Feedback-Invariant Subspaces in Infinite-Dimensional Systems

Kirsten Morris and Richard Rebarber

Abstract—We consider single-input single-output systems on a Hilbert space X, with infinitesimal generator A, bounded control element b, and bounded observation element c. Let c^\perp be the subspace of X perpendicular to c. We consider the problem of finding the largest feedback-invariant subspace of c^\perp. If b is in c^\perp, and $c \notin D(A^*)$, a largest feedback-invariant subspace does not exist in general.

I. INTRODUCTION

A subspace V is invariant for a linear system if for all initial conditions in V there exists a control that keeps the state in V for all times. If this is the case, the control can be a constant state feedback. Let V^* be the largest feedback invariant subspace. The zeros of the original system are the eigenvalues of the controlled system restricted to V^*. Furthermore, a disturbance can be decoupled from the output if and only if it lies inside a feedback invariant subspace contained in the kernel of the observation operator [14].

In this paper we consider feedback invariance for single-input single-output infinite-dimensional systems with bounded control and observation. Let X be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$. Let A be the infinitesimal generator of a C_0-semigroup $T(t)$ on X. Let b and c be elements of X. Let $U = Y = \mathbb{C}$ and $u(t) \in U$. We consider the following system in X:

$$\dot{x}(t) = Ax(t) + bu(t)$$

with the observation

$$y(t) = Cx(t) := \langle x(t), c \rangle.$$ \hspace{2cm} (1.1)

We sometimes refer to this system as (A, b, c). The transfer function is $G(s)$ where $G(s) = \langle R(s, A)b, c \rangle$.

We denote the kernel of C by

$$c^\perp := \{ x \in X \mid \langle x, c \rangle = 0 \}.$$ \hspace{2cm} (1.2)

When $b \notin c^\perp$, we show that the largest feedback-invariant subspace in c^\perp exists, and is c^\perp itself. We give an explicit representation of a feedback operator K for which c^\perp is $A + bK$-invariant. When $c \notin D(A^*)$, the operator K is not bounded, so semigroup generation of $A + bK$ is not guaranteed.

If $\langle b, c \rangle = 0$ then the theory is quite different. A number of situations may occur, depending on the nature of b and c. In particular, if $c \notin D(A^*)$, then in general no largest feedback-invariant subspace exists. This is in contrast to the finite-dimensional case, where a largest feedback invariant subspace always exists [14]. However, as in the finite-dimensional case, the spectrum of $A + bK$ is identical to the invariant zeros of the system.

This work builds on the results of Curtain and Zwart in the 1980’s, see [3], [16], [17], [18]. In [16], [17] there is a standing assumption that (A, b) is such that $A + bK$ is a generator of a C_0-semigroup for any A-bounded K, which is a strong restriction on b. This paper also extends the results in [1], where it is assumed that $b \in D(A)$, $c \in D(A^*)$ and $\langle b, c \rangle \neq 0$. We remove the restrictions $b \in D(A)$ and $c \in D(A^*)$, and, most significantly, also examine the case where $\langle b, c \rangle = 0$.

We should note that even though in most infinite-dimensional systems analysis the assumption that b and c are in X makes the analysis easier, the zeros for partial differential equations with boundary control and observation (which yields unbounded control and observation operators) is often more easily analyzed, see [11].

II. INVARIANCE CONCEPTS

For $\omega \in \mathbb{R}$, let

$$C_\omega = \{ z \in \mathbb{C} \mid \text{Re } z > \omega \}.$$ \hspace{2cm} (2.1)

Let $R(s, A) = (sI - A)^{-1}$, and let $\omega \in \mathbb{R}$ be such that C_ω is a subset of $\rho(A)$. For $\lambda_0 > \omega$, $R(\lambda_0, A)$ exists as a bounded operator from X into X.

Definition 2.1: A subspace Z of X is feedback invariant if it is closed and there exists an A-bounded feedback K such that $(A + bK)(Z \cap D(A)) \subset Z$.

