Algebraic parameter estimation of a multi-sinusoidal waveform signal from noisy data*

Rosane Ushirobira1, Wilfrid Perruquetti2, Mamadou Mboup3 and Michel Fliess4

Abstract—In this paper, we apply an algebraic method to estimate the amplitudes, phases and frequencies of a biased and noisy sum of complex exponential sinusoidal signals. Let us stress that the obtained estimates are integrals of the noisy measured signal: these integrals act as time varying filters. Compared to usual approaches, our algebraic method provides a more robust estimation of these parameters within a fraction of the signal’s period. We provide some computer simulations to demonstrate the efficiency of our method.

I. INTRODUCTION

Numerous practical engineering problems involve the estimation of the frequencies of a biased and noisy sum of complex exponential sinusoidal signals, e.g., signal demodulation in communications, regulation of electronic converters power, the circadian rhythm of biological cells and the modal identification for flexible structures (see [51]). A very motivating example, developed in [42], is the position reconstruction of a human body in the sagittal plane using only accelerometer measurements.

Several different methods have been elaborated to solve this particular estimation problem, (see [25], [49] for surveys), such as linear regression [5], [41], adaptive least square method [47], subspace methods (high resolution) [12], [22], [46], [24], the extended Kalman filter introduced in [26], [27], [28] and refined in [2] where a simple tuning rule is given, the notches filter introduced simultaneously in [21] and [44] providing biased estimates of the frequency for standard notch (see [48]) with a first improvement obtained in [1] and an adaptive version in [9] (see also [45]), adaptive sogi-filters [13], techniques borrowed from adaptive nonlinear control [23], [38] or alternatively [29], [30] and more recently [3], [6], [7], [56]. Let us stress that almost all the above mentioned results (except [25], [5], [13]) that needs half of the period to recover the parameters [51] that uses also algebraic techniques for a single sinusoidal) deal only with the frequency estimation problem: here our method can be extended to estimate all the parameters including amplitudes and phases (see example in sections IV and V). Nevertheless, obtaining a robust estimation in the presence of noise and an unknown constant bias, continues to be an issue not quite solved.

Other interesting feature of our algebraic approach is that it is fast and online. Therefore, a comparison procedure with offline methods, such as the maximum likelihood estimation (see [11]), does not apply.

The algebraic methods used in this paper are inspired by the fundamental work of M. Fliess et al. [20], [18], [17], [19], [15], [35]. For more results in practical examples, we refer to [40], [50], [51], [53].

The parameter estimation problem for a finite sum of sinusoidal functions was notably studied by G. Riche de Prony in his 1795 seminal paper [43] (see also [24], [41]). In this paper, we are interested in Prony’s problem for the estimation of frequencies in a sum of complex sinusoidal functions. In other words, our first goal is to estimate the frequencies of the signal

\[x(t) = \sum_{k=1}^{n} \alpha_k \exp(i(\omega_k t + \phi_k)) \]

from the biased and noisy output measure

\[y(t) = x(t) + \beta + \omega \]

where \(\beta \) is an unknown constant bias and \(\omega \) is a noise.\(^1\)

Let us remark that, in its generality, the problem of parameter estimation problem for \(x(t) \) consists on the estimation of the triplet \((\alpha_k, \omega_k, \phi_k)\) for all \(k \). For the sake of brevity, we present here only the frequencies estimation in the general case. However, an example in the case \(n = 3 \) is treated at the end of this paper, where we also indicate how to proceed for the calculation of the triplets (amplitude, frequencies, phases).

II. PROBLEM FORMULATION

To formulate the problem of the parametric estimation, we start with a signal depending on a set of parameters. We wish to estimate some of these parameters. They form a vector that denoted by \(\Theta \). Based on the observed noisy signal, our aim is to obtain a “good” approximation of \(\Theta \).

