Identifying Second-Order Models of Mechanical Structures in Physical Coordinates: An Orthogonal Complement Approach

José Ramos¹, Guillaume Mercère², and Olivier Prot³

Abstract—The problem of identifying the mass, damping, and stiffness matrices of a mechanical structure is a well known constrained system identification problem in the literature. The constraints come from the symmetry of the mass, damping, and stiffness matrices, as well as the number of sensors and actuators placed on the structure. Here we present two solutions to this problem, one based on a structured system identification approach and the other based on a similarity transformation approach. The latter approach takes advantage of the non-uniqueness of the problem to force the solution to a particular basis. Examples of both approaches show the feasibility of the methods, and it is expected to shed light on solving the most restrictive of the structural identification class of problems.

I. INTRODUCTION

System identification theory, in its most general form, consists of finding a mathematical model of a dynamical system based on a set of recorded inputs and outputs from some experiment. The type and choice of models depends on the type of application at hand. When identifying finite element model formulations, the identification of the mass, damping, and stiffness matrices is of primary concern. Thus, the model must be formulated in second order matrix differential equations form or in what is known as physical coordinates. The parameter matrices in physical coordinates can be identified using experimental dynamic data (see, for example, the works of [1], [29]). As with any physical system identification procedure, there is always an identifiability condition on the physical parameter matrices of the system. In the structural identification problem this identifiability condition depends on the number of sensors and/or actuators in the structure. Whether the mass, damping, and stiffness matrices can be uniquely identified from input/output data will depend on the number of sensors and actuators placed on the degrees-of-freedom (DOF) of the structure. Nevertheless, the identification of the system in modal coordinates, followed by updating of a pre-existing finite element model, seems to be the most widely employed approach. Some noteworthy research efforts in this direction are those of [6], [7], [8], [9], [11], [25].

The conversion from a second order form to first order differential equation form has also received considerable attention as shown by the works of [12], [13], [16], [17], [18], [20], [21], [22], [34]. However, in this approach, issues of non-uniqueness of the parameters arise if a state space model is used to identify the parameters of the second order model. In addition to the system parameters, a similarity transformation has to be found.

When updating structural models in second order form the modal parameters used are the undamped (normal) modal parameters, whereas in the first order form, the identified modal parameters are complex and equal to the damped modal parameters of the second order formulation. Identifying the undamped modal parameters from the identified complex modes constitutes an important problem, and the study by [28] presents a well documented discussion. One assumption quite often used in the literature is that the vibrational modes of the second order model are uncoupled (modal damping). Arguably the most commonly employed method to retrieve the undamped modal parameters is the so-called standard method (see [2], [12], [15]). One limitation of this method is that it loses its validity when the system is highly coupled. An alternative approach used by many authors focuses on how to obtain the undamped modal parameters from the complex modal parameters for the case of general damping. Some of the most noteworthy discussions include the works of [3], [4], [5], [10], [12], [30], [31], [35], [36].

Looking closely at this inverse problem, one might be interested in obtaining the parameters of the second order model directly from the input/output data. This constitutes a structured system identification problem as discussed in [23]. On the other hand, if one tries to obtain the second order parameters from the identified state space model (first order form), the various approaches impose different limitations on the number of sensors and actuators employed, when all the modes of the structure have been identified. For instance, the case of having as many actuators and sensors as the number of identified modes has been discussed by [35]. Alternatively, in [3] this requirement was lessened to only the number of sensors being equal to the number of identified modes, with a single DOF containing an actuator-sensor pair (also known as a co-located sensor-actuator pair). Later on [30], [31] improved the requirement to the case where the number of actuators is equal to the number of second order modes, with at least a co-located sensor-actuator pair. In [21] it is shown that the physical parameters of the second order model can be obtained by solving a symmetric complex eigenvalue problem. The requirements are that all DOFs should contain either a sensor, an actuator, or both, with at least one co-located sensor-actuator pair.
In this paper we present an orthogonal complement approach to the identification of the physical parameters of a second order model from input/output data. Here we present two solutions to the problem, one based on a structured system identification approach as in [23], and the other based on a similarity transformation approach [26], [21], [27]. Both approaches require that the number of sensors equal the number of DOFs of the structure, with at least one co-located sensor-actuator pair. The rest of the paper is as follows: In Section 2 we present the structured system identification approach. In Section 3 we present the similarity transformation approach. Section 4 is devoted to a common example. Section 5 presents the conclusions.

