The Covariance Extension Equation Revisited

Christopher I. Byrnes, Giovanna Fanizza and Anders Lindquist

Abstract—In this paper we study the steady state form of a discrete-time matrix Riccati-type equation, connected to the rational covariance extension problem and to the partial stochastic realization problem. This equation, however, is non-standard in that it lacks the usual kind of definiteness properties which underlie the solvability of the standard Riccati equation. Nonetheless, we prove the existence and uniqueness of a positive semidefinite solution. We also show that this equation has the proper geometric attributes to be solvable by homotopy continuation methods, which we illustrate in several examples.

I. INTRODUCTION

Let

\[c = (c_0, c_1, \ldots, c_n) \] (1)

a sequence (for simplicity, taken to be real) that is positive in the sense that

\[T_n = \begin{bmatrix} c_0 & c_1 & \cdots & c_n \\ c_1 & c_0 & \cdots & c_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ c_n & c_{n-1} & \cdots & c_0 \end{bmatrix} > 0. \]

Given a positive sequence (1), the rational covariance extension problem – or the covariance extension problem with degree constraint – amounts to finding a pair \((a, b)\) of Schur polynomials\(^1\)

\[a(z) = z^n + a_1 z^{n-1} + \cdots + a_n \] (2a)

\[b(z) = z^n + b_1 z^{n-1} + \cdots + b_n \] (2b)

satisfying the interpolation condition

\[\frac{b(z)}{a(z)} = \frac{1}{2} \frac{c_0 + c_1 z^{-1} + \cdots + c_n z^{-n} + O(z^{-n-1})}{a(z)} \] (3)

and the positivity condition

\[\frac{1}{2} \left[a(z)b(z^{-1}) + b(z)a(z^{-1}) \right] > 0 \text{ on } \mathbb{T}, \] (4)

\(\mathbb{T} \) being the unit circle. Then there is a Schur polynomial

\[\sigma(z) = z^n + \sigma_1 z^{n-1} + \cdots + \sigma_n \] (5)

such that

\[\frac{1}{2} \left[a(z)b(z^{-1}) + b(z)a(z^{-1}) \right] = \rho^2 \sigma(z) \sigma(z^{-1}) \] (6)

for some positive normalizing coefficient \(\rho \), and

\[\text{Re} \left\{ \frac{b(e^{i\theta})}{a(e^{i\theta})} \right\} = \left| \frac{\sigma(e^{i\theta})}{\rho} \right|^2. \] (7)

Georgiou [12], [13] raised the question whether there exists a solution for each choice of \(\sigma \) and answered this question in the affirmative. He also conjectured that this assignment is unique. This conjecture was proven in [6] in a more general context of well-posedness.

The question of actually computing the unique solution to the covariance extension problem with degree constraint was first addressed in a constructive way in [7] (also, see [8]) in the context of convex optimization.

This optimization approach completely superseded a first attempt, proposed in [5], to set up a paradigm for computation. In fact, in [5] we introduced a nonstandard matrix Riccati equation – the Covariance Extension Equation (CEE) – the positive semidefinite solutions of which parameterize the solution set of the rational covariance extension problem. In [1] we provided an algorithm for solving this equation based on homotopy continuation. The purpose of this paper is to revisit this topic along the lines of [1]. Although the CEE approach does not seem to offer any computational advantage to, e.g., [11], it does provide some additional insights into such issues as positive degree [5], [16], [10] and model reduction, since the rank of the solution matrix coincides with the degree of the interpolant.

II. THE COVARIANCE EXTENSION EQUATION

For simplicity, we normalize by taking \(c_0 = 1 \). Motivated by the rational covariance extension problem, we form the following \(n \) vectors

\[\sigma = \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_n \end{bmatrix}, \quad h = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \] (8a)

and \(n \times n \) matrix

\[\Gamma = \begin{bmatrix} -\sigma_1 & 1 & 0 & \cdots & 0 \\ -\sigma_2 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\sigma_{n-1} & 0 & 0 & \cdots & 1 \\ -\sigma_n & 0 & 0 & \cdots & 0 \end{bmatrix}. \] (8b)

Christopher I. Byrnes is with Washington University, St. Louis, MO, USA, chrisbyrnes@seas.wustl.edu

Giovanna Fanizza is with the Department of Mathematics, Division of Optimization and Systems Theory, Royal Institute of Technology, 100 44 Stockholm, Sweden, alq@math.kth.se

Anders Lindquist is with the Department of Mathematics, Division of Optimization and Systems Theory, Royal Institute of Technology, 100 44 Stockholm, Sweden, alq@math.kth.se

This research was supported by grants from AFOSR, NSF, VR, and the Göran Gustafsson Foundation.