\(^1\)Here, the noise is interpreted as a fast oscillation and it does not depend on any probabilistic modeling, as in [14], [15].
Let us denote by $\theta_k (1 \leq k \leq n)$ a multiple of the
elementary symmetric polynomial in n variables $\omega_1, \ldots, \omega_n$:
$$\theta_k := (-i)^k \sum_{1 \leq j_1 < j_2 < \cdots < j_k \leq n} \omega_{j_1} \omega_{j_2} \ldots \omega_{j_k}. \quad (2)$$
That means that $\theta_1, \ldots, \theta_n$ can be obtained as the coeffi-
cients of the polynomial in the variable X given by
$$\prod_{\ell=1}^{n} (X - i\omega_{\ell}) = X^n + \theta_1 X^{n-1} + \theta_2 X^{n-2} + \cdots + \theta_n.$$
It is easy to see that the signal $z(t) = x(t) + \beta$ and the
vector $\Theta = \{\theta_1, \ldots, \theta_n\}$ satisfy a linear differential algebraic relation
provided by the differential equation:
$$z^{(n)}(t) + \sum_{k=0}^{n-1} \theta_{k+1} z^{(k)}(t) - \theta_n \beta = 0. \quad (3)$$
The Laplace transform applied on the equation (3) gives the
following relation in the operational domain:
$$s \left(s^n + \sum_{k=0}^{n-1} \theta_{k+1} s^k \right) Z(s) - s^2 z^{(n-1)}(0) \quad (4)$$
$$- \sum_{j=0}^{n-2} \left(s^{n-j} + \sum_{k=j+1}^{n-1} \theta_{k+1} s^{k-j} \right) z^{(j)}(0) - \theta_n \beta = 0.$$
We use the notation $\Theta_{\text{est}} := \{\theta_1, \theta_2, \ldots, \theta_n\}$, rather than Θ
for the desired parameters. For $1 \leq \ell \leq n$, let us set $\theta_{n+\ell} :=
-x^{(\ell-1)}(0)$. Since the bias $\theta_{2n+1} := \beta$ is not of interest,
we also define $\Theta_{\text{est}} := \{\theta_{n+2}, \ldots, \theta_{2n+1}\}$, the set
of undesired parameters. The frequencies $\omega_k (1 \leq k \leq n)$ can be
derived from Θ_{est} from a straightforward computation.
Now, consider the algebraic extensions $C_{\Theta_{\text{est}}} := C(\Theta_{\text{est}})$ and
$C_{\Theta_{\text{est}}} := (C(\Theta_{\text{est}}) \otimes C(\Theta_{\text{est}}))$ and denote by $C_{\Theta_{\text{est}}}[s]$ (respectively
$C_{\Theta_{\text{est}}}[s]$) the polynomial ring in the variable s with coeffi-
cients in $C_{\Theta_{\text{est}}}$ (respectively in $C_{\Theta_{\text{est}}}$). We set
$$T(s) := s^n + \sum_{k=0}^{n-1} \theta_{k+1} s^k = \sum_{l=1}^{n} (s - i\omega_{\ell}) \in C_{\Theta_{\text{est}}}[s].$$
The relation below arises naturally from equation (4):
$$\mathcal{R}(s, Z(s), \Theta_{\text{est}}, \Theta_{\text{est}}) := P(s) Z(s) + \mathcal{Q}(s) = 0 \quad (5)$$
where $P(s) = s T(s) \in C_{\Theta_{\text{est}}}[s]$ and
$$\mathcal{Q}(s) = s \sum_{j=0}^{n-1} \left(s^{n-j} + \sum_{k=j+1}^{n-1} \theta_{n-k} s^{k-j-1} \right) T(s) \theta_{2n+1} \in C_{\Theta_{\text{est}}}[\Theta_{\text{est}}][s] \quad (6)$$
We start by eliminating Θ_{est} in equation (5). In other words,
the polynomial $\mathcal{Q}(s)$ must be annihilated. Then we shall
obtain a system of equations depending uniquely on Θ_{est}.
For that purpose, we proceed in three steps:
1) Algebraic elimination of Θ_{est}; we use the canonical
form of the minimal \mathcal{Q}-annihilator, the operator in
$C_{\Theta_{\text{est}}}(s) \left[\frac{d}{ds} \right]^2$ that generates all differential operators
annihilating \mathcal{Q}.
2) Obtaining a system of equations on Θ_{est}; the canonical
forms of the differential operators generated by the
minimal \mathcal{Q}-annihilator provide a system of equations
with good numerical properties in the time domain.
3) Resolution of the resulting system: to bring the equa-
tions back to the time domain, we use the inverse
Laplace transform
$$L^{-1} \left(\frac{1}{s^m} \frac{d^p Z(s)}{ds^p} \right) = \frac{(-1)^p}{(m-1)!} \int_0^t v_{m-1,p}(\tau) z(\tau) d\tau \quad (7)$$
with $v_{m,p}(\tau) = (t-\tau)^m \tau^p, \forall \, p, m \in \mathbb{N}, \, m \geq 1$. To
reduce the noisy influence in our estimation, we choose
the integers m and p as small as possible.

