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Abstract— The aim of this article is to present a novel quater-
nion based control scheme for the attitude control problem
of a quadrotor. A quaternion is a hyper complex number of
rank 4 that can be utilized to avoid the inherent geometri-
cal singularity when representing rigid body dynamics with
Euler angles or the complexity of having coupled differential
equations with the Direction Cosine Matrix (DCM). In the
presented approach both the quadrotor’s attitude model and
the proposed non-linear Proportional squared (P 2) control
algorithm have been implemented in the quaternion space,
without any transformations and calculations in the Euler’s
angle space or DCM. Throughout the article, the merits of the
proposed novel approach are being analyzed and discussed,
while the efficacy of the suggested novel quaternion based
controller are being evaluated by extended simulation results.

I. INTRODUCTION

The area of Unmanned Aerial Vehicles (UAV) and espe-

cially the one of having the capability for Vertical Take-Off

and Landing (VTOL) as the quadrotor, has been in the focus

of the research and development efforts, mainly due to their

efficiency in accomplishing complex missions [1].

For achieving the desired performance most frequently

the trajectory generation problem is being divided into two

subproblems: a) the attitude problem and b) the translation

problem, while as it has been proven [2, 3], these systems

can be cascade interconnected. For the examined case of

a quadrotor UAV, the position controller (translation) is

generating reference attitude set–points for the attitude con-

troller and thus the control problem of quadrotors has been

confronted using several different approaches from research–

leading teams worldwide, with famous works to include

linear [4–6], and nonlinear controllers [7–11]. Although it

has been proved that the aforementioned control strategies

manage to stably navigate a quadrotor, the problem of de-

signing optimized controllers that will be able to: a) provide

fine–smoothed control actions for attitude stabilization and

trajectory tracking, b) make use of model–knowledge for

more accurate navigation, c) preserve robustness against

sudden and unpredicted external disturbances, is still an open

challenge. One of the constrains that the control engineers

are facing, when dealing with the attitude problem is still a

fundamental problem in dynamics due to the fact that finite

rotation of a rigid body does not obey the laws of vector

addition, e.g. commutativity, while the attitude characteristics

of the rigid body cannot be extracted by integrating the

body’s angular velocity.
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However, when working with rotations, whether it’s esti-

mators or controllers, there has been one approach utilized

more than any other, when creating models: the Newton–

Euler equations [12], which is able to describe the combined

translational and rotational dynamics of the rigid body. Al-

though this modeling approach is considered a fundamental

one, still it has three drawbacks. Firstly, it is solely based

on Euler angles, which have the merit of being intuitive, but

per definition these angles cannot define certain orientations

as it suffers from singularities that result in an problem

know as “gimbal lock” [13]. This problem is the loss of one

degree of freedom in a three-dimensional space that occurs,

when two of the rotational axes align and locking together.

Secondly, it is very computationally expensive. Calculating

sines and cosines takes a lot of performance and can very fast

become unmanageable especially if it’s being implemented

on low cost hardware. Thirdly, when creating estimators or

controllers that is necessary to utilize the Jacobian of the

system states, the computational cost is even greater, as

during these calculations some times all the matrix elements

will have one or more sines or cosines to compute, which

quickly can overwhelm the system.

For overcoming these problems, three solutions can be

followed: a) guarantee that the system will keep inside the

bounds of Euler angels, b) the utilization of a Direction

Cosine Matrix (DCM) approach, and c) the quaternion

approach. If the quadrotor has been only designed for simple

stable flight, the first one might work, but in the case that

unknown external disturbances (e.g. wind gusts) are being

applied on the vehicle and result in flipping the aircraft

(turning it upside-down), the Euler angle approach would

not be able to compensate this. For the second approach

DCM is constructed by translating the x, y and z body fixed

coordinate system in a 3× 3 matrix, while no matter of how

this coordinate frame has been rotated, the matrix will still

represent this transformation as the most significant merit of

this approach is the non-suffering from the singularities that

the Euler angles have. However, the DCM suffers from the

constraint that each axis must be orthogonal to the other axes

and should also be of a unit length. When rotating a DCM it

must be multiplied with another DCM and the derivative of

the DCM results in a 3× 3 matrix and into a system of nine

coupled differential equations (states) to solve (six if the 3rd

axis is calculated from the cross product of the other two).

