
 

 

 

  

Abstract— In this article, the model identification and control 

problem of a Pneumatic Artificial Muscle (PAM) is being 

considered. The identification of the PAM’s model parameters 

is being carried out by a Recursive Least Square (RLS) based 

algorithm, while an Internal Model Control (IMC) structure is 

being synthesized. Experimental studies are being utilized to 

prove the overall efficiency of the suggested control scheme, 

regarding: a) set-point tracking performance through selected 

positioning scenarios, b) adaptability through hysteresis shift 

compensation and c) robustness through disturbance 

cancellation. 

I. INTRODUCTION 

HE McKibben Pneumatic Artificial Muscle (PAM) [1], 

[2], is a highly nonlinear actuator that, when pressurized, 

decreases in actuating length. Invented in 1950s by Joseph L. 

McKibben, the PAM was first utilized as an orthotic 

appliance for polio patients [3]. The Fluidic Muscle [4], [5], 

a PAM like the one presented in Fig. 1, differs from the 

classic McKibben PAM as it utilizes a combined integration 

of the inner tube and external shell to a single aramid-

neoprene mesh.  

PAM possesses similar properties with those of the 

organic muscle, combined with several advantages as the 

ability to provide high power outputs, with relatively light 

weights and inherent compliance. These characteristics are 

turning the PAM into a promising actuator choice in 

anthropomatic technologies, while a variety of such 

applications have already been appeared in the literature [6], 

[7]. Moreover, PAM meets the need for safety, simplicity 

and lightness that human–robot interaction requires and 

justifies its expanding utilization in medical and biorobotic 

applications [7]. 

Control design for PAM-actuated high-performance 

positioning systems presents difficulties due to the PAM’s 

highly nonlinear nature. Some of the most significant control 

design approaches for PAM have been developed during the 

past fifteen years. Those control schemes have included a 

control based training algorithm on neural networks [8], 

adaptive position control [9], variable structure control [10], 

gain scheduling model-based control [11], fuzzy control 

[12], [13], nonlinear optimal predictive control [14], direct 
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continuous-time adaptive control [15], neuro-fuzzy PID 

control [16], neural network nonlinear PID control [17], 

sliding-mode control [18], chattering-free robust variable 

structure controller [19], hybrid distributed macro-mini 

control [20], proxy sliding mode control [21] and multi-

parametric constrained optimal control [22]. 

The novelty in this article stems from: a) the utilization of 

an PAM based adaptive Recursive Least Square Internal 

Model Control scheme, and b) its experimental evaluation. 

To the authors’ best knowledge this is the first time that such 

a control scheme has been proposed and experimentally 

evaluated for providing a robust adaptive solution to the 

positioning problem, in the PAM research literature. 

In process control applications, model based control 

structures are often used to achieve reference tracking and 

disturbance cancelation. The principle philosophy behind 

IMC is the statement that “control can be achieved only if 

the control system encapsulates, either implicitly or 

explicitly, some representation of the process to be 

controlled” [23]. Among the advantageous properties of 

IMC structure is the provision of a transparent and easy 

framework for the design and tuning of various types of 

control, its robust behavior through disturbance cancelation 

during set-point tracking performance, as well as the low 

complexity and computational cost of its overall synthesis 

and application, as compared to modern optimal controllers. 

Furthermore, IMC is known for its adaptation to various 

input-output system forms, and for its general role in  

 

(a) (b)  
Figure 1. Pneumatic Artificial Muscle in its (a) relaxed and (b) contracted 

state, while attached to an external load. 
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determining the fundamental requirements associated with 

feedback control [24], [25]. 

Similar to open loop control, the main disadvantage of 

the IMC structure, compared to standard feedback 

controllers, is the fact that the IM-Controller does not 

support open loop unstable system integration. That 

disadvantage is not being encountered in the case of PAM 

control, considering PAM system’s inherent stable nature 

[2]. 

In cases of model uncertainty, the IMC is usually detuned 

to assure stability [26]. The use of the RLS algorithm results 

in an adaptive model for the PAM actuator, thus, minimizing 

model uncertainty [27] and omitting the need for the 

utilization of a detuning filtering process. 

The article is organized as follows. In Section 2, the 

internal model control structure is being presented. In 

Section 3, multiple experimental studies are being presented 

to prove the efficacy of the IMC in the positioning problem 

of a PAM, while evaluating its overall performance and 

adaptability. Conclusions are being drawn in Section 4. 

II. INTERNAL MODEL CONTROL SCHEME 

In this section, the fundamental components that 

formulate the proposed IMC scheme are being presented in 

detail, while the control structure is displayed in Fig. 2. 

