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Abstract 

We propose a new mixed-integer linear programming (MILP) formulation for straight pipelines with 
multiple intermediate dual purpose nodes. Products enter the pipeline as batches, making this a batch-
centric approach. As such, and before solving the model, it is required to convert the products initially 
inside the pipeline into batches and assign them left and right coordinates. Furthermore, we need to leave 
empty batches in between to allow for injections at intermediate nodes. We will show that these decisions, 
together with the number of time slots in the single grid continuous-time formulation, affect solution 
quality. The model features segment-dependent coordinates and allows for interacting pumping runs. It is 
thus more general than previous work, leading to a better utilization of the pipeline capacity. 
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Introduction

Pipelines are frequently used to send refined petroleum 
products over long distances, from refineries to distribution 
centers. Different configurations can be encountered, 
ranging from a single pipeline with a refinery feeding a 
depot at the other end, to tree- and mesh-like structures. The 
flow is unidirectional in most cases, but systems with 
reversible flow can also be found. 

Planning and scheduling of multiproduct pipelines can 
be quite challenging since the liquid fuels will typically take 
different routes, a batch may increase/decrease in size while 
passing through input/output nodes, pipeline segments vary 
in diameter (leading to changes in the preferred flowrate), 
some product sequences are forbidden, etc. This has 
motivated researchers to developed optimization 
approaches and a few contributions have appeared over the 
last decade. They can be divided into product and batch 
centric. 
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Figure 1. Pipeline segment discretized into 
packs of known capacity (single product/pack) 

The main modeling difficulty concerns allowing a 
product to be present in different places of a segment with 
other products in between, e.g. P1 in Figure 1. One way to 
overcome it, is to rely on a discrete volume representation 
(Rejowski and Pinto, 2003, 2008; Herran et al., 2010), 
where each pack holds exactly one product. Discretizing the 
volume increases model size, affects solution quality and 
may degrade computational performance. The alternative is 
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to use a continuous volume representation. An example, is 
the Resource-Task Network (RTN) model of Castro (2010), 
which is also product centric but may return suboptimal 
solutions since it does not allow for the case in Figure 1. 

Batch centric approaches overcome such problem 
while using a continuous volume representation. The first is 
due to Cafaro and Cerdá (2004) and tackled a system with 
a single refinery and multiple output nodes. Products 
initially in the pipeline are converted into batches with the 
modeler postulating additional elements so as to meet 
product demand. It is a simple process that becomes more 
complex in systems with multiple input nodes. More 
specifically, Cafaro and Cerdá (2009) highlight the 
importance of defining empty batches as part of the initial 
characterization of the pipeline. However, to the best of our 
knowledge, no work has made such decisions part of the 
optimization. One of the goals of this paper is to motivate 
researchers to do so, by testing alternative assignments. 

The straight pipeline configuration considered in this 
paper was also tackled by Cafaro and Cerdá (2010) and 
Cafaro et al. (2015) but they used a 2-stage decomposition 
approach to generate the schedule. As a consequence, it is 
not possible to enforce flowrate constrains on the segments. 
The higher planning level handles decisions involving the 
sequence of product injections and the destination for each 
batch. The lower scheduling level then finds the sequence 
and timing of product deliveries. In contrast, the models in 
Ghaffari-Hadigheh and Mostafaei (2015) and Mostafaei et 
al. (2015, 2016) generate the detailed schedule in one step, 
leading to improved solution quality. By allowing a 
segment to receive a product both from its input node and 
the immediate upstream segment (interacting pumping 
runs), the model discussed in this work can do even better. 
The comparison below, considers makespan minimization 
to better highlight the more efficient use of the pipeline 
capacity. Different objectives can naturally be included. 

Problem Statement 

We consider a straight pipeline with multiple 
intermediate single or dual purpose nodes, see Figure 2. A 
segment 𝑠 ∈ 𝑆 identifies the part of the pipeline located 
between consecutive nodes, of volume 𝑣%& (m3). The 
location of input nodes 𝑟 ∈ 𝑅, output nodes 𝑑 ∈ 𝐷 and dual 
purpose nodes 𝑑𝑝 ∈ 𝐷𝑃 is known. More specifically, subset 
𝑅%, if ≠ ∅, indicates the refinery at the start of segment 𝑠, 
while subset 𝐷% holds the depot at the end of 𝑠. 