The algebraic framework for our method is described in
Section III, where we also define the minimal annihilators
mentioned in the first point. In subsection III-A, we detail
the canonical form of the annihilators and recall some
well-known properties of the Weyl algebra. In Section IV,
we give the frequencies estimation. Numerical simulations
are given in Section V to illustrate the efficiency of our
algebraic method, using a comparison with the modified
Prony’s method.

III. ANNIHILATORS VIA THE WEYL ALGEBRA

As we have seen in the preceding Section, our goal is
to annihilate the polynomial \mathcal{Q}, see (6). For that, we use
differential operators, that is, polynomials in the variable $\frac{d}{ds}$
with polynomial coefficients in the variable s. The
polynomial \mathcal{Q} has degree n, therefore it is clear that any
differential operator of lower degree, with respect to the
variable $\frac{d}{ds}$, greater than n annihilates \mathcal{Q}, for example $\Pi_1 = (s \frac{d}{ds} - n) \circ \cdots \circ (s \frac{d}{ds} - 1) \circ (s \frac{d}{ds})$ and $\Pi_2 = \frac{d^n}{ds^n}$. Some
natural questions arise such as whether these annihilators are
the same or if there exists a lower order 3 annihilator. The
structure of the Weyl algebra $C_{\Theta}(s) \left[\frac{d}{ds} \right]$ helps answering
these questions.

Let us stress that this algebraic point of view is inspired by
the work of M. Fliess et al. [17], [18], [19], [15], [35].
The algebraic notions defined below are detailed in [10] and
[37].

A. The Weyl Algebra

Definition 1: Let \mathbb{K} be a field of characteristic zero. Let
$k \in \mathbb{N} \setminus \{0\}$. The Weyl algebra $A_k(\mathbb{K})$ is the \mathbb{C}-algebra
generated by $p_1, q_1, \ldots, p_k, q_k$ satisfying the relations
$$[p_i, q_j] = \delta_{ij}, \quad [p_i, p_j] = [q_i, q_j] = 0, \forall \, 1 \leq i, j \leq k$$
where $[\cdot, \cdot]$ is the commutator defined by $[u, v] := uv - vu,$
for all $u, v \in A_k(\mathbb{K})$. Sometimes we write simply A_k.

2The polynomial ring in $\frac{d}{ds}$ with coefficients in $C_{\Theta_{\text{est}}}[s]$
3The order of an operator $\Pi \in C_{\Theta}(s) \left[\frac{d}{ds} \right]$ is its degree as a polynomial
in the variable $\frac{d}{ds}$.
4Similar tools were used for numerical differentiation of noisy signal [36],
[33] and spike detection [16].
A very useful realization of the Weyl algebra A_k is to consider it as the algebra of polynomial differential operators on $\mathbb{K}[s_1, \ldots, s_k]$ such that
\[
p_i = \frac{\partial}{\partial s_i} \quad \text{and} \quad q_i = s_i, \quad \forall 1 \leq i \leq k.
\]
As a consequence, we can write
\[
A_k = \mathbb{K}[q_1, \ldots, q_k, p_1, \ldots, p_k] = \mathbb{K}[s_1, \ldots, s_k] \left[\frac{\partial}{\partial s_1}, \ldots, \frac{\partial}{\partial s_k} \right]
\]
(remark that the same notation is used for the variable s_i and for the operator “multiplication by s_i”)
A closely related algebra to $A_k(\mathbb{K})$ is defined as the differential operators on $\mathbb{K}[s_1, \ldots, s_k]$ with coefficients in the rational functions field $\mathbb{K}(s_1, \ldots, s_k)$. We denote it by $B_k(\mathbb{K})$, or B_k for short. We can write
\[
B_k := \mathbb{K}[q_1, \ldots, q_k, p_1, \ldots, p_k] = \mathbb{K}(s_1, \ldots, s_k) \left[\frac{\partial}{\partial s_1}, \ldots, \frac{\partial}{\partial s_k} \right].
\]
In the case $k = 1$ for instance, we have
\[
A_1 = \left\langle p, q \mid pq - qp = 1 \right\rangle = \mathbb{K}[s] \left[\frac{d}{ds} \right] \quad \text{and} \quad B_1 = \mathbb{K}(s) \left[\frac{d}{ds} \right]
\]
Proposition 2: A basis for A_k is given by \(\{q^l p^j \mid I, J \in \mathbb{N}^k \} \) where \(q^l := q_1^{i_1} \cdots q_k^{i_k} \) and \(p^l := p_1^{j_1} \cdots p_k^{j_k} \) if \(I = (i_1, \ldots, i_k) \) and \(J = (j_1, \ldots, j_k) \).

