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Abstract: miRNAs play important roles in plant post-transcriptional gene regulation by
targeting mRNAs through cleavage or repressing translation. Here, we have reconstructed
genome scale level miRNA-miRNA co-targeting network of rice plant and identified several
significant modules (high-density sub-graphs). Some of the modules are involved in multiple
biological processes, while some are involved in a single biological process. The distribution
of the out-going connectivities of co-target network can be approximated best by a power-law
equation. We have also observed a wide variation in inter chromosomal regulation. The genes
of chromosome 3 are highly targeted by the miRNAs synthesized from other chromosomes. The
results presented here might provide a platform for testing the hypothetical role of co-targeting
associations in rice post-transcriptional control.

Keywords: Rice (Oryza sativa), miRNA co-target network, hub miRNAs, combinatorial
regulation.

1. INTRODUCTION

Rice is a major staple food for more than half of the
world’s human population. There is an increasing demand
for high yielding, stress tolerant rice cultivars. To meet
this challenge we have to understand the cellular physi-
ology of rice, especially the activities of their genes and
their regulation. The regulation can occur at the level of
transcription, RNA processing, mRNA lifetime and trans-
lation etc. The miRNAs are a large family of about 21-
22 nucleotide endogenous non-protein-coding regulatory
RNA sequences [Bartel and Bartel (2003)] which are the
key players in post- transcriptional gene regulation and
involve in cleavage, degradation or translational inhibition
of its target mRNA with a resultant repression of gene
expression in animals, plants, and fungi [Bartel and Bartel
(2003); Hunter and Poethig (2003)]. Plant development,
response to environmental stress, pathogen invasion and
regulation of their own biogenesis etc. are finely tuned by
miRNAs. Although miRNAs have been studied in recent
years; to date no study has been performed on analysis
of miRNA co-targeting network of rice. Here, we have
exploited the available experimental and computational
data of rice miRNA and their target genes; and have
reconstructed and analyzed the rice miRNA co-targeting
network.

Most miRNAs were identified by computational predic-
tions [Adai et al. (2003); Bonnet et al. (2004); Rhoades
et al. (2002)] or by direct cloning of small RNAs [Lai
et al. (2003)]. Computational approaches provide a valu-
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able method to predict miRNAs and their respective tar-
gets, and have been successfully applied in vertebrates
[Lim et al. (2003); Lewis et al. (2003)], insects [Rajewsky
and Socci (2004)], Arabidopsis and rice [Bonnet et al.
(2004); Jones-Rhoades and Bartel (2004); Wang et al.
(2004)]. According to the PMRD Database, 8433 miRNA
genes have been collected from 121 plant species [Zhang
et al. (2010)]. Out of those, 2540 miRNA genes have been
identified in rice (Oryza sativa) of which 269 and 2271
miRNAs are identified experimentally and computation-
ally, respectively. However, many miRNA genes and their
targets, especially in plants, still to be discovered which in
turn will help to understand their critical roles in diverse
biological processes. Although thousands of miRNAs have
been identified, the function of most miRNAs involved in
biological networks remains unclear [Tsang et al. (2010)].
It has been hypothesized that miRNAs target a set of
related genes to regulate a specific pathway or process [Xu
(2011)]. But the incident of multiple miRNAs targeting
same gene (co-targeting) is not investigated so far in case
of rice.

Further, a relatively small number of miRNAs can set
up remarkably complex spatial and temporal patterns of
gene expression by means of combinatorial or differential
gene regulation. Genome-scale combinatorial miRNA reg-
ulation has been studied mostly in case of human [Xu
(2011); Balaga et al. (2012)] and a small number of plants
[Je-Gun and Zhangjun (2009); Liu et al. (2012)] but not
for rice. Here, we have constructed a genome scale level
miRNA-miRNA co-targeting network of rice and also have
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identified some modules which are involved in different
important biological processes.