II. IDENTIFICATION OF MECHANICAL STRUCTURES: A DIRECT INPUT-OUTPUT APPROACH

Consider a mechanical structure with \(N \) DOFs, whose motion is described by the following system of second-order differential equations

\[
\begin{align*}
\mathcal{M} \ddot{q}(t) + \mathcal{C} \dot{q}(t) + \mathcal{K} q(t) &= \mathcal{B} d(t) \\
q(t) &= \mathcal{H} q(t),
\end{align*}
\]

where \(q(t) \in \mathbb{R}^N, d(t) \in \mathbb{R}^r, y(t) \in \mathbb{R}^n, \mathcal{M} \in \mathbb{R}^{N \times N}, \mathcal{C} \in \mathbb{R}^{N \times N}, \mathcal{K} \in \mathbb{R}^{N \times N}, \mathcal{B} \in \mathbb{R}^{n \times r}, \) and \(\mathcal{H} \in \mathbb{R}^{m \times N}. \)

Furthermore, the matrices \(\mathcal{B} \) and \(\mathcal{H} \) are known matrices with binary elements \{0, 1\} that account for where the sensors and actuators are placed with respect to the DOF of the structure. We assume the matrices \(\{\mathcal{M}, \mathcal{C}, \mathcal{K}\} \) are unknown but symmetric and positive definite. In what follows we will assume that \(r \leq N \) and \(m \leq N. \) To put the above problem in the right perspective, we measure the position of \(m \) DOFs and excite \(r \) of the \(N \) DOFs. With this information we would like to find a symmetric triplet \(\{\mathcal{M}, \mathcal{C}, \mathcal{K}\}. \)

In this section we introduce a new orthogonal complement approach to solve the above problem from a given discrete data sequence \(\{d_k, y_k\}_{k=0}^{K-1} \) obtained from some input/output experiment. We assume the data is measured at equidistant time intervals, \(t_k = t_i + k\Delta t, \) where \(t_i \) is an initial time (usually taken as \(t_i = 0 \)) and \(\Delta t \) is the sampling period. Thus, the input and output equations are of the form \(u_k = \mathcal{B} d_k \) and \(y_k = \mathcal{H} q_k, \) respectively, where \(u_k = u(t_k), y_k = y(t_k), d_k = d(t_k), \) and \(q_k = q(t_k), \) for \(k = 0, 1, \ldots, K - 1, \) are the sampled values. If we now approximate the first and second derivatives of \(q(t) \), using a forward difference scheme, we respectively obtain

\[
\begin{align*}
\dot{q}(t_k) &= \frac{q(t_{k+1}) - q(t_k)}{\Delta t} = \frac{q_{k+1} - q_k}{\Delta t} \\
\ddot{q}(t_k) &= \frac{\dot{q}(t_{k+1}) - \dot{q}(t_k)}{\Delta t} = \frac{q(t_{k+2}) - q(t_{k+1}) - q(t_{k+1}) + q(t_k)}{\Delta t} \\
&= \frac{q_{k+2} - 2q_{k+1} + q_k}{\Delta t^2},
\end{align*}
\]

Let us now discretize equations (1) – (2), using the above derivative approximations, i.e.,

\[
\begin{align*}
\mathcal{M} \left(q_{k+2} - 2q_{k+1} + q_k \right) - \frac{2\mathcal{M} + \mathcal{C}}{\Delta t} q_{k+1} + \mathcal{K} q_{k+1} = u_k,
\end{align*}
\]