Therefore an operator $F \in A_k$ can be written in a canonical form,
\[
F = \sum_{l,j} \lambda_{l,j} q^l p^j \quad \text{with} \quad \lambda_{l,j} \in \mathbb{K}.
\]

Example 3: We need later the following useful identity:
\[
p^n q^m = q^m p^n + \sum_{k=1}^{n} \binom{n}{i} \binom{m}{i} i! q^{n-i} p^{n-i}
\]
An element $F \in B_k$ can be similarly written as
\[
F = \sum_l \lambda_l g_l(s)p^l, \quad \text{where} \quad g_l(s) \in \mathbb{K}(s_1, \ldots, s_k).
\]
The order of an element $F \in B_k$, $F = \sum_l \lambda_l g_l(s)p^l$ is defined as $\text{ord}(F) := \max\{|l| \mid g_l(s) \neq 0\}$. Notice that the same definition holds for the Weyl algebra A_k since $A_k \subset B_k$. Some important properties of A_k and B_k are given by the following propositions:

Proposition 4: A_k is a domain. Moreover, A_k is simple and Noetherian.

These properties are shared by B_k. Furthermore, A_k is neither a principal right domain, nor a principal left domain, while this is true for B_k.

Proposition 5: B_1 admits a left division algorithm, that is, if $F, G \in B_1$, then there exists $Q, R \in B_1$ such that $F = QG + R$ and $\text{ord}(R) < \text{ord}(G)$. Consequently, B_1 is a principal left domain.

Lastly, it follows from the fact that $\frac{d}{ds}$ is a derivation:

Proposition 6 (Derivation): Given $P_1, P_2 \in \mathbb{C}[s]$, we have (Leibniz rule):
\[
\frac{d^n}{ds^n}(P_1 P_2) = \sum_{k=0}^{n} \binom{n}{k} \frac{d^k P_1}{ds^k} \frac{d^{n-k} P_2}{ds^{n-k}}
\]

B. Annihilator

We set $B := B_1(\mathbb{C}) = \mathbb{C}(s) \left[\frac{d}{ds} \right]$. A Q-annihilator w.r.t. B is an element of $\text{Ann}_B(Q) = \{F \in B \mid F(Q) = 0\}$.

Since B is a left principal domain (see Proposition 5), then $\text{Ann}_B(Q)$ is a left principal ideal, i.e. it is generated by a unique $\Pi_{\text{min}} \in B$, up to multiplication by a polynomial in B. That means $\text{Ann}_B(Q) = B \Pi_{\text{min}}$. We call Π_{min} a **minimal Q-annihilator w.r.t.** B.

Remark that $\text{Ann}_B(Q)$ contains annihilators in finite integral form, i.e. operators with coefficients in $\mathbb{C}[\frac{1}{2}]$. We have the following lemmas:

Lemma 8: Consider $Q(s) = s^n, n \in \mathbb{N}$. A minimal Q-annihilator is given by
\[
\Pi_n = s \frac{d}{ds} - n.
\]

For $m, n \in \mathbb{N}$, the operators Π_m and Π_n commute. Thus, one can use the following Lemma

Lemma 9: Let $P_1, P_2 \in \mathbb{C}_{\text{est}}[s]$. Let Π_i be a P_i-annihilator ($i = 1, 2$) such that $\Pi_1 P_2 = P_2 \Pi_1$. Then $\Pi_1 \Pi_2$ is a $(\mu P_1 + \eta P_2)$-annihilator for all $\mu, \eta \in \mathbb{C}_{\text{est}}$.