The operator K is not specified as unique in the above theorem. However, if $b \notin Z$, and there are two operators K_1 and K_2 that are both (A, b)-invariant on Z, then $b(K_1 x - K_2 x) \in Z$ and so $K_1 x = K_2 x$ for all $x \in Z$.

The following result shows that feedback invariance is equivalent to (A, b)-invariance, which is sometimes easier to work with.

Theorem 2.2: [17, Thm.II.26] A closed subspace Z is feedback-invariant if and only if it is (A, b)-invariant, that is,

$$A(Z \cap D(A)) \subseteq Z + \text{span}\{b\}.$$ \hspace{2cm} (2.2)

Theorem 2.3: If $Z \subseteq c^\perp$ is a feedback-invariant subspace and $b \in Z$ then the system transfer function is identically zero.

Proof: Since Z is feedback-invariant,

$$A(Z \cap D(A)) \subset Z + \text{span}\{b\} \subset Z.$$ \hspace{2cm} (2.3)

This implies that Z is A-invariant. This implies that every $z \in Z$ can be written $z = (sI - A)\xi(s)$ where $\xi(s) \in D(A)$ and...
Z [17, Lem. 1.4], and \(s \in [r, \infty) \) for some \(r \in \mathbb{R} \). Since \(b \in Z \), \((sI - A)^{-1}b \in Z \) for all \(s \in [r, \infty) \). Since \(Z \subset c^\perp \), the system transfer function \(G(s) \) is zero for \(s \in [r, \infty) \). Since \(G \) is analytic on \(\rho(A) \), it must be identically zero on \(\rho(A) \). □

III. NICE CASES

If \(b \notin c^\perp \), the largest feedback-invariant subspace contained in \(c^\perp \) is \(c^\perp \).

Theorem 3.1: [9] Suppose \(\langle b, c \rangle \neq 0 \). Define

\[
Kx = -\frac{\langle Ax, c \rangle}{\langle b, c \rangle}, \quad D(K) = D(A),
\]

and define \((A + bK)x = Ax + bKx \) for \(x \in D(A + bK) = D(A) \). Then \((A + bK)(c^\perp \cap D(A)) \subset c^\perp \) and so the largest feedback-invariant subspace in \(c^\perp \) is \(c^\perp \) itself.

Definition 3.2: A closed subspace \(Z \) of \(X \) is **closed-loop invariant** if the closure of \(Z \cap D(A) \) in \(X \) is \(Z \) and there exists an \(A \)-bounded feedback \(K \) such that \((A + bK)(Z \cap D(A)) \subset Z \) and \(A + bK \) generates a \(C_0 \)-semigroup \(T_k \) on \(Z \).

The condition that \((A + bK)(Z \cap D(A)) \subset Z \) allows arbitrary elements of \(X \setminus D(A) \) to be appended to \(Z \). The additional condition that the closure of \(Z \cap D(A) \) is \(Z \) eliminates this ambiguity.

In general, \(A + bK \) does not generate a \(C_0 \)-semigroup. In this case \(c^\perp \) is not closed-loop invariant.

There are many results in the literature that give sufficient conditions for a relatively bounded perturbation of a generator of a \(C_0 \)-semigroup to be the generator of a \(C_0 \)-semigroup. For instance, if \(K \) is an admissible output element [12, Chap. 5], or if \(A \) generates an analytic semigroup [7, Chap. 9, sect. 2.2], then \(A + bK \) generates a \(C_0 \)-semigroup.

Theorem 3.3: [9] In addition to the assumptions of Theorem 3.1, assume that \(A + bK \) generates a \(C_0 \)-semigroup on \(X \). Then it generates a \(C_0 \)-semigroup on \(c^\perp \), hence \(c^\perp \) is closed-loop invariant under \(A + bK \).

If \(\langle b, c \rangle = 0 \), we can still find the largest feedback-invariant subspace in many cases.

We first give a definition of the relative degree of \((A, b, c)\), which is a generalization of the standard finite dimensional definition, see for example [5, pg. 99].