If we now rearrange terms with same indices, we obtain a \(2^{nd} \)-order matrix difference equation of the form

\[
\begin{align*}
\left(\frac{\mathcal{M}}{\Delta t^2} - \frac{\mathcal{C}}{\Delta t} + \mathcal{K} \right) q_{k+1} + \left(\frac{\mathcal{M}}{\Delta t^2} + \frac{\mathcal{C}}{\Delta t} \right) q_{k+1} + \mathcal{K} q_k = u_k.
\end{align*}
\]

Let us now rename the coefficients of this last equation as

\[
\begin{align*}
\mathcal{X}_0 &= \frac{\mathcal{M}}{\Delta t^2} - \frac{\mathcal{C}}{\Delta t} + \mathcal{K} \\
\mathcal{X}_1 &= -\frac{2\mathcal{M} + \mathcal{C}}{\Delta t} \\
\mathcal{X}_2 &= \frac{\mathcal{M}}{\Delta t^2},
\end{align*}
\]

Then we have the standard \(2^{rd} \)-order matrix difference equation

\[
\begin{align*}
\mathcal{X}_0 q_{k+1} + \mathcal{X}_1 q_{k+1} + \mathcal{X}_2 q_{k+2} &= u_k
\end{align*}
\]

In order to solve (6) – (7), we need to make the following assumptions:

1) The number of actuators is equal to the number of DOFs of the structure, i.e., \(r = N. \)
2) The number of sensors is equal to the number of DOFs of the structure, i.e., \(m = N. \)

This translates to the following properties \(\mathcal{B} = I_N \) and \(\mathcal{H} = I_N. \) These two assumptions are the most restrictive but are not uncommon in the literature. The \(2^{nd} \)-order matrix difference equation now becomes

\[
\begin{align*}
\mathcal{X}_0 y_{k+1} + \mathcal{X}_1 y_{k+1} + \mathcal{X}_2 y_{k+2} &= u_k.
\end{align*}
\]

Since we have excitations and measurements \(\{u_k, y_k\}_{k=0}^{K-1}, \) we can use these to write the \(2^{nd} \)-order matrix difference equation (8) as an overdetermined linear system of equations. That is, let \(\mathcal{X}^T = \begin{bmatrix} \mathcal{X}_0 & \mathcal{X}_1 & \mathcal{X}_2 & -I_N \end{bmatrix} \) and

\[
\mathcal{A} = \begin{bmatrix} y_0 & y_1 & y_2 & \cdots & y_{K-3} & y_{K-2} & y_{K-1} \\
y_1 & y_2 & y_3 & \cdots & y_{K-2} & y_{K-1} & 0_{N \times 1} \\
y_2 & y_3 & y_4 & \cdots & y_{K-1} & 0_{N \times 1} & 0_{N \times 1} \\
y_0 & u_1 & u_2 & \cdots & u_{K-3} & u_{K-2} & u_{K-1} \end{bmatrix},
\]

where \(0_{n \times n_2} \) denotes a zero matrix of size \(n_1 \times n_2 \) and \(I_{n_1} \) denotes an \(n_1 \times n_1 \) identity matrix. Then we have

\[
\mathcal{X}^T \mathcal{A} = 0_{N \times K},
\]

where \(\mathcal{X} \in \mathbb{R}^{4KN \times N} \) and \(\mathcal{A} \in \mathbb{R}^{4KN \times K}. \) When the data is noise-free, rank \(\{\mathcal{A}\} = 3N \) and equation (9) can be solved using a singular value decomposition (SVD) of \(\mathcal{A} \) as follows.

\[
\mathcal{A} = U \Sigma V^T
\]

\[
\begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0_{3N \times (K-3N)} \\
0_{N \times 3N} & 0_{N \times (K-3N)} \end{bmatrix} \begin{bmatrix} V_1 \cr V_2 \end{bmatrix}
\]

\[
U_1 \Sigma_1 V_1^T,
\]

