Motivation
Design of energy efficient distillation processes for the separation of non-ideal multicomponent mixtures

- Conventional separation methods: extractive, heteroazeotropic or pressure swing distillation
- High capital costs
- Low energy efficiency

Innovative process concept: membrane assisted hybrid processes
- Strong synergies due to interactions between both unit operations
- Overcoming limitations of stand-alone processes
- Lack of general design methodology and in-depth understanding of complex interactions
- Significant economical potential hardly exploited in industry

Development of a reliable methodology for the optimisation based design of hybrid separation processes

Design of hybrid processes

- State of the art:
 - Early decision on process configuration
 - Design approaches mostly based on short-cut methods and simplified models, especially for membrane separation
 - Application of rigorous approaches limited to binary systems

Generic design approach

- Process superstructures for the consideration of all possible process alternatives
- Generic process model with rigorous models for both unit operations
- Experimental determination of membrane parameters at lab-scale and experimental validation of hybrid process at pilot-scale

Motivation

- Production of acetone by dehydrogenation of isopropyl alcohol (IPA)
- Separation of ternary azeotropic system acetone-IPA-water
- Potential use of membrane:
 - To cross the distillation boundary (Fig. 1)
 - To separate the close boiling binary mixtures at high organic concentrations (Fig. 2)

Chemical system

- Conventional separation methods: extractive, heteroazeotropic or pressure swing distillation
- High capital costs
- Low energy efficiency

Evolutionary Process Optimisation

- Algorithm based on „modified differential evolution“ approach (Fig. 3)
- Economic objective function (= fitness)

Modelling

- Non-equilibrium stage model of distillation
- Multicomponent mass and heat transfer
- Hydrodynamics of column internals considered
- Calculation of optimal diameter based on correlation of Maćkowiak

Experimental parameter determination

- Pervaporation of IPA-water mixture
- Hydrophilic PVA/PAN membrane (Sulzer Pervap 2201D)
- Membrane area: 162 cm²
- Experimental conditions:
 - \(W_{\text{feed}} / W_{\text{dry}} = 2.5 \text{ to } 18 \text{ wt.}\% \)
 - \(T_{\text{feed}} = 60 \text{ to } 70 ^\circ \text{C} \)
 - \(P_{\text{feed}} = 2 \text{ bar} \)
 - \(P_{\text{perm}} = 30 \text{ mbar} \)
- Model parameters determined for an empirical correlation (Fig. 4)

Optimisation of hybrid process

- Hybrid process
 - Packed column (Sulzer BX)
 - Pervaporation module with Sulzer Pervap 2201D
 - Simultaneous optimisation of
 - 3 discontinuous and
 - 9 continuous variables (Fig. 5)
- Objective function: costs per ton of purified acetone (CPT)

Future work

Future work will focus on the development and optimisation of more complex superstructures, which consider all possible process configurations.

We acknowledge the financial support of the Deutsches Forschungsgesellschaft for the project „Optimisation-based framework for the synthesis of hybrid separation processes“ This project is a cooperation with the Process Systems Engineering Group of Prof. W. Marquardt, RWTH Aachen.

Department of Biochemical and Chemical Engineering
Univ.-Prof. Dr.-Ing. Andrezej Görak
Laboratory of Fluid Separations

Contact:
Dipl.-Ing. Katharina Koch
phone: +49(0)231-755-2356
katharina.koch@fci.tu-dortmund.de
www.fvt.bwl.tu-dortmund.de