2. METHODS

2.1 Data

The miRNA mature sequences are taken from PMRD
database [Zhang et al. (2010)]. Only those miRNAs which
have precursor sequences are considered. miRNA targets
are extracted from psRNATarget database [Dai and Zhao
(2011)] with default parameters (i.e., Maximum expecta-
tion: 3, Length for complementarity scoring (hspsize): 20,
Target accessibility - allowed maximum energy to unpair
the target site (UPE): 25, Flanking length around target
site for target accessibility analysis: 17 bp in upstream /
13 bp in downstream, Range of central mismatch leading
to translational inhibition: 9-11 nt). We want to mention
that it has been suggested that the value of maximum
expectation should be 4.0-5.0 to get a higher prediction
coverage while that should be 0.0-2.0 for lowering the false
positive prediction. Here, we have taken a conservative
approach by taking the mid-value i.e., 3.0. GO annotations
were downloaded from Biomart [Smedley et al. (2009)]
release 12. Loci dataset was taken from Oryza sativa MSU
Rice Genome Annotation (release 6.1).

2.2 Construction of post-transcriptional miRNA - miRNA
co-targeting network (p-CNet)

miRNA target data sets are collected from database and
preprocessed as described in the ‘Data’ section. In the
p-Cnet, an edge is given between a pair of miRNAs if
they target a common target gene. Thus,18045 pair-wise
interactions between 2348 miRNAs have been identified.
The edge-weight is denoted by the number of common
target genes (TGs) targeted by the pair. Then this value
is normalized by the ratio of the observed number of
shared target genes by a pair of miRNA to the expected
number of TGs shared by the same pair. The normalized
value is termed as co-targeting coefficient (CC) value for
each pair. The expected number is calculated by taking
the average of shared TGs for a miRNA pair in 60,000
randomly generated post-transcriptional networks where
degree distribution remains similar to that of the original
network. The co-targeting network is then defined as the
set of miRNAs and links between them that have CC > 1,
i.e. higher than random co-targeting association. After
randomization and considering Omin (minimum number of
co-targeted loci)= 3, a p-Cnet with 16850 edges between
1370 miRNAs is obtained. The same threshold of CC value
has been used in [Balaji et al. (2006)].

In the p-Cnet, the weight of the edge between miRNAs is a
measure of the extent of co-targeting association between
pairs of miRNAs over what is expected by chance. Bias
arising due to chance sharing of TGs, especially seen in
high-throughput datasets, is normalized by this procedure
[Balaji et al. (2006)]. We have used this p-Cnet consisting
of significant co-targeting interactions of miRNAs in rice
(Figure 1) for further genome-scale analysis.

Fig. 1. (a) Procedure to determine a co-targeting network
starting from a post-transcriptional target network.
Pink circles represent miRNAs, cyan circles represent
target genes. Targeting interactions are shown as
blue lines connecting the miRNAs and the target
gene in the post-transcriptional network. To create
a network of miRNAs alone, we link two miRNAs
(green lines) if they target a common target gene.
(b) The co-targeting network in rice derived using the
procedure described above. This network consists of
1370 miRNAs, with 16,850 co-targeting associations
(i.e. pairs or edges with CC > 1)

3. RESULTS AND DISCUSSIONS

3.1 Analysis of combinatorial regulation in Oryza sativa
genome-scale post-Transcriptional regulatory network

Computationally predicted and experimentally verified
miRNAs and their target genes of rice are collected from
PMRD database. We have used this data to reconstruct
the largest possible post-transcriptional targeting network
(p-Tnet) in Oryza sativa. We have obtained a network
consisting of 2348 miRNAs and 6815 target genes (TGs)
involving a total of 18045 targeting interactions. Here,
both the miRNAs and their TGs are treated as nodes and
interactions of miRNAs on TGs are considered as edges.

Next, we analysis the network architecture and observe
that each miRNA targets ∼7.68 TGs; while on average,
each TG is targeted by ∼2.65 miRNAs. The top 20%
of miRNAs with high out-going connectivity (targeting
the genes) are defined as hubs. These hubs, in total, are
involved in more than half the number of interactions in
the network (Figure 2). These hub miRNAs can act as
master regulators. One of such hubs is osa-miR1439 which
targets 25 genes.