3974
where $U_1 \in \mathbb{R}^{4N \times 3N}$, $U_2 \in \mathbb{R}^{4N \times N}$, $\Sigma_1 \in \mathbb{R}^{3N \times 3N}$, $V_1 \in \mathbb{R}^{K \times (K-3N)}$. In the above SVD we have that $U^T U = U U^T = I_{4N}$ and $V^T V = V V^T = I_K$. Thus we obtain the following orthogonal complement problem

$$U_2^T \mathcal{A} = 0_{N \times K}. \quad (10)$$

If we now let $U_2^T = [U_2^T | U_2^T | U_2^T | U_2^T]$. Then a solution to (9) of the form $X^T = -U_2^T U_2^T$, does not consider the symmetry of \mathcal{B}, \mathcal{L}, and \mathcal{X}. In order to do so, we need to enforce the symmetry of (3)–(5). This leads to the following symmetry constrained problem, which in turn makes use of the orthogonal complement data, i.e.,

$$U_2^T \left(\frac{\mathcal{M}}{\Delta T^2} - \frac{\mathcal{C}}{\Delta T} + \mathcal{X} \right) = -U_2^T \quad (11)$$

$$U_2^T \left(-\frac{2\mathcal{M}}{\Delta T^2} + \frac{\mathcal{C}}{\Delta T} \right) = -U_2^T \quad (12)$$

$$U_2^T \left(\frac{\mathcal{M}^T}{\Delta T^2} - \frac{\mathcal{C}^T}{\Delta T} + \mathcal{X}^T \right) = -U_2^T \quad (14)$$

$$U_2^T \left(-\frac{2\mathcal{M}^T}{\Delta T^2} + \frac{\mathcal{C}^T}{\Delta T} \right) = -U_2^T \quad (15)$$

$$U_2^T \left(\frac{\mathcal{M}^T}{\Delta T^2} \right) = -U_2^T \quad (16)$$

Let $Q = Q^T$ with $Q \in \mathbb{R}^{N \times N}$ be an arbitrary symmetric matrix, then one can apply a “shuffle matrix” operator [24] to obtain vec{Q^T} = \mathcal{F} \cdot vec{Q}, where \mathcal{F} is a given by

$$\mathcal{F} = \begin{bmatrix} I_{N^2}(1:N; N^2, 1:N^2) \\ I_{N^2}(2:N; N^2, 1:N^2) \\ \vdots \\ I_{N^2}(N:N; N^2, 1:N^2) \end{bmatrix}, \quad (17)$$

and for an arbitrary square matrix Q, vec{Q} $\in \mathbb{R}^{N^2 \times 1}$ is a column vector that stacks all columns of Q from left to right into a long vector. \mathcal{F} is the matrix obtained from the rows of the $N^2 \times N^2$ identity matrix, I_{N^2}, by taking every Nth row starting with the first, then every Nth row starting with the second row, and so on, until the last block obtained by taking every Nth row starting with the Nth row. Equation (17) uses MATLAB1 notation.

Let us now define

$$E_1 = I_N \otimes U_{24}^T \quad (18)$$

$$E_2 = (I_N \otimes U_{24}^T) \cdot \mathcal{F} \quad (19)$$

$$L_1 = -\text{vec}{}(U_{21}^T) \quad (20)$$

$$L_2 = -\text{vec}{}(U_{22}^T) \quad (21)$$

$$L_3 = -\text{vec}{}(U_{23}^T). \quad (22)$$

Then by vectorizing (11)–(16), we get

$$A = \begin{bmatrix} E_1 & -E_1 & E_1 \\ -2E_1 & E_1 & 0_{N^2 \times N^2} \\ E_1 & 0_{N^2 \times N^2} & 0_{N^2 \times N^2} \\ E_2 & -E_2 & E_2 \\ -2E_2 & E_2 & 0_{N^2 \times N^2} \\ E_2 & 0_{N^2 \times N^2} & 0_{N^2 \times N^2} \end{bmatrix}$$

$$X = \begin{bmatrix} \text{vec}{}(\mathcal{F}) \\ \text{vec}{}(\mathcal{H}) \\ \text{vec}{}(\mathcal{X}) \end{bmatrix}$$

and $B = \begin{bmatrix} L_1 \\ L_2 \\ L_3 \end{bmatrix}$.

