Improved sliding mode control of a class of nonlinear systems: Application to quadruple tanks system

S. Larguech, S. Aloui, A. Chaari, A. El Hajjaji, Y. Koubaa

Abstract—In this paper, a stable adaptive sliding mode based on tracking control is developed for a class of nonlinear Multi Input Multi Output (MIMO) systems with external disturbances. In order to reduce the chattering phenomenon without deteriorating the tracking performance, the discontinuous term in the classical sliding mode technique is replaced by an adaptive Proportional Derivative (PD) term. The effect of the approximation error which arises from the PD term is reduced by adding a robust term in the proposed control law. All parameter, adaptive laws and the robust control term, are derived based on the Lyapunov stability analysis. The overall adaptive sliding mode scheme guarantees the asymptotic convergence to zero of tracking errors and the boundedness of all signals in the closed-loop system. The proposed approach is applied to a quadruple tanks system and achieves satisfactory simulation results.

I. INTRODUCTION

SEVERAL dynamical systems present, in addition to the external disturbances, nonlinearities and parametric perturbations. Therefore, the use of robust control is desirable. During recent years, many researchers have been interested by Sliding Mode Control (SMC), a robust control strategy for non-linear systems [1]–[3].

Known for its simple structure, simple implementation and its robustness to external disturbances, the SMC has been a topic of great interest in control theory and represented a great potential for practical applications. However, it suffers from a main disadvantage: the chattering phenomenon, which is the high frequency oscillation of the controller output.

In the literature, several methods of chattering reduction have been reported [4]–[7]. In [8], the boundary layers approach can reduce this phenomenon. This method consists in replacing the discontinuous switching action by a continuous saturation function. This approach is generally appropriate for low disturbances and it requires an approximation of the term of discontinuity. Furthermore, in [9] an asymptotic observer can eliminate the chattering phenomenon. The application of such observer assumes that the unmodelled dynamics are completely unknown. To attain the same objective, another common method based on the high order SMC can be elaborated [10]. However, this method requires a complex calculation. Another way to solve this chattering problem is based on combining intelligent controllers and SMC: a fuzzy neural network [11], [12], a fuzzy system to approximate the switching control term. The free parameters of the adaptive fuzzy controller can be tuned on-line based on the Lyapunov approach [13], [14]. In [15] and [16], the authors proposed a method to eliminate the chattering phenomenon by using an adaptive Proportional Integral controller (PI controller) for a SISO nonlinear system. The multi-input multi-output (MIMO) nonlinear systems are investigated in [1], [4].

In this paper, a sliding mode control is developed for a class of nonlinear MIMO system. Our objective is to reduce the chattering phenomenon, so we decided to combine the sliding mode approach with an adaptive Proportional Derivative controller (PD controller). The sections of this paper are organized as follows. In Section 2, we describe the class of nonlinear MIMO disturbed system. The classical sliding mode control is presented in Section 3. In Section 4, we introduce the adaptive sliding mode control which combines the SMC mode with an adaptive proportional derivative controller and an integral surface. The simulation results of quadruple tanks are given to show the effectiveness of the proposed control strategies. Finally, Section 5 gives a conclusion on the main works developed in this paper.

II. CONTEXT AND FORMULATION

Consider a class of nonlinear, Multi-Input Multi-Output (MIMO), disturbed system:

\[
\begin{align*}
\dot{y}_1 &= f_1(x) + \sum_{j=1}^{p} g_{ij}(x)u_j + d_1 \\
\dot{y}_2 &= f_2(x) + \sum_{j=1}^{p} g_{2j}(x)u_j + d_2 \\
&\vdots \\
\dot{y}_p &= f_p(x) + \sum_{j=1}^{p} g_{pj}(x)u_j + d_p
\end{align*}
\]

