Keyword and Title Index

A
- Absorption: 44, 88, 132, 523, 912
- Absorption of carbonyl sulphide in aqueous piperazine,
- Acetone: 73
- Adsorption: 657
- Aldol condensation: 73
- Alkanolamine: 498, 973
- Alternative schemes: 610
- Ambient conditions: 891
- Amines: 132
- Application of the penetration theory for gas–liquid mass transfer without liquid bulk — differences with systems with a bulk, van Elk, E.P., Knaap, M.C. and Versteeg, G.F.: 294
- Attainable regions: 73
- Azeotropes: 431
- Azeotropic distillation: 858
- Azeotropic mixture: 954
- Azeotropic separation: 945

B
- Batch distillation: 440, 745
- Batch reactive distillation: 868
- Batch rectifier: 830
- Biodiesel: 142
- Boiling in distributors: 409
- Borragge oil: 648
- Boundary value method: 364
- Bounded homotopy continuation methods: 790
- Bubble column: 973

C
- $c^2 - \epsilon_\mathrm{c}$ model: 282
- Capacity: 311, 392

© 2006 IChemE
carbonyl sulphide 581
castor oil 142
catalytic distillation 820, 991
catalytic packing 554
CFD simulation and experimental validation of fluid flow in liquid distributors, Hegemann, M., Hirschberg, S., Spiegel, L. and Bachmann, C. 773
Challenges and opportunities for the suppliers of technologies, equipment and services for separation towers, Fankhauser, U. 21
chance constrained programming 954
chemical absorption 460
chemical equilibrium 563
chemical kinetics 336
CO₂ absorption 511
CO₂ capture 132
column 44
column hydraulics 267
column internals 44, 523
column intervals 786
column profile maps 111
column profiles 431
Combining shortcut methods and rigorous MINLP optimization for the design of distillation processes for homogenous azeotropic mixtures, Kossack, S., Kraemer, K. and Marquardt, W. 122
comparison 754
Comparison of the effective surface area of some highly effective random packings third and forth generation, Kolev, N., Nakov, S., Ljutzkanov, L. and Kolev, D. 754
computational fluid dynamics (CFD) 190, 220, 534, 544, 773
computational mass transfer (CMT) 282
concentration distribution 220
conceptual design 73, 100, 122, 364
Conceptual design of reactive dividing wall columns, Daniel, G., Patil, P., Dragomir, R. and Jobson, M. 364
Continuous three phase distillation: a process for separating thermally instable substances, Ottenbacher, M. and Hasse, H. 840
control properties 610, 728
Control properties of alternative schemes to thermally coupled distillation columns for ternary mixtures separations, Alcántara-Ávila, R., Cabrera-Ruiz, J., Tamayo-Galván, V.E., Segovia-Hernández, J.G. and Hernández, S. 610
control structure selection 590
controller performance 954
crude oil vacuum tower 230
<table>
<thead>
<tr>
<th>D</th>
<th>982</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDV tray</td>
<td>648</td>
</tr>
<tr>
<td>deodorizer distillate of soybean oil</td>
<td>152</td>
</tr>
<tr>
<td>Design of industrial reactive absorption processes in sour gas treatment using rigorous modelling and accurate experimentation, Thiele, R., Faber, R., Repke, J.-U., Thielert, H. and Wozny, G.</td>
<td>469</td>
</tr>
<tr>
<td>desorption</td>
<td>132</td>
</tr>
<tr>
<td>detection of multiple steady states</td>
<td>858</td>
</tr>
<tr>
<td>Development of a hybrid solvent recovery process (combination of distillation and vapour permeation), Ohligscläger, A.</td>
<td>854</td>
</tr>
<tr>
<td>Development of a new distillation based process for trioxane production, Grützner, T., Lang, N., Siegert, M., Ströfer, E. and Hasse, H.</td>
<td>336</td>
</tr>
<tr>
<td>different packings</td>
<td>754</td>
</tr>
<tr>
<td>dispersion</td>
<td>657</td>
</tr>
<tr>
<td>distillate</td>
<td>431</td>
</tr>
<tr>
<td>distillation</td>
<td>100, 111, 152, 172, 181, 241, 252, 267, 392, 450, 619, 638, 786, 809</td>
</tr>
<tr>
<td>distillation boundary</td>
<td>431</td>
</tr>
<tr>
<td>distillation column</td>
<td>220, 590</td>
</tr>
<tr>
<td>Distillation column control using the whole temperature profile, Chew, M., Jones, W.E. and Wilson, J.A.</td>
<td>600</td>
</tr>
<tr>
<td>distillation design</td>
<td>122</td>
</tr>
<tr>
<td>distillation dynamics</td>
<td>200</td>
</tr>
<tr>
<td>distillation startup</td>
<td>800</td>
</tr>
<tr>
<td>Distillation startup of fully thermally coupled distillation columns: theoretical examinations, Niggemmann, G., Gruetzmann, S. and Fieg, G.</td>
<td>800</td>
</tr>
<tr>
<td>Distillation trays that operate beyond the limits of gravity by using centrifugal separation, Wilkinson, P., Vos, E., Konijn, G., Kooijman, H., Mosca, G., Tonon, L.</td>
<td>327</td>
</tr>
<tr>
<td>distributor</td>
<td>773</td>
</tr>
<tr>
<td>disturbance propagation</td>
<td>200</td>
</tr>
<tr>
<td>(Di)still modeling after all these years: a view of the state of the art, Taylor, R.</td>
<td>1</td>
</tr>
<tr>
<td>divided wall</td>
<td>638</td>
</tr>
<tr>
<td>dividing-wall column</td>
<td>800</td>
</tr>
<tr>
<td>Dos and don’ts of distillation column control, The, Skogestad, S.</td>
<td>28</td>
</tr>
<tr>
<td>double-tube column</td>
<td>737</td>
</tr>
<tr>
<td>dynamic optimisation</td>
<td>868</td>
</tr>
<tr>
<td>dynamic simulation</td>
<td>800</td>
</tr>
</tbody>
</table>
E