A. Model Identification 

For the purpose of this article, the PAM actuator is being 

approximated by an Auto Regressive Moving Average 

(ARMA) model that is described by: 

 

 ( ) ( ) ( ) ( )A z x n B z P n k= −�  (1) 

 

where x� (n) is the estimated PAM’s displacement from its 

relaxed position, P(n) is the pressure of the air supplied into  

the PAM and k Z
+∈  is the system delay. A(z) and B(z) are 

polynomials with respect to the backward shift operator z
-1 

and defined by the following equations: 
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where ,  
a b

n n R∈ are the maximum orders of the denominator 

and numerator respectively. The corresponding identification 

error is being defined by: 

 

 ( ) ( ) ( )
d

e n x n x n= − �  (3) 

 

As it has been depicted in Fig. 2, xd(n) is the real system 

output x(n) corrupted by additive output disturbance signal 

d(n), and ( )x n� is the predicted response of the ARMA model. 

For the purposes of this article, the system identification 

is being carried out via the RLS algorithm [27]. The goal of 

this adaptive algorithm is to minimize the modified and more  
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Figure 2. Robust Adaptive Internal Model Control Structure 

 

robust cost function (4), which utilizes the previous N error 

terms, by appropriately adjusting a parametric vector ( )w n
�

, 

which contains the unknown ARMA coefficients. 
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For improving the identification process, the RLS 

algorithm was modified further to adjust to the hysteretic 

nature of PAMs. Specifically, intense hysteretic phenomena 

alter the PAM dynamics during inflation and deflation 

operating states. An experimental insight to the hysteresis 

phenomenon, regarding the PAM utilized in this article, is 

presented in the next Section. 

To account for these alterations and improve the 

convergence rate and adaptability of the aforementioned 

algorithm during the operating state transitions, the algorithm 

was properly modified in order to restart the recursive 

process in the case of an operating state change. Monitoring 

of operating changes has been achieved by the signal r, 

which changes from 1 to -1 for inflation and deflation, 

respectively, and is being denoted as: 
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where g is an empirical fine-tuned constant, derived from 

extended experimental trials by taking into account the 

measurement accuracy of the laser distance sensor [22]. The 

purpose of the Schmitt-trigger based filter described in (5) is 

to avoid undesirable switching during convergence phases 

when x�  becomes small and because of the additive 

measurement noise due to finite accuracy of the laser 

distance sensor. 

By taking all the above into consideration, the modified 

RLS algorithm was formulated and is presented in Table 1. 
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TABLE I 

MODIFIED RLS ALGORITHM 
 

Initialization Phase 
 

1. Parameter vector ( )w n
�

: [ ](0) ...
T

w ε ε ε=
�

,  

where ε is a small positive integer. 

2. Data vector ( )nϕ
�

: [ ](0) 0 0 ... 0
T

ϕ =
�

. 

3. n n× matrix L(n): 

0 0

(0) 0 ... 0

0 0

L

ε

ε

 
 =  
  

 

4. Operating state r(n): (0) 1r =  
 

Recursive Computation Phase 
 

5. For n=1, update ( )nϕ
�

based on ( 1)nϕ −
�

, 

the input data ( )P n and the output data ( )dx n  

6. Compute ( ) ( ) ( )T T
x n n w nϕ= ⋅

� �
�  

7. Compute ( ) ( ) ( )de n x n x n= − �  

8. Update ( )( ) ( ) ( ) ( ) ( ) ( )T
K n L n n n L n nϕ λ ϕ ϕ= ⋅ + ⋅ ⋅
� � � �

, 

where 0≤λ≤1 is the forgetting factor 

9. Update ( 1) ( ) ( ) ( )w n w n e n K n+ = + ⋅
�� �

 

10. Update ( 1) ( ) ( ) ( ) ( )T
L n L n K n n L nϕ+ = − ⋅ ⋅

� �
 

11. If e(n) is small enough then stop 

else if ( ) ( 1)r n r n= − set n=n+1 and repeat steps 5-11 

else repeat steps 1-11 

 

B. Internal Model Controller Synthesis 

Given the PAM model of (1), factorization is performed 

and the model is separated as shown in (6): 
 

 ( ) ( ) ( )
PAM PAM PAM

G z G z G z+ −=� � �  (6) 

 

where ( ) ( ) / ( )
PAM

G z B z A z=� , ( )
PAM

G z+�  contains the non-

invertible and non-minimum phase elements of the model, 

and ( )
PAM

G z−�  contains the invertible and minimum phase 

elements. 

