Robust design Criteria for Integral Sliding Surfaces

Fernando Castaños and Leonid Fridman

Abstract— The robustness properties of integral sliding mode controllers are studied. This note shows how to select the projection matrix in such a way that the euclidean norm of the resulting perturbation is minimal. It is also shown that when the minimum is attained, the resulting perturbation is not amplified. This selection is particularly useful if integral sliding mode control is to be combined with other methods to further robustify against unmatched perturbations. $H_{\infty}$ is taken as a special case. Simulations support the general analysis and show the effectiveness of this particular combination.

I. INTRODUCTION

Sliding mode control [1] is a robust technique, well known for its ability to withstand external disturbances and model uncertainties satisfying the matching condition, that is, perturbations that enter the state equation at the same point as the control input (e.g. the case of completely actuated systems). Sliding mode control (SMC) has other advantages as well, like ease of implementation and reduction in the order of the state equation. The latter property clearly simplifies the control design problem.

Roughly speaking, the conventional SMC design methodology comprises two steps: first design a sliding manifold such that the system’s motion along the manifold meets the specified performance; second, design a (discontinuous) control law, such that the system’s state is driven towards the manifold and stays there for all future time, regardless of disturbances or uncertainties. The resulting controller, although robust against matched perturbations, has some disadvantages. Among them we have: the need to measure the whole state; the lack of robustness against unmatched perturbations; and the reaching phase, i.e. an initial period of time in which the system has not yet reached the sliding manifold and it is sensitive, even to perturbations satisfying the matching condition.

Several strategies have been proposed to solve these problems. See for example [2], [3], [4], [5], [6] where the need to measure the whole state is relaxed. To address the issue of robustness against unmatched perturbations the main strategy has been the combination of SMC with other robust techniques, e.g. [7], [8], [9].

In order to solve the reaching phase problem, an integral sliding manifold was proposed [10], [11]. The basic idea is to define the control law as the sum of a continuous nominal control and a discontinuous control. The nominal control

is responsible for the performance of the nominal system, i.e. without perturbations; and the discontinuous control is used to reject the perturbations. Finally, an integral term is included in the sliding manifold. The integral term allows to define the manifold in such a way that the system trajectories start in the manifold right at the beginning of the process. The later means that the closed-loop system is robust since the first time instant.

A. Motivation

To solve the problems of the reaching phase and of the robustness against unmatched perturbations simultaneously (e.g. in the case of sub-actuated systems), the main idea—as in the conventional sliding mode case—has been the combination of integral sliding mode control and other robust techniques. The particular combination depends of course on the specific nature of each problem, and each particular combination has a set of details that needs to be properly addressed. In the case of multi-model uncertain systems [12], [13] a multi-model decomposition becomes the essential problem; in the case of nonlinear systems with unknown unmatched uncertainties [14] Lyapunov’s direct method becomes a key feature; if integral sliding mode control is to be combined with LMI based control techniques, the selection of the equivalent matched dynamics would be the main issue. For systems with time delay the essential problem is that the nominal control should contain a delayed component [15].

In all of the above mentioned cases the selection of the projection matrix plays a key role in the design of the sliding manifold. In this note we address the need for a universal choice of such matrix.

B. Main Contribution

In this work we show the following:

- At an integral sliding mode, the discontinuous control completely compensates the matched perturbations, but the unmatched ones are replaced by another (which we shall call equivalent) disturbance.
- There is a set of projection matrices for which the norm of the equivalent disturbance is minimal.
- For any projection matrix in this set, the gain of the discontinuous action is also minimal and the equivalent disturbance equals the unmatched one, i.e. there is no amplification of the unmatched disturbance.

All the above means that an integral sliding mode controller, if improperly designed, while eliminating the matched perturbations, could lead to amplification of the unmatched ones.

The main results are general and can be applied whenever ISMC is to be combined with other techniques to robustify
against unmatched disturbances. In this note $\mathcal{H}_\infty$ control is taken as a specific case. Simulations support the validity of the analysis developed and show that the performance of an $\mathcal{H}_\infty$ controller can be increased by this particular combination.

C. Paper’s Structure

In the next section we present a short review of ISMC and state the problem formally. In section III the problem stated is solved and different interpretations are given to the results. In section IV we analyze the combination of ISM with $\mathcal{H}_\infty$ control. The conclusions are in section V.