Definition 3.4: \((A, b, c)\) is of relative degree \(n \in \mathbb{Z}^+ \) if

1) the function \((s^nG(s))^{-1}\) is in \(H^\infty(\mathbb{C}) \) for some \(\gamma \in \mathbb{R} \);
2) \(\lim_{s \to -\infty} s^j G(s) = 0 \) for \(j = 1, 2, \ldots, (n-1) \).

In finite dimensions condition (1) in Definition 3.4 is equivalent to

\[
\lim_{s \to -\infty, s \in \mathbb{R}} s^n G(s) \neq 0.
\]

The above definition of relative degree seems to be the most general definition for infinite dimensional systems that guarantees some (limited) regularity of closed loop solutions, see [9].

Define

\[
Z_n = c^\perp \cap (A^*c)^\perp \cap \cdots (A^{n}c)^\perp.
\]

The existence of a largest feedback invariant subspace depends on whether \(c \in D(A^{n}) \), where \(n + 1 \) is the relative degree of the system.

Theorem 3.5: [9] Suppose \(n \in \mathbb{Z}^+ \) is such that

\[
c \in D(A^n), \quad b \in Z_{n-1}
\]

and

\[
\langle b, A^n c \rangle \neq 0.
\]

Then the largest feedback-invariant subspace \(Z \) in \(c^\perp \) is \(Z_n \).

We can use this to prove the following:

Theorem 3.6: Suppose \(n \in \mathbb{Z}^+ \cup \{0\} \) is such that \((A, b, c)\) is of relative degree \(n + 1 \) and \(c \in D(A^n) \). Then the largest feedback-invariant subspace \(Z \) in \(c^\perp \) is \(Z_n \).

Closed-loop invariance of \(Z_n \) exists under conditions similar to those for the case \(\langle b, c \rangle = 0 \). That is, if \(Z_n \) is feedback-invariant under the operator \(A + bK_n \), and \(A + bK_n \) generates a \(C_0 \)-semigroup on the original space \(X \), then \(Z_n \) is also closed-loop invariant [9].

IV. NOT SO NICE CASE

The following example illustrates that if \(\langle b, c \rangle = 0 \) and \(c \notin D(A^*) \) a largest feedback-invariant subspace as defined in Definition 2.1 might not exist.

Example IV.1. The following example of a controlled delay equation first appeared in Pandolfi [10]:

\[
\begin{align*}
\dot{x}_1(t) & = x_2(t) - x_2(t-1) \\
\dot{x}_2(t) & = u(t) \\
y(t) & = x_1(t).
\end{align*}
\]

(4.6)

The transfer function for this system is

\[
G(s) = \frac{1 - e^{-s}}{s^2}.
\]

(4.7)

The system of equations (4.6) can be written in a standard state-space form (1.1, 1.2), see [4]. Choose the state-space

\[
X = \mathbb{R}^2 \times L_2(-1,0) \times L_2(-1,0).
\]

A state-space realization on \(X \) is

\[
b = (0 \quad 1 \quad 0 \quad 0 \quad 0), \quad c = (1 \quad 0 \quad 0 \quad 0 \quad 0).
\]

Define \(D(A) \) to be \([r_1, r_2, \phi_1, \phi_2]^T \in X \) such that

\[
\phi_1(0) = r_1, \phi_2(0) = r_2, \phi_1 \in H^1(-1,0), \phi_2 \in H^1(-1,0).
\]

For \([r_1, r_2, \phi_1, \phi_2]^T \in D(A) \),

\[
A(r_1, r_2, \phi_1, \phi_2) = \begin{pmatrix}
\phi_2(t) - \phi_2(t-1) \\
0 \\
\phi_1 \\
\phi_2
\end{pmatrix}.
\]

In this example \(\langle b, c \rangle = 0 \) and \(c \notin D(A^*) \). From the transfer function (4.7) we can see that the system has relative degree 2.