Lower and upper bounds on the aggregated storage 
capacity are known for each product 𝑝 ∈ 𝑃, e.g. 𝑣/,1

2,345 and 
𝑣/,1
2,367, and so are the initial volumes in storage, e.g. 𝑣8,1

9,:. 
For simplicity, it is assumed that the initial volume at the 
refineries is enough to meet the product demand at the 
depots 𝑓8,1

9,<5=, which is removed all at once at the end of the 
last pumping run. Additional data includes minimum and 
maximum pumping rates, which are product specific for 
nodes, e.g.	𝜌8,1

9,345, but not for segments, e.g. 𝜌%
&,345. 

Figure 2. Straight pipeline with multiple 
intermediate nodes 

Assigning initial products to batches 

The initial product sequence and volumes inside the 
pipeline are also known. However, this is not enough to 
proceed, since batch-centric models require the assignment 
of each of these products to one or more batches 𝑖 ∈ 𝐼. Take 
Figure 2 as an example. There are 4 products in the pipeline, 
arranged, from right to left, in a P5-P3-P1-P2 sequence. The 
standard approach is to consider each position in the 
sequence as a batch and so, the number of batches initially 
in the pipeline, 𝐼BC8, is set to four. It does not necessarily 
mean that the old batches will go from one to four since we 
may need empty batches in between to allow for new 
product injections at intermediate nodes. More specifically, 
empty batch I3 allows input node R2 (part of dual purpose 
node DP1) to pump another product between P3 (I2) and P4 
(I3). Empty batches will become new batches 𝐼DEF during 
operation. Thus, for 𝐼 =7, 𝐼BC8={I1,I2,I4,I5} and 
𝐼DEF={I3,I6,I7}. 

The batch-product assignment for old batches involves 
making parameter 𝑦H,1=1. The initial volumes inside the 
pipeline segments are given by 𝑣%,H

&,: (m3), with the right-
coordinates 𝑟𝑐%,H:  defining their exact location, see Figure 3. 
In contrast, the batch-product assignment for new batches 
will be determined by the optimization (variables 𝑌H,1). 

Figure 3. Computing initial right coordinates 

Time Representation 

One key element of scheduling formulations is the 
underlying time representation. The modeler has to decide 
between discrete and continuous, based on experience. For 
the specific case of pipeline scheduling, the continuous-
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time model of Cafaro and Cerdá (2004) improved 
performance by up to 3 orders of magnitude compared to 
the discrete-time and -volume model of Rejowski and Pinto 
(2003). A fairer comparison involving the same RTN 
continuous-volume model also favored continuous time 
(Castro, 2010) and so, it is the option taken. 

Batch-centric models use the notion of pumping runs. 
They can be viewed as the time slots of a continuous-time 
representation relying on a single grid, which was also used 
by the product-centric formulation of Castro (2010). 

Figure 4. Underlying continuous-time grid 

The adopted reference grid is show in Figure 4. There 
are 𝑡 ∈ 𝑇 event points ( 𝑇 -1 time slots) ranging from time 
zero to the given horizon ℎ. Let 𝑇N give the absolute time of 
event point 𝑡 and 𝐿N the duration of slot 𝑡 (h). The objective 
will be to minimize the makespan, the time of the last event 
point, Eq. (1). The difference in time of two consecutive 
event points equals the slot duration, Eq. (2). 

min 𝑇|T| (1) 

𝑇NUV = 𝑇N + 𝐿N	∀𝑡 ≠ |𝑇| (2) 

Decisions affecting solution quality 

The number of event points 𝑇 , number of batches 𝐼  
and product-batch assignments for old batches, all affect 
solution quality. It reflects the higher complexity of pipeline 
scheduling compared to other process scheduling problems, 
which only need to be iterated over 𝑇  to find the real 
optimal solution. 

Rather than performing an exhaustive search over all 
possible combinations, we do the following: (i) choose the 
number of batches and initial assignments based on product 
demand; (ii) iterate over 𝑇 , starting with a low number and 
stopping when the makespan stops improving; (iii) increase 
the number of batches by one and/or change the location of 
empty batches to see if a better solution can be found. Since 
this is a heuristic search procedure, it is perfectly possible 
that the reported solutions are not globally optimal. 

