Differential flatness of a class of \(n \)-DOF planar manipulators driven by an arbitrary number of actuators

Jaume Franch\(^1\), Àlex Reyes\(^2\), Sunil K. Agrawal\(^3\)

Abstract—This paper deals with the problem of feedback linearization, either by dynamic or static feedback, of a planar robot manipulator with \(n \) links and \(m \) inputs. The robot is provided with a particular inertia distribution in order to reduce nonlinearities, and with \(n - m \) springs to keep controllability. Under these design conditions, the paper answers the question of where to place the actuators such that the system is static feedback linearizable. For those systems that there are not static feedback linearizable, the paper shows that they are linearizable by prolongations and, therefore, dynamic feedback linearizable.

I. INTRODUCTION

In references ([1], [2], [5], [9]) the authors have studied the same structure of a planar robot manipulator with only one or two inputs. This paper generalizes the results to the general multi-input case.

We keep the same design conditions as the previous papers: the center of mass of the last link \(n \) lies on the preceding joint axis \(n \); the center of mass of the last two links \(n \) and \(n - 1 \) lies on the joint axis \(n - 1 \); this procedure is iterated until the center of mass of the last \(n - 2 \) links lies on the second joint axis. In order to keep the controllability property, torsional springs are added at each joint where there is no any actuator. This design eliminates many of the nonlinearities arising out of inertia function. The locations of the center of masses are obtained by adding counter masses to each of the last \(n - 2 \) links.

Even if the manipulator is designed in such a way, it was already proven in [5] that the placement of the actuators is important in order to guarantee feedback linearization of such a system with two inputs. For the case studied here, the location of the inputs is also relevant for the robot to have the property of feedback linearization.

A system which is static feedback linearizable or linearizable by prolongations is, also, differentially flat [3]. In any underactuated system that possesses the property of differential flatness, the problem of point to point trajectory planning or trajectory tracking can be solved, i.e. the nonlinear system is transformed into a linear one by means of a diffeomorphism and a feedback law. Moreover, the resulting linear system is in Brunovsky canonical form and, therefore, the problem of trajectory planning reduces to finding interpolating polynomials (or any other basis functions) for the initial and final conditions.

The paper is structured as follows: In Section II, a description to the problem leading to the state space equations is given. Section III recalls some technical lemmas that will be used throughout the paper. Section IV introduces a matricial notation to study static feedback linearization and Section V studies the rank of these matrices. In Section VI and Section VII, we study static feedback linearization and linearization by prolongations using the matricial notation. Finally, Section VIII, there is a simulation of a specific system and Section IX summarizes the mains conclusions of the work.

II. DESCRIPTION OF THE PROBLEM

The dynamic equations of motion for open-chain robots are given by the following:

\[
M(q) \ddot{q} + C(q, \dot{q}) \dot{q} + g(q) = u, \tag{1}
\]

where \(M(q) \) is the inertia matrix, \(C(q, \dot{q}) \) are the Coriolis and Centripetal terms, \(g(q) \) are the gravity terms, and \(u \) is the vector of joint inputs. It is also well known from Lagrangian structure of the dynamic equations, if the inertia matrix \(M(q) \) is independent of \(q \), the Coriolis term \(C(q, \dot{q}) = 0 \).

According to the special inertia distribution explained in ([5]), the \((n \times n) \) inertia mass matrix \(M(q) \) is a constant and has a specific structure given by

\[
M = \begin{bmatrix}
a_1 & a_2 & a_3 & \ldots & a_{n-1} & a_n \\
a_2 & a_3 & a_4 & \ldots & a_{n-2} & a_{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n-1} & a_{n-2} & a_{n-3} & \ldots & a_2 & a_1 \\
a_n & a_{n-1} & a_{n-2} & \ldots & a_3 & a_2 \\
\end{bmatrix}, \tag{2}
\]

where \(a_i \) are constants for all \(i = 1, \ldots, n \).