II. PROBLEM STATEMENT

A. Preliminaries, ISMC

Consider a nonlinear system of the form

$$\dot{x} = f(x, t) + Bu(x, t) + \phi(x, t),$$

(1)

where $x \in \mathbb{R}^n$ is the state, $t \in \mathbb{R}$ represents time, $u(x, t) \in \mathbb{R}^m$ is the control action and $\phi(x, t)$ is a perturbation due to model uncertainties or external disturbances. The following assumptions are made:

Assumption 1: $\text{rank } B = m$.

Assumption 2: The actual value of $\phi(x, t)$ is of course unknown, but it is bounded by a known function $\phi(x, t) \in \mathcal{L}_\infty$, i.e. $\|\phi(x, t)\| \leq \bar{\phi}(x, t)$ for all $x$ and $t$.

In the ISMC approach, a law of the form

$$u(x, t) = u_0(x, t) + u_1(x, t)$$

is proposed. The nominal control $u_0(x, t)$ is responsible for the performance of the nominal system; $u_1(x, t)$ is a discontinuous control action that rejects the perturbations by ensuring the sliding motion. The sliding manifold is defined by the set $\{x \mid s(x, t) = 0\}$, with

$$s(x, t) = G [x(t) - x(t_0) - \int_{t_0}^{t} (f(x, \tau) + Bu_0(x, \tau))d\tau].$$

(2)

$G \in \mathbb{R}^{m \times n}$ is a projection matrix which must satisfy:

Assumption 3: The matrix product $GB$ is invertible.

The term

$$x(t_0) + \int_{t_0}^{t} (f(x, \tau) + Bu_0(x, \tau))d\tau$$

in (2) can be thought as a trajectory of the system in the absence of perturbations and in the presence of the nominal control $u_0$, that is, as a nominal trajectory for a given initial condition $x(t_0)$. With this remark in mind, $s(x, t)$ can be considered a penalizing factor of the difference between the actual and the nominal trajectories, projected along $G$ (hence the name projection matrix, not to be confused with a projection operator). Notice that at $t = t_0$, $s(x, t) = 0$, so the system always starts at the sliding manifold.

The discontinuous control $u_1$ is usually selected as

$$u_1(x, t) = -\rho(x, t) \frac{\langle GB \rangle^T s(x, t) \rangle}{\|\langle GB \rangle^T s(x, t)\|^2},$$

(3)

where $\rho(x, t)$ is a gain high enough to enforce the sliding motion. To simplify notation we will omit some of the functions’ arguments from now on.

B. Analysis of the Unmatched Perturbation

Before we analyse the effect of the unmatched perturbation it is convenient to introduce the following proposition

Proposition 1: For any matrix $B \in \mathbb{R}^{n \times m}$ satisfying Assumption 1, the identity

$$I_n = BB^+ + B^+ B^\bot$$

holds, where $B^+$ is understood as the left inverse of $B$, that is $B^+ = (B^T B)^{-1}B^T$ and the columns of $B^\bot \in \mathbb{R}^{n \times (n-m)}$ span the null space of $B^T$.

Proof: Consider a matrix

$$P = \begin{bmatrix} B^+ \\ B^\bot \end{bmatrix}.$$ 

This matrix is clearly non-singular since it’s inverse is given by $P^{-1} = [B \ B^\bot]$, that is

$$P \cdot P^{-1} = \begin{bmatrix} B^+B & 0 \\ 0 & B^\bot B^\bot \end{bmatrix} = \begin{bmatrix} I_n & 0 \\ 0 & I_{n-m} \end{bmatrix}.$$ 

By reversing the order of the operands we get $P^{-1} \cdot P = BB^+ + B^\bot B^\bot = I_n$. ■

Now we can project the perturbation $\phi$ into the matched and unmatched spaces

$$\phi = \phi_m + \phi_u \quad \phi_m \triangleq BB^+ \phi \quad \phi_u \triangleq B^\bot B^\bot \phi,$$

where $\phi_m$ and $\phi_u$ are the components that belong to the matched and unmatched spaces respectively.