Pipeline Model 

The mathematical formulation to be presented next is 
divided into modules. The pipeline system features input 
and output nodes (dual purpose nodes have one input and 
one output node), and pipeline segments, see Figure 5. 
Nodes are product centric since all its model parameters are 
related to products. Nevertheless, the volumetric balances 
feature disaggregated variables with a batch index to make 
the connection to the immediate segment. On the other 

hand, the segment module is batch centric. Batches can be 
viewed as virtual entities that facilitate the writing of some 
model constraints. Ideally, the complete model should be 
product centric to forbid certain product sequences. 

Figure 5. Main elements of pipeline system 

It is important to highlight at this point that the 
complete mixed-integer linear programming (MILP) model 
was derived from Generalized Disjunctive Programming 
(GDP) (Balas, 1979; Raman and Grossmann, 1994; Castro 
and Grossmann, 2012). The timing constraints are of the 
big-M type since a slightly better performance was 
observed compared to their convex hull counterparts. 
Further details are given in Mostafaei and Castro (2017). 

Batch-product assignment 

The linking variables in Figure 5 can be different than 
zero only if batch 𝑖 is associated to product 𝑝, i.e. 𝑌H,1=1. In 
Eqs. (3)-(4), 𝑓1

Z,367 is an upper bound on the maximum 
volume that can be transferred. Batch-product assignments 
are already known for old batches, while new batches have 
to select exactly one product, Eqs. (5)-(6). 

𝐹/,H,1,N
2,8

N\|T|/ ≤ 	 𝑓1
Z,367𝑌H,1	∀𝑖, 𝑝 (3) 

𝐹8,H,1,N
9,8

N\|T|8 ≤ 	 𝑓1
Z,367𝑌H,1	∀𝑖, 𝑝 (4) 

𝑌H,1 = 𝑦H,1	∀𝑖 ∈ 𝐼BC8, 𝑝 (5) 

𝑌H,11 = 1	∀𝑖 ∈ 𝐼DEF (6) 

Input node 

The mass balance in Eq. (7) states that the volume 𝑉/,1,N2  
at event point 𝑡 is equal to the volume at the previous event 
point (or the initial capacity 𝑣/,1

2,:) minus the volume 
entering the pipeline during slot 𝑡-1. Eq. (8) enforces lower 
and upper limits on the storage capacity. The volume of 
batch 𝑖 entering the pipeline is equal to the sum of the 
disaggregated product variables, see Eq. (9). 

𝑉/,1,N2 = 𝑣/,1
2,:

N`V
+ 𝑉/,1,NaV2 − 𝐹/,H,1,NaV

2,8
H∈cd 	∀𝑟, 𝑝, 𝑡 (7) 
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𝑣/,1
2,345 ≤ 𝑉/,1,N2 ≤ 𝑣/,1

2,367	∀𝑟, 𝑝, 𝑡 (8) 

𝐹/,H,N2 = 𝐹/,H,1,N
2,8

1 	∀𝑟, 𝑖, 𝑡 ≠ |𝑇| (9) 

Let binary variable 𝑋/,H,N2  indicate if input node 𝑟 is 
pumping batch 𝑖 during slot 𝑡. As highlighted in Figure 5, 
at most one batch can leave the refinery during slot 𝑡, see 
Eq. (10). If 𝑋/,H,N2 =1, then 𝐹/,H,N2 ≥0, else 𝐹/,H,N2 =0 (Eq. (11), 
where 𝑓/

2,345 and 𝑓/
2,367 are bounding parameters). In 

addition, the duration of the pumping run must respect the 
minimum and maximum flowrates, see big-M Eq. (12). 

𝑋/,H,N2
H ≤ 1	∀𝑟, 𝑡 ≠ |𝑇| (10) 

𝑓/
2,345𝑋/,H,N2 ≤ 𝐹/,H,N2 ≤ 	 𝑓/

2,367𝑋/,H,N2 	∀𝑟, 𝑖, 𝑡 ≠ |𝑇| (11) 

fd,g,h,i
j,k

ld,h
j,mno1H ≤ 𝐿N ≤

fd,g,h,i
j,k

ld,h
j,mpq1H +

																																							ℎ ∙ (1 − 𝑋/,H,N2
H∈cd )	∀𝑟, 𝑡 ≠ |𝑇| (12) 

Output node 

Similar constraints can be obtained for the output node. 
The main difference is that the volume is now entering the 
output node and there is an instantaneous product removal 
at the end of the time horizon that represents the product 
demand, see Eq. (13). 