where

\[
x = [y_1, \ldots, y_1^{(n_1)}, \ldots, y_p, \ldots, y_p^{(n_p)}] = [x, x, \ldots, x] \text{ is the state vector;} \\
u = [u_1, \ldots, u_p] \in \mathbb{R}^p \text{ is the input vector;} \\
y = [y_1, \ldots, y_p] \text{ is the output vector;} \\
f_i(x) \text{ and } g_{ij}(x) \text{ are nonlinear functions.}
\]

\[
d = [d_1, \ldots, d_p] \text{ is the vector of external disturbances such as } |d_i| \leq D_i \quad \forall i = 1, \ldots, p.
\]
We define:
\[G(x) = \begin{bmatrix} g_{i1} & \cdots & g_{ip} \\ \vdots & \ddots & \vdots \\ g_{p1} & \cdots & g_{pp} \end{bmatrix}, \]
an invertible matrix, \(\forall x \leq i, j \leq p \),
\[f(x) = \left[f_1(x), \ldots, f_p(x) \right]^T \] and \(y^{(\alpha)} = \left[y_1^{(\alpha)}, \ldots, y_p^{(\alpha)} \right]^T \).
where \(r \) is the relative degree of the system.

Let us consider desired trajectories \(y_d(t), \forall i = 1 \ldots p \) that are known bounded functions of time with bounded known derivatives and are assumed to be \(r \)-time differentiable. We define the tracking errors:
\[e_i = y_i - y_d, \forall i = 1 \ldots p \] (2)
The system (1) can be written in a compact form as:
\[y^{(\alpha)} = f(x) + G(x)u + d \] (3)
Our objective is to develop a control law allowing the outputs of the system \(y_1, \ldots, y_p \) to follow the reference signals \(y_d, \forall i = 1 \ldots p \) despite the external disturbances.

III. CLASSICAL SLIDING MODE CONTROL (CSMC)
To develop the sliding mode approach for the MIMO system, two steps are required. First, the choice of sliding surface and second the calculation of the control law.

A. The sliding surface

The integral sliding surface is defined by the following expression:
\[s_i = \alpha^{(r)} e_i^{(r-1)} + \sum_{j=2}^{r} \alpha_j^{(r)} e_j^{(r-1)} + k \int_0^t e_i(\tau)d\tau \] (4)
where
\[\alpha_i^{(r-1)} = 1, i = 1 \ldots p \]
The sliding variable has a relative degree equal to one compared to the control law. This implies that the control law appears explicitly in the derivative of the sliding surface. Denote the sliding surface vector:
\[S = \left[s_1, \ldots, s_p \right]^T \] (5)
The parameters \(\alpha_1, \ldots, \kappa \) are chosen such that all roots of \(h(p) = p^{r-\alpha_1} + \alpha_2 p^{r-\alpha_2} + \cdots + \alpha_r p + \nu \) are in the left half plane.

B. The control law
The control law includes two terms: a continuous term known as the equivalent control \(u_{eq} \) and a switching term known as the discontinuous control \(u_w \).
The control law is designed as:
\[u = u_{eq} + u_w \] (6)
The equivalent control law \(u_{eq} \) is determined by \(\dot{S} = 0 \).
The time derivative of \(S \) is given by:
\[\dot{S} = f(x) + G(x)u - y^{(\alpha)} = \sum_{j=2}^{r} \Lambda_{j-2} E^{(r-j)} + d \] (7)
where
\[\begin{align*}
\dot{y}_i^{(r)} &= \left[y_1^{(r)}, \ldots, y_p^{(r)} \right]^T & (8) \\
\Lambda_j &= \text{diag} [\alpha_{i_1}, \ldots, \alpha_{i_p}] & (9) \\
\Lambda_k &= \text{diag} [k_1, \ldots, k_p] & (10) \\
E^{(r)} &= \left[e_1^{(r)}, \ldots, e_p^{(r)} \right]^T & (11)
\end{align*} \]
The equivalent control term is defined by the following expression:
\[u_{eq} = G^{-1}(x) \left[-f(x) + y_i^{(r)} - \sum_{j=2}^{r} \Lambda_{j-2} E^{(r-j)} \right] \] (12)
The switching control term is defined by:
\[u_w = G^{-1} \left[-\eta \text{sign}(S) \right], \eta > 0 \] (13)
\(\text{sign} \) is the signum function.
\[u_w = G^{-1} \left[-\eta \text{sign}(S) \right], \eta > 0 \] (14)
where
\[\text{sign}(S) = \left[\text{sign}(s_1) \ldots \text{sign}(s_p) \right]^T \]
Thus, the classical sliding mode control law is given by:
\[u = G^{-1}(x) \left[-f(x) + y_i^{(r)} - \sum_{j=2}^{r} \Lambda_{j-2} E^{(r-j)} - \eta \text{sign}(S) \right] \] (15)