To determine the motion equations at the sliding manifold we use the equivalent control method [1]. The derivative of $s$ along time is

$$\dot{s} = G [f + B(u_0 + u_1) + BB^+ \phi + B^\bot B^\bot \phi] - G [f + Bu_0] = GB(u_1 + B^+ \phi) + G\phi_u.$$ 

The equivalent control is obtained by solving the equation $\dot{s} = 0$ for $u_{1eq}$

$$u_{1eq} = -B^+ \phi - (GB)^{-1}G\phi_u.$$ 

(4)

Remark 1: In the majority of the papers dealing with SMC, perturbations are assumed to be matched and the term on the far right is usually ignored. By substituting $u_{1eq}$ for $u_1$ in (1) we obtain the sliding dynamics

$$\dot{x}_{eq} = f + B(u_0 - B^+ \phi - (GB)^{-1}G\phi_u) + BB^+ \phi + B^\bot B^\bot \phi$$

$$= f + Bu_0 + [I - (B(GB)^{-1}G] \phi_u.$$ 

(5)

(6)

From the last equation we can draw several conclusions. First, the dynamics at the sliding manifold do not contain the matched perturbation; it has been successfully rejected. Second, with respect to conventional SMC, we have gained some extra degrees of freedom. We can use $u_0$ to stabilize the
nominal system and to treat the unmatched perturbation. The projection matrix $G$ can now be considered a free parameter. Third, the order of the equivalent dynamics is equal to that of the original system, that is, there is no order reduction. This is the “price” we pay in return for the extra degrees of freedom and the elimination of the reaching phase. And fourth, the unmatched perturbation is now multiplied by a matrix

$$\Gamma \triangleq \left[ I - B(GB)^{-1}G \right].$$

Another way to look at this, is that we have traded the original perturbation $\phi_m + \phi_u$, for a new one: $\phi_{\text{eq}} \triangleq \Gamma \phi_u$.

**C. Specific Questions**

Matrix $\Gamma$ is the main concern of this note. We would like to pose two specific questions regarding $\Gamma$:

1) Is there a $G^*$, such that norm of the equivalent perturbation $\phi_{\text{eq}}$ is minimal?

2) Does matrix $\Gamma$ amplify the unmatched perturbation? i.e. is the norm of $\phi_{\text{eq}}$ greater than the norm of $\phi_u$?

These questions make sense whenever we are considering unmatched perturbations and $u_0$ is to be designed with robustness against unmatched uncertainty in mind.

**III. MAIN RESULTS**

In this section we answer the questions formulated in the problem statement and make some comments on the answers.

**Proposition 2:** $B^T$ is a matrix which minimizes the norm of $\phi_{\text{eq}}$, i.e.

$$G^* = B^T = \arg \min_{G \in \mathbb{R}^{m \times n}} \left\| \left[ I - B(GB)^{-1}G \right] \phi_u \right\|_2$$

(*Proof:* Notice first that

$$\left\| \left[ I - B(GB)^{-1}G \right] \phi_u \right\|_2 = \| \phi_u - B \varphi \|_2$$

where $\varphi = (GB)^{-1}G \phi_u$. Thus, problem (7) can be rewritten in the form:

$$G^* = \arg \min_{\varphi \in \mathbb{R}^m} \| \phi_u - B \varphi \|_2,$$

which, according to the Projection theorem [16, p. 51] has $G^* = B^T \phi_u$ as a solution. Making $G = B^T$ we will have:

$$\varphi = (B^T B)^{-1} B^T \phi_u = B^T \phi_u = G^*$$

which implies (7).

**Remark 2:** Since $\phi_u = B^T \phi_u^+$, at $G = B^T$ the product $GB\phi_u$ equals zero and we have $\phi_{\text{eq}} = \phi_u$. The system dynamics at the sliding manifold then becomes

$$\dot{x}_{\text{eq}} = f + Bu_0 + \phi_u.$$  

**IV. EXAMPLE: ISM AND $H_\infty$ CONTROL**

In this section we analyze the specific combination of ISMC and another robust method. The main goal of this section is to support the previous analysis and propositions 2 and 3. For simplicity, we have chosen a linear technique: $H_\infty$ control.
A. Background, $\mathcal{H}_\infty$ control

Within the classical framework, when the full state is available the plants under consideration have the form

$$
\begin{align*}
\dot{x} &= Ax + B_w w + Bu \\
z &= Cx + Du, \quad z \in \mathbb{R}^{n+m}
\end{align*}
$$

where $z$ is an artificial penalty variable, matrices $C$ and $D$ are of appropriate dimension and establish a compromise between the cost associated to the state and the cost of the control used to keep the state within some bounds. The goal is to minimize the $\mathcal{H}_\infty$ norm of the transfer matrix $T_{zw}$ that goes from $w$ to $z$.