𝑉8,1,N9 = 𝑣8,1
9,:

N`V
+ 𝑉8,1,NaV9 + 𝐹8,H,1,NaV

9,8
H −

															𝑓8,1
9,<5=

N`|T|
	∀𝑑, 𝑝, 𝑡 (13) 

Dual purpose node 

Dual purpose node 𝑑𝑝 can act simultaneously as input 
and output node provided that the same batch is not 
involved. In Eq. (14), subsets 𝑅81 and 𝐷81 hold the refinery 
and depot associated to the node. Equation (15) ensures that 
product arrivals and departures report to the same tank. 

𝑋/,H,N2 + 𝑋8,H,N9 ≤ 1	∀𝑑𝑝, 𝑟 ∈ 𝑅81, 𝑑 ∈ 𝐷81, 𝑖, 𝑡 ≠ |𝑇| (14) 

𝑉81,1,N9Z = 𝑣81,1
9Z,:

N`V
+ 𝑉81,1,NaV9Z − 𝑓8,1

9,<5=
8 N` T

+

																	 ( 𝐹8,H,1,NaV
9,8

8 − 𝐹/,H,1,NaV
2,8

/ )H 	∀𝑑𝑝, 𝑝, 𝑡 (15) 

Node-segment junction 

According to Figure 2, nodes are located between 
consecutive segments. Equation (16) ensures that the 
volume 𝐹%,H,N

&,HD of batch 𝑖 entering segment 𝑠 during slot 𝑡 
must be equal to the volume leaving the previous segment 
plus the volume coming from the refinery node minus the 
volume entering the depot. Then, the volume leaving the 
last segment must enter the last depot, Eq. (17). The model 
allows for the input node at the start of segment 𝑠 and 
segment 𝑠-1 to simultaneous send material to 𝑠 but only if 

the same batch is involved. Similarly, if batch 𝑖 is entering 
output node 𝑑, only 𝑖 can be leaving segment 𝑠 feeding 𝑑. 

𝐹%,H,N
&,HD = 𝐹%aV,H,N

&,BuN + 𝐹/,H,N2
/∈2v − 𝐹8,H,N9

8∈9vwx 	∀𝑠, 𝑖, 𝑡 (16) 

𝐹%,H,N
&,BuN = 𝐹8,H,N9

8∈9v 	∀𝑠 = |𝑆|, 𝑖, 𝑡 ≠ |𝑇| (17) 

𝑋%,H,N
&,HD

H ≤ 1 + ( 𝐼 − 1) ∙ (1 − 𝑋/,H,N2
H )	∀𝑠, 𝑟 ∈ 𝑅%, 𝑡 (18) 

𝑋%,H,N
&,BuN

H ≤ 1 + ( 𝐼 − 1) ∙ (1 − 𝑋8,H,N9
H )	∀𝑠, 𝑑 ∈ 𝐷%, 𝑡(19) 

Segment 

The volumetric balance for batch 𝑖 in segment 𝑠 is 
shown in Eq. (20). The liquid fuels are incompressible and 
so the sum of the batch volumes inside must match the 
segment volume, Eq. (21). Events triggering the entrance 
and withdrawal of batches into/from the segment are related 
to their left 𝐿𝐶%,H,N and right 𝑅𝐶%,H,N coordinates. These are 
related by Eqs. (22)-(23) and illustrated in Figure 3. 

𝑉%,H,N& = 𝑣%,H
&,:

N`V
+ 𝑉%,H,NaV& + 𝐹%,H,NaV

&,HD − 𝐹%,H,NaV
&,BuN 	∀𝑠, 𝑖, 𝑡 (20) 

𝑉%,H,N&
H = 𝑣%&	∀𝑠, 𝑡 (21) 

𝑅𝐶%,H,N = 𝑟𝑐%,H: N`V
+ ( 𝑉%,H´,N&

H´{H )
N|V
	∀𝑠, 𝑖, 𝑡 (22) 

𝐿𝐶%,H,N = 𝑅𝐶%,H,N − 𝑉%,H,N& 	∀𝑠, 𝑖, 𝑡 (23) 

Let binary variable  𝑋%,H,N
&,HD indicate if batch 𝑖 is entering 

segment 𝑠 during slot 𝑡 and 𝑋%,N
&,DB	H if no batch is entering. 