On the other hand, \(C(q, \dot{q}) \) vanishes since \(M \) is a constant, \(g(q) \) is still non-linear since the center of mass is on joint 2. In order to preserve controllability of the system, we add a spring in every un-actuated joint except when it occurs on joint 1. The addition of springs provides dynamic coupling between successive joints, which helps preserve controllability of the robot. Summarizing, robots have the following dynamic equations of motion:

\[
M \ddot{q} = \begin{bmatrix}
-mg \sin q_1 + u_1 \\
u_2 \\
\vdots \\
u_n
\end{bmatrix}, \tag{3}
\]
where \(u_i \) is substituted by \(k_i q_i \) if \(u_i = 0 \), for all \(i \geq 2 \).
On multiplying by the inverse of the matrix \(M \), and considering a 2n-dimensional system of first order differential equations (positions and velocities), the state space equations are obtained:

\[
\dot{x} = \left(\begin{array}{c} x_{n+1} \\ \vdots \\ x_{2n} \end{array} \right) + \sum_{i=1}^{n} \left(\begin{array}{c} 0 \\ \vdots \\ 0 \end{array} \right) u_i,
\]

(4)

where \(x = (q_1, \ldots, q_n, \dot{q}_1, \ldots, \dot{q}_n) \), \(b = (-mg \sin x_1, k_2 x_2, \ldots, k_n x_n)^T \in \mathbb{R}^n \), and \(e_i \) stands for the \(i \)th vector of the canonical base of \(\mathbb{R}^n \). Let us remark that only some of the \(u_i \) will be nonzero and as stated before, \(k_i = 0 \) if \(u_i \neq 0 \). A simple computation shows that

\[
M^{-1} = \left(\begin{array}{cccc} \lambda_1 & -1 & \cdots & 0 \\ -\lambda_1 & \lambda_1 + \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{array} \right)
\]

where \(\lambda_i = \frac{1}{a_n - a_{i+1}} \), \(\forall i < n \), \(\lambda_n = -\frac{a_{n-1}}{a_n} \). The drift vector field is \(f(x) = \left(\begin{array}{c} x_{n+1} \\ \vdots \\ x_{2n} \end{array} \right) \).

Theorem 2: A nonlinear system \(\dot{x} = f(x) + \sum_{i=1}^{m} g_i(x) u_i \), where \(u_i \) is substituted by \(k_i q_i \) if \(u_i = 0 \), for all \(i \geq 2 \), is static feedback linearizable (SFL) if and only if ([7], [6], [8]) the following distributions have constant rank and are involutive:

\[
D_0 = \langle g_1, \ldots, g_m \rangle \\
D_i = \langle D_{i-1} g_1, \ldots, D_{i-1} g_m \rangle \quad i = 1, \ldots, n - 2
\]

and the rank of \(D_{n-1} \) is \(n \).
Given a nonlinear system \(\dot{x} = f(x) + \sum_{i=1}^{m} g_i(x) u_i \), a simple prolongation of this system is

\[
\dot{u}_i^0 = \mu_i^0 u_i \quad \forall i = 1 \ldots m
\]

where \(u_i^0 \), that correspond to \(u_i^{(j)} \), are new state variables \(\forall i = 1 \ldots m \quad j = 0 \ldots k_i - 1 \) and the new inputs are \(v_i \).
The system is to be linearizable by prolongations (4) if there exists a simple prolongation of the original system which is static feedback linearizable.

IV. RESULTS AND NOTATION

We begin the section with a result that will be key for all the work:

Theorem 3: For a system with \(n \) joints and \(m \) actuators \(u_1, \ldots, u_m \), the system is static feedback linearizable, if only if, \(g_1 \in D_2(i_1 - 1) \).