Pandolfi [10] showed that the largest feedback-invariant subspace \(Z \subset c^\perp \), if it exists, is not a delay system. We
now show that this system does not have a largest feedback-invariant subspace in \(c^1 \). Define

\[
e_k = \begin{bmatrix} 0 \\ 1 \\ \exp(2\pi i kt) \end{bmatrix} \in D(A) \cap c^1.
\]

For each \(k \), the subspace \(\text{span}\{e_k\} \) is \((A, b) \)-invariant and hence feedback-invariant (Thm. 2.2). Define

\[
V_n = \text{span}_{-n \leq k \leq n} e_k.
\]

Each subspace \(V_n \) is feedback-invariant. Define also the union of all finite linear combinations of \(e_k \),

\[
V = \bigcup V_n.
\]

By well-known properties of the exponentials \(\{ e^{2\pi i kt} \}_{k=1}^\infty \) in \(L^2(0, 1) \), the closure of \(\{ \exp(2\pi i kt) \} \) is \(L^2(0, 1) \). Consider a sequence of elements in \(V, [0, 1, 0, z_0] \) where \(z_0(0) = 1 \) and \(\lim_{n \to \infty} z_n = 0 \). This sequence converges to \([0, 1, 0, 0] \) and so we see that the closure of \(V \) in \(X \) is \(\tilde{V} = 0 \times R \times 0 \times L^2(-1, 0) \). If there is a largest feedback-invariant subspace \(Z \) in \(c^1 \), then \(Z \supset \tilde{V} \). The important point now is that although \(b \notin V, b \in V \). Since \(b \) cannot be contained in any feedback invariant subspace (Theorem 2.3), \(V \) is not feedback-invariant. Hence no largest feedback-invariant subspace exists for this system. \(\square \)

Assume \(\langle b, c \rangle = 0 \). Theorem 2.2 implies that any element \(x \in D(A) \) of an \((A, b) \)-invariant subspace of \(c^1 \) is contained in the set

\[
Z = \{ z \in c^1 \cap D(A) \mid \langle Az, c \rangle = 0 \}.
\]

The closure of \(Z \) is a natural candidate for the largest feedback-invariant subspace of \(c^1 \). When \(c \in D(A^*) \), the closure of \(Z \) is \(Z_1 = c^1 \cap (A^*)^c \). If \(\langle b, A^*c \rangle \neq 0 \), this is the largest feedback-invariant subspace in \(c^1 \) (Thm. 3.6). The situation when \(c \notin D(A^*) \) is quite different.

Theorem 4.1: If \(c \notin D(A^*) \), the set \(Z \) is dense in \(c^1 \). Furthermore, \(Z \neq c^1 \cap D(A) \).

Proof: This will be proven by showing that if \(Z \) is not dense in \(c^1 \), then \(c \notin D(A^*) \). Let \(A = \rho(A) \) and \(A_\lambda = A - \lambda I \), so \(D(A_\lambda) = D(A) \). \(D(A) \) is a Hilbert space with the graph norm, and the graph norm is equivalent to

\[
\| x \|_1 := \| A_\lambda x \|.
\]

The corresponding inner product on \(D(A) \) is

\[
\langle x, y \rangle_1 := \langle A_\lambda x, A_\lambda y \rangle.
\]

Define \(e = (A_\lambda^*)^{-1}c \in X \). For \(x \in D(A) \), the condition \(\langle c, x \rangle = 0 \) is written

\[
0 = \langle c, x \rangle = \langle A_\lambda x, A_\lambda A_\lambda^{-1}c \rangle = \langle x, A_\lambda^{-1}c \rangle.
\]

For \(x \in c^1 \cap D(A_\lambda) \), the condition \(\langle Ax, c \rangle = 0 \) is equivalent to \(\langle A_\lambda x, c \rangle = 0 \). Hence for such \(x \) we have

\[
0 = \langle A_\lambda x, c \rangle = \langle A_\lambda x, A_\lambda A_\lambda^{-1}c \rangle = \langle x, A_\lambda^{-1}c \rangle.
\]