IV. ADAPTIVE SLIDING MODE CONTROL (ASMC)
Based on the classical sliding mode, we noticed that the presence of the signum function \(-\eta \text{sign}(S) \) in (15), leads to the chattering phenomenon which can excite the high frequency dynamics. In order to reduce this phenomenon and to achieve the control objective, an adaptive PD term is used in the control law with an integral surface. In fact, the derivative action, by compensating the inertia due to dead time, accelerates the response of the system and improves the stability of the closed loop by allowing fast oscillations due to the appearance of a disturbance or a sudden change of the reference signal. Thus, we want a faster convergence to the sliding surfaces.

Hence, the inputs and outputs of the continuous time PD term are of the following form:
\[u_{pd} = \begin{bmatrix} k_s s_1(t) + k_d \frac{d}{dt} s_1(t) \\ \vdots \\ k_s s_p(t) + k_d \frac{d}{dt} s_p(t) \end{bmatrix} \] (16)
where \(k_s \) and \(k_d, j = 1 \ldots p \) are the control gains adjusted online from an adaptive law.
The adaptive PD term derived from (16) can be rewritten as:
\[u_{pd} = \rho(S|\theta) = \left[\rho_1(s_1|\theta_1) \ldots \rho_p(s_p|\theta_p) \right]^T \] (17)
\[u_{ro} = \Theta^T(s) = \left[\theta_{\theta}^T(s_1) \theta_{\theta}^T(s_2) \ldots \theta_{\theta}^T(s_p) \right] \]

where \(\theta_{\theta} \) is the adjustable parameters vector given by \(\theta_{\theta} = [k_1, \ldots, k_p] \) and \(\Theta'(s_j) = \left[s_j(t) \frac{d}{dt}s_j(t) \right] \) are the regressive vectors, \(j=1 \ldots p \).

Let us define the following variables:

\[\hat{\theta}_{\theta} = \arg \min_{\theta_{\theta}} \left\{ \rho \left(S \theta_{\theta} - \eta \text{sign}(s_j) \right) \right\}, \eta > 0 \]

where \(\Omega_{s} \) denotes the set of suitable bound on \(\hat{\theta}_{\theta} \) and \(\eta \text{sign}(s_j) \) is the discontinuous term of the classical sliding mode control.

The parameter approximation error:

\[\hat{\theta}_{\theta} = \theta_{\theta} - \theta_{\theta} \]

The minimum approximation error is given by the following expression:

\[\omega_{\theta} = \rho \left(S \hat{\theta}_{\theta} - \eta \text{sign}(s_j) \right) \]

To achieve the control objective, we need to establish a control law that forces the trajectories of system status to reach and remain on the sliding surface despite the presence of external disturbances. We suggest adding terms of robustness \(u_i \) in order to cancel the effect of the error of approximation.

The control law is written as follows:

\[u = G^T(x) \left[f(x) + G^T \sum_{i=1}^{p} A_i E^{(i+1)} - u_{ro} + u_i \right] \]

where

\[u_{ro} = \hat{\theta}_{\theta} \Theta(S) \]

\[u_i = [\hat{\omega}_{ro}, \hat{\omega}_{ro}] \]

and \(\hat{\omega}_{ro} \) is the estimated of \(\omega_{ro} \) to be determined yet.