The IM-Controller is formulated as it follows: 
 

 
1

( )
( )

IMC

PAM

G z
G z−

=
�

 (7) 

 

Controller complexity, concerning the IMC design 

procedure [28], is determined by the adaptive model’s 

complexity and the designer’s performance requirements. In 

the IMC strategy, the sensitivity function is provided by 

[23]: 
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Supposing that ( ) ( )
PAM PAM

G z G z=� , then 
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The linear appearance of the IM-Controller in the 

sensitivity function ( )zε� , which determines performance, 

and the complementary sensitivity function ( )zη� , which 

determines robustness, shows the provision of a simpler 

control framework for robust control system design, as 

compared to the conventional feedback control procedure. 

Consequently, the IM-Controller shows inherent 

robustness, managing disturbance cancellation and 

compensating for model uncertainty. Moreover, perfect 

control is theoretically possible when the controller has been 

synthesized based on the exact model representation of the 

process. In this case, the IMC structure has the conceptual 

advantage of allowing greater concentration on the control 

design, without concern for control system stability. 

In cases of model uncertainty and mismatch between the 

plant and the process model, the IMC is usually augmented 

with a low pass filter to ensure that the controller is proper 

and minimize discrepancies that typically occur at high 

frequencies. The use of a recursive identification algorithm 

minimizes model uncertainty [27], thus omitting the need for 

the utilization of a detuning filtering process. In addition, by 

appropriately selecting the orders of the ARMA model 

parameters, and by taking into consideration the inherent 

overall stability and causality of the PAM system, which 

recursively leads to absence of right half-plane zeros, no 

additional filtering is being required to ensure that the IM-

Controller is stable, causal and proper. 

III. EXPERIMENTAL SETUP AND CONTROL SCHEME 

EVALUATION 

A. Experimental Setup 

The experimental setup that has been utilized for the 

evaluation of the IM-Controller is depicted in Fig. 3. As the 

test PAM, a Festo DMSP–10–305N–AM–CM Fluidic 

Muscle was selected, with 10mm of internal diameter, 

305mm of nominal length, operating pressure range between 

0 and 8bar, and motion range between 0 and 0.0733m.  

Additionally, two Festo DMSP–40–305N–AM–CM 

Fluidic Muscles, with 40mm of diameter and 305mm of 

nominal length, are clamped together and connected with the 

test PAM via a pulley, forming an antagonistic configuration. 

All three PAMs are on the vertical position with their upper 

end clumped. The additional pair of PAMs are supplied with 

air by the same pressure regulator and their purpose is to act 

as a powerful disturbance generator, bringing the test PAM 

to its dynamic limits.  

Also, two Festo VPPM-8L-L-1-G14-0L10H-V1N-S1 

Proportional Pressure Regulators was used to regulate the 

supply and pressure of the compressed air supplied into the 

PAMs. A Festo SOEL-RTD-Q50-PP-S-7L laser distance 

sensor has been utilized to measure the under study PAM's 

displacement in the vertical axis. A Zemic H3-C3-300kg 

alloy steel S-type load cell was used to measure the force 

exerted from the antagonistic operation of the PAMs. The 

control of the setup operation, as well as the data acquisition,  
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Figure 3. Experimental Setup 

 

was achieved by utilizing a National Instruments USB–6215 

Data Acquisition Card while the setup’s programming is 

carried out in National Instruments LabVIEW. 

B. Control Scheme Evaluation 

For the evaluation of the IMC scheme’s performance, 

multiple experimental scenarios were performed. Regarding 

the optimal ARMA parameter orders of the adaptive model, 

various experimental trials showed that order combinations 

other than na=2 and nb=1 worsened the control effort’s 

performance and intensified the transient phenomena of the 

overall response attributes. Thus, for the experiments 

described below, the orders of the adaptive model were set to 

na=2 and nb=1, the forgetting factor λ of the RLS-based 

algorithm was set to λ=0.99 and the experimentally fine-

tuned constant g was set to 0.005 /g m s= . 

1) Set-point Tracking Performance: The initial goal of 

the IMC scheme was to achieve set-point tracking. For the 

purposes of this experiment, the test-PAM was attached to an 

external load of approximately 2kg, as shown in Fig. 1, in 

order to observe the performance of the scheme while the 

actuator is under constant load and to avoid horizontal 

material oscillations during sudden changes in the control 

effort as a result of the increased elasticity of the PAM.  

Multiple set-point experiments were performed and the 

results are presented in Fig. 4, where the multiple reference 

signals xref are displayed with red dotted lines and the 

experimental displacement x responses are displayed with 

black solid lines.  