We can write \(Z \) as

\[
\{ x \in D(A) \mid \langle x, A_\lambda^{-1}c \rangle = 0 \}
\]

We now introduce the notation

\[
(y)_1 := \{ x \in D(A) \mid \langle x, y \rangle = 0 \}.
\]

Using this notation,

\[
Z = (A_\lambda^{-1}e)_1 \cap (A_\lambda^{-1}c)_1.
\]

Now suppose that \(Z \) is not dense in \(c^1 \). Then there exists \(v \in c^1 \) such that \(\langle x, v \rangle = 0 \) for all \(x \in Z \). Define \(w = (A_\lambda^{-1}e)_1 \). As in (4.11), for \(x \in D(A) \), the condition \(\langle x, v \rangle = 0 \) is equivalent to

\[
\langle x, A_\lambda^{-1}w \rangle = 0.
\]

Hence we see that

\[
Z = (A_\lambda^{-1}e)_1 \cap (A_\lambda^{-1}w)_1.
\]

Let \(R \) be the orthogonal projection from \(D(A) \) onto \((A_\lambda^{-1}e)_1 \) (using the inner product \(\langle \cdot, \cdot \rangle_1 \)). Then

\[
Z = (A_\lambda^{-1}e)_1 \cap (RA_\lambda^{-1}c)_1
\]

and

\[
(A_\lambda^{-1}e)_1 \cap (A_\lambda^{-1}w)_1 = (A_\lambda^{-1}e)_1 \cap (RA_\lambda^{-1}w)_1.
\]

Hence (4.14) becomes

\[
(A_\lambda^{-1}e)_1 \cap (RA_\lambda^{-1}c)_1 \subseteq (A_\lambda^{-1}e)_1 \cap (RA_\lambda^{-1}w)_1.
\]

This implies that there is a scalar \(\gamma \) such that

\[
RA_\lambda^{-1}c = \gamma RA_\lambda^{-1}w.
\]

We obtain that

\[
A_\lambda^{-1}c = \alpha A_\lambda^{-1}w + \beta A_\lambda^{-1}e.
\]

Applying \(A_\lambda \) to both sides of this equation,

\[
c = \alpha w + \beta e.
\]

Since \(w = (A_\lambda^*)^{-1}v \) and \(c = (A_\lambda^*)^{-1}c \), we see that \(c \in D(A_\lambda^*) = D(A^*) \). Thus, if \(Z \) is not dense in \(c^1 \) in \(c^1 \) then \(c \notin D(A^*) \).

Now assume that \(Z = c^1 \cap D(A) \). Then \((A_\lambda^{-1}e)_1 \cap (A_\lambda^{-1}w)_1 = (A_\lambda^{-1}e)_1 \cap (RA_\lambda^{-1}e)_1 \), so, as above, \(c = \beta e \) would imply that \(c \notin D(A^*) \).

Corollary 4.2: Suppose that \(q \in X \) and \(c \notin D(A^*) \). Then \(q^1 \cap Z \) is dense in \(q^1 \cap c^1 \). Furthermore, \(q^1 \cap Z \neq q^1 \cap c^1 \cap D(A) \).

Proof: If \(q = \lambda c \) for some scalar \(\lambda \), then \(q^1 \cap Z = Z \) and \(q^1 \cap c^1 = c^1 \), and the result follows immediately from Theorem 4.1.

Assume now that \(q \) is not parallel to \(c \). Let \(P \) be the orthogonal projection of \(X \) onto \(c^1 \), and \(\tilde{q} = Pq \), so \(\tilde{q} \neq 0 \). Let \(X = \tilde{q}^1 \), and let \(Q \) be the orthogonal projection of \(X \) onto \(\tilde{q}^1 \). By construction, \(c = Qe \in \tilde{X} \). Let

\[
\tilde{A} = QA|_{\tilde{X}}, \ D(\tilde{A}) = D(A) \cap \tilde{X},
\]

\[
\tilde{Z} = \{ x \in D(\tilde{A}) \mid \langle x, c \rangle = 0 \text{ and } \langle A\tilde{x}, c \rangle = 0 \}.
\]