The connectivity distributions in the post-transcriptional
targeting network (p-Tnet) are shown in Figure 3. It
indicates that several miRNAs can target a single TG.
This may be happened due to two reasons - (i) due to
the sequence similarities of two different miRNAs, they
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Fig. 2. Distribution of number of target loci per miRNA.
x-axis represents the number of target loci, n, targeted
by a miRNA and the y-axis (logarithmic scale) repre-
sents the number of miRNAs that target ‘n’ number
of loci. M1 is miRNA and T1, T2, T3 are its targets.

can target the same TG, and / or (ii) the different
miRNAs have dissimilarities in their sequences and still
bind to the same target gene at overlapping or non-
overlapping sites. For example, the miRNAs osa-miR156a,
osa-miR156b, osa-miR156c, osa-miR156d, osa-miR156e,
osa-miR156f, osa-miR156g having identical sequences tar-
get a single gene (LOC Os08g41940.1) at the same re-
gion. However, the precursor sequences of these miR-
NAs are different. On the other hand, some miRNAs of
miR156 family (osa-miR156a, osa-miR156k, osa-miR156l,
osa-miR156o) have different sequences but target a single
locus (LOC Os01g69830.1) at overlapping regions. Simi-
larly, the miRNAs from two different families, namely, osa-
miR1436 and osa-miR818d have different sequences and
target a single gene (LOC Os07g40450.2) at overlapping
region. Thus, these multiple incoming connectivities of a
TG indicate that there are miRNA mediated redundancies
and regulations through binding either at the same site
or at the overlapping sites of the TG. Previously it was
hypothesized that plant miRNAs may act in a functionally
redundant manner. In Arabidopsis, the MIR164 family
(MIR164a, MIR164b and MIR164c) is important for shoot
development. Sieber et al. has shown that a loss of entire
miR164 activity leads to a severe disruption of shoot
development, in contrast to the effect of mutation in any
single MIR164 gene [Sieber et al. (2007)]. We have also
observed a set of miRNAs which can co-target and bind
to the same gene at non-overlapping sites of the TG. For
example, the miRNAs, osa-miR168b and osa-miRf10096-
akr have the potential binding sites at two non-overlapping
positions (636-655 and 541-546, respectively) of the target
gene LOC Os08g04460.1. This indicates the possibility of
redundancies as well as combinatorial regulation. We have
also obtained a large set of this type of miRNA pairs
which can bind at different sites of the same target genes.
This encouraged us to find out general principles of co-
targeting relations among different miRNAs in the post-
transcriptional regulation of Oryza sativa (described in
Sections 3.3-3.4).

3.2 GO classification of miRNA-targeting single and
multiple loci

The miRNAs target a large number of loci and thus
it is also expected that they have the potentiality to

Fig. 3. Distribution of the number of miRNAs per target
loci. The x-axis represents the number of miRNAs
m targeting a target loci and the y-axis (logarithmic
scale) represents the number of loci regulated by ‘m’
number of miRNAs. Three miRNAs M1, M2, M3
target one locus T1.

Fig. 4. pie-chart of miRNAs involved in different biological
processes.

control a large number of biological processes. A pie-
chart of miRNAs regulating different biological processes
is described in the Figure 4.

Some biological processes are targeted by higher percent-
age of miRNAs. For example, 23.11% miRNAs are involved
in translational and protein modification, 13.34% miRNAs
are involved in stress and signalling, 12.97% miRNAs are
involved in metabolic processes etc. Some biological pro-
cesses are targeted by lower percentage of miRNAs. For
example, 4.51% miRNAs are involved in cellular growth
and 5.42% miRNAs are involved in cell death.