effective surface area 754
efficiency 311, 392
ergy efficiency 63
ergy saving 745, 900
ergy-and-mass integration 945
ergy-saving 172
Energy-saving characteristics of heat integrated distillation column technology applied to multi-component petroleum distillation, Horiuchi, K., Yanagimoto, K., Kataoka, K. and Nakaiwa, M. 172
energy-saving distillation 737
energy-saving-tray 982
entrainer 678
Entrainment selection for the synthesis of fatty acid esters by entrainer-based reactive distillation, de Jong, M.C., Dimian, A.C., Kuipers, N.J.M. and de Haan, A.B. 667
entrainment 920
entropy generation rate 982
esterification 273, 373
ether 142, 619
Evaluation of phase equilibria for dilute mixtures for design purposes, Ngigi, G., Hildebrandt, D. and Glasser, D. 928
evaporation 809
evaporative heat transfer 745
experimental 111
Experimental column profile maps with varying delta points in a continuous column for the acetone methanol ethanol system, Wilson, C., Hildebrandt, D. and Glasser, D. 111
experimental data 667
Experimental evaluation of sulphur dioxide absorption in water, Chavez, R.-H., Guadarrama, J. de J. and Klapp, J. 912
Experimental investigation of reactive distillation in combination with membrane separation, Buchaly, C., Kreis, P. and Górák, A. 373
Experimental investigation of reactive distillation packing Katapak® – SP 11: hydrodynamic aspects and size effects, Brunazzi, E. and Viva, A. 554
Experimental simulation of the saddle point region in a distillation column profile map by using a batch apparatus, The, Modise, T., Kauchali, S., Hildebrandt, D. and Glasser, D. 431

1005
Extended smoker’s equation for calculating number of stages in distillation,
 Bandyopadhyay, S. 937
extractive distillation 699, 830

F
fatty acids 678
feed composition estimation 600
feed enthalpy manipulation 600
film 294
flash calculation 877
flashing 384, 409
flashing feed 230
flooding 400
flue gas 132
fluid dynamics 554
fluid-phase equilibria 336
foam 657
foam fractionation 657
foaming 392
Foaming effect on random packing performance, Chen, G.X., Cai, T.J.,
 Chuang, K.T. and Afacan, A. 392
formaldehyde 336
Functionalised solvents for olefin isomer purification by reactive extractive
distillation, Kuipers, N.J.M., Wentink, A.E., de Haan, A.B.,
 Scholtz, J. and Mulder, H. 689
functionalized ionic liquids 511

G
GA 628
gamma scans 384
gamma-linolenic acid 648
gas purification 469
gas treating 581
graphical 152

H
heat integrated distillation column 172
heat integration 181, 900
Heat and mass transfer characteristics of an annular sieve tray, de Rijke, A.,
 Tesselaar, W., Gadalla, M.A., Olujic, Z. and Jansens, P.J. 181