Now, recall that
\[
\overline{Q}(s) = s^{n-1} \left(\sum_{j=0}^{n-1} \sum_{k=0}^{n-1} \theta_{n-k} s^{k-j-1} \right) \theta_{n+j+1} T(s) \theta_{2n+1} - T(s) \theta_{2n+1}
\]
So, the above Lemma provides a minimal \overline{Q}-annihilator w.r.t. B:
\[
\Pi_{\text{min}} = \left(\frac{d}{ds} - n \right) \circ \cdots \circ \left(\frac{d}{ds} - 1 \right) \circ \left(\frac{d}{ds} \right).
\]

From the identity in Example 3, it results:
\[
\Pi_{\text{min}} = s^n \frac{d^n}{ds^n}.
\]

Lemma 10: Let $Q \in \mathbb{C}_{\text{est}}[s]$. Then a minimal Q-annihilator w.r.t Θ_{est} is $\Pi_{\text{min}} = Q \frac{d}{ds} - \frac{d^2}{ds^2}$.

IV. Parameter Estimation

The first step of the estimation is to determine a minimal \overline{Q}-annihilator Π_{min}. Then, we choose a suitable family of annihilators $F = \{\Pi_i\}_{i=1}^{n}$ in $\mathbb{C}(s) \left[\frac{d}{ds} \right]$ generated by Π_{min} so that F applied to (5) provides a system of equations in Θ_{est}.

Finally, the frequencies are the solutions of this system in the time domain. A similar procedure can be also applied to estimate the remaining parameters (phases and amplitudes).

The order of the operators is one of the factors that must be taken in account when choosing the family F: it must be minimal to reduce noise sensitivity. Also, the use of finite-integral form annihilators is justified by (7). In addition, the choice of a well-balanced system of equations provides “good” numerical properties.

Since the family F is generated by the minimal \overline{Q}-annihilator that Π_{min}, its elements are of the form:
\[
\Pi = \left(\sum_{i=0}^{\ell} f_i(s) \frac{d}{ds} \right) \Pi_{\text{min}}(s),
\]
with \(f_i(s) \in \mathbb{C}(s), \forall 1 \leq i \leq \ell \).

We have seen that a minimal \(\mathcal{Q} \)-annihilator w.r.t. \(B \) is
\[
\Pi_{\text{min}} = s^n \frac{d^n}{ds^n},
\]
that applied on the relation (5) gives
\[
\Pi_{\text{min}}(P(s)Z(s)) = \sum_{j=0}^{n} P_j(s) \frac{d^j}{ds^j} Z(s)
\]
where for all \(1 \leq j \leq n, \)
\[
P_j(s) = \frac{(n+1)!}{(n-j)!} s^{n+j+1} + \frac{1}{(n-j)!} \sum_{k=n-1-j}^{n-1} \theta_{k+1} (k+1)! s^{k+1+j}
\]
Given that \(\Pi_{\text{min}} \) annihilates \(\mathcal{Q} \), from the relation (5) follows
an algebraic relation involving \(\theta_1, \ldots, \theta_n \):
\[
\sum_{j=0}^{n} P_j(s) \frac{d^j}{ds^j} Z(s) = 0.
\]
However, we need \(n \) independent equations to linearly identify \(\Theta_{\text{est}} \). One can show that this cannot be done in the operational domain, see for instance [55] for a similar proof in a low-dimensional case.

Therefore, the idea is to write the annihilator in (10) in a canonical form:
\[
\Pi = \sum_{i=1}^{\ell} g_i(s) \frac{d^i}{ds^i}, \text{ with } g_i(s) \in \mathbb{C}(s), \forall \ n \leq i \leq \ell.
\]
A suitable choice of the rational functions \(g_i \) brings a consistent system of equations in the time domain: set \(\ell = 2n - 1 \) and for \(1 \leq i \leq 2n - 1 \), set \(g_i(s) = 1 \) and \(g_k(s) = 0 \), if \(k \neq i \). Then, it suffices to solve the system. In the sequel, a very interesting example in the case of a sum of three sinusoidal waveform signals illustrates the usefulness of our algebraic method.

Remark 11: Let us note that in the case of a similar parameter estimation problem of a single noisy sinusoidal waveform signal, a consistent system can be found in the operational domain (see [54]).