The parameter vector \(\theta_{\theta} \) is adjusted online by the following adaptive laws:

\[\dot{\hat{\theta}}_{\theta} = -\gamma_{\theta} \Theta(S) \]

\[\dot{\hat{\omega}}_{ro} = -\gamma_{\theta} S \]

where \(\gamma_{\theta} > 0 \) and \(\gamma_{\theta} > 0 \) are the adaptation gains.

The main result of the improved sliding mode control proposed is summarized in the following theorem:

Theorem 2.1: Consider the class of MIMO nonlinear systems (3), if the control law (23) is applied, where the terms \(u_{ro} \) and \(u_i \) are respectively given by (18) and (24). The parameters \(\theta_{\theta} \) and \(\hat{\omega}_{ro} \) are respectively adjusted on-line by applying the adaptation laws (25) and (26) then, the proposed control scheme guarantees the following properties:

(i) The signals of the closed-loop system are bounded;

(ii) The tracking errors converge to zero.

Proof. Let us consider the following Lyapunov function:

\[V = \frac{1}{2} S^T S + \frac{1}{2} \gamma S \theta_{\theta} + \frac{1}{\gamma_{ro}} (\tilde{\omega}_{ro} \dot{\omega}_{ro}) \]

We define:

\[\tilde{\omega}_{ro} = \omega_{ro} - \dot{\omega}_{ro} \]

\[S = u - u_{ro} + d \]

In this work, \(\omega_{ro} \) is assumed to be unknown. That is why they will be estimated online by using suitable adaptive laws deduced from the stability analysis in the Lyapunov sense. knowing that:

\[\hat{\theta}_{\theta} = -\gamma_{\theta} \]

\[\dot{\hat{\omega}}_{ro} = -\dot{\omega}_{ro}, \dot{\omega}_{ro} = 0 \]

The time derivative of \(V \) is given by:

\[\dot{V} = S^T \dot{S} + \frac{1}{\gamma} \tilde{\theta}_{\theta} \dot{\theta}_{\theta} + \frac{1}{\gamma_{ro}} (\tilde{\omega}_{ro} \dot{\omega}_{ro}) \]

By substituting (29), (30) in (31), we obtain:

\[\dot{V} = S^T u_i - S^T \rho \left(S \theta_{\theta} \right) - S^T \rho \left(S \hat{\theta}_{\theta} \right) - S^T \rho \left(S \hat{\theta}_{\theta} \right) - \frac{1}{\gamma} \tilde{\theta}_{\theta} \dot{\theta}_{\theta} - \frac{1}{\gamma_{ro}} (\tilde{\omega}_{ro} \dot{\omega}_{ro}) + S^T d \]

\[\dot{V} = S^T u_i - S^T \dot{\theta}_{\theta} \Theta(S) - S^T \rho \left(S \theta_{\theta} \right) - \frac{1}{\gamma} \tilde{\theta}_{\theta} \dot{\theta}_{\theta} - \frac{1}{\gamma_{ro}} (\tilde{\omega}_{ro} \dot{\omega}_{ro}) + S^T d \]

\[\dot{V} = \frac{1}{\gamma} \dot{\theta}_{\theta} \left(S^T \Theta(S) - \frac{1}{\gamma} \dot{\theta}_{\theta} \right) + S^T \dot{\omega}_{ro} + S^T \dot{\omega}_{ro} - S^T \rho \left(S \theta_{\theta} \right) \]

\[\dot{V} = \frac{1}{\gamma} \dot{\theta}_{\theta} \left(S^T \Theta(S) - \frac{1}{\gamma} \dot{\theta}_{\theta} \right) + S^T \dot{\omega}_{ro} + S^T \dot{\omega}_{ro} - (\omega_{ro} - u_{ro}) \]