2477
We wish to show that \(c \not\in D(\tilde{A}^*) \). Note that for \(x \in \tilde{X} \),
\[
\langle \tilde{A}x, c \rangle = \langle \tilde{Q}Ax, c \rangle = \langle Ax, Qc \rangle = \langle Ax, c \rangle.
\]
(4.16)

Therefore \(c \not\in D(\tilde{A}^*) \) if the functional \(x \to \langle Ax, c \rangle \) is
unbounded on \(\tilde{X} \). To show this let \(b_0 \in D(\tilde{A}) \cap \tilde{X} \) and
let \(Q_0 \) be the (possibly not orthogonal) projection onto \(\tilde{X} \)
given by
\[
Q_0 x = x - \frac{\langle x, \tilde{q} \rangle}{\langle q_0, \tilde{q} \rangle} q_0.
\]

Then \(\langle Ax, c \rangle \) is unbounded on \(\tilde{X} \) if \(\langle A Q_0 x, c \rangle \) is unbounded
on \(X \). Since
\[
\langle A Q_0 x, c \rangle = \langle Ax, c \rangle - \frac{\langle x, \tilde{q} \rangle}{\langle q_0, \tilde{q} \rangle} \langle A q_0, c \rangle.
\]

The second term on the right is clearly bounded on \(X \), and
the first term on the right is unbounded on \(X \) since \(c \not\in D(\tilde{A}^*) \), so \(\langle A Q_0 x, c \rangle \) is not a bounded operator on \(X \), hence \(c \not\in D(\tilde{A}^*) \).

Now we can apply Theorem 4.1 to \(\tilde{X} \), \(\tilde{A} \), \(c \), and \(\tilde{Z} \) and conclude
that \(\tilde{X} \cap \tilde{Z} \) is dense in \(\tilde{X} \cap c^\perp \) and \(\tilde{X} \cap \tilde{Z} \neq \tilde{X} \cap c^\perp \cap D(\tilde{A}) \).

For \(x \in c^\perp \), \((x, Pq) = \langle x, q \rangle \) and so
\[
\tilde{X} \cap c^\perp = \{ x \in X \mid \langle x, c \rangle = 0, \langle x, Pq \rangle = 0 \}
\]
\[
\qquad = \{ x \in X \mid \langle x, c \rangle = 0, \langle x, q \rangle = 0 \}
\]
\[
\qquad = q^\perp \cap c^\perp.
\]

Similarly,
\[
\tilde{X} \cap \tilde{Z} = \{ x \in D(\tilde{A}) \mid \langle x, c \rangle = 0, \langle x, q \rangle = 0, \langle \tilde{A}x, c \rangle = 0 \}.
\]
(4.17)

This can be written
\[
\tilde{X} \cap \tilde{Z} = \{ x \in D(\tilde{A}) \mid \langle x, c \rangle = 0, \langle x, q \rangle = 0 \}
\]
\[
\qquad = q^\perp \cap Z.
\]

Thus we have shown that \(q^\perp \cap Z \) is dense in \(q^\perp \cap c^\perp \), and
that the two spaces are not equal. \(\Box \)

If \(\langle b, c \rangle = 0 \), \(c \in D(\tilde{A}^*) \), and \(\langle b, A^*c \rangle \neq 0 \),
the largest invariant subspace in \(c^\perp \) is \(Z_1 = c^\perp \cap (A^*c)^\perp \).