Finally, solving the overdetermined system of equations

$$AX = B, \quad (23)$$

we obtain \{$\mathcal{M}, \mathcal{C}, \mathcal{X}$\}, from which \{$\mathcal{M}, \mathcal{C}, \mathcal{X}$\} can be retrieved. However, if there is noise in the data, rank\{\mathcal{A}\} $\neq 3N$ in (9), which implies that we can only solve the problem approximately. Any algorithm will face the same challenges under severe noise conditions. Thus, we have to resort to an approximation. One way to solve the above problem is by using an errors-in-variable approach, where we accept noise in both the inputs and outputs, i.e., $y_k = \hat{y}_k + \Delta y_k$ and $u_k = \hat{u}_k + \Delta u_k$, then solve the following structured optimization problem:

Minimize $\sum_{k=0}^{K-1} [\text{tr}{}(\Delta y_k^T \Delta y_k) + \text{tr}{}(\Delta u_k^T \Delta u_k)]$

Subject to: $X^T \mathcal{A} = 0_{N \times K}$

$$\text{rank}{}(\mathcal{A}) = 3N$$

where \mathcal{A} is a block Hankel matrix,

$$\mathcal{A} = \begin{bmatrix} \hat{y}_0 & \hat{y}_1 & \hat{y}_2 & \cdots & \hat{y}_{K-3} & \hat{y}_{K-2} & \hat{y}_{K-1} \\ \hat{y}_1 & \hat{y}_2 & \hat{y}_3 & \cdots & \hat{y}_{K-2} & \hat{y}_{K-1} & 0_{N \times 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \hat{y}_{K-1} & \hat{y}_{K-2} & \hat{y}_{K-3} & \cdots & \hat{y}_2 & \hat{y}_1 & 0_{N \times 1} & 0_{N \times 1} \end{bmatrix}.$$
where the subscript \(c \) is used to denote a continuous time model, i.e.,

\[
\dot{x}_c(t) = A_c x_c(t) + B_c d(t)
\]

(24)

\[
y(t) = C_c x_c(t) + D_c d(t).
\]

(25)

Given a set of discrete input/output measurements \(\{d_k, y_k\}_{k=0}^{K-1} \), a discrete model can be identified of the form

\[
x_{d}^{k+1} = A_d x_{d}^k + B_d d_k
\]

(26)

\[
y_k = C_d x_{d}^k + D_d d_k
\]

(27)

where the order of the system is \(n = 2N, x_{d} \in \mathbb{R}^{n \times 1}, A_d \in \mathbb{R}^{n \times n}, B_d \in \mathbb{R}^{n \times r}, C_d \in \mathbb{R}^{m \times n}, \) and \(D_d \in \mathbb{R}^{m \times r} \). This model can be identified with any state space identification technique from the system identification toolbox of MATLAB [32, 33]. Once the discrete model is obtained, a continuous time version can be obtained using any discrete-to-continuous transformation. The resulting model has the form

\[
\dot{x}(t) =Ax(t) + Bd(t)
\]

(28)

\[
y(t) =Cx(t) + Dd(t),
\]

(29)

where \(n = 2N \) is the system order, \(x(t) \in \mathbb{R}^{n \times 1}, A \in \mathbb{R}^{n \times n}, \) \(B \in \mathbb{R}^{n \times r}, \) \(C \in \mathbb{R}^{m \times n}, \) and \(D \in \mathbb{R}^{m \times r}. \) The partitioned matrices are as follows:

\[
A = \begin{bmatrix}
A_1 & A_2 \\
A_3 & A_4
\end{bmatrix}, \quad B = \begin{bmatrix}
B_1 \\
B_2
\end{bmatrix}, \quad C = \begin{bmatrix}
C_1 \\
C_2
\end{bmatrix}.
\]