In the quaternion approach the previous mentioned limita-

tions do not exist as one can directly translate a quaternion

into a DCM and vice versa, however the quaternion and

its corresponding derivative have four values and the only

constraint is that it must be of unit length. This translates into
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a system of only four coupled differential equations/states,

greatly decreasing the computational cost and keeping the

overall complexity low [14]. Due to the fact that the quater-

nion is a complex number it’s sometimes hard to get an

intuitive feeling for what it represents, but the direct coupling

to a DCM makes the translation easy.

The novelty of this article stems from proposing a quater-

nion based non-linear P 2 controller, for solving the attitude

problem of a quadrotor. In the proposed methodology, both

the quadrotor modeling and the controller design will be

made in the quaternion space, without the utilization of Euler

angles or DCM. Until now in the relative scientific literature,

only a few references are available utilizing quaternions

controllers for the attitude stabilization problem as it has

been described in [15], [16] and the references there in.

These approaches, they do however convert the quaternion

error back to Euler angles and regulate on these angles

instead of regulating the quaternion directly. The drawback

of these approaches is the fact that suffer from the non–

linearities and singularities of Euler angles, plus the extra

processing power needed to convert the Euler angles to

quaternions and vice versa. As it is going to be analyzed

in the sequel, the suggested novel control scheme does

not suffer from these shortcomings, can be applied in the

full three dimensional rotational domain, while it can be

generalized as it is independent of the rigid body.

The rest of the article is structured as it follows. In

Section II the fundamental properties and the corresponding

algebra of the quaternion mathematics are being presented,

while in Section III the quaternion based quadrotor modeling

is analyzed. In Section IV the novel full quaternion based

control scheme is established and in Section V extended

simulation results that prove the efficiency of the proposed

scheme are depicted. Finally, in Section VI conclusions are

drawn.

II. QUATERNION MATH

For consistency reasons, and for building the mathemat-

ical background for following the proposed modeling and

control scheme, this section is going to present the basic

algebraic concepts behind the idea of quaternions. For a more

comprehensive analysis and an in depth description of this

mathematical tool, the reader is refereed to the following

publications [17] [18].

A quaternion is a hyper complex number of rank 4, which

can be represented in many ways, while equations (1–2)

represent two of the most popular approaches. The quater-

nion units from q1 to q3 are called the vector part of the

quaternion, while q0 is the scalar part.

q = q0 + q1i+ q2j + q3k (1)

q =
[
q0 q1 q2 q3

]T
(2)

Multiplication of two quaternions p, q is being performed

by the Kronecker product, denoted as ⊗, and the outcome

is presented in the following equations. If p represents one

rotation and q represents another rotation p ⊗ q represents

the combined rotation. It’s important to note that quaternion

multiplication is non-commutative, just as rotations are non-

commutative.

p⊗ q =

⎡
⎢⎢⎣
p0q0 − p1q1 − p2q2 − p3q3
p0q1 + p1q0 + p2q3 − p3q2
p0q2 − p1q3 + p2q0 + p3q1
p0q3 + p1q2 − p2q1 + p3q0

⎤
⎥⎥⎦

p⊗ q = Q(p)q =

⎡
⎢⎢⎣
p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
q0
q1
q2
q3

⎤
⎥⎥⎦

= Q̄(q)p =

⎡
⎢⎢⎣
q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
p0
p1
p2
p3

⎤
⎥⎥⎦

The norm/length of a quaternion is defined, just as for any

complex number, as depicted in equation (3). All quaternions

in the presented approach are assumed to be of unitary length

and thus are called unit quaternions.

Norm(q) = ‖q‖ =
√
q20 + q21 + q22 + q23 (3)

The complex conjugate of a quaternion has the same defini-

tion as normal complex numbers. The sign of the complex

part is switched as in equation (4).

Conj(q) = q∗ =
[
q0 −q1 −q2 −q3

]T
(4)

The inverse of a quaternion is defined as in equation (5), as

the normal inverse of a complex number. Moreover, if the

length of the quaternion is unitary then the inverse is the

same as its conjugate.

Inv(q) = q−1 =
q∗

‖q‖2 (5)

The derivative of a quaternion requires some algebraic ma-

nipulation and can be represented as [18]: a) as in equa-

tion (6) in case that the angular velocity vector is in the

fixed frame of reference, and b) as in equation (7) if the

angular velocity vector is in the body frame of reference. It’s

important to note that these notations have been provided

with respect to the left hand notation, and that for having

them in the right hand notation the ω quaternion must be

conjugated.

q̇ω(q, ω) =
1

2
q ⊗

[
0
ω

]
=

1

2
Q(q)

[
0
ω

]
(6)

q̇ω′(q, ω′) =
1

2

[
0
ω′

]
⊗ q =

1

2
Q̄(q)

[
0
ω′

]
(7)

where ω = [ωx, ωy, ωz]
T . If a quaternion is a unit

quaternion it can be used as a rotation operator. However

the transformation is not built up by only one quaternion

multiplication but two, the normal and its conjugate, as

shown in equation (8). This rotates the vector v from the

fixed frame to the body frame represented by q.

w = q ⊗
[
0
v

]
⊗ q∗ (8)
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This rotation in equation (8) can be rewritten by replacing

v with the x, y and z axis, as it is being displayed in the

following equations (9-10) and (11).