\(^1\)A Schur polynomial is a (monic) polynomial with all its roots in the open unit disc.
Defining \(u_1, u_2, \ldots, u_n \) via

\[
\frac{z^n}{z^n + c_1 z^{n-1} + \cdots + c_n} = 1 - u_1 z^{-1} - u_2 z^{-2} - \ldots
\]

we also form

\[
U = \begin{bmatrix}
0 & u_1 & 0 \\
u_1 & 0 & u_2 \\
0 & \vdots & \ddots \\
u_{n-1} & u_{n-2} & \cdots & u_1 & 0
\end{bmatrix}.
\]

We shall also need the function \(g : \mathbb{R}^{n \times n} \to \mathbb{R}^n \) defined by

\[
g(P) = u + U \sigma + U \Gamma Ph.
\]

From these quantities, in [5], we formed the Riccati-like matrix equation

\[
P = \Gamma(P - Phh'P)\Gamma' + g(P)g(P)',
\]

which we sought to solve in the space of positive semi-definite matrices satisfying the additional constraint

\[
h'hPh < 1,
\]

where \(\cdot' \) denotes transposition. We refer to this equation as the covariance extension equation (CEE).

To this end, define the semialgebraic sets

\[
X = \{(c, \sigma) \mid T_n > 0, \ \sigma(z) \text{ is a Schur polynomial}\}
\]

and

\[
Y = \{ P \in \mathbb{R}^{n \times n} \mid P \geq 0, \ h'hPh < 1 \}.
\]

On \(X \times Y \) we define the rational map

\[
F(c, \sigma, P) = P - \Gamma(P - Phh'P)\Gamma' - g(P)g(P)',
\]

Of course its zero locus

\[
Z = F^{-1}(0) \subset X \times Y
\]

is the solution set to the covariance extension equations. We are interested in the projection map restricted to \(Z \)

\[
\pi_X(c, \sigma, P) = (c, \sigma).
\]

For example, to say that \(\pi_X \) is surjective is to say that there is always a solution to CEE, and to say that \(\pi_X \) is injective is to say that solutions are unique. One of the main results of [1] is the following, which, in particular, implies that CEE has a unique solution \(P \in Y \) for each \((c, \sigma) \in X\) [5, Theorem 2.1].

Theorem 1: The solution set \(Z \) is a smooth semialgebraic manifold of dimension \(2n \). Moreover, \(\pi_X \) is a diffeomorphism between \(Z \) and \(X \).

In particular the map \(\pi_X \) is smooth with no branch points and every smooth curve in \(X \) lifts to a curve in \(Z \). These observations imply that the homotopy continuation method will apply to solving the covariance extension equation [2].

The proof of Theorem 1 is based on the following result, found in [5]. Here \(a \) and \(b \) are the \(n \)-vectors \(a := (a_1, a_2, \ldots, a_n) \) and \(b := (b_1, b_2, \ldots, b_n) \) defined via (2).

Remark 3: Our proof, together with the results in [6], shows more. Namely, that \(Z \) is an analytic manifold and that \(\pi_X \) is an analytic diffeomorphism with an analytic inverse.

Theorem 2: There is a one-to-one correspondence between symmetric solutions \(P \) of the covariance extension equation (12) such that \(h'hPh < 1 \) and \(P \) pairs of monic polynomials (2a)-(2b) satisfying the interpolation condition (3) and the positivity condition (4). Under this correspondence

\[
a = (I - U)(\Gamma Ph + \sigma) - u,
\]

\[
b = (I + U)(\Gamma Ph + \sigma) + u,
\]

\[
\rho = (1 - h'hPh)^{1/2},
\]

and \(P \) is the unique solution of the Lyapunov equation

\[
P = JPJ' - \frac{1}{2}(ab' + ba') + \rho^2 \sigma \sigma',
\]

is the upward shift matrix. Moreover the following conditions are equivalent

1) \(P \geq 0 \)
2) \(a(z) \) is a Schur polynomial
3) \(b(z) \) is a Schur polynomial

and, if they are fulfilled,

\[
\deg v(z) = \text{rank } P.
\]