The above model (28) – (29) is a black-box model, whereas (24) – (25) is a physical model of the mechanical structure. It is well known in system identification that two equidimensional models of the same system are related by a non-singular similarity transformation matrix \(T \in \mathbb{R}^{n \times n} \) of the form [26, 27]

\[
T = \begin{bmatrix}
T_1 & T_2 \\
T_3 & T_4
\end{bmatrix}
\]

such that

\[
TA = AT, \quad TB = Bc, \quad C = CcT, \quad D = Dc.
\]

Using partitioned matrices, (30) – (32) become

\[
T_1 A_1 + T_2 A_3 = T_3 \quad (34)
\]

\[
T_1 A_2 + T_2 A_4 = T_4 \quad (35)
\]

\[
T_3 A_1 + T_4 A_3 = -\mathcal{M}^{-1} \mathcal{H} T_3 - \mathcal{M}^{-1} C T_3 \quad (36)
\]

\[
T_3 A_2 + T_4 A_4 = -\mathcal{M}^{-1} \mathcal{H} T_2 - \mathcal{M}^{-1} C T_4 \quad (37)
\]

\[
T_1 B_1 + T_2 B_2 = 0_{n \times r} \quad (38)
\]

\[
T_3 B_1 + T_4 B_2 = -\mathcal{M}^{-1} B \quad (39)
\]

\[
C_1 = \mathcal{H} T_1 \quad (40)
\]

\[
C_2 = \mathcal{H} T_2. \quad (41)
\]

If we now let \(\mathcal{H}^T \) and \(\mathcal{M} \) be defined as

\[
\mathcal{H}^T = \begin{bmatrix}
T_1 & T_2 & T_3 & T_4 & \mathcal{M}^{-1} \mathcal{B} & I_N
\end{bmatrix}
\]

\[
\mathcal{M} = \begin{bmatrix}
A_1 & A_2 & B_1 & 0_{N \times r} \\
A_3 & A_4 & B_2 & 0_{N \times r} \\
-1_N & 0_{N \times N} & 0_{N \times N} & B_3 \\
0_{N \times N} & -1_N & 0_{N \times N} & B_2 \\
o_{N \times N} & 0_{N \times N} & 0_{N \times N} & -1_r
\end{bmatrix}
\]

\[
\mathcal{H}^T \mathcal{M} = \begin{bmatrix}
I_N & 0_{N \times N} & 0_{N \times N} & B_3 \\
0_{N \times N} & I_N & 0_{N \times N} & B_3 \\
0_{N \times N} & 0_{N \times N} & 0_{N \times N} & -1_r
\end{bmatrix}
\]

where \(\mathcal{H}^T \) denotes the pseudo-inverse of \(\mathcal{H} \). Then (34) – (35) and (38) – (41) can be written as an orthogonal complement problem of the form

\[
\mathcal{H}^T \mathcal{M} \mathcal{H} = 0_{N \times (4N+2r)}.
\]

Given that \(\mathcal{M} \in \mathbb{R}^{(4N+r+4N+2r)}, \) it is easy to verify that rank \(\mathcal{M} \) = \(4N + r \). Since \(CB = 0_{n \times r} \), if we take (col \ 4 of \(\mathcal{M} \)) \(\times B_1 + (\text{col } 5 \text{ of } \mathcal{M} \) \(\times B_2 \), we see that it is equal to (col \ 3 of \(\mathcal{M} \)), thus the above rank property. However, in order to be able to solve (42), we must enforce assumption (2) \((m = N) \), as well as the condition \(r \leq N \). This is a less restrictive set of conditions than assumptions (1) – (2) combined. In this case \(\mathcal{M} \in \mathbb{R}^{(5N+3r) \times (4N+2r)} \) and it is guaranteed that there exists a matrix \(\mathcal{H} \in \mathbb{R}^{(5N+3r) \times N} \) such that (42) is satisfied.