Rx(q) = q ⊗

⎡
⎢⎢⎣
0
1
0
0

⎤
⎥⎥⎦⊗ q∗ =

⎡
⎣q20 + q21 − q22 − q23

2(q1q2 + q0q3)
2(q1q3 − q0q2)

⎤
⎦ (9)

Ry(q) = q ⊗

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦⊗ q∗ =

⎡
⎣ 2(q1q2 − q0q3)
q20 − q21 + q22 − q23
2(q2q3 + q0q1)

⎤
⎦ (10)

Rz(q) = q ⊗

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦⊗ q∗ =

⎡
⎣ 2(q1q3 + q0q2)

2(q2q3 − q0q1)
q20 − q21 − q22 + q23

⎤
⎦ (11)

It should be noted that in the examined case, only the vector

part of the quaternion has been extracted, resulting in a

rotation matrix, which rotates a point in a fixed coordi-

nate system, as depicted in equation (12). When rotating

a coordinate system, the angle sign changes and provides

equation (13), while the same result arises when conjugating

the quaternion in equation (8).

R(q) =
[
Rx(q) Ry(q) Rz(q)

]
(12)

R(q) =

⎡
⎣Rx(q)

T

Ry(q)
T

Rz(q)
T

⎤
⎦ (13)

The rotation can also be represented using a rotation vector

as denoted in equation (14), where u is the rotation axis (unit

vector) and α is the angle of rotation. Using this notation can

have many benefits when creating an error or specifying a

reference as it has a direct physical connection.

q = cos
(α
2

)
+ u sin

(α
2

)
(14)

Finally, for representing quaternion rotations in a more

intuitive manner, the conversion from Euler angles to quater-

nion and from quaternion to Euler angle can be performed

by utilizing the following two equations respectively. This

property is very useful in case that the aim is to represent an

orientation in angles, while retaining the overall dynamics of

the system in a quaternion form.

q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos(φ/2) cos(θ/2) cos(ψ/2) + sin(φ/2) sin(θ/2) sin(ψ/2)

sin(φ/2) cos(θ/2) cos(ψ/2) − cos(φ/2) sin(θ/2) sin(ψ/2)

cos(φ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) sin(ψ/2)

cos(φ/2) cos(θ/2) sin(ψ/2) − sin(φ/2) sin(θ/2) cos(ψ/2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15)

⎡
⎢⎣
φ
θ
ψ

⎤
⎥⎦ =

⎡
⎢⎣

atan2(2(q0q1 + q2q3), q20 − q21 − q22 + q23
asin(2(q0q2 − q3q1))

atan2(2(q0q3 + q1q2), q20 + q21 − q22 − q23)

⎤
⎥⎦ (16)

III. QUATERNION BASED QUADROTOR MODELING

For modeling the attitude dynamics of the quadrotor, as

the one depicted in Figure 1, it has been assumed that the

structure is rigid and symmetrical, the center of gravity and

the body fixed frame origin coincide, the propellers are rigid,

the bias throttle to counteract the effect of gravity can be

neglected and only the differential forces created by the

propellers has an effect on rotation.

Fig. 1. A sketch of the Luleå University of Technology Quadrotor without
propellers attached. Ω1−4 denotes the rotational speed of each motor, F1−4

is the force generated by each motor and x, y and z is the body fixed
coordinate system.