We can now prove Theorem 1. Let \(\mathcal{P}_n \) be the space of pairs \((a, b)\) whose quotient is positive real. Clearly, the mapping

\[
f : \mathcal{P}_n \to X,
\]

sending \((a, b)\) to the corresponding \((c, \sigma)\), is smooth. Our main result in [6] asserts that \(f \) is actually a diffeomorphism. In particular, for each positive sequence (1) and each monic Schur polynomial (5), there is a unique pair of polynomials, \((a, b)\), satisfying (3) and (4), and consequently \((a, b)\) solves the rational covariance extension problem corresponding to \((c, \sigma)\). Moreover, by Theorem 2, there is a unique corresponding solution to the covariance extension equation, which is positive semi-definite.

Since \(J \) is nilpotent, the Lyapunov equation (15) has a unique solution, \(P \), for each right hand side of equation (15). Moreover, the right hand side is a smooth function on \(X \) and, using elementary methods from Lyapunov theory, we conclude that \(P \) is also smooth as a function on \(X \). As the graph in \(X \times Y \) of a smooth mapping defined on \(X \), \(Z \) is a smooth manifold of dimension \(2n = \dim X \). Moreover, this mapping has the smooth mapping \(\pi_X \) as its inverse. Therefore, \(\pi_X \) is a diffeomorphism.
III. RATIONAL COVARIANCE EXTENSION AND THE CEE

In [5] we showed that, for any \((c, \sigma) \in \mathcal{X}\), CEE has a unique solution \(P \in \mathcal{Y}\) and that the unique solution corresponding to \(\sigma\) to the rational covariance extension problem is given by

\[
a = (I - U)(\Gamma P_h + \sigma) - u, \quad (18a)
\]
\[
b = (I + U)(\Gamma P_h + \sigma) + u. \quad (18b)
\]

Clearly the interpolation condition (3) can be written

\[
b = 2c + (2C_n - I)a, \quad (19)
\]

where

\[
c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}, \quad C_n = \begin{bmatrix} 1 & c_1 & 1 \\ c_1 & 1 & \vdots \\ \vdots & \vdots & 1 \\ c_{n-1} & c_{n-2} & c_{n-3} & \ldots & 1 \end{bmatrix}.
\]

Using the fact that \(C_n u = c\) and \(C_n(I - U) = I\), it was shown in [5] that (19) can be written

\[
a = \frac{1}{2}(I - U)(a + b) - u. \quad (20)
\]

For a fixed \((c, \sigma) \in \mathcal{X}\), let \(H : \mathcal{Y} \to \mathbb{R}^{n \times n}\) be the map sending \(P\) to \(F(c, \sigma, P)\), and let

\[
dH(P; Q) := \lim_{t \to 0} \frac{H(P + tQ) - H(P)}{t}
\]

be the derivative in the direction \(Q = Q^t\). A key property needed in the homotopy continuation solution of the CEE is the fact that this derivative is full rank.

Proposition 4: Given \((c, \sigma) \in \mathcal{X}\), let \(P \in \mathcal{Y}\) be the corresponding solution of CEE. Then, if \(dH(P; Q) = 0\), \(Q = 0\).

Proof: Suppose that \(dH(P; Q) = 0\) for some \(Q\). Then

\[
H(P) + \lambda dH(P; Q) = 0
\]

for any \(\lambda \in \mathbb{R}\). Since

\[
dH(P; Q) = Q - \Gamma Q \Gamma' + \Gamma Ph'h \Gamma'Q' + \Gamma Q h'h \Gamma'P' - g(P)h'Q'U - UTQ'h(g(P)'),
\]

this can be written

\[
H(P_\lambda) = \lambda^2 R(Q), \quad (22)
\]

where \(P_\lambda := P + \lambda Q\) and

\[
R(Q) := 2\Gamma Q h'h \Gamma'Q' - 2U T Q h'h \Gamma'Q'U'.
\]