1006
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>heat transfer</td>
<td>737</td>
</tr>
<tr>
<td>heavy petroleum fractions</td>
<td>143</td>
</tr>
<tr>
<td>heteroazeotropic distillation</td>
<td>840</td>
</tr>
<tr>
<td>heterogeneous entrainer</td>
<td>440</td>
</tr>
<tr>
<td>HIDiC</td>
<td>181</td>
</tr>
<tr>
<td>high capacity packing</td>
<td>991</td>
</tr>
<tr>
<td>High-efficiency distillation system for batch or semi-batch chemical reactors, A, Noda, H., Mukaida, T., Kaneda, M., Yamaji, H. and Kataoka, K.</td>
<td>745</td>
</tr>
<tr>
<td>high-efficiency reboiler</td>
<td>745</td>
</tr>
<tr>
<td>high-performance</td>
<td>311</td>
</tr>
<tr>
<td>High-performance trays: getting the best capacity and efficiency, Penciak, J., Nieuwoudt, I. and Spencer, G.</td>
<td>311</td>
</tr>
<tr>
<td>hold-up</td>
<td>973</td>
</tr>
<tr>
<td>How to decide when and how much to use reactive distillation, Mulopo, J.L., Hildebrandt, D. and Glasser, D.</td>
<td>964</td>
</tr>
<tr>
<td>How to surpass conventional and high capacity structured packings with Raschig Super-Pak, Chambers, S. and Schultes, M.</td>
<td>241</td>
</tr>
<tr>
<td>hybrid</td>
<td>152, 619</td>
</tr>
<tr>
<td>hybrid distillation/pervaporation</td>
<td>628</td>
</tr>
<tr>
<td>hybrid process</td>
<td>373</td>
</tr>
<tr>
<td>hybrid separations</td>
<td>63</td>
</tr>
<tr>
<td>Hydraulic measurements of sieve plate, Keskinen, K.I., Ahlfors, H.-M. and Aittamaa, J.</td>
<td>920</td>
</tr>
<tr>
<td>hydraulics</td>
<td>920</td>
</tr>
<tr>
<td>hydrodynamic analogy</td>
<td>211</td>
</tr>
<tr>
<td>hydrodynamic performance</td>
<td>912</td>
</tr>
</tbody>
</table>

I

ILs 511

IMTP 754

Industrial absorption current status and future aspects, Thiele, R. and Löning, J.M. 44

Industrial application of a new batch extractive distillation operational policy, Lang, P., Kovacs, Gy., Kotai, B., Gaal-Szilagyi, J. and Modla, G. 830

Industrial experience with hybrid distillation – pervaporation or vapour permeation applications, Roza, M. and Maus, E. 619

Industrial experiments 830

inlet device 230

integrated process 273

integrated processes 364

interfacial area 523, 973

Internal column-to-column heat transfer characteristics for energy-saving distillation system, Noda, H., Mukaida, T., Kaneda, M., Kataoka, K. and Nakaiwa, M. 737

internal heat integration 737
Internally heat-integrated distillation column (HIDiC) in Japan, An, Iwakabe, K., Nakaiwa, M., Huang, K., Matsuda, K., Nakanishi, T., Ohmori, T., Endo, A. and Yamamoto, T.
inverted batch distillation 709
IPA 619
isooctane 450
isooctene 450

K
Kalman filtering 600
Katapak 991
Katapak® 554
kinetics 581, 667

L
ligands 689
liquid distribution 252
Liquid distribution behaviour of conventional and high capacity structured packings, Olujić, Ž., van Baak, R. and Haaring, J. 252
liquid distributor 267
liquid distributors 384, 409
liquid entrainment 230
liquid holdup 554
liquid layer 294
liquid–liquid equilibrium 574
Liquid–liquid equilibrium in binary mixtures of 1-ethyl-3-methylimidazolium ethylsulfate and hydrocarbons, Bendová, M. 574
Liquid–liquid–liquid equilibrium flash calculations, Denes, F., Lang, P. and Lang-Lazi, M. 877
lubricant suggested theme: 143