By substituting (25), (26) in (32), we get:

\[\dot{V} \leq -\eta S^T \text{sign}(S) + S^T d \]

\[\dot{V} \leq -\eta S^T \text{sign}(S) + |S| |D| \]

\[\dot{V} \leq -|S| |(\eta - D) \]

\[\dot{V} \leq -|S| |< 0, \forall \eta > D \]
From (36), \(\dot{V} < 0 \) proves that the semi global asymptotic stability and the robustness of the closed loop system are guaranteed. Using Barbalat's lemma [20], we can see that the sliding surfaces asymptotically converge to zero in infinite time despite the external disturbances.

V. SIMULATION RESULTS

In order to illustrate the previous concepts, let us consider a liquid level control of quadruple tanks system shown in Fig. 1.

The quadruple tank system consists of two double tanks (1, 2, 3 and 4) and a reservoir with different sections connected to each other by cylindrical tubes. Tanks land 2 are mounted below the other two tanks for receiving water flow by gravity. The reservoir supplies the four tanks through two pumps P1 and P2 with variable speed. Discharge from pump P1 is split between tank 1 and tank 4. Similarly, pump P2 splits its discharge between tank 2 and tank 3. Split of flow from P1 and P2 can be varied by manual adjustment of valves S1 and S2. Tank 1 and tank 2 also receive gravity flow from tank 3 and tank 4, respectively. Opening of these valves (V1, V2, V3 and V4), and the flow split valves (S1 and S2) can be manually adjusted to substantially alter the characteristics of the system. Achieving desired levels in tank 1 and tank 2 is the control objective.

The dynamical equation for each tank is used to write the mathematical model of the system. In fact, we can adopt the Johansson model equations by neglecting the pressure drop in the piping compared to the pressure drop in the valves:

- The process has two inputs, flow from P1and P2. These are set by signal inputs \(u_1 \) and \(u_2 \):
- There are four levels (\(h_1, h_2, h_3 \) and \(h_4 \)) that are measured, transmitted and are available on-line;
- \(A_i \), the cross-section of tank \(i \), \(i = (1, 2, 3, 4) \);
- \(Q_{hi} \), the flow rate of the valve \(Si \);
- \(g \) gravitational constant.

The model (38) can also be written as:

\[
\begin{align*}
\dot{h}_1 &= -\frac{a_1}{A_1} \sqrt{2gh_1} + \frac{a_1}{A_1} \sqrt{2gh_1} + \frac{\gamma k}{A_1} u_i \\
\dot{h}_2 &= -\frac{a_2}{A_2} \sqrt{2gh_2} + \frac{a_1}{A_1} \sqrt{2gh_1} + \frac{\gamma k}{A_2} u_2 \\
\dot{h}_3 &= -\frac{a_3}{A_3} \sqrt{2gh_3} + (1 - \gamma) k_3 u_2 + d_z \\
\dot{h}_4 &= -\frac{a_4}{A_4} \sqrt{2gh_4} + (1 - \gamma) k_4 u_2 + d_z
\end{align*}
\]

We apply the concept of feedback linearization of above model equation for output \(y_i = h_i \) and \(y_2 = h_2 \):

\[
\begin{align*}
\dot{y}_i &= \dot{x}_i^o = -\frac{-a_i \sqrt{2gh_i} + a_i \sqrt{2gh_i} + \gamma k_i u_i}{A_i} \\
\dot{x}_2 &= \dot{h}_2 = \frac{a_2 g}{A_2} + \frac{a_1 g \sqrt{2gh_1}}{A_2} + \frac{-a_1 g k_i}{A_2 \sqrt{2gh_i}} u_i \\
&+ \frac{a_2 g k_3}{A_2 \sqrt{2gh_3}} (1 - \gamma) u_2 + d_z \\
\dot{x}_4 &= \dot{h}_4 = \frac{-a_4 \sqrt{2gh_4} + a_1 \sqrt{2gh_1} + \gamma k_i u_2}{A_4}
\end{align*}
\]
\[x'_i = h_i = \left(\frac{a_i g}{A_i} \frac{a_i a_i g}{A_i} \sqrt{h_i} \frac{a_i g_k}{A_i A_i} \right) + \left(\frac{a_i g_k (1 - \gamma_i)}{A_i A_i \sqrt{2gh_i}} \right) u_i + \left(\frac{a_i \gamma_i}{A_i A_i \sqrt{2gh_i}} \right) u_i + d_i \]