Proceeding as in the proof of Lemma 4.6 in [5], (22) can be written

\[
P_\lambda = J P_\lambda J' - \frac{1}{2}(a_\lambda b_\lambda' + b_\lambda a_\lambda') + \rho_\lambda^2 \sigma \sigma' - \lambda^2 R(Q), \quad (23)
\]

where

\[
a_\lambda = (I - U)(\Gamma P_h + \sigma) - u, \quad (24a)
\]
\[
b_\lambda = (I + U)(\Gamma P_h + \sigma) + u, \quad (24b)
\]

\[\rho_\lambda = (1 - h'P_h h)^{1/2}. \quad (24c)\]

Observe that

\[
a_\lambda = \frac{1}{2}(I - U)(a_\lambda + b_\lambda) - u, \quad (25)
\]

and hence \((a_\lambda, b_\lambda)\) satisfies the interpolation condition (20), or, equivalently, (3), for all \(\lambda \in \mathbb{R}\).

Multiplying (23) by \(z^{j-i} = z^{n-i}z^{-(n-j)}\) and summing over all \(i, j = 1, 2, \ldots, n\), we obtain

\[
\frac{1}{2}\left[a_\lambda(z)b_\lambda(z^{-1}) + b_\lambda(z)a_\lambda(z^{-1})\right]
\]

again along the calculations of the proof of Lemma 4.6 in [5]. Since \(\sigma(z)\sigma(z^{-1}) > 0\) on \(\mathbb{T}\),

\[
\rho_\lambda^2 \sigma(z)\sigma(z^{-1}) - \lambda^2 \sum_{i=1}^{n} \sum_{j=1}^{n} R_{ij}(Q)z^{j-i} > 0 \text{ on } \mathbb{T}
\]

for \(|\lambda|\) sufficiently small. Then there is a Schur polynomial \(\sigma_\lambda\) and a positive constant \(\rho_\lambda\) such that

\[
\rho_\lambda^2 \sigma_\lambda(z)\sigma_\lambda(z^{-1}) = \rho_\lambda^2 \sigma(z)\sigma(z^{-1}) - \lambda^2 \sum_{i=1}^{n} \sum_{j=1}^{n} R_{ij}(Q)z^{j-i}.
\]

Therefore,

\[
\frac{1}{2}\left[a_\lambda(z)b_\lambda(z^{-1}) + b_\lambda(z)a_\lambda(z^{-1})\right] = \rho_\lambda^2 \sigma_\lambda(z)\sigma_\lambda(z^{-1}) \quad (26)
\]

for \(|\lambda|\) sufficiently small.

Now recall that \(a_0 = a\) and \(b_0 = b\) are Schur polynomials and that the Schur region is open in \(\mathbb{R}^n\). Hence there is an \(\varepsilon > 0\) such that \(a_\varepsilon(z), a_{-\varepsilon}(z), b_\varepsilon(z)\) and \(b_{-\varepsilon}(z)\) are also Schur polynomials and (26) holds for \(\lambda = \pm \varepsilon\).

Consequently, \((a_\varepsilon, b_\varepsilon)\) and \((a_{-\varepsilon}, b_{-\varepsilon})\) both satisfy the interpolation condition (3) and the positivity condition (6) corresponding to the same \(\sigma := \sigma_\varepsilon = \sigma_{-\varepsilon}\). Therefore, since the solution to the rational covariance extension problem corresponding to \(\sigma\) is unique, we must have \(a_\varepsilon = a_{-\varepsilon}\) and \(b_\varepsilon = b_{-\varepsilon}\), and hence in view of (23), \(P_\varepsilon = P_{-\varepsilon}\); i.e., \(Q = 0\), as claimed.

IV. REFORMULATION OF THE COVARIANCE EXTENSION EQUATION

Solving the covariance extension equation (12) amounts to solving \(\frac{1}{2}n(n - 1)\) nonlinear scalar equations, which number grows rapidly with increasing \(n\). As in the theory of fast filtering algorithms [14], [15], we may replace these equations by a system of only \(n\) equations. In fact, setting

\[
p = Ph \quad (27)
\]

the covariance extension equation can be written

\[
P - \Gamma P \Gamma' = -\Gamma pp' \Gamma' + (u + U \sigma + UT p)(u + U \sigma + UT p)',
\]

(28)