M
maldistribution 252, 384, 409, 418
mass transfer 44, 294, 991
mass transfer coefficients 523
MDEA 460
measurements 920
membrane separation 373
membranes 152
Method of design for packed column type HIDiC, Nakanishi, T., Aso, K., Takamatsu, T., Matsuda, K., Nakaiwa, M. and Hasebe, S. 851
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyl acetate hydrolysis</td>
<td>353</td>
</tr>
<tr>
<td>Methyl acetate hydrolysis in a reactive divided wall column, Sander, S., Flisch, C., Geissler, E., Schoenmakers, H., Ryll, O. and Hasse, H.</td>
<td>353</td>
</tr>
<tr>
<td>methyl acetate transesterification</td>
<td>344</td>
</tr>
<tr>
<td>methyldiethanolamine</td>
<td>498</td>
</tr>
<tr>
<td>middle vessel batch distillation</td>
<td>891</td>
</tr>
<tr>
<td>middle vessel column</td>
<td>699</td>
</tr>
<tr>
<td>minimum energy calculation</td>
<td>790</td>
</tr>
<tr>
<td>minimum error profile control</td>
<td>600</td>
</tr>
<tr>
<td>minimum reflux</td>
<td>790</td>
</tr>
<tr>
<td>miniplant</td>
<td>450</td>
</tr>
<tr>
<td>MINLP</td>
<td>122</td>
</tr>
<tr>
<td>MINLP optimization</td>
<td>820</td>
</tr>
<tr>
<td>mixed-phase feed</td>
<td>230</td>
</tr>
<tr>
<td>Mixed-phase feeds in mass transfer columns and liquid separation, Wehrli, M., Schaeffer, P., Marti, U., Muggli, F. and Kooijman, H.</td>
<td>230</td>
</tr>
<tr>
<td>mixing</td>
<td>657</td>
</tr>
<tr>
<td>Modeling and measurement of macroscopic flow fields in structured packings, Mahr, B. and Mewes, D.</td>
<td>544</td>
</tr>
<tr>
<td>Modelling of mixture separation in a column with structured packing. Effects of liquid maldistribution, Trifonov, Y., Sunder, S. and Houghton, P.</td>
<td>764</td>
</tr>
<tr>
<td>Modified model of computational mass transfer for distillation column, A, Sun, Z.M., Yuan, X.G., Liu, C.J. and Yu, K.T.</td>
<td>282</td>
</tr>
<tr>
<td>modular catalytic structured packing</td>
<td>991</td>
</tr>
<tr>
<td>molecular distillation</td>
<td>648</td>
</tr>
<tr>
<td>multicomponent distillation</td>
<td>590</td>
</tr>
<tr>
<td>multiphase equilibrium</td>
<td>877</td>
</tr>
<tr>
<td>multiphase flow</td>
<td>190</td>
</tr>
</tbody>
</table>

N

n-propyl acetate | 667 |

Neural network based modelling and optimisation in batch reactive distillation, Mujtaba, I.M. and Greaves, M.A. | 868 |

New method for the determination of batch heteroazeotropic distillation regions, Modla, G. and Lang, P. | 440 |

New method to predict the susceptibility to form maldistribution in packed columns based on pressure drop correlations, A, Duss, M. | 418 |
new stirrer 745
neural network 868
NMR-spectroscopy 336
non-equilibrium chemical reaction 563
non-equilibrium processes 809
non-equilibrium model 719, 820
non-linear model predictive profile control 600
non-linear wave 200
Non-linear wave model with variable molar flows for dynamic behaviour and disturbance propagation in distillation columns, A, Hankins, N. 200

O
olefin isomer separation 689
On thermodynamics of evaporation processes in nonequilibrium systems, Toikka, A. 809
On the track to understanding three phases in one tower, Repke, J.-U., Hoffmann, A., Ausner, I., Villain, O. and Wozny, G. 190
online optimization 954
operation 638
Optimal configuration, design and operation of continuous hybrid distillation/pervaporation processes, Barakat, T. and Sørensen, E. 628
optimal design 820
optimisation 628, 790
orifice coefficient 773
overall heat transfer coefficient 181

