Study of an Influence of the Parameters on Multiplicity of Steady States in the Recycle System: Reactor–Separating Unit

Anatolij Boyarinov*

*Mendeleyev Chemical University of Russia, Moscow, Russia

Stanislav Duev**

**Kazan State Technological University, Kazan, Russia.

Abstract

A reactor-separator recycle system is studied. The unreacted feed and intermediate reactants leaving the reactor are separated from the final products of the reaction and are recycled. An influence of the parameters on temperature multiplicity of steady states has been studied. A plug-flow reactor in which the second-order reaction \(A + B \rightarrow 2C \) proceed with complete utilization of the feed reactants \(A \) and \(B \) is shown to be characterized by a family of steady states in which the concentrations of reactants and temperature in the reactor can take an infinite of steady-state values lying within a bounded region (interval).

Keywords: Recycle systems, Multiplicity of steady states, Stability.

1. Introduction.

An efficient way to solve the problem of minimizing chemical industrial wastes is recycling unreacted feed materials. For this purpose the reactor-separator recycle system can be used (Fig. 1) However a feedback causes an appearance of multiplicity of the steady states in the reactor. A problem of the steady states multiplicity in chemical reactor has been examined for a long time by van Harden (1953), Frank-Kamenetski (1955) and other. Also there are numerous articles in which the problem of the steady states multiplicity and stability of the reactor with recycle has been analyzed (Lass and Amundsen (1967), Reily and Schmitz (1966) and other). The existence of the finite set of steady states (odd number) in the reactor was indicated in all these works. But an appearance of qualitatively new properties in the reactor taking place in the recycle system: reactor – separating unit is possible. It is shown as an existence of continuum (infinite set) steady states in the reactor (Boyarinov, Duev (1980, 1988, 2002, 2004)). Continuum of the steady states is possible to be only in recycle system for the operational mode with a complete use of feed and intermediate reactants.

2. Conditions for the existence for the operational mode with a complete utilization of feed and intermediate reactants.

For the reactor-separator recycle system, of interest is the operational mode in which the complete utilization of feed and intermediate reactants is achieved. This operational mode is possible only when the unreacted feed and intermediate components are separated from the final products and are entirely returned to the reactor. Assuming that

**Author to whom correspondence should be addressed: douev@mail.ru
the separator efficiency is sufficient for the whole mass of unreacted feed and intermediate components to be returned to the reactor, we can write the expression

\[Fx_i = Rx_i^*, \quad i = 1, 2. \]

Equality (1) means that the mass velocity of reactant I leaving the reactor is equal to the mass velocity of this reactant in the recycle. Equality (1) immediately follows from the material-balance for the fluxes in the recycle system:

\[Fx = Rx^* + Gx^{out}, \]

because feed and intermediate reactants will not be present in the flux leaving the system.

Equality (1) is one of the necessary conditions for the operational mode with complete utilization of feed and intermediate reactants. Another necessary condition for the feasibility of this mode is the introduction of feed and intermediate reactants in the stoichiometric ratio. Otherwise, it would be necessary to remove an excess part of unreacted feed components from the system, which would be in components from the system, which would be in conflict with the requirement of their complete utilization.

We assume that a complex chemical reaction described by the matrix of stoichiometric coefficients proceeds in the reactor. The first \(l \) rows of the matrix \(A \) correspond to the feed and intermediate reactants and form a submatrix \(A^* \) in the matrix \(A \). In this case, the condition that the feed and intermediate reactants are introduced into the system in the stoichiometric ratio can be written as Boyarinov, Duev (1980):

\[J^* A^* X = J^* J A^* x^{im}, \]

where \(J \) is the column vector of dimension \(p \) (equal to the number of elementary reaction steps) with elements equal to unity for forward reaction steps and to zero for reverse ones. The scalar quantity \(M \) is determined from the equation

\[M = -1A^* J, \]

where \(1 \) is the row vector of dimension \(l \) with elements equal to 1.