The following assumption is typical:

**Assumption 4:** $(A, B)$ is stabilizable, $(C, A)$ is detectable and $D^T[C \ D] = [0 \ I]$.

The first part of assumption 4 is obvious and the second guaranties the boundedness of the state. The last part means that $z$ has no cross weighting between the state and control, and that the control weight matrix is the identity. The latter can be relaxed by a suitable coordinate transformation.

The following theorem (given without proof) is a standard result of $\mathcal{H}_\infty$ control [17].

**Theorem 1 (Doyle et al.):** Given assumption 4, there exist a controller satisfying

$$
\|T_{zw}\|_{\infty} < \gamma
$$

iff there exists a real, symmetric, positive semi-definite matrix $X$ satisfying the Riccati equation

$$
XA + A^T X - X (BB^T - \gamma^{-2} B_w B_w^T) X + CT C = 0. \tag{14}
$$

Moreover, when this condition holds, one such controller is

$$
u = -B^T X x. \tag{15}
$$

In [18], [19] it is shown that the $\mathcal{H}_\infty$ norm in the frequency domain and the (truncated) $\mathcal{L}_2$ induced norm of a linear system in the time domain are equivalent, i.e., if the conditions of Theorem 1 are satisfied, then

$$
\int_{t_0}^T \|z\|^2 \, dt \leq \gamma^2 \int_{t_0}^T \|w\|^2 \, dt \tag{16}
$$

holds for all $T \geq t_0$. This equivalence allows to understand the $\mathcal{H}_\infty$ problem in terms of disturbance attenuation, to generalize the $\mathcal{H}_\infty$ control objective to nonlinear systems and to restate the $\mathcal{H}_\infty$ control problem in the following terms: minimize the system’s performance index, where the performance index $\gamma$, is understood as a truncated $\mathcal{L}_2$ gain.

B. Proposed Methodology

The basic idea is to use an ISMC to reject the matched perturbation and design the nominal control using $\mathcal{H}_\infty$ techniques to attenuate the unmatched one. Suppose that a control is to be designed for system (13). In terms of (1) we have $f(x, t) = Ax$ and $\phi = \bar{B}_w w$. According to (12), the system’s dynamics at the sliding manifold is $\dot{x} = Ax + B^+ B^+ B_w w + Bu_0$, where $\phi_u = B^+ B^+ B_w w$ was used to derive the previous equation. Notice that the discontinuous control $u_1$ is already fixed, so we need to replace $u$ by $u_0$ in the definition of the penalty variable $z$, that is

$$z_0 = Cx + Du_0.$$

The problem now becomes that of finding a minimum $\gamma$ and a semi-definite matrix $X$ that satisfies (14), but with $B_w$ substituted by $B^+ B^+ B_w$.

The control $u_1$ is used to keep the state within some bounds and the cost of it should be taken into account if a comparison with the standard $\mathcal{H}_\infty$ control strategy is to be made, in other words: for comparison purposes the original definition of $z$ should be used. Whether or not the discontinuous control $u_1$ improves the overall performance index is not an easy question to answer, for it depends mainly on the weight $C$ assigned to the state. We can however, make a (rather informal) remark: notice that by orthogonality $D^T[X C X B_w + \bar{B}_w^T \gamma^{-2} B_w B_w^T X] D = \gamma^2 \|Bw\|^2$, so a decrease in the cost of the unmatched disturbance $\|B^+ B^+ B_w w\|^2$ can be relaxed by a suitable coordinate transformation.

We summarize the proposed methodology in the following algorithm:

1) Solve the Riccati equation

$$
XA + A^T X - X (BB^T - \gamma^{-2} B_w B_w^T) X + CT C = 0, \tag{17}
$$

where $\bar{B}_w \triangleq B^+ B^+ B_w$.