Proof: The conditions for a system to be static feedback linearizable are given in Theorem 2, and reduces to check the involutivity and constant rank of the distributions associated with the system. On studying the successive distributions:

\[
D_0 = \langle g_1, g_2, \ldots, g_m \rangle \\
D_{2(1)} = \langle D_{1,1} \mu_{1,g_1}, D_{1,2} \mu_{2,g_2}, \ldots \rangle
\]

(5)

where \(\mu_{l,g_i} \) are nonzero constants resulting from the product of the constants \(\lambda \)’s and constants \(k \)’s. All distributions, except \(D_{2(i_1 - 1)} \), contain only constant vector fields, and therefore,
they are involutive. Consequently, it is only necessary to study the involutivity of $D_{2(i_1-1)}$. Hence, we need to show

$$D_{2(i_1-1)} \text{ involutive } \iff g_1 \in D_{2(i_1-1)}$$

Assume the system is SFL. We want to see that $g_1 \in D_{2(i_1-1)}$. If the system is static feedback linearizable, $D_{2(i_1-1)}$ is involutive by [6]. So, it is enough to find two elements of the distribution whose Lie bracket will be a multiple of g_1.

Note that all Lie brackets between elements of $D_{2(i_1-1)}$ are 0, because all of them are constant, with the following exception: The Lie bracket between $ad_f^{2(i_1-1)} g_{i_1} \in D_{2(i_1-1)}$ and $ad_f^{2(i_1-1)-1} g_{i_1} \in D_{2i_1-3}$ then

$$[ad_f^{2(i_1-1)} g_{i_1}, ad_f^{2(i_1-1)-1} g_{i_1}] = k \frac{\partial^2 G_1(x_1)}{\partial x_1^2} g_1$$

where k is a constant. Hence, since the system is involutive, $g_1 \in D_{2(i_1-1)}$.

Conversely, assume $g_1 \in D_{2(i_1-1)}$. As shown before, all Lie brackets between elements of $D_{2(i_1-1)}$ are 0, except $[ad_f^{2(i_1-1)} g_{i_1}, ad_f^{2(i_1-1)-1} g_{i_1}]$, which is a multiple of g_1.

Since, by hypotheses, $g_1 \in D_{2(i_1-1)}$, the distributions are involutive and, therefore, the system is static feedback linearizable.

In theorem 3, we have seen that a system is static feedback linearizable if only if $g_1 \in D_{2(i_1-1)}$. Consequently, we are going to study these distributions in order to know whether or not $g_1 \in D_{2(i_1-1)}$. To achieve it, we are going to write down all distributions associated with the system as matrices, where the matrix rows contain combinations of vector fields g_i’s. First, it is important to observe the distributions until $D_{2(i_1-1)}$, shown in Theorem 3.

Note that g_1 appears for the very first time in $D_{2(i_1-1)}$ as a combination with other vector fields. On the other hand, some μ constants are 0 because $k_j = 0$ when there is an actuator in the j-joint. For this reason, the following notation is introduced:

$$t_1 = 1$$
$$t_j = \max(i_j - i_1 + 1, i_j - 1) \quad \forall j \in [2, m]$$
$$t^j = \min(i_j + i_1 - 1, i_j - 1) \quad \forall j \in [1, m - 1]$$
$$t^m = \min(i_m + i_1 - 1, n)$$

Using this notation, (5) can be rewritten as:

$$D_{2(i_1-1)} = <D_{2i_1-3}, \sum_{l_1 = 1}^{t_1^1} \mu_{i_1}^{l_1-1} g_{i_1}, \sum_{l_2 = t_2}^{t_2^1} \mu_{i_2}^{l_2-1} g_{i_2}, \ldots, \sum_{l_m = t_m}^{t_m} \mu_{i_m}^{l_m-1} g_{i_m} >$$

Definition 1: Given a system with n joints and m actuators u_1, \ldots, u_{im}, let us define M_0 as the associated matrix with the D_0 distribution.

$$M_0 = \begin{pmatrix} 0 & \cdots & 0 & i_1 & \cdots & 0 & i_2 & \cdots & 0 & \cdots & 0 & i_m & \cdots & 0 \\ 0 & \cdots & 0 & 1 & \cdots & 0 & 1 & \cdots & 0 & \cdots & 0 & 1 & \cdots & 0 \\ 0 & \cdots & 0 & \cdots & 0 & 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}$$

and define G as the matrix.