Thus, for the operational mode with complete utilization of feed and intermediate reactants to be feasible, conditions (1) and Eq. (3) should be satisfied. As the final reaction products and inert materials may be present in the recycle, the following condition should also be satisfied:

\[F \sum_{i=1} x_i \leq R. \]

\[\text{Figure 1. Reactor-separator recycle system: (1)-reactor, (2) – separator} \]

3. Reaction A + B \(\rightarrow \) C proceeds in a plug-flow reactor.

In an article (Boyartnov, Duev, 2004) has been shown, that if the second-order reaction A+B\(\rightarrow \)C proceeds in the polytropic plug-flow reactor, than a family of steady states
exists in the operational mode with complete utilization of the feed reactants A and B. It is very important that in this case the consideration of reactant A,B and temperature in the reactor can take continuum of steady-state values lying within a bounded region (interval). We will study an influence of the parameters on a size of this interval. Suppose that reaction \(A + B \rightarrow C \) proceeds in the polytropic plug-flow reactor.

The mathematical model for the reactor under steady-state operating conditions is given by

\[
\frac{F}{S} \frac{dx}{dz} = -r, \\
\frac{F}{S} \frac{dx}{dz} = -r, \\
c \rho \frac{F}{S} \frac{dT}{dz} = (-\Delta H)r + U(T_c - T)
\]

For the simplicity of analysis, we assume that no inert components are present in the reactor. In this case, the concentration of the final product C in the reactor is given by

\[
x_3 = 1 - x_1 - x_2
\]

The boundary conditions to systems Eq. (6) for the operational mode with complete utilization of feed reactants A and B can be written as

\[
x_1\big|_{z=0} = \frac{G}{F} x_1^w + x_1^w, \\
x_2\big|_{z=0} = \frac{G}{F} x_2^w + x_2^w, \\
T\big|_{z=0} = \frac{G}{F} T^w + \frac{R}{F} T.
\]

Since this operational mode can be achieved only when the feed reactants A and B are introduced into the feed flux in the stoichiometric ratio, the equality \(x_1^w = x_2^w \) is fulfilled. Since the first two equations in system (6) and corresponding boundary conditions (8) coincide, the boundary-value problem given by Eq. (6) and Eq. (8) will have an infinite set of solutions. As the number of unknowns is one greater than the number of equations, the infinite set of solutions can be interpreted as a one-parameter family of solutions. Thus, a one-parameter family of steady states in which the concentrations of reactants A and B can take an infinite number of steady-state values will exist for the operational mode under consideration. Numerical calculations of the boundary value problem given by (6) and (8) indicate that this family of steady states inside and at the outlet of the reactor includes an infinite set of steady-state temperature.

When calculating the boundary-value problem numerically, the reaction rate was written as \(r = kx_1x_2 \), where the specific reaction rate \(k \) was determined from the Arenius formula.

Figure 2-7 qualitatively illustrates the family of steady states at the reactor outlet projected on the \(x_1 \), \(x_2 \) plane. The steady-state concentrations of the feed reactants \(a \) and \(b \) at the reactor outlet can take values within the interval \([x_i^{\min}, x_i^{\max}] \), \(i=1,2 \); where \(x_i^{\min} \) and \(x_i^{\max} \) are the minimum and maximum steady-state values of the concentration \(x_i \), respectively.
Figure 2. Continuum of steady states at the reactor outlet (curve ab) projected on the \(x_1 x_2 \) plane.

Figure 3. Family of steady-states profiles of concentration \(x_2 \) along the reactor.

Figure 4. Family of steady-states profiles the reactor: (1) \(x_1 = x_2 \); (2) \(x_1 \text{min} < x_i < x_i \text{max}, \ i = 1, 2 \); (3) \(x_1 = x_1 \text{min}, x_2 = x_2 \text{max} \) or \(x_1 = x_1 \text{max}, x_2 = x_2 \text{min} \).

Figure 5. Dependence of the interval of steady-state temperatures \(\Delta T \) on the heat effect of the reaction.

Figure 2 illustrates the family of steady states at the reactor outlet projected on the \(x_1 x_2 \) plane. The steady-state concentrations of the feed reactants A and B at the reactor outlet can take values within the interval \([x_i \text{min}, x_i \text{max}]\), \(i = 1, 2 \); where \(x_i \text{min} \) and \(x_i \text{max} \) are the minimum and maximum steady-state values of the concentration \(x_i \), respectively.