(43)

The dynamic model of the system can be written in a compact form as:

\[\dot{x} = Ax + B(F + Gu) + d \]

(44)

where \(\dot{x} = \begin{bmatrix} x'_1 & x'_2 & x'_3 & x'_4 \end{bmatrix}^T, x = \begin{bmatrix} x'_1 & x'_2 & x'_3 & x'_4 \end{bmatrix}^T, u = [u_1 \ u_2]^T \)

\[d = [0 \ 0 \ d'_1 \ 0 \ d'_2]^T, A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \]

\[F = \begin{bmatrix} a_i g & a_i a_i g & a_i g & a_i g \\ A_i & A_i & A_i & A_i \\ A_i & A_i & A_i & A_i \end{bmatrix}, G = \begin{bmatrix} a_i g_k (1 - \gamma_i) \\ A_i \sqrt{2gh_i} \\ a_i g_k (1 - \gamma_i) \\ A_i \sqrt{2gh_i} \end{bmatrix} \]

The parameter values of the quadruple tanks process are presented in the following table: [17]

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>VALUES OF THE PARAMETERS OF THE QUADRUPLE TANKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>The cross-section of tank (i): (A_i, i = (1, 2, 3, 4))</td>
<td>138.9 cm²</td>
</tr>
<tr>
<td>Open cross-section of the outlet line valve (V_i, i = (1, 2, 3, 4))</td>
<td>0.5026 cm²</td>
</tr>
<tr>
<td>Gravitational constant: (g)</td>
<td>981 cm/s²</td>
</tr>
<tr>
<td>The flow area of the valve (S_1: \gamma_1)</td>
<td>0.42</td>
</tr>
<tr>
<td>The flow area of the valve (S_2: \gamma_2)</td>
<td>0.34</td>
</tr>
<tr>
<td>(k_1)</td>
<td>27.43</td>
</tr>
<tr>
<td>(k_2)</td>
<td>19.55</td>
</tr>
</tbody>
</table>

The objective of the control scheme is to adjust the outputs \(\gamma_1 = h_1 \) and \(\gamma_2 = h_2 \) to a desired value \(H \).

The simulation results are given by figures 2-7.
The simulation results confirm that the adaptive proportional derived controller has good performance of trajectory tracking. We notice from Fig. 2 and 4 that the outputs of the system follow the reference signal H, the attenuation of the rapprochement phase and the reduction of the chattering phenomenon. The evolution of the sliding surfaces s_1 and s_2 trajectories are shown in Fig. 6 and 7. The convergence to zero of the system proves that the attractiveness of the sliding surface is guaranteed.

VI. CONCLUSION

In this paper, sliding mode controller is developed for a class of nonlinear multi-input multi-output disrupted systems.

In order to overcome the chattering problem and to ensure the tracking of desired trajectories, we proposed to combine an adaptive PD controller into a sliding mode. Based on the Lyapunov stability approach, the proposed adaptive sliding mode control scheme has guaranteed the global stability and the robustness of the closed loop system with respect to disturbance. The simulation results of the quadruple tanks system shows the effectiveness of the proposed control method and good performances comparing to the other recent methods of SMC proposed in the literature.

REFERENCES

[18] W. Perruquet (Ecole Central de Lille Villeneuve d’Ascq, France) et J P. Barbot (Ecole Nationale Superieure d’Electronique et de ses Applications Cergy-Pontoise, France), Sliding Mode Control In Engineering, 2002.