$$G = \begin{pmatrix} g_1 \\ g_2 \\ \vdots \\ g_{n-1} \\ g_n \end{pmatrix}$$

Remark 1: Using definition 1, D_0 can be built as:

$$D_0 = <g_1, g_2, \ldots, g_{im} >= <\text{rows of } M_0 G>$$

Definition 2: Extending the definition to the $D_{2(1)}$ distribution, let us define M_1 as

$$M_1 = \begin{pmatrix} 0 & \cdots & 0 & i_1 & \cdots & 0 & i_2 & \cdots & 0 & \cdots & 0 & i_m & \cdots & 0 \\ 0 & \cdots & 0 & \mu_{i_1}^{l_1-1} & \cdots & \mu_{i_1}^{l_1-1} & \mu_{i_2}^{l_2-1} & \cdots & \mu_{i_2}^{l_2-1} & \cdots & \mu_{i_m}^{l_m-1} & \cdots & \mu_{i_m}^{l_m-1} \end{pmatrix}$$

as a $(2m \times n)$ matrix and consequently,

$$D_2 = <D_1, \text{rows of } M_1 G>$$

Definition 3: Analogously, M_{i_1-1} is defined as the associated matrix with $D_{2(i_1-1)}$ distribution (where g_1 appears for the first time in combination with other vector fields).

$$M_{i_1-1} = \begin{pmatrix} \begin{array}{c} \vdots \end{array} \\ C_{i_1} \end{pmatrix}$$

where the C_{ij} boxes are obtained using lemma 1.

Remark 2: The M_{i_1-1} matrix and the C_{ij} boxes satisfy the following conditions:

(I) The first column of M_{i_1-1} is not empty, since g_1 appears in $D_{2(i_1-1)}$ in combination with other vector fields.

(II) $\text{Dim}(M_{i_1-1}) = (mi_1 \times n)$, because it is made of m boxes (one for each actuator) of i_1 rows. The number of columns equals the number of joints.

(III) If $i_m + i_1 - 1 < n$, the matrix M_{i_1-1} has zero columns. Hence, we consider

$$\text{Dim}(M_{i_1-1}) = (mi_1 \times t^m - i_1 + 1) = (mi_1 \times t^m)$$

(IV) As a consequence, we redefine G as:

$$G = \begin{pmatrix} g_1 \\ \vdots \\ g_{im} \end{pmatrix}$$

(V) $D_{2(i_1-1)} = <D_{2i_1-3}, \text{rows of } M_{i_1-1} G>

(VI) $\text{Dim}(C_{i_j}) = (i_1 \times t^j - t_j + 1)$.

163
Using this notation, we can state all distributions as a product of matrices. The importance of the rank of M_{i_1-1} to study static feedback linearizability of the systems will be highlighted in the next section.

V. RANK OF M_{i_1-1}

Definition 4: We say there is a gap between 2 actuators u_{i_j} and $u_{i_{j+1}}$ if $i_{j+1} - i_j > 2i_1 - 2$.

Definition 5: Let have a system with a gap between u_{i_j} and $u_{i_{j+1}}$, then we define $M_{i_1-1}^j$ as a submatrix of M_{i_1-1}, where M_{i_1-1} is made of C_j ∀ $l = 1, \ldots, j$.

\[
\dim(M_{i_1-1}^j) = (j_{i_1} \times t^j - t_1 + 1)
\]

Definition 6: In this case, a new matrix G^j is defined as the matrix with all vector fields that appear in $M_{i_1-1}^j$, i.e. vector fields g_i to g_{t^j}, and $\dim(G^j) = (t^j - t_1 + 1 \times 1)$.

Remark 3: If there is a gap between u_{i_j} and $u_{i_{j+1}}$, then C_j and C_{i_1-1} have no common vector fields.