2) Set the sliding manifold as

$$
s = B^+ \left[ x(t) - x(t_0) - \int_{t_0}^t (A - BB^T X)x(\tau) \, d\tau \right] \tag{18}
$$

3) and the control as

$$
u = -B^T X x - \rho \frac{s}{\|s\|}, \quad \rho > \|B^+ B_w w\|. \tag{19}
$$

C. Numerical Example

Consider the following LTI system:

$$
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3 \\
\dot{x}_4
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-24 & -50 & -35 & -10
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}
+ \begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_2
\end{bmatrix} + \begin{bmatrix}
0 \\
1
\end{bmatrix} u. \tag{18}
$$

We define the error variable as

$$z_0 = \begin{bmatrix} 5I_4 & 0 \\ C & D \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_0$$

1979
1) $\mathcal{H}_\infty$ control alone: Equation (14) has

$$X = \begin{bmatrix}
116.27 & 200.05 & 120.14 & 7.61 \\
131.54 & 350.85 & 276.52 & 19.21 \\
-0.39 & 95.41 & 208.05 & 16.07 \\
-5.04 & -1.17 & 13.66 & 2.62
\end{bmatrix}$$

as a solution when $\gamma = 7.1$. The resulting controller is then,

$$u = -B^TX_\infty x = -\begin{bmatrix} -5.04 & -1.17 & 13.66 & 2.62 \end{bmatrix} x$$

2) ISMC plus $\mathcal{H}_\infty$: The disturbances are first decomposed as

$$B_w = \begin{bmatrix}
0 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 0
\end{bmatrix} w + \begin{bmatrix}
0 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 0
\end{bmatrix} w.$$

The first part is matched and will be eliminated by the discontinuous control $u_1$; the second is unmatched and will be treated using the continuous control $u_0$, designed using the $\mathcal{H}_\infty$ technique.

The solution to (17) is given by

$$X = \begin{bmatrix}
24.77 & -36.36 & -60.69 & -8.76 \\
-8.37 & -89.89 & -183.66 & -24.26 \\
81.03 & 159.07 & 93.54 & 1.83 \\
5.15 & 10.16 & 5.85 & 1.53
\end{bmatrix},$$

and $\gamma = 5.6$. The nominal control is

$$u_0 = -B^TX_\infty x = -\begin{bmatrix} 5.15 & 10.16 & 5.85 & 1.53 \end{bmatrix} x$$

and the sliding manifold is

$$s(x,t) = B^+\left[x(t) - x(t_0) - \int_{t_0}^{t} (Ax + Bu_0)dt\right].$$

D. Simulation results

Three simulations were carried out. In all cases the system was perturbed by the signal

$$w = \sin(\pi t) [1 -1]^T$$

and the initial conditions were set at the origin. The first simulation was made using the $\mathcal{H}_\infty$ controller. The second, using the combination ‘ISM plus $\mathcal{H}_\infty$’, but with $G$ set different to $B^+$. To illustrate our point, a rather extreme case was used

$$G = 0.5B^+ + 10\sum_{i=1}^{3} B_i$$

where $B_i$ was taken as the $i$th row of $B^+$. The third simulation was made using the optimal value $G = B^+$. The system’s states are shown in Fig. 1.

In the second simulation the gain $\rho$ needed to enforce the sliding mode was obtained using (11) and was set to 35. In the last simulation it was obtained using (10) and was set to 1.5. In both cases the discontinuous control was approximated by

$$u_1 = -35\frac{s}{|s| + 0.0002} \quad \text{and} \quad u_1 = -1.5\frac{s}{|s| + 0.0002}$$

respectively. As shown in Fig. 2, these controls follow closely the equivalent controls obtained in (4). It can be seen, that when the matrix $G$ achieving the minimal norm of the equivalent perturbation is not used, the control acts in the opposite direction, i.e. it’s effect is counter effective.

For comparison purposes, we have in Fig. 3 a plot of $\|z\|_{\mathcal{L}_2}/\|w\|_{\mathcal{L}_2}$ for each controller. When $G$ is selected improperly, the value is increased due to the amplification of $\phi_u$. When $G$ is selected properly, the value is lower than the one obtained by $\mathcal{H}_\infty$ alone.

V. CONCLUSIONS

In this note we analyze the effects that the projection matrix have on the resulting (equivalent) perturbation. In the presence of unmatched disturbances the projection matrix
of an ISM controller should be selected carefully, for the resulting controller could amplify them. Two propositions provide a way for selecting the projection matrix correctly. The proposed parameters ensure that the effect of the unmatched disturbance will not be amplified by the discontinuous control. It is also shown that the discontinuous control cannot attenuate the unmatched disturbances.

The analysis is aimed at combining ISMC with other robust techniques. $H_\infty$ control was selected as a specific case, but other techniques could be used as well. Simulation results support the analysis developed.

REFERENCES


Fig. 3. Actual values of the $L_2$ gains for perturbation (20).


1981