Figure 3 illustrates the family if steady-state profiles of the concentration \(x_i \) along the reactor.

Figure 4 illustrates the steady-state temperature profiles along the reactor. An infinite set of steady-state temperatures confined in the interval \([T \text{min}, T \text{max}]\) exists for the reactor outlet.
For exothermic reaction, the maximum steady-state value of temperature at the reactor outlet is reached when concentration equality $x_1 = x_2$ is fulfilled. The minimum value is reached at the boundary points of the interval of steady-state concentrations when $x_1 = x_i^{\text{min}}$ and $x_2 = x_i^{\text{max}}$ or when $x_1 = x_i^{\text{max}}$ and $x_2 = x_i^{\text{min}}$. For endothermic reactions, the reverse situation is observed: the maximum steady-state value of temperature is reached at the boundaries of the interval of steady-state concentrations and the minimum value, when the concentration equality $x_i = x_2$ is fulfilled. The interval of steady-state temperatures $\Delta T = T_1^{\text{max}} - T_1^{\text{min}}$ is mostly affected by the reaction heat effect $-\Delta H$, the heat transfer coefficient U, and the mixture temperature at the reactor inlet. Figures 5 and 6 illustrate the curves representing the dependence of the interval of steady-state temperatures ΔT on the heat effect of the reaction and the heat-transfer coefficient. As observed, these curves represent monotonically increasing functions, in contrast to the curve of ΔT versus the mixture temperature at the reactor inlet which represents a monotonically decreasing function (Fig. 7).

4. Conclusion

The infinite set of steady states in the operational mode with complete utilization of feed reactants A and B also exists when the separator is characterized by a finite (but high enough) separation efficiency Boyarinov, Duev, Kalinkin (1984). Numerical calculations of a recycle system consisting of a plug-flow reactor and a rectifying column supported the qualitative results obtained by solving the boundary-value problem given by Eq. (7) and Eq. (9). The column distillate in which all components were present was used as recycle and the end product C, whose volatility is the least, was drawn off via the column recoiled. Because the separation process is not perfect, the feed reactants A and B were present in insignificant amounts in the recoiled of the rectifying column. Thus, continuum of steady states in which the concentrations of feed reactants can take an infinite number of steady-state values confined in interval $(x_i^{\text{min}}, x_i^{\text{max}})$ $(i=1,2)$ exists in the plug-flow reactor functioning in reactor-separator recycle system in which the reaction $A + B \rightarrow 2C$ proceeds with complete utilization of the feed reactants A and B. The feature of this family is that it contains an infinite number of steady-state temperatures (a temperature continuum) inside and at the outlet of the reactor within the interval $[T_{\text{mid}}(z), T_{\text{s}}(z)]$, $0 < z < L$. The size of this interval is mostly affected by the reactor heat effect $-\Delta H$, the heat transfer coefficient U and the mixture temperature at the reactor inlet. These steady states can not be of asymptotic
stability. They can at best be on the boundary of the stability region at the state of neutral balance Boyarinov, Duev, 1988, 2004). Therefore it is necessary to carry out an automatic control to keep this operational mode.

5. Nomenclature

c, p - specific heat capacity, cal/(g K);
F - flux of the mixture entering the reactor, m³/h;
G - flux of the mixture entering the system, m³/h;
-ΔH - heat effect of the reaction, cal/mol;
k - specific reaction rate;
L - reaction length, m;
l - number of feed and intermediate reactants;
p - number of elementary reaction steps;
R - flux of recalculating mixture, m³/h;
r - reaction rate;
S - cross-sectional area, m²;
T - mixture temperature, K;
Tc – coolant temperature, K;
U – heat-transfer coefficient w/(m²K);
V - reactor volume, m³;
ɪ – mole fraction of reactant i;
- vector of the mole fractions of components in the reactor;
z - current reactor length, m.

5.1 Subscripts and superscripts

in - inlet; out - outlet;
î = 1, i - number of a reaction;
ĵ = 1, p - number of a reaction step;
max - maximum value; min - minimum value;
* - recycle.

6. References