P
packed bed column 754
packed column 172, 773
packed columns 294
packed towers 384, 409, 469
packing 230, 400
packings 190, 267, 392
penetration theory 294
pervaporation 619
phase equilibria 678
phase transitions 563
Phase transitions in quaternary reacting systems with esterification reaction, Toikka, M. 563
π-complexation 689
pinch point curve 431
piperazine 581
plate column 737
Prediction of CO₂ and H₂S solubility in aqueous MDEA solutions using an extended Kent and Eisenberg model, Patil, P., Malik, Z. and Jobson, M. 498
Prediction of temperature and concentration distributions of distillation sieve trays by CFD, Rahimi, R., Rahimi, M.-R., Shahraki, F. and Zivdar, M. 220
pressure drop 267, 418, 534, 754, 920
pressure sensitive distillation 344
Pressure swing batch distillation for homogenous azeotropic separation, Repke, J.-U., Klein, A., Bogle, D. and Wozny, G. 709
pressure swing distillation 709
pressure-swing distillation 945
process development 336
process simulation 100
process simulators 858
process synthesis 964
Production of propyl acetate by reactive distillation: from experiments to simulation, Brehelin, M., Rouzineau, D., Forner, F, Repke, J.-U., Meyer, M. and Wozny, G. 667
profile control 200

R
Ralu-Flow 754
random and structured packing 418
Raschig Super-Pak 241
rate based modelling 44
rate-based model 273
Rate-based modelling and simulation of reactive stripping, Mueller, I., Kenig, E.Y., Kloecker, M., Schildhauer, T.J., Kapteijn, F. and Moulijn, J.A. 273
RBM 122
reacting systems 563, 809
reaction 8/8-analysis 100
reactive absorption 469
reactive distillation 73, 344, 353, 364, 373, 554, 667, 678, 964
reactive divided wall column 353
reactive extractive distillation 689
reactive stripping 273
residue curve maps 152
residue curves 111, 440
Retrofit design for gas sweetening processes, Patil, P., Malik, Z. and Jobson, M. 460
revamp 460
Rigorous method of minimum energy calculation for a fully thermally coupled distillation system, Malinen, I. and Tanskanen, J. 790
rigorous process model 800
rigorous simulation 699, 830
riser 657
Riser design in foam fractionation, Martin, P.J., Swain, M. and Darton, R.C. 657
Robust online optimization based on controller performance metrics for a high-pressure distillation column, Barz, T., Arellano-Garcia, H. and Wozny, G. 954
robustness 954
Rombopak 534
room-temperature ionic liquids 574
RSR 754

S
sandwich packing 786
Sandwich packing – a new type of structured packing to increase capacity and mass transfer of distillation columns, The, Jodecke, M., Friese, T., Schuch, G., Kaibel, B. and Jansen, H. 786
scale-up 267
screening 88
Selection and pilot plant tests of new absorbents for post combustion carbon dioxide capture, Notz, R., Aspiron, N., Clausen, I. and Hasse, H. 132
Selectivity engineering with reactive distillation: determination of attainable region, Agarwal, V., Thotla, S. and Mahajani, S.M. 73
Self-optimizing configurations for two-product distillation columns, Shigueo Hori, E., Skogestad, S. and Al-Arfaj, M.A. 590
sensitivity 418
separation 152
separation of azeotropes 440
Separation of maximum azeotropes in a middle vessel column, Kotai, B., Lang, P. and Balazs, T. 699
Separation of methanol/butene/MTBE using hybrid distillation-membrane processes, Peters, M., Kauchali, S., Hildebrandt, D. and Glasser, D. 152
separation performance 211
Shortcut evaluation of absorption for synthesis of gas separation networks,
 Martin, M., Jobson, M., Zhang, N. and Heggs, P.J. 88
shortcut model 88
shortest distillation lines 63
sieve plate 920
sieve tray 220
sieve tray column 282
simple distillation 563
simulated annealing 460
simulation 282
simulation experiments 709
SO$_2$ 912
solution multiplicity 858
solvent properties 511
Solvent properties of functionalized ionic liquids for CO$_2$ absorption, Galán
 Sánchez, L.M., Meindersma, G.W. and de Haan, A.B. 511
solvent selection 132
solvent stability 132
sour gas treatment 469
Stabilizing operation of a 4-product integrated Kaibel column, Strandberg, J. and
 Skogestad, S. 638
Standardisation of mass transfer measurements – a basis for the
description of absorption processes, Hüpen, B., Hoffmann, A.,
Górak, A., Löning, J.-M., Haas, M., Runowski, T. and
 Hallenberger, K. 523
start-up 667, 709, 945
Startup analysis of mass- and heat-integrated two-column-systems, Varbanov, P.,
 Klein, A., Repke, J.-U. and Wozny, G. 945
Startup operation of a cyclic middle vessel batch distillation, Gruetzmann, S.,
 Niggemann, G., Kapala, Th. and Fieg, G. 891
startup procedures 891
Strategies for identifying multiplicities in distillation systems using process
 simulators, Chokshi, S. and Malik, R.K. 858
structured 400
structured packing 294, 534, 544, 554, 912
Structured packing flooding: its measurement and prediction,
 Lockett, M.J., Victor, R.A. and Billingham, J.F. 400
structured packings 211, 241, 252
Study on an energy-saving tray DDV with new structures, A, Zhang, Z.B.,
 Liang, Y.C., Meng, W.M. and Zhou, Z. 982
Study of the thermally coupled distillation sequences using a nonequilibrium
 stage model, Abad-Zarate, E.F., Gómez-Castro, F.I., Segovia-Hernández,
 J.G. and Hernández, S. 719