Defining \(\alpha = \frac{1}{\langle b, A^*c \rangle} \),
\[
A + bK = A + ab(Ax, A^*c), \quad \text{with}
\]
\[
D(\tilde{A} + bK) = \{ z \in c^\perp \cap D(\tilde{A}) \mid \langle Az, c \rangle = 0 \},
\]
is \(Z_1 \)-invariant. In many cases, this operator generates a \(C_0 \)-
semigroup on \(Z_1 \). It is tempting to hope, that even if \(c \not\in D(\tilde{A}^*) \),
the operator (with some value of \(\alpha \))
\[
A + bK = A + ab(\tilde{Q}Ax, c),
\]
\[
D(\tilde{A} + bK) = \{ z \in c^\perp \cap D(\tilde{A}^2) \mid \langle Az, c \rangle = 0 \}
\]
is a generator, or has an extension which is a generator. However, we see from the next result that this operator is not closable, so that no extension of it is a generator of a \(C_0 \)-semigroup.

Theorem 4.3: Suppose \(b \in X \) and \(c \not\in D(\tilde{A}^*) \). Then the operator
\[
A_F x = Ax + b \langle A^2 x, c \rangle,
\]
\[
D(A_F) = \{ x \in c^\perp \cap D(\tilde{A}^2) \mid \langle Ax, c \rangle = 0 \}
\]
is not closable.

Proof: Let \(\lambda \in \rho(A) \) and \(A_\lambda = A - \lambda I \), as above.
From Corollary 4.2 we see that \(((A_\lambda^{-1})^*c)^\perp \cap Z \) is dense in
\(((A_\lambda^{-1})^*c)^\perp \cap c^\perp \). Let
\[
Tx := \langle A_\lambda x, c \rangle, \quad D(T) = ((A_\lambda^{-1})^*c)^\perp \cap c^\perp \cap D(A).
\]

We will now show that \(T \) is not closable. From Corollary 4.2,
\(((A_\lambda^{-1})^*c)^\perp \cap Z \neq D(T) \). Thus we can choose \(f \in D(T) \)
such that \(f \not\in ((A_\lambda^{-1})^*c)^\perp \cap Z \), and there exists \(\{ f_n \} \subset ((A_\lambda^{-1})^*c)^\perp \cap Z \) such that \(\lim f_n = f \). From the definition of \(Z \), \(T f_n = 0 \) for all \(n \). Let \(x_n = f - f_n \), so
\[
\lim x_n = 0, \quad \text{and} \quad \lim Tx_n = Tf \neq 0,
\]
(4.18)

which shows that \(T \) is not closable [15, Section II.6, Proposition 2]. It then follows that \(I + bT \) with domain \(D(T) \) is not closable.

Now note that \(y \in D(A_F) \) if and only if \(A_\lambda y \in D(T) \), and
that for \(y \in D(A_F) \)
\[
A_F y = (I + bT)A_\lambda y + \lambda y,
\]
so \(A_F \) is closable if and only if \((I + bT)A_\lambda \) is closable.

Using the sequence \(\{ x_n \} \subset D(T) \) defined above, define \(y_n = A_\lambda^{-1}x_n \). Note that \(\{ y_n \} \subset D(A_F) \) and
\[
\lim y_n = 0 \quad \text{and} \quad \lim(I + bT)A_\lambda y_n = bTf \neq 0.
\]

Hence \((I + bT)A_\lambda \) is not closable, so \(A_F \) is not closable. \(\Box \)

Definition 4.4: The invariant zeros of (1.1), (1.2) are the
set of all \(\lambda \) such that
\[
\begin{pmatrix}
\lambda I - A & b \\
C & 0
\end{pmatrix}
\begin{pmatrix}
x \\
u
\end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]
(4.19)

has a solution for \(u \in U \) and non-zero \(x \in D(A) \).

One of the important properties of a largest invariant
subspace, is the following well-known result. A proof for
infinite-dimensional system can be found in, for instance, [9].

Theorem 4.5: Assume a largest feedback-invariant
subspace \(Z \) of \((A, b, c) \) exists and \(G(s) \) is not identically zero, and
let \(K \) be an operator such that \(A + bK \) is \(Z \)-invariant.

Then the eigenvalues of \((A + bK)|_Z \) are the invariant zeros of the
system.