For modeling the physics of the quadrotor two alternative

approaches could be followed: a) the full physical model can

be derived by the utilization of Newtons’ laws of motion and

producing a frame dependent model, or b) to use the Euler-

Newton equations for translational and rotational dynamics

of a rigid body, as in equation (17). The utilization of

the second approach greatly simplifies the derivation of the

model as the only unknown in the derived model is the

connection among the control signal and the corresponding

torque.[
F
τ

]
=

[
m 0
0 Icm

] [
acm
ω̇

]
+

[
0

ω × (Icm · ω)
]
, (17)

where ω is defined as:

ω =

⎡
⎣ωx

ωy

ωz

⎤
⎦

For deriving the full dynamics of the quadrotor’s rigid

body rotations, the right hand quaternion derivative from

equation (7) should be combined with the rotation dynamics

from equation (17), which results in an equation system

describing the entire rotation dynamics of the Quadrotor

on a quaternion form, as it has been also presented in

equation (18):⎧⎪⎨
⎪⎩
q̇ = −1

2

[
0

ω

]
⊗ q

ω̇ = I−1
cm · τ − I−1

cm [ω × (Icm · ω)]
(18)

When modeling the control signal to torque relation,

various linear and non-linear system approximations [12]

have been proposed. In the presented approach this relation

has been simplified to identity matrix. A more detailed ap-

proach, taking under consideration the physics behind rotors’

dynamics can be taken under consideration without loosing

the impact of the presented approach. The obtained results
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in this Section can be directly generalized for modeling the

attitude dynamics of other types of UAV frames than the

Quadrotor, as long as the control signal to torque relationship

can be found.

IV. CONTROLLER SYNTHESIS

In this section a feedback control scheme for the attitude

stabilization of the quadrotor aircraft will be presented.

Initially and in order to be able to propose a proper control

scheme, the inputs and outputs of the system must be a

priori known. The system presented in equation (18) suggests

that measurements of the quaternion and angular rates are

needed in order to measure the system’s state and calculate

the necessary driving torque to rotate it.

As it has been stated before, the novelty of this article

stems from proposing a control scheme for the attitude

problem of a quadrotor completely in the quaternion space.

In the proposed approach, all the measurements and the

calculations have been made by utilizing quaternions, while

no transformation to Euler angles and rotations have been

executed. The resulting controller has no issues with sin-

gularities and can be straightforward implemented, while

retaining simplicity.

For utilizing quaternions in the error calculation between

the desired qref and the measured quaternion based response

of the quadrotor qm, an error quaternion, denoted as qerr,

should be calculated. This is done by multiplying the refer-

ence, qref , with the conjugate of the estimated quaternion,

qm, as it has been presented in equation (19). This Kronecker

product will calculate the difference quaternion, which can

be utilized to produce the error around each axis of rotation

or:

qerr = qref ⊗ q∗
m (19)

The vector part directly connects the quaternion to the

sine of the error from equation (14), which results in an

axis error as depicted in equation (20). In case that the

reference is demanding a rotation more than π radians, the

closest rotation is the inverted direction and this is found by

examining q0. If q0 < 0 then the desired orientation is more

than π radians away and the closest rotation is the conjugate

of qerr, negating the axis error in equation (20).

Axiserr =

⎡
⎣qerr1

qerr2

qerr3

⎤
⎦ (20)

When designing the controller the simplest form available

has been chosen, which is a non-linear P 2-controller formu-

lation, as it has been depicted in Figure 2. In the proposed

approach, an inner loop proportional controller Pω for the

angular velocity and an outer loop proportional controller

Pq for the angular velocity reference tracking, have been

effectively combined for creating a non-linear P 2-controller

for the attitude regulation problem. The overall mathematical

formulation of the proposed P 2 control scheme is being

denoted as it follows:

τ = −Pq ·
⎡
⎣qerr1

qerr2

qerr3

⎤
⎦− Pω ·

⎡
⎣ωx

ωy

ωz

⎤
⎦ (21)

It should be noted that equation (21) is derivative free and

straight forward to be implemented (low computational cost).

Moreover, the noise immunity of this design is only as good

as the measured/estimated quaternion and angular velocity,

as the suggested scheme will directly amplify noise just as

much as the corresponding errors. Something that is worth

q
ref

q
ref

q
m

q
err

* q   to Axis
transformation

err err Pq

Pω

ωm

qm

τ

Fig. 2. Block diagram of the full nonlinear P 2 quaternion based control
scheme

noting is the fact that the P 2 design will always drive the

error to zero thanks to the double integrator in the non-linear

dynamics. This reduces controller complexity and without

an integrator there is no negative phase shift added from the

controller.

V. SIMULATION RESULTS

All simulations have been carried out on the nonlinear

quadrotor model presented in [10], which takes into account

a wide set of the aerodynamic forces and moments acting

on the system, including the hub and friction forces, the

rolling moments and –up to some extent– the variations in the

aerodynamic coefficients, due to the motion of the quadrotor

inside the atmosphere.

The parameters of the quadrotor model have been set as

Ixx = Iyy = 6.5 · 10−4kg ·m2 and Izz = 1.2 · 10−3kg ·m2.