Proposition 1: Consider a system with a gap between u_{i_j} and $u_{i_{j+1}}$.

The system is SFL $\iff g_1 \in \{\text{rows of } M_{i_1-1}^j G^j\}$

Theorem 4: Given a system with n joints and m actuators u_{i_1}, \ldots, u_{i_m},

- Without gaps, if Rank(M_{i_1-1}) ≥ t^m, then the system is static feedback linearizable.
- With a gap between u_{i_j} and $u_{i_{j+1}}$, if Rank($M_{i_1-1}^j$) ≥ t^j, then the system is static feedback linearizable.

However, this result neither establishes the rank of M_{i_1-1} or $M_{i_1}^j$, nor says what happens when these conditions are not met.

A. Rank of the C_j boxes

Definition 7: We define R_j as the rank of C_j.

\[R_j = \text{Rank}(C_j) \]

Proposition 2:

\[R_j = \begin{cases} \min(i_1, i_{j+1} - i_j - 1) & \forall j \in [1, m - 1] \\ \min(i_1, n - i_{m-1}) & j = m \end{cases} \]

Due to the form of C_j boxes and using lemma 1.

B. Rank of the C_j boxes with an actuator in the last joint

Remark 4: It is interesting to consider systems with an actuator in the last joint ($i_m = n$). When this occurs, C_{i_m} is an anti-diagonal matrix with 1 in the anti-diagonal. Hence, all vector fields $g_j \in D_{2(i_1-1)} \forall j \in [d, n]$ where

\[d = \max(i_{m-1} + 1, i_m - i_1 + 1) \]

Theorem 5: Given a system with an actuator in the last joint and let k be the highest index satisfying $i_{k+1} - i_k > i_1$, then:

- If $k > 1$, then $R_k = \min(i_1, i_{k+1} - i_1 - i_k - 1)$ and $t_k = \min(i_k + i_1 - 1, i_{k+1} - i_1)$.
- However, if $k = 1$, then the system is static feedback linearizable.

C. Rank of the $M_{i_1-1}^j$ matrices

Definition 8: Let $R_{a_j} = \sum_{i=1} R_i$, the accumulated sum of ranks of the C_j boxes of M_{i_1-1}.

Definition 9: Let $\#G^j$ the number of rows of G^j, i.e.

\[\#G^j = t^j \]

Theorem 6: Rank($M_{i_1-1}^j$) = min($\#G^j$, R_{a_j}).

Proof: As C_{i_k} has rank R_k, then C_{i_k} has R_k rows linearly independent. As each row of $M_{i_1-1}^j$ has only elements of one C_{i_k} box, therefore $M_{i_1-1}^j$ has R_{a_j} independent rows. Consequently $M_{i_1-1}^j = \min(\#G^j, R_{a_j})$.

With this result, we finish the study of the $M_{i_1-1}^j$ matrix ranks and we can state necessary and sufficient conditions to study static feedback linearizability.

VI. STATIC FEEDBACK LINEARIZABILITY FOR M-INPUT SYSTEMS

Theorem 7: Consider a system with m inputs and n joints. Define k as follows:

- k is the lowest index such that there is a gap between u_{i_k} and $u_{i_{k+1}}$.
- With no gap, and if $i_m = n$, k is the highest index satisfying $i_{k+1} - i_k > i_1$.
- Otherwise $k = m$.

Then, for this index k:

The system is SFL $\iff R_{a_j} \geq \#G^j$ for some $j \in [1, k]$.

Remark 5: Theorem 7 says that a system is SFL, if only if, some submatrix of $M_{i_1-1}^j$ has maximum rank.

A. Algorithm of theorem 7

1) Detect witch actuators are needed to study static feedback linearizability.
2) Write the actuators position in the i_j row.
3) Write the rank of the C_i box in the R_i row.
4) Write the accumulated rank of the C_j boxes in the R_{a_j} row.
5) Write the number of vector fields of G^j in the $\#G^j = t^j$ row.
6) If $\exists j \in \{1, \ldots, k\} | R_{a_j} \geq \#G^j$, where k is the index of theorem 7, then the system is static feedback linearizable.