Clearly, at most one of the two cases can happen, see Eq. 
(24). If the batch is entering the segment, then its left 
coordinate must be equal to zero, otherwise it can take any 
value lower than the volume segment, see Eq. (25). The 
bounding and timing constraints are in Eqs. (26)-(27). 

𝑋%,H,N
&,HD + 𝑋%,N

&,DB	H ≤ 1	∀𝑠, 𝑖, 𝑡 ≠ |𝑇| (24) 

𝐿𝐶%,H,N ≤ 𝑣%& ∙ 1 − 𝑋%,H,N
&,HD 	∀𝑠, 𝑖, 𝑡 ≠ |𝑇| (25) 

𝑓%
&,345𝑋%,H,N

&,HD ≤ 𝐹%,H,N
&,HD ≤ 	 𝑓%

&,367𝑋%,H,N
&,HD	∀𝑠, 𝑖, 𝑡 ≠ |𝑇| (26) 

fv,g,i
},g~

g∈�v
lv
},mno ≤ 𝐿N ≤

fv,g,i
},g~

g∈�v

lv
},mpq + ℎ ∙ 𝑋%,N

&,DB	H	∀𝑠, 𝑡 ≠ |𝑇| (27) 

For a batch to leave segment 𝑠 during slot 𝑡, the right 
coordinate at the end of the slot (event point 𝑡+1) must be 
equal to the segment volume, see Eqs. (28)-(29). 

𝑅𝐶%,H,NUV ≥ 𝑣%&𝑋%,H,N
&,BuN	∀𝑠, 𝑖, 𝑡 ≠ |𝑇| (28) 

𝑓%
&,345𝑋%,H,N

&,BuN ≤ 𝐹%,H,N
&,BuN ≤ 	 𝑓%

&,367𝑋%,H,N
&,BuN	∀𝑠, 𝑖, 𝑡 ≠ |𝑇| (29) 



  

 

Computational Results 

The new formulation has been implemented in GAMS 
24.6.1 and solved using CPLEX 12.6.3 running in parallel 
deterministic mode using up to eight threads. The 
termination criteria were either a relative optimality 
tolerance of 10-6 or a maximum wall time limit of 7200 
CPUs. The hardware consisted of a Windows 10, 64-bit 
desktop with an Intel i7-6700K (4.0 GHz) processor and 16 
GB of RAM. 

We consider three example problems, Ex1-Ex3, taken 
respectively from Mostafaei et al. (2016) (Examples 4 and 
2) and Cafaro and Cerdá (2010) (Example 2). Compared to 
our previous model in Mostafaei et al. (2016), we are now 
able to reduce the makespan (see Table 1) and the number 
of slots that ensures feasibility. Two novel features in our 
model are responsible for this: (i) the new model allows for 
interacting pumping runs (IPR), in which a segment of the 
pipeline simultaneous receives material from its input node 
and upstream segment; (ii) left and right coordinates of 
batches are no longer global, but segment dependent. 

Table 1. Optimal makespan (h) assuming single 
empty batch 

Example Mostafaei et al. (2016) This work Reduction 
Ex1 207.62 197.44 4.9% 
Ex2 143.65 136.90 4.7% 
Ex3 237.20 231.97 2.2% 

Table 2. Computational statistics for new model 

Example |𝐼| |𝑇| Makespan (h) CPUs 
Ex1 8 10 Infeasible 172 

  11 215.81 235 
  12 203.06 403 
  13 197.44 675 
  14 203.06 7200a 

Ex2 8 7 Infeasible 72.1 
  8 140.47 175 
  9 138.10 559 
  10 136.90 1269 

Ex3 9 10 Infeasible 1911 
  11 237.60 3794 
  12 231.97 1786 

a Optimality gap at termination=8.6% 
 
Table 2 shows the computational results for the 

individual iterations in the search for the global optimal 
solution. The number of batches |𝐼| is fixed, while single 
increments are adopted for the number of event points |𝑇|. 
It can be seen that solution quality typically improves, 
whereas the computational time increases. The exceptions 
occur for: (i) Ex1 for |𝑇|=14, which cannot be solved to 
optimality in the given time; (ii) Ex3 for |𝑇|=12, which is 
faster than |𝑇|=11 because the optimal solution of 231.97 h 

becomes equal to the LP relaxation (zero integrality gap). 
Note that the integrality gap reduces when allowing IPR. 