We now show that, for a large class of relative degree 2
systems we can find a feedback \(K \) and a subspace of \(c^\perp \)
that is \((A + bK) \)-invariant. In general, such a \(A + bK \)
is not closable on the original Hilbert space, hence does not
generate a \(C_0 \)-semigroup in the original norm. However, the
spectrum of \(A + bK \) does yield the invariant zeros. In order
to define this space we need to extend \(\langle A, c \rangle \) to a larger set
than \(D(A) \). Define
\[
C_A x = \lim_{s \to -\infty, s \in \mathbb{R}} \langle sA R(s, A)x, c \rangle
\]
(4.20)

with domain
\[
D(C_A) = \{ x \in X \mid \lim_{s \to -\infty, s \in \mathbb{R}} \langle sA R(s, A)x, c \rangle \text{ exists} \}.
\]

2478
(This is the same as $(CA)_L$ where the L-extension is given by [13, Defn. 5.6].) It is straightforward to verify that $D(C_A) \supseteq D(A)$. If $x \in D(A)$, then $C_A(x) = \langle Ax, c \rangle$. Also, if $c \in D(A^*)$, then $D(C_A) = X$ and $C_A x = \langle x, A^*c \rangle$.

Proposition 4.6: Assume that (A, b, c) has relative degree at least 2. Then $\lim_{s \to \infty} s^2G(s)$ exists for real s if and only if $b \in D(C_A)$. In this case,

$$\lim_{s \to \infty} s^2G(s) = C_A b.$$ (4.21)

Proof: First note that since the relative degree of the systems is at least 2, $\lim_{s \to \infty} sG(s) = 0$. But,

$$\lim_{s \to \infty} sG(s) = \lim_{s \to \infty} \langle s(sI - A)^{-1}b, c \rangle = \langle b, c \rangle$$

and so $\langle b, c \rangle = 0$. Since

$$s^2G(s) = \langle s(sI - A)(sI - A)^{-1}b, c \rangle + \langle sA(sI - A)^{-1}b, c \rangle,$$

we obtain

$$\lim_{s \to \infty} s^2G(s) = \lim_{s \to \infty} s(b, c) + \lim_{s \to \infty} sA(sI - A)^{-1}b, c)$$

$$= \lim_{s \to \infty} \langle sA(sI - A)^{-1}b, c \rangle.$$

The result follows. \square

Using the operator C_A, the space Z defined above in (4.8) can be extended to

$$Z_A = \{x \in c^{|} \cap D(C_A)| C_A x = 0 \}.$$

If $c \in D(A^*)$, then $Z_A = Z_1$.

The following theorem is now straightforward, so we omit the proof.

Theorem 4.7: Assume that a system (A, b, c) has relative degree 2 and $\lim_{s \to \infty} s^2G(s)$ exists. Define on $c^{|}$

$$A_Kx = Ax + bKx,$$ (4.22)

where

$$Kx = -\frac{C_A(Ax)}{C_A b}$$ (4.23)

with domain

$$D(A_K) = \{x \in D(A) \cap c^{|}| A \in D(C_A), C_A x = 0 \}.$$

The space Z_A is invariant under A_K.

The operator K in this theorem is in general not A-bounded. If $c \in D(A^*)$, then K is the same A-bounded operator defined above. For the general case, we need the extension of (A, c) to C_A in order to define K.

Theorem 4.8: Assume that the system (A, b, c) has relative degree 2 and $\lim_{s \to \infty} s^2G(s)$ exists. The invariant zeros of (A, b, c) are the eigenvalues of A_K, where A_K is as defined in (4.22, 4.23).

Proof: First assume that λ is an eigenvalue of A_K with eigenvector v. Note that $\psi \in D(A) \cap c^{|}$, so set $x = v$ and $u = -Kv$ in (4.19) to obtain that λ is an invariant zero of the original system.

Now assume that λ is an invariant zero. That is, there exists $u \in \mathbb{R}$ and $v \neq 0$ such that $v \in c^{|} \cap D(A)$ and

$$\lambda v - Av + bu = 0.$$

We need to first show that $v \in D(A_K)$. First, note that

$$Av = \