switching between QA and subgradi-

ent price updates the tolerance is adjusted to εξ = 0.1.

The external sink and source term is set to zero (φr = 0).

The simulation results for the coordination of the five

subsystems are shown in Figure 2. The initial price is set

to λ0 = −5, in order to investigate the behavior of the al-

gorithm for different subsets of constraints being active.

This is visible in Figures 2(a) and 2(b), where the residu-

als of the network balance (response surface) are plotted

on a log-scale against the prices λ in the interval [−5,

2]. It is clearly visible that, e.g., around λ = 0.3, the

response surface is flat, i.e., the response of the subsys-

tems does not change with changing prices and the right

hand side of Eq. (8) reduces to a constant. The results

for the classical subgradient updates are shown in Fig-

ure 2(a). The algorithm is able to find the equilibrium

price, but requires numerous update steps when being

close to the optimal value. In contrast, the proposed

algorithm converges with few iteration when having col-

lected enough information close to the optimal value (see

Figure 2(b)). The proposed algorithm has advantages in
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(a) Iterations of the subgradient updates on the response
surface of the residuals against the prices.
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(b) Iterations of the proposed algorithm on the response sur-
face of the residuals against the prices.
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(c) Residuals of the network balance against the number of
iterations. Every filled circle represents a price update based
on QA.
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(d) Evolution of the Lagrangian values of the single subsys-
tems for both price updates. The squares and circles denote
the termination of the coordination.
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(e) Comparison of the Lagrangian values of both price up-
dates for the system-of-systems. The squares and circles de-
note the termination of the coordination.
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(f) Evolution of the price for the shared resource for both
price updates. Filled circles represent a price update based
on QA.

Figure 2. Simulation results for the numerical example.



the regions where the assumption of unconstrained sub-

systems holds. Hence, the proposed algorithm requires

less iterations. Figures 2(d) and 2(e) show the evolution

of the Lagrangian values for the single subsystems and

for the system-of-systems. The results show that some

subsystems increase the Lagrangian value and some de-

crease it. The overall Lagrangian value of the system-

of-systems (Figure 2(e)) is gradually decreased. Note,

that the feasibility is only given upon convergence, i.e.,

the lower cost (profit) of some of the subsystems at the

beginning of the auction is only of hypothetical nature.

Figure 2(f) shows the evolution of the price of the shared

resource against the iterations. Both algorithms have

similar trajectories within the first 25 iterations. This is

because the subsystems are at their bounds most of the

time and only a few update steps are performed based

on QA. In Figures 2(c) and 2(f) the update steps based

on QA are shown as filled circles. After iteration 21,

the proposed algorithm restarts to collect information

and performs a quadratic update step as soon as nq = 3

points are found. The optimal price is found in the sub-

sequent iteration.

Conclusions and outlook

In this contribution, a price update algorithm for price-

based coordination of systems-of-systems based on QA

has been proposed with an extension to individually con-

strained subsystems. A simple heuristic is suggested

that switches between QA and subgradient updates in

the case of active individual constraints. The algorithm

shows a good performance in the simulation study and

outperforms simple subgradient updates especially in re-

gions of inactive individual constraints. Thus the pro-

posed strategy combines the use of an accelerated up-

date step where possible and the robustness of subgra-

dient updates in the case of price-insensitive responses

of the subsystems. Future research will incorporate the

application of the algorithm to a higher number of com-

peting subsystems and more shared resources. Further,

an analysis needs to be performed to characterize the

properties of the proposed algorithm. Additionally, the

approach can be extended to consider subsystems with

general strictly convex cost functions, such that the net-

work residual cannot be assumed to be a quadratic func-

tion even in the unconstrained case (see Eq. (8)). This

limiting assumption could be overcome by a suitable

choice of regression points (cf. Gao et al., 2016).
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