Locating empty batches 

For a given number of batches and event points, there 
are still degrees of freedom left, linked to the location of the 
empty batches. Assuming a single empty batch, we show in 
Table 3 the base case for Ex1-Ex3 (results in Table 2) 
together with the alternatives in the rows below. I3 is the 
empty batch in the base case of Ex1, changing then to I4 and 
I2. I3 is actually the only option that ensures feasibility. 

Picking I4 as the empty batch for Ex2, also leads to a 
feasible solution for |𝑇|=10, but the 137.60 h makespan is 
0.6% higher. Interestingly, the relative difference to the 
base case is actually zero for |𝑇|=9 (138.10 h) and 1.7% for 
|𝑇|=8 (142.86 h), suggesting that the best assignment might 
change with the number of events. In contrast, moving the 
empty batch to I2 makes the problem infeasible. 

The results for Ex3 show that there is also a significant 
impact on computational time. While the 237.60 h 
makespan for the base case and |𝑇|=11 is proven optimal in 
roughly one hour, two hours are not enough when moving 
the empty batch from I3 to I2, I4 or I5. For I6, we don’t even 
know if the problem is feasible. 

Table 3. Results for different assignments of old 
batches (with single empty batch) 

Example 𝐼BC8 |𝑇| Makespan (h) Change 
Ex1 I1,I2,I4 11 215.81 - 

 I1,I2,I3 11,12 Infeasible - 
 I1,I3,I4 11,12 Infeasible - 

Ex2 I1,I2,I4 10 136.90 - 
 I1,I2,I3 10 137.70 +0.6% 
 I1,I3,I4 8,9 Infeasible - 

Ex3 I1,I2,I4,I5,I6 11 237.60 - 
 I1,I3,I4,I5,I6 11 240.19a +1.1% 
 I1,I2,I3,I5,I6 11 238.13a +0.2% 
 I1,I2,I3,I4,I6 11 238.13a +0.2% 
 I1,I2,I3,I4,I5 11 No solutiona - 

a Up to maximum resource limit of 7200 CPUs 
 
Let us now increase the number of empty batches to 

two while focusing on Ex2 and |𝑇|=10. If the number of 
batches stays at eight, then the problem is infeasible (found 
in just 6.54 CPUs). However, raising to |𝐼|=9, lowers the 
makespan by 1.6% to 134.72 h (4823 CPUs) compared to 
Table 2. The optimal schedule is given in Figure 6 and three 
aspects are worth highlighting. 

The first, is that segments are almost always operating, 
except for S1 in [16.67, 30.95] and S2 in [66.67, 75.00]. The 
second is the advantage of segment-dependent coordinates, 
observed in the last two runs. Notice in [109.72, 122.22] 
that batch I8 is being pumped from R4 into the last segment 
(S4), while I6 is still in S3. This is allowed since I6 (and I7) 
will never enter S4. It is also possible for I8 to enter segment 



  
 

 

S3 in [122.22, 134.72] while I7 is still being removed from 
S2. The third aspect is that the inlet and outlet flows from 
DP1 in interval [0, 16.67] both involve P3 but do not 
conflict with Eq. (14) since they contain batches I6 and I4. 

Conclusions 

This paper has presented a new continuous-time 
formulation for the scheduling of straight pipelines with 
multiple intermediate nodes. It is batch centric, in the sense 
the user needs to convert the products initially in the 
pipeline into batches, while the optimization assigns 
batches to pumping runs. We have seen that the initial 
assignments, the number of batches and the number of event 
points in the time grid, all affect solution quality. Future 
work will thus look into including the initial decisions as 
part of the optimization, as well as extending the model to 
other pipeline configurations. The results have also shown 
that the new model is more general than previous work. 
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