If we could first determine \(p\), \(P\) could be obtained from (28), regarded as a Lyapunov equation. We proceed to doing precisely this.
It follows from Theorem 2 that (28) may also be written
\[P = JPJ' - \frac{1}{2}(ab' + ba') + \rho^2\sigma', \] (29)
with \(a, b\) and \(\rho\) given by (14). Multiplying (29) by \(z^{j-i} = z^{n-i} - (n-j)\) and summing over all \(i, j = 1, 2, \ldots, n\), we obtain precisely (4), which in matrix form becomes
\[S(a) \begin{bmatrix} 1 \\ b \end{bmatrix} = 2\rho^2 \begin{bmatrix} d \\ \sigma_n \end{bmatrix}, \] (30)
or, symmetrically,
\[S(b) \begin{bmatrix} 1 \\ a \end{bmatrix} = 2\rho^2 \begin{bmatrix} d \\ \sigma_n \end{bmatrix}, \] (31)
where \(a \rightarrow S(a)\) is the matrix function
\[
\begin{bmatrix}
1 & \ldots & a_{n-1} & a_n \\
a_1 & \ldots & a_n & 1 \\
\vdots & \ddots & \vdots & \ddots \\
a_n & & \ldots & 1
\end{bmatrix}
\]
and
\[d = \begin{bmatrix} 1 + \sigma_1^2 + \sigma_2^2 + \cdots + \sigma_n^2 \\
\sigma_1 + \sigma_1\sigma_2 + \sigma_{n-1}\sigma_n \\
\sigma_2 + \sigma_1\sigma_3 + \sigma_{n-2}\sigma_n \\
\vdots \\
\sigma_{n-1} + \sigma_1\sigma_n \\
\end{bmatrix}. \] (32)
Inserting (14) and (27) in (30) yields
\[S(a(p)) \begin{bmatrix} 1 \\ b(p) \end{bmatrix} = 2(1 - h'p)d, \] (33)
where
\[
a(p) = (I - U)(\Gamma p + \sigma) - u, \] (34a)
\[
b(p) = (I + U)(\Gamma p + \sigma) + u \] (34b)
are functions of \(p\). More precisely, (33) are \(n + 1\) equations in the \(n\) unknown \(p\). However, from (14) we have
\[
\frac{1}{2}(a_n + b_n) = \rho^2\sigma_n,
\]
which is precisely the last equation in (30). Hence (33) is redundant and can be deleted to yield
\[ES(a(p)) \begin{bmatrix} 1 \\ b(p) \end{bmatrix} = 2(1 - h'p)d, \] (35)
where \(E\) is the \(n \times (n + 1)\) matrix
\[E = \begin{bmatrix} I_n & 0 \end{bmatrix}. \] (36)
These \(n\) equations in \(n\) unknowns \(p_1, p_2, \ldots, p_n\) clearly has a unique solution \(\hat{p}\), for CEE has one.

V. HOMOTOPY CONTINUATION

Suppose that \((c, \sigma) \in X\). To solve the corresponding covariance extension equation
\[P = \Gamma(P - Ph'h')\Gamma' + g(P)g(P)' \] (37)
for its unique solution \(\hat{P}\), we first observe that the solution is particularly simple if \(c = c_0 = 0\). Then \(u = 0, U = 0\) and (37) reduces to
\[P = \Gamma(P - Ph'h')\Gamma' \] (38)
having the unique solution \(P = 0\) in \(Y\). Consider the deformation \(c(\nu) = \nu c, \quad \nu \in [0, 1]\).

Clearly, \((c(\nu), \sigma) \in X\), and consequently the equation
\[H(P, \nu) := P - \Gamma(P - Ph'h')\Gamma' - g(P, \nu)g(P, \nu)' = 0, \] (39)
where
\[g(P, \nu) = u(\nu) + U(\nu)\sigma + U(\nu)\Gamma Ph \]
with
\[U(\nu) = \begin{bmatrix} 1 \\ \nu c_1 \\ \nu c_2 \\ \vdots \\ \nu c_{n-1} \end{bmatrix}, \]
and
\[U(\nu) = \begin{bmatrix} 0 \\ u_1(\nu) \\ u_2(\nu) \\ \vdots \\ u_{n-1}(\nu) \end{bmatrix}, \]
has a unique solution \(\hat{P}(\nu)\) in \(Y\).