Example 1: Consider a system with 24 joints and 5 actuators at joints $i_1 = 5$, $i_2 = 7$, $i_3 = 10$, $i_4 = 14$ and $i_5 = 23$. Note that the system has a gap between u_{i_4} and u_{i_5}. Hence, we do not need to use u_{i_5} to study static feedback linearizability. To know whether or not the system is static feedback linearizable, we need to compute R_j, R_{a_j} and $\#G^j$.

<table>
<thead>
<tr>
<th>i_j</th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
<th>i_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_j</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>R_{a_j}</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>$#G^j$</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td>18</td>
</tr>
</tbody>
</table>
We can see that M^2_{i-1} has maximum rank, hence the system is static feedback linearizable. M^3_{i-1} and M^4_{i-1} have maximum rank as well. But to check static feedback linearizability is enough satisfying $R_{ij} \geq \#G^j$ one time.

VII. Dynamic feedback linearizability for m-input systems by prolongations

Theorem 8: Any not static feedback linearizable system with n joints and m actuators $u_{i1}, u_{i2}, \ldots, u_{im}$ with $m > 1$ is linearizable by prolongations. The following prolongations make any system, not static feedback linearizable, linearizable by prolongations:

If the system has 3 or more actuators,

$$2(\text{max}(1, i_3 - 2i_1 - 1), 0, \ldots, 0)$$

While if the system has 2 actuators,

$$2(\text{max}(1, n - 2i_1), 0, \ldots, 0)$$

Example 2: Let the system be with 7 joints and 2 actuators on joints $i_1 = 2$ and $i_2 = 4$. Using Theorem 8, consider the prolongation:

$$2(\text{max}(1, n - 2i_1), 0, \ldots, 0) = 2(3, 0)$$

for a system with 2 actuators. With this prolongation, the prolonged drift vector field is:

$$\tilde{f}(x) = \begin{pmatrix} x_8 \\ \vdots \\ x_{14} \\ u_{i1} \\ u_{i2} \\ u_{i1} \\ u_{i2} \\ u_{i1} \end{pmatrix}$$

On computing the distributions of the prolonged system,

$$D_0 = \langle \tilde{g}_i, \tilde{g}_{10} \rangle$$
$$D_2 = \langle \tilde{D}_1, -\lambda_1k_3\tilde{g}_3 - \lambda_1k_5\tilde{g}_5, \tilde{g}_9 \rangle$$
$$D_4 = \langle \tilde{D}_3, \mu_5\tilde{g}_5 + \mu_6\tilde{g}_6 + \mu_7\tilde{g}_7 \rangle$$
$$D_6 = \langle \tilde{D}_5, \tilde{g}_2, \mu_5\tilde{g}_5 + \mu_6\tilde{g}_6 + \mu_7\tilde{g}_7 \rangle$$
$$D_8 = \langle \tilde{D}_7, -\lambda_1G_1(x_1)\tilde{g}_1 - \lambda_2k_3\tilde{g}_3, \mu_5\tilde{g}_5 + \mu_6\tilde{g}_6 + \mu_7\tilde{g}_7 \rangle$$

\tilde{D}_8 contains 10 independent combinations of the 10 vector fields \tilde{g}_i; then the prolonged system is static feedback linearizable, and the original system is linearizable by prolongations. Using theorem 7 we can see:

<table>
<thead>
<tr>
<th>i_1</th>
<th>i_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>R_{ij}</td>
<td>2</td>
</tr>
<tr>
<td>$R_{a_{ij}}$</td>
<td>2</td>
</tr>
<tr>
<td>$#G^j$</td>
<td>3</td>
</tr>
</tbody>
</table>

As $R_{a_{ij}} = \#G^2$ the system is linearizable by prolongations.