The aforementioned values correspond to the CAD model

analysis presented in Figure 1, with respect to the analysis

provided in [19]. The proposed quaternion based controller

have been evaluated under three fundamental tracking test

cases which are: a) constant rotation - step input, b) period-

ical reference - sinusoidal input, and c) complex maneuver -

flip. In all the simulated cases additive corrupting zero mean

noise of 0.1 amplitude affecting the measurements have been

considered. Bounds on the control action have been applied,

for performing a more realistic evaluation. These bounds

have been set as +/−4Nm for all the motors, while the gains

of the nonlinear P 2 controller have been set as: Pq = 20 and

Pω = 4 after small fine tuning in simulations.

In the first case a step response has been considered

where an one rad reference step around each axis has been

requested, at different time instances. The results obtained

from each axis can are depicted in Figure 3, while the

corresponding control action is provided in Figure 4.

From the obtained responses, it can be observed that the

proposed control scheme performs very well with a very

small overshoot and a very good reference tracking. All
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Fig. 3. Quadrotor step responses. The reference signal and the system’s
responses have been denoted by the dashed and solid lines respectively. All
the graphs have been indicated in radians for more intuitive display.
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Fig. 4. Controller effort during step responses

errors go quickly to zero and no strange effects can be

witnessed from the effect of noise or the non-linearities.

To provide a realistic simulated evaluation, bounds on the

control action have been considered. The control signal

saturates when the step is introduced but quickly goes back

to its linear region. Although the existence of the corrupting

noise, the quadrotor’s performance has not been significantly

been effected mainly to the effect of the double integrator

dynamics of the system.

The second evaluation test-case has considered the prob-

lem of tracking a 0.5 radian amplitude sine wave with a

frequency of 1 radian/s. The applied referenced waves were

phase shifted on the y and z axis for driving the torques

not be in the same phase. The tracking results obtained are

depicted in Figure 5, while the corresponding control actions

are being displayed in Figure 6.

From the obtained results it is obvious that, as in the

previous testing case, the proposed control scheme is able
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Fig. 5. Controller tracking an 1 rad/s sine wave. Input/output shown in
radians for more intuitive display. The dashed line is reference and the
continous line is output.

0 5 10 15

−1

0

1

M
x 

[N
m

]

0 5 10 15

−1

0

1
M

y 
[N

m
]

0 5 10 15

−1

0

1

M
z 

[N
m

]

Time [s]

Fig. 6. Controller control action during tracking.

to provide a very good and fast tracking with a small phase

shift of about 0.5 seconds. Also it should be stated that the

proposed controller has the merit of performing quite big

and dynamic changes in the quadrotor’s attitude, without the

problem of saturating the control signals for tracking these

fast changes. The effects of the corrupting noise are more

identifiable when the amplitude of the control effort is small,

due to the fact that the gains of the quaternion controller have

been fixed, while this noise has no direct and sever effect on

the overall controlled quadrotor.

For the final evaluation test-case, a most popular maneuver

has been considered as well, which is the 360 degree flip. The

control signal was generated by ramping from 0 to 2π radians

so the controller wouldn’t take the shortest route, while the

simulation result are depicted in Figure 7. From observing

the response of the quadrotor during flip it is obvious that

the maneuver has been executed without any problem. In

the case of the Euler angles, this flip would have been

subjected to massive non-linearities but, as seen in Figure

3868



8, the quaternion has no non-linearities nor singularities and

thus can therefore perform the flip without any problem. The

control signal does only saturate a little and this is because

the controller has been tuned for smooth transitions (small

gain values). For a faster flip a more aggressive tuning could

be used or a direct control on the angular velocity reference

could be applied until the attitude has made half the flip and

then reconnect the attitude controller.
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Fig. 7. Controller doing a flip. Input/output shown in radians for more
intuitive display. The dashed line is reference and the continous line is
output.
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Fig. 8. Controller doing a flip (displayed in quaternion data q0 and q1).
The dashed line is reference and the continues line is output.

VI. CONCLUSIONS

In this article a full quaternion based attitude controller

for a quadrotor has been presented. The overall aim and the

novelty of the article is to present a modeling and control

scheme development approach, fully implemented in the

quaternion space for avoiding the the non-linearities and the

computational cost usually connected with the Euler and

rotation angles. The presented approach, has been applied

directly to the quaternion error, without any conversions for

solving the attitude problem. Extended simulation results

have been presented that proved the efficiency of the sug-

gested scheme.
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