The function \(H : Y \times [0, 1] \rightarrow \mathbb{R}^{n \times n}\) is a homotopy between (37) and (38). In view of Theorem 1, the trajectory \(\{\hat{P}(\nu)\}^1_{\nu=0}\) is continuously differentiable and has no turning points or bifurcations. Consequently, homotopy continuation can be used to obtain a computational procedure. However, the corresponding ODE will be of dimension \(O(n^2)\). Therefore, it is better to work with the reduced equation (35), which yields an ODE of order \(n\).

To this end, setting
\[V := \{p \in \mathbb{R}^n \mid p = Ph, P \in Y\}, \]
consider instead the homotopy \(G : V \times [0, 1] \rightarrow \mathbb{R}^n\) defined by
\[G(p, \nu) := ES(a(p)) \begin{bmatrix} 1 \\ b(p) \end{bmatrix} - 2(1 - h'p)d, \]
where \(a(p)\) and \(b(p)\) are given by (34). *A fortiori* the corresponding trajectory \(\{\hat{p}(\nu)\}^1_{\nu=0}\) is continuously differentiable and has no turning points or bifurcations. Differentiating
\[G(p, \nu) = 0 \]
with respect to \(\nu \) yields

\[
ES(a) \begin{bmatrix} 0 \\ b \end{bmatrix} + ES(b) \begin{bmatrix} 0 \\ a \end{bmatrix} + 2h'p_0d = 0,
\]

where dot denotes derivative and

\[
\dot{a} = (I - U) \Gamma \dot{p} - \dot{U}(\Gamma p + \sigma) - \dot{u},
\]

\(\dot{b} = (I + U) \Gamma \dot{p} + \dot{U}(\Gamma p + \sigma) + \dot{u}, \)

or, which is the same,

\[
ES \left(\frac{a + b}{2} \right) \begin{bmatrix} 0 \\ \Gamma \dot{p} \end{bmatrix} - ES \left(\frac{b - a}{2} \right) \begin{bmatrix} 0 \\ U \Gamma \dot{p} \end{bmatrix} + dt' \dot{p} = 0.
\]

In view of (34), this may be written

\[
\left[\dot{S}(\Gamma p + \sigma) - \dot{S}(U \Gamma p + U \sigma + u) + dh' \right] \dot{p} = \dot{S}(U \Gamma p + U \sigma + u)(U \Gamma p + U \sigma + \dot{u}),
\]

where \(\dot{S}(a) \) is the \(n \times n \) matrix obtained by deleting the first column and the last row in \(S(a) \). Hence we have proven the following theorem.

Theorem 5: The differential equation

\[
\dot{p} = \left[\dot{S}(\Gamma p + \sigma) - \dot{S}(U \Gamma p + U \sigma + u) + dh' \right] \dot{p} = \dot{S}(U \Gamma p + U \sigma + u)(U \Gamma p + U \sigma + \dot{u}),
\]

where \(\dot{S}(a) \) is the \(n \times n \) matrix obtained by deleting the first column and the last row in \(S(a) \). Hence we have proven the following theorem.

\[
P - \Gamma P' = -\Gamma \dot{p}(1) \dot{p}(1) + (u + U \sigma + U \Gamma \dot{p}(1))(u + U \sigma + U \Gamma \dot{p}(1))',
\]

where \(U = U(1) \) and \(u = u(1) \), is also the unique solution of the covariance extension equation (12).

The differential equation can be solved by methods akin to those in [4].

VI. SIMULATIONS

We illustrate the method described above by two examples, in which we use covariance data generated in the following way. Pass white noise through a given stable filter

\[
\text{white noise} \xrightarrow{w} w(z) \xrightarrow{y}
\]

with a rational transfer function

\[
w(z) = \frac{\hat{\sigma}(z)}{\hat{\alpha}(z)}
\]

of degree \(\hat{n} \), where \(\hat{\sigma}(z) \) is a (monic) Schur polynomial. This generates a time series

\[
y_0, y_1, y_2, y_3, \ldots, y_N,
\]

from which a covariance sequence is computed via the biased estimator

\[
\hat{c}_k = \frac{1}{N} \sum_{t=k+1}^{N} y_t y_{t-k},
\]

which actually provides a sequences with positive Toeplitz matrices. By setting \(c_k := \hat{c}_k/c_0 \) we obtained a normalized covariance sequence

\[
1, c_1, c_2, \ldots, c_n, \ n \geq \hat{n}.
\]