Further, the distributions of miRNAs and miRNA-targeted
loci show that while a large number of miRNAs target a
small number of loci, a few miRNAs target a large number
of loci. For example, 75% miRNAs target small number of
loci (1 to 10) while 25% miRNAs target large number of
loci (11 to 25). The GO functional classification of those
loci indicates that the genes targeted by the miRNAs are
involved in different important functions of a cell. From the
miRNA-target interactions (p-Tnet) data we have found
that single miRNA targets maximum 25 loci. GO classifi-
cation of the loci targeted by such 40 miRNAs, each having
25 target loci has shown that some of them have roles
in various biological functions. These are osa-miR1439,
osa-miR812e, osa-miR812a, osa-miR812b, osa-miR812c,
osa-miR812d, osa-miR1884a, osa-miR414 along with some
uncharacterized “-akr” group of miRNAs. For example,
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osa-miR812a targets those loci which are involved in
17 biological functions like cytolysis (GO:0019835), pro-
tein ubiquitination (GO:0016567), modification-dependent
protein catabolic process (GO:0019941), xylan catabolic
process (GO:0045493), pathogenesis (GO:0009405) regu-
lation of transcription (GO:0045449), response to bac-
terium (GO:0009617) etc. The loci targeted by osa-
miR1884a are involved in 12 biological functions like
diterpene phytoalexin precursor biosynthetic process path-
way (GO:0051504), regulation of transcription, DNA-
dependent (GO:0006355), oxidation reduction
(GO:0055114), gibberellin metabolic process (GO:0009685),
purine base metabolic process (GO:0006144) etc. Thus, we
can conclude that there exists a large number of miRNAs
which can regulate different cellular processes and thus
indicates that the dysregulation of miRNAs can affect or
alter the overall cellular process. These hub miRNAs can
act as master regulators.

On the other hand, we have found that some of the
loci are targeted by large number of miRNAs. For ex-
ample, the LOC Os05g15150.1 (leucyl-tRNA synthetase,
cytoplasmic, putative, expressed) targeted by 61 miR-
NAs has role in two biological processes e.g.,translation
(GO:0006412), tRNA aminoacylation for protein transla-
tion (GO:0006418). The LOC Os03g22050.3 targeted by
45 miRNAs has role in two biological processes, namely,
protein amino acid phosphorylation (GO:0006468)and sig-
nal transduction (GO:0007165). This probably indicate
that depending on the specific relationship of combina-
torial regulation and condition specific expression of miR-
NAs, the ultimate level of protein coded by that loci would
vary.

Though most of the miRNA-targeted loci have been fallen
in different GO category, some loci are not classified in
any of them. For example, LOC Os08g27180.1 targeted
by 185 miRNAs is not classified under any GO category.
The proper functional annotation of these uncharacterized
genes, targeted by large number of miRNAs, would help
the researchers to understand the regulation of cellular
process.

Further, distributions of miRNA and their regulating GO
categories also show that while a large number of miRNA
regulate a small number of biological functions, a few
miRNAs regulate a large number of biological functions
(Figure 5). Among the 1678 miRNAs, which are involved
in at least one GO category, the top 2.5% miRNAs reg-
ulate more than 13 biological processes. For example,
osa-miRf10306-akr, osa-miRf11937-akr, osa-miR437 are
involved in 20, 19, 18 biological processes, respectively.
The hub miRNAs (top 2.5% miRNAs) including above
three are involved in 126 different biological processes
and among them, some biological processes are more fre-
quently targeted by other miRNAs. Some of the biological
functions targeted by large number of hub-miRNAs are
metabolic process (GO:0008152), protein amino acid phos-
phorylation (GO:0006468), transport (GO:0006810) etc.

3.3 Characteristics of Co-targeting network

A network transformation procedure is applied here to
build the post-transcriptional co-targeting network (p-
Cnet) from the p-Tnet which finally helps us to understand

Fig. 5. Distribution of number of GO per miRNA. The
x-axis represents the ‘m’ number of GO, targeted
by a miRNA and the y-axis represents the number
of miRNAs that target ‘n’ number of GO. Inset:
Distribution of number of GO per miRNA (without
-‘akr’).

Fig. 6. Distribution of number of target loci per miRNA-
pair. x-axis represents the number of target loci, n,
targeted by a miRNA-pair and the y-axis (logarithmic
scale) represents the number of miRNA-pairs that
target n target loci. The outgoing degree distribution
can be best approximated by a power-law equation
y = 19215x−2.84, R2 = 0.965.

the co-targeting interactions [Balaji et al. (2006)]. Thus,
a network is formed where all nodes are miRNAs and the
edges are co-targeting associations between miRNAs.