The obtained experimental responses are characterized 

by smooth and fast convergence, with rising times below 

1sec, absence of major oscillations and overshoots, as well 

as small mean steady state errors that range between 0.1 and 

0.5%. The IM-Controller’s performance in the reference  
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Figure 4. IM-Controller performance during multiple displacement x set-

point tracking responses of the test-PAM. 
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Figure 5. ARMA parameter convergence during a set-point tracking 

experiment with xinitial=0 and xref=0.054m. 

 

tracking problem is considered successful throughout the 

motion range of the test-PAM. 

2) Model Parameter Convergence: Fig. 5 shows the 

ARMA parameter convergence of the PAM’s adaptive 

model during a set-point tracking experiment with 

xref=0.054m, while being under a constant load of 2kg.  

The parameters a0, a1 and b0 reach their converged state 

in less than 1sec, proving the efficacy of the RLS-based 

algorithm. Similar to the performances shown in Fig. 4, the 

IM-Controller manages set-point tracking in less than 1sec, 

with a mean steady state error of approximately 0.000137m. 

3) Adaptability: Figures 6 and 7 present the test-PAM 

response under sinusoidal reference signal at 0.05Hz and 

ranging between 0.02 and 0.07m, while being under a 

constant load of 2kg. Specifically, Fig. 6 displays the 

displacement x, the error signal e=xref-x and the velocity x� , 

whilst Fig. 7 displays the pressure P of the air supplied to the 

test-PAM and the operating state signal r.  
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Figure 6. The experimental PAM system response for xinitial=0 and 

sinusoidal reference signal. 
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displayed in Fig. 6. 

 

During the initial 3 seconds of the response, white noise 

input pressure has been applied to the test-PAM. The goal is 

to accelerate the identification algorithm and decrease the 

effect of transient phenomena during the first learning period 

of the reference signal.  

As stated in Section 2, in order to improve the controller 

transition between inflation and deflation operating states, 

the recursive identification process restarts whenever a state 

change occurs. The IM-Controller succeeds in tracking the  

sinusoidal reference signal while maintaining a mean steady 

state error e of approximately 0.000173m. 

Observation of the pressure signal P after the first 

learning period, shows gradual shift towards lesser values 

over operating time. Specifically, the shift occurs as a 

decrease of about 0.3bar peak-to-peak after 250sec of 

response time. This effect concurs with the fact that the 

viscoelastic properties of the PAM actuator, combined with  
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Figure 8. Long-duration and random-amplitude output disturbance 

rejection of the IMC structure during sinusoidal reference tracking. 

 

the thermal dissipation due to friction phenomena, result 

in a gradual pressure-displacement hysteresis loop shift [29]. 

In the currently presented experiment, the recursive 

algorithm updates the ARMA model, causing the IMC 

structure to shift the control effort so as to maintain the same 

displacement outcome.  

Thus, the proposed scheme manages to successfully 

adapt to the alterations in PAM dynamics due to viscoelastic 

and thermal nonlinear phenomena, which occur and build up 

over operating time. 

4) Robustness: To test the robust behavior of the IMC 

scheme, the test-PAM is connected to the additional pair of 

PAMs via a pulley. The additional pair is being utilized as a 

powerful output disturbance generator in order to further test 

the robustness of the proposed control structure. Specifically, 

during sinusoidal reference tracking and at approximately 

26sec of response time, white noise input pressure is 

supplied to the stretching PAMs. Thus, variable loading 

ranging between 0 and 5kg is provided to the test-PAM, 

causing a form of long-duration output disturbance. At 

approximately 44sec, the white noise range is altered, 

causing intense loading ranging between 3 and 10kg. 

During both phases of this experiment, which are 

displayed in Fig. 8, the IM-Controller manages to 

sufficiently reject the additive output disturbance, despite its 

rapid change rate of amplitude. The test-PAM continues to 

track the sinusoidal signal despite the output disturbances, 

further proving the robustness of the IMC scheme. 

IV. CONCLUSION 

In this article, the model identification and control 

problem of a PAM was considered. The identification of the 

PAM’s model parameters was carried out by a Recursive 

Least Square (RLS) based algorithm, while an Internal 

Model Control (IMC) structure was synthesized. 

Experimental studies were utilized to prove the overall 

efficiency of the suggested control scheme, by evaluating the 
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controller’s: a) accuracy through selected positioning 

scenarios, b) adaptability through hysteresis shift 

compensation and c) robustness through disturbance 

cancellation. 
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