If we compute the SVD of \(\mathcal{M} \), we obtain

\[
\mathcal{M} = [\mathcal{V}_1 \mathcal{V}_2] \begin{bmatrix}
\mathcal{F}_1 & 0_{(4N+3r) \times (4N+2r)} \\
0_{(4N+3r) \times (4N+2r)} & 0_{N \times r}
\end{bmatrix} \begin{bmatrix}
\mathcal{V}_1^T \\
\mathcal{V}_2^T
\end{bmatrix},
\]

where \(\mathcal{V}_1 \in \mathbb{R}^{(5N+r+3r) \times (4N+2r)}, \) \(\mathcal{V}_2 \in \mathbb{R}^{(5N+r+3r) \times N}, \) \(\mathcal{F}_1 \in \mathbb{R}^{(4N+r+3r) \times (4N+2r)}, \) \(\mathcal{V}_2 \in \mathbb{R}^{(4N+r+3r) \times N}, \) \(\mathcal{F}_1 \in \mathbb{R}^{(4N+r+4N+2r)}, \) from which we obtain \(\mathcal{V}_2 \mathcal{M} \mathcal{V}_2 = 0_{N \times (4N+2r)} \). If we now make the partition \(\mathcal{V}_2 = [\mathcal{V}_{21} \mathcal{V}_{22} \mathcal{V}_{23} \mathcal{V}_{24} \mathcal{V}_{25} \mathcal{V}_{26}] \), we obtain the solution

\[
\mathcal{H}^T \mathcal{M} \mathcal{H} = (\mathcal{V}_2^T)^{-1} \mathcal{V}_2^T.
\]

Then \(\mathcal{H} \) and \(\mathcal{H}_1 = \mathcal{M}^{-1} \mathcal{B} \) can be obtained from

\[
\mathcal{H} = (\mathcal{V}_2^T)^{-1} \mathcal{V}_2^T.
\]

If we now define \(\mathcal{H}_2 = \mathcal{M}^{-1} \mathcal{H} \) and \(\mathcal{H}_3 = \mathcal{M}^{-1} \mathcal{C} \), then (36) – (37) can be solved from

\[
[\mathcal{H}_2 \mathcal{H}_3] = -[T_3 T_4] A T^{-1}.
\]

We now need to find \(\{\mathcal{M}, \mathcal{C}, \mathcal{H}\} \), taking into account the symmetry conditions on these. From the symmetry
Now vectorizing (45) – (49) and using the property \(\text{vec}(XYZ) = (Z^T \otimes X)\text{vec}(Y) \), we obtain
\[
\mathbf{2} = \mathbf{D}'\mathbf{g},
\]
(50)
where
\[
\mathbf{D} = \begin{bmatrix}
(\mathbf{H}_1^T \otimes I_N) & 0_{N_r \times N^2} & 0_{N_r \times N^2} \\
(\mathbf{H}_2^T \otimes I_N) & -I_{N_2} & 0_{N^2 \times N^2} \\
(\mathbf{H}_3^T \otimes I_N) & 0_{N^2 \times N^2} & -I_{N^2} \\
(\mathbf{H}_2^T \otimes I_N) - (I_N \otimes \mathbf{H}_2^T) & 0_{N^2 \times N^2} & 0_{N^2 \times N^2} \\
(\mathbf{H}_3^T \otimes I_N) - (I_N \otimes \mathbf{H}_3^T) & 0_{N^2 \times N^2} & 0_{N^2 \times N^2}
\end{bmatrix}
\]
and
\[
\mathbf{g} = \begin{bmatrix}
\text{vec}(\mathbf{M}) \\
\text{vec}(\mathbf{H}) \\
\text{vec}(\mathbf{C})
\end{bmatrix},
\]
\[
\mathbf{h} = \begin{bmatrix}
0_{N^2 \times 1} \\
0_{N^2 \times 1} \\
0_{N^2 \times 1}
\end{bmatrix}
\]