Example 12: We apply our method in the case of a sum of three sinusoidal waveform signals, i.e. \(n = 3 \). Since \(\mathcal{Q} \)-annihilators are of the form (10), we choose \(\ell = 2 \) to obtain a system with three equations. So the canonical form of the annihilator of order 6 is:
\[
\Pi = g_0(s) \frac{d^4}{ds^4} + g_1(s) \frac{d^5}{ds^5} + g_2(s) \frac{d^6}{ds^6},
\]
where \(g_0(s), g_1(s), g_2(s) \in \mathbb{C}(s) \). Choosing \(g_0(s) = 1, g_1(s) = 0, g_2(s): g_0(s) = 0, g_1(s) = 1, g_2(s) = 0 \) and \(g_0(s) = 0, g_1(s) = 0, g_2(s) = 1 \) gives three equations in the operational domain leading to the following system in the time domain:

\[
\begin{pmatrix}
\frac{1}{6} J_1 & \frac{1}{6} J_2 & J_3 \\
-\frac{1}{24} J_4 & -\frac{1}{6} J_5 & -\frac{1}{2} J_6 \\
\frac{1}{12} J_7 & \frac{1}{6} J_8 & J_9
\end{pmatrix}
\begin{pmatrix}
\theta_1 \\
\theta_2 \\
\theta_3
\end{pmatrix}
= -
\begin{pmatrix}
J_{10} \\
J_{11} \\
J_{12}
\end{pmatrix}
\]
where we set \(v_{m,n} = v_m v_n (u) (t-u)^m u^n \), for \(m, n \in \mathbb{N} \)
and \(J_i = \int_0^t I_i z(u) \, du \), for \(1 \leq i \leq 12 \),
\[
\begin{align*}
I_1 & = 2v_{3,4} - t v_{3,3} \\
I_2 & = 14 v_{2,4} - 14 t v_{2,3} + 3 t^2 v_{2,2} \\
I_3 & = 14 v_{1,4} - 21 t v_{1,3} + 9 t^2 v_{1,2} - t^3 v_{1,1} \\
I_4 & = 9 v_{3,5} - 5 t v_{3,4} \\
I_5 & = 18 v_{2,5} - 20 t v_{2,4} + 5 t^2 v_{2,3} \\
I_6 & = 42 v_{1,5} - 70 t v_{1,4} + 35 t^2 v_{1,3} - 5 t^3 v_{1,2} \\
I_7 & = 5 v_{3,6} - 3 t v_{3,5} \\
I_8 & = 15 v_{2,6} - 18 t v_{2,5} + 5 t^2 v_{2,4} \\
I_9 & = 30 v_{1,6} - 54 t v_{1,5} + 30 t^2 v_{1,4} - 5 t^3 v_{1,3} \\
I_{10} & = -16 v_{3,6} + 36 t v_{2,6} - 16 t^2 v_{1,5} + v_{0,4} + v_{0,0} \\
I_{11} & = 20 v_{1,6} - 60 v_{2,3} - 40 v_{3,2} - 5 v_{4,1} - v_{0,5} \\
I_{12} & = -24 v_{1,5} + 15 v_{2,4} + 90 v_{2,4} - 80 v_{3,3} + v_{0,6}
\end{align*}
\]
Finally, the expressions for \(\theta_1, \theta_2 \) and \(\theta_3 \) are:
\[
\begin{align*}
\theta_1 & = 12 - \frac{2(a J_2 - 2 b J_3 + d J_{10})}{\Lambda} \\
\theta_2 & = 12 - \frac{-2(a J_1 + c J_3 + e J_{10})}{\Lambda} \\
\theta_3 & = \frac{4(b J_1 - 2 c J_2 + f J_{10})}{\Lambda}
\end{align*}
\]
where \(a = 2J_9 J_{11} + J_6 J_{12}, \ b = 3J_6 J_{11} + 2J_5 J_{12}, \ c = 2J_7 J_{11} + 4J_4 J_{12}, \ d = 4J_5 J_9 - 3J_0 J_8, \ e = J_6 J_7 - J_4 J_9, \ f = 3J_4 J_8 - 4J_5 J_7, \ \Lambda = 2 d J_3 + 2 e J_2 + f J_3 \)

In the general parameter estimation problem, we wish to estimate all parameters giving the amplitudes, the frequencies and the phases, that is the triplets \((\alpha_k, \omega_k, \phi_k), 1 \leq k \leq 3 \) in (1). As mentioned in the Introduction, our algebraic method works very properly in this case. We give an idea of how to proceed:

- define two new vectors \(\Theta_{\text{est}} = \{ \theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6 \} \) and \(\Theta_{\text{err}} = \{ \theta_7 \} \) where \(\theta_1, \theta_2, \theta_3 \) are as in (2), \(\theta_4 = \beta - z(0), \theta_5 = -\tilde{z}(0), \theta_6 = -\hat{z}(0) \) and \(\theta_7 = -\beta \).
- according to the new \(\Theta_{\text{est}} \) and \(\Theta_{\text{err}} \), we obtain a new polynomial \(\mathcal{Q} \) in the relation \(\mathcal{R} \) (5):
\[
\mathcal{Q}(s) = T(s) \theta_7 \in \mathbb{C}_{\Theta_{\text{est}}}[s]
\]
and polynomials in \(\mathbb{C}_{\Theta_{\text{est}}}[s] \):
\[
T(s) = s^3 + s_3 s^2 + s_4 s + \theta_1 \quad \quad \quad Q(s) = s^3 \theta_4 + s_2 \theta_5 + \theta_3 + \theta_4 + \theta_5 \theta_3
\]
- choose a minimal \(\mathcal{Q} \)-annihilator and estimate the frequencies \(\{ \theta_1, \theta_2, \theta_3 \} \) by a similar reasoning as above.
- to linearly identify the remaining \(\theta_7 \), define a minimal \(\mathcal{Q} \)-annihilator with coefficients in \(\mathbb{C}_{\Theta_{\text{est}}}[s] \), that means depending on the parameters \(\theta_1, \theta_2, \theta_3 \) that we just calculated. In this case, the minimal \(\mathcal{Q} \)-annihilator is
\[
\Pi_{\Theta_{\text{est}}} = T \frac{d}{ds} - T'
\]
that generates a family of annihilators of the form
\[\Pi = \sum_{i=0}^{\ell} g_i(s) \frac{d}{ds} \circ \Pi_{\theta,est}^{\min} \]

Once more, we apply the algebraic procedure and by a suitable choice of annihilators, we obtain a system of equations with coefficients depending on \(\theta_1, \theta_2, \theta_3 \) that allows us to determine \(\theta_4, \theta_5 \) and \(\theta_6 \).

For more details in an encouraging example on the position reconstruction of a human body in the sagittal plane using only accelerometer measurements, we refer to [42].

V. SIMULATIONS

The following figures show the estimation of parameters \(\theta_1, \theta_2 \) and \(\theta_3 \) concerning the results concerning the normalized mean values and variances. More precisely, the “true” parameters are denoted by \(\theta_1, \theta_2 \) and \(\theta_3 \) and \(\theta_{i,k} \) denotes the estimation of \(\theta_i \) obtained at the \(k \)-th run. The modified Prony’s method (PM) is used as a reference. Each point is obtained by averaging the results over 100 trials.

Dotted line curves represent exact values, while solid line curves show the estimations by our algebraic method and dashed line curves, the results by the modified Prony’s method.

Figure 1 shows the simulation results for the estimation of the parameters \(\theta_1, \theta_2 \) and \(\theta_3 \) versus the estimation time.

In figure 2, we plot \(\theta_3 = \frac{1}{100} \sum_{i=1}^{100} \theta_{i,k} \) and \(\frac{1}{100} \sum_{i=1}^{100} \frac{\text{var}(\theta_i)}{\theta_i} \) versus the estimation time. More simulation experiments will be presented in the final version.

VI. CONCLUSION

In this paper, we study the parameter estimation of a multi-sinusoidal waveform signal from noisy data. The methods used in this paper are of algebraic flavor. They allow a robust estimation, and very fast as well, within a fraction of the signal’s period.

We emphasize an essential point: the estimation obtained are based on integrals of measured signals. These particular integrals play the role of time-varying filters.

The efficiency of our algebraic method is illustrated by computer simulations.

REFERENCES

Normalized variance of $\hat{\theta}_1 (\theta_1 = \omega_1 \omega_2 \omega_3)$

- D. Y. Liu, O. Gibaru, W. Perruquet, M. Fliess and M. Mboup, An error analysis in the algebraic estimation of a noisy sinusoidal signal,