We have observed that on average, each miRNA-pair tar-
gets ∼5.19 TGs.The distribution of the out-going connec-
tivities of miRNA pair in p-CNet can be approximated
best by a power-law equation y = 19215x−2.84, R2 = 0.965
(Figure 6).

The higher the CC-value indicates the higher association
of the biological function (through their shared TGs) of a
miRNA pair. We have identified that many miRNA pairs
have a relatively low CC, but a small number of miRNA
pairs have very high co-targeting coefficients (Figure 7).
In several cases, pairs with above average co-targeting
coefficients, for example, osa-miR812d and osa-miR812b
(CC=24.1214), are involved in more number of biological
processes which include twelve GOs such as GO:0044262
(carbohydrate metabolic process), GO:0016567 (protein
ubiquitination), GO:0017148 (negative regulation of trans-
lation), GO:0006468 (protein amino acid phosphoryla-
tion), GO:0006810 (transport) etc. In other cases, we have
also observed a large number of pairs with below average
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Fig. 7. Distribution of the co-targeting coefficient values
in the co-targeting network. The x-axis represents the
range of co-targeting coefficient, and the y-axis rep-
resents the number of pairs within that co-targeting
coefficient range.

co-targeting coefficients which are involved in less number
of biological processes. For example, osa-miRf10406 and
osa-miR812b (CC=2.9001) are involved in only one GO;
GO:0008152 (metabolic process).

3.4 Complexity at the modular level in the co-targeting
network

In this work, we have used modular network concept to
understand the effect of co-targeting miRNAs. We have
defined a module in the co-targeting network as a k-clique,
i.e. a highly-dense sub-graph with ‘k’ number of miRNAs
with all miRNAs having co-targeting association with
other miRNAs in the sub-graph. This procedure is per-
formed using Cytoscape [Shannon et al. (2003)] AllegroM-
CODE Plug-in with k-core=3. We have identified 71 such
modules, where each module has a unique composition of
miRNAs and the same miRNA or the same pair do not
occur in more than one module. The distribution of module
size shows that modules with higher number of miRNAs
are less in number whereas modules with lower number of
miRNAs are more in number. The largest module has 101
miRNAs. Though most of the modules are comprised of “-
akr” group of miRNAs, we have observed some mixed pop-
ulation of miRNAs - “-akr” along with non-“akr” families
within some of the modules. For example, in Module 27,
osa-miRf10201-akr is present with osa-miR809 family (osa-
miR809h, osa-miR809e, osa-miR808, osa-miR809b, osa-
miR809c, osa-miR809a, osa-miR809f, osa-miR809d, osa-
miR809g). In Module 46, osa-miRf10978-akr is present
with osa-miR399 family. This modularity may help in
characterizing the possible biological effect of undefined
miRNAs ( “-akr”).

3.5 Inter-chromosomal regulation of miRNAs

The miRNAs (excluding ‘-akr’) synthesising from one
chromosome target genes of the same chromosome as well
as those of other chromosomes. The number of genes
present in different chromosome vary. We have calculated
the inter-chromosomal regulation, Xij (regulation of jth

Fig. 8. Inter-chromosomal regulation of miRNAs. The
miRNAs originated from chromosome ‘i’ in the y-axis
regulate the genes of chromosome ‘j’ in the x-axis. The
colour box shows the intensity of regulation.

chromosomal genes by ith chromosomal miRNAs) using
the following expression: Xij = (miRNAs of ith chromo-
some targeting genes of jth chromosome/Total number of
genes present in the jth chromosome) × 100%. Figure
8 represents the heat map of the distribution of target
genes in different chromosomes. A wide variation of inter
chromosomal regulation mediated by miRNA is clearly de-
picted from the Figure 8. We have also found that miRNAs
synthesising from all the twelve chromosomes have greater
percentage of target genes on chromosome 3.
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