IV. EXAMPLES

We now present an example of a mechanical structure with \(N = 3 \) DOFs and a true set of parameters \(\{\mathbf{M}, \mathbf{C}, \mathbf{H}\} \) given by
\[
\mathbf{M} = \begin{bmatrix}
0.8 & 0.0 & 0.0 \\
0.0 & 2.0 & 0.0 \\
0.0 & 0.0 & 1.2
\end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix}
0.4 & -0.1 & -0.1 \\
-0.1 & 0.4 & -0.1 \\
-0.1 & -0.1 & 0.4
\end{bmatrix}
\]
\[
\mathbf{H} = \begin{bmatrix}
4.0 & -1.0 & -1.0 \\
-1.0 & 4.0 & -1.0 \\
-1.0 & -1.0 & 4.0
\end{bmatrix}
\]

Direct Input-Output Approach:

In this method we assume that \(r = N \) and \(m = N \) so that all DOFs contain both a sensor and an actuator. Thus, \(\mathbf{B} = I_N \) and \(\mathbf{H} = I_N \). The system was simulated with a continuous time state space model with parameter matrices
\[
A_c = \begin{bmatrix}
0.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 0.00 \\
-5.00 & 1.25 & 1.25 & -0.50 & 0.13 & 0.13 \\
0.50 & -2.00 & 0.50 & 0.05 & -0.20 & 0.05 \\
0.83 & 0.83 & -3.33 & 0.08 & 0.08 & -0.33
\end{bmatrix}
\]
\[
B_c = \begin{bmatrix}
0_{3 \times 3} \\
I_3
\end{bmatrix}, \quad C_c = \begin{bmatrix}
I_3 & 0_{3 \times 3}
\end{bmatrix}, \quad D_c = \begin{bmatrix}
0_{3 \times 3}
\end{bmatrix}
\]
The sampling time used in the simulation was \(\Delta t = 0.0001 \) and \(K = 100,000 \) data points were used. The resulting physical parameter matrices were
\[
\mathbf{M} = \begin{bmatrix}
0.8000 & -0.0002 & -0.0001 \\
-0.0002 & 2.0001 & 0.0000 \\
-0.0001 & 0.0000 & 1.2000
\end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix}
0.4001 & -0.1000 & -0.1001 \\
-0.1000 & 0.4004 & -0.1001 \\
-0.1001 & -0.1001 & 0.4001
\end{bmatrix}
\]
\[
\mathbf{H} = \begin{bmatrix}
4.0001 & -1.0003 & -1.0002 \\
-1.0003 & 4.0001 & -1.0001 \\
-1.0002 & -1.0001 & 4.0001
\end{bmatrix}
\]
As can be seen, the computed physical parameters agree closely with the true physical parameters.

Similarity Transformation Approach

In this method all previous conditions are the same, except for \(r = 1 \), which is a less restrictive condition. Thus, \(\mathbf{B} = e_1 \) and \(\mathbf{H} = I_N \), where \(e_1 \) is the first column of \(I_N \). The data was generated from the same model as before but with only one input and is shown in Fig. 1. First a discrete time model was identified using a subspace system identification technique from MATLAB. Then the discrete time model was converted to continuous time form using the MATLAB function \text{d2c}. The parameter matrices of the identified continuous time model were then used to solve (42) and eventually, equation (50). The physical parameters obtained were

![Fig. 1. Input and output data used in the example.](image-url)
As can be seen from the results, there are no discrepancies between the true and computed models.

V. CONCLUSIONS

We have introduced two algorithms for identifying the physical parameters of mechanical structures. As an inverse problem this is a challenging one due to the fact that the data is discrete and the model is continuous in time. Furthermore, the matrices to be identified must be symmetric. There are other challenges such as the number of sensors and actuators needed to monitor the structure. In reality, the lower the number of sensors and actuators, the better the model. The first method assumes that each degree of freedom has both an actuator and a sensor. This presents some limitations compared to the works of [21]. In the similarity transformation approach, we assumed that the structure contains a full set of sensors and at least one actuator. Thus the condition that \(r + m = N + 1 \) as proposed by [21], although this is not the general case. More work needs to be done along these lines. The similarity transformation approach is an extension of the works of [27] to mechanical structures and a special case of the works of [26], representing an exact rank case. Finally, we point out that the problem presented herein is normally solved with nonlinear methods. Here we presented two linear methods for its solution.

REFERENCES