VIII. Simulations

In this section, we are going to perform a simulation for a given system. For a system that is static feedback linearizable, we can find a diffeomorphism and feedback law, so that the original system becomes a linear and controllable one. Let us consider a system of 7 joints and 3 actuators located at joints 3, 5 and 7. Following the algorithm given in Theorem 7, it is a straightforward computation to check that this system is static feedback linearizable. For this system, the equation of motion is:

$$M\ddot{q} = \begin{pmatrix} -mg \sin(q_1) \\ k_2q_2 \\ k_4q_4 \\ k_6q_6 \\ u_3 \\ u_5 \\ u_7 \end{pmatrix}$$

where $q = (q_1, q_2, q_3, q_4, q_5, q_6, q_7)$, k_2, k_4 and k_6 are negative constants; u_3, u_5 and u_7 are inputs, and M is a constant matrix with the following form:

$$M = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_6 & a_7 \\ a_2 & a_3 & a_4 & \cdots & a_6 & a_7 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ a_6 & a_6 & a_6 & \cdots & a_6 & a_7 \\ a_7 & a_7 & a_7 & \cdots & a_7 & a_7 \end{pmatrix}$$

We have chosen the following values for the parameters:

$$a_i = i/100 \quad \forall i = 1 \ldots 7, \quad m = 0.15kg, \quad g = 9.81m/s^2, \quad k_2 = -0.6, \quad k_4 = -0.7 \quad \text{and} \quad k_6 = -0.8.$$
\begin{align*}
y_1 &= \sum_{i=1}^{7} a_i x_i(t) \\
\dot{y}_1 &= \sum_{i=1}^{7} a_i \dot{x}_i(t) = \sum_{i=1}^{7} a_{i+7} x_{i+7}(t) \\
\ddot{y}_1 &= -m g \sin(x_1(t)) \\
y^{(3)}_1 &= \ldots
\end{align*}

In the simulation, the initial and final values are:

\[z = (y_1, \ldots, y_1^{(5)}, y_2, \ldots, y_2^{(3)}, y_3, \ldots, y_3^{(3)})^T. \]

We can consider \(z \) as \([y_1, y_2, y_3] \) and \(x(t) = [x_1(t), x_2(t), x_3(t)] \). These initial and final conditions are mapped into the \(z \) variables through the diffeomorphism. Therefore, six initial and final conditions are found for \(y_1 \), four for \(y_2 \) and \(y_3 \). For these variables, an interpolating polynomial satisfying the boundary conditions can be computed. Finally, the states \(x \) and inputs \(u \) are obtained again through the diffeomorphism and the feedback law. Plugging the inputs \(u(t) \) and integrating the system, the trajectories for the \(x \) variables are found. Below, a figure representing the trajectories of \(x_1(t) \) and \(\dot{x}_1(t) \) is plotted:

Fig. 1: Trajectories de \(x_1(t) \) y \(\dot{x}_1(t) \) respectivamente.

\section{IX. Conclusions}

In this work, we have studied in detail the feedback linearization, both static and dynamic, of a robotic manipulator with a specific inertia distribution. Necessary and sufficient conditions are given for feedback linearization of any system with an arbitrary number of actuators. More precisely,

1) A system is SFL if \(y_1 \) belongs to \(D_{2(1-1)} \). This result allows us to determine whether or not the system is static feedback linearizable, just by checking if a vector field belongs to a certain distribution.

2) The matrix notation was introduced as static feedback linearizability can be given intern of the rank of matrices. So, if the rank fulfills some constraints, the given system is static feedback linearizable.

3) A theorem and an algorithm has been introduced. This algorithm shows which systems are static feedback linearizable.

4) The consistency of the results with those of [5], has been established.

5) It has been shown that all systems, which are not static feedback linearizable, are linearizable by prolongations. The prolongation which makes any system linearizable has been given.

6) The simulation tests some of the results proven in this work.

\section{Acknowledgments:}
The authors acknowledge support of Ministerio de ciencia e innovación, through project MTM 2011-22585.

\section{REFERENCES}