1013
susceptibility 418
Synthesis, design and retrofitting of energy efficient separation processes, Lucia, A., Amale, A. and Taylor, R. 63

<table>
<thead>
<tr>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBA 450</td>
</tr>
<tr>
<td>temperature distribution 220</td>
</tr>
<tr>
<td>temperature profile control 600</td>
</tr>
<tr>
<td>temperature surveys 384</td>
</tr>
<tr>
<td>Thermal integration of a distillation column through side-exchangers, Bandyopadhyay, S. 162</td>
</tr>
<tr>
<td>thermally coupled columns 638</td>
</tr>
<tr>
<td>thermally coupled distillation sequences 610</td>
</tr>
<tr>
<td>thermally coupled distillation sequences 719, 728</td>
</tr>
<tr>
<td>thermally coupled distillation systems 790</td>
</tr>
<tr>
<td>thermally instable substances 840</td>
</tr>
<tr>
<td>Thermodynamic analysis of multicomponent distillation-reaction processes for conceptual process design, Ryll, O., Blagov, S. and Hasse, H. 100</td>
</tr>
<tr>
<td>thermodynamic model 498</td>
</tr>
<tr>
<td>thermodynamics 809</td>
</tr>
<tr>
<td>THF 619</td>
</tr>
<tr>
<td>three phase distillation 190, 267, 840</td>
</tr>
<tr>
<td>three-liquid phase 877</td>
</tr>
<tr>
<td>Three-phase distillation in packed columns: guidelines for development, design and scale-up, Meier, R., Leistner, J. and Kobus, A. 267</td>
</tr>
<tr>
<td>total reflux 891</td>
</tr>
<tr>
<td>tower feed 409</td>
</tr>
<tr>
<td>tower performance 190</td>
</tr>
<tr>
<td>transesterification 142</td>
</tr>
<tr>
<td>tray efficiency 181</td>
</tr>
<tr>
<td>trays 311</td>
</tr>
<tr>
<td>trioxane 336</td>
</tr>
<tr>
<td>Troubleshoot packing maldistribution upset Part 1: temperature surveys and gamma scans, Kister, H.Z., Stupin, W.J. and Ernst Oude Lenferink, J. 384</td>
</tr>
<tr>
<td>Troubleshoot packing maldistribution upset part 2: boiling and flashing in packed tower distributors, Kister, H.Z., Stupin, W.J. and Ernst Oude Lenferink, J. 409</td>
</tr>
<tr>
<td>troubleshooting 384, 409</td>
</tr>
<tr>
<td>turbulent mass transfer diffusivity</td>
</tr>
<tr>
<td>two-film model</td>
</tr>
<tr>
<td>two-phase flow</td>
</tr>
<tr>
<td>two-pressure column system</td>
</tr>
</tbody>
</table>

U
- uncertainty 954
- Use of directional momentum devices on fractionation trays, The, Pilling, M., Summers, D. and Fischer, M. 317
- useful capacity 241

V
- validation 773
- vapor permeation 619
- vapour permeation 373
- vapour–liquid equilibrium 498
- Vapour–liquid mass transfer performance of modular catalytic structured packing, Behrens, M., Olujic, Ž. and Jansens, P.J. 991
- variable molar flow 200
- Variation of the interfacial area during CO₂ absorption into alkanolamines aqueous solutions in a bubble column reactor, Alvarez, E., Cancela, M.A., Maceiras, R. and Navaza, J.M. 973
- vitamin E 648
- VLE 450
- VOF 773
- VOF model 534
- volumetric method 574

W
- water 450
- wetting 534
- Wetting performance and pressure drop of structured packings: CFD and experiment, Ataki, A., Kolb, P., Bühlmann, U. and Bart, H.-J. 534