Example 1: Detecting the positive degree

Given a transfer function \(w(z) \) of degree \(\hat{n} = 2 \) with zeros at \(0.37 e^{\pm \pi} \) and poles at \(0.82 e^{\pm 1.32\pi} \), estimate the covariance sequence (43) for \(n = 2, 3, 4, 5, 6 \). Given these covariance sequences, we apply the algorithm of this paper to compute the \(n \times n \) matrix \(P \), using the zero polynomial \(\sigma(z) = z^{n-\hat{n}} \hat{\sigma}(z) \), thus keeping the trigonometric polynomial \(|\sigma(e^{i\theta})|^{2} \) constant. For each value of \(n \) 100 Monte Carlo simulations are performed, and the average of the singular values of \(P \) are computed and shown in Table 1.

For each \(n > 2 \), the first two singular values are considerably larger than the others. Indeed, for all practical purposes, the singular values below the line in Table 1 are zero. Therefore, as the dimension of \(P \) increases, its rank remains close to 2. This is to say that the positive degree \([5] \) of the covariance sequence (43) is approximately 2 for all \(n \). In Fig. 2 the spectral density for \(n = 2 \) is plotted together with those obtained by taking \(n > 2 \), showing no major difference.

![Fig. 1](image-url)

The given spectral density (\(n = 2 \)) and the estimated one for \(n = 4, 5, 6 \).

Next, for \(n = 4 \), we compute the solution of the CEE with

\[
\sigma(z) = \hat{\sigma}(z)(z - 0.6 e^{1.78i})(z - 0.6 e^{-1.78i}).
\]
As expected, the rank of the 4×4 matrix solution P of the
CEE, is approximately 2, and, as seen in Fig. 3, $\sigma(z)$ has
roots that are very close to cancelling the zeros $0.6e^{\pm 1.78i}$
of $\sigma(z)$.

![Pole-Zero Map](image1)

Fig. 2.
Spectral zeros (o) and the corresponding poles (x) for $n = 4$.

Example 2: Model reduction

Next, given a transfer function $w(z)$ of degree 10 with zeros $0.99e^{\pm 1.78i}, 0.97e^{\pm 2.7i}$ and poles $e^{\pm 2.09i}, e^{\pm 1.32i}, e^{\pm 0.83i}$, as in Fig. 3, we generate data (41) and a corresponding covariance sequence (43). Clearly, there is no zero-pole cancellation.

![Pole-Zero Map](image2)

Fig. 3.
Zeros (o) and the corresponding poles (x) of $w(z)$.

Nevertheless, the rank of the 10×10 matrix solution P
of CEE is close to 6. In fact, its singular values are equal to

<table>
<thead>
<tr>
<th>Singular Value</th>
<th>1.1911</th>
<th>0.1079</th>
<th>0.0693</th>
<th>0.0627</th>
<th>0.0578</th>
<th>0.0434</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0018</td>
<td>0.0012</td>
<td>0.0009</td>
<td>0.0008</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The last four singular values are quite small, establishing
an approximate rank of 6. The estimated spectral density
($n = 10$) is depicted in Fig. 4 together with the theoretical
spectral density.

![Gain (dB)](image3)

Fig. 4.
$n = 10$ estimate of spectral density together with the true
spectral density.

Clearly six zeros are dominant, namely

$0.98e^{\pm i}, 0.99e^{\pm 1.78i}, 0.97e^{\pm 2.7i}$,

and these can be determined from the estimated spectral
density in Fig. 4. Therefore applying our algorithm to the
reduced covariance sequence c_1, \ldots, c_6 using the six dom-
inant zeros to form $\sigma(z)$, we obtain a 6×6 matrix solution P
of CEE and a corresponding reduced order system with poles
and zeros as in Fig. 5. Comparing with Fig. 3, we see that the
poles are located in quite different locations. Nevertheless,
the corresponding reduced-order spectral estimate, depicted
in Fig. 6, is quite accurate.

![Gain (dB)](image4)

Fig. 5.
Zeros (o) and poles (x) of the reduced-order system.
Reduced-order estimate of spectral density \((n = 6)\) together with that of \(n = 10\) and the true spectral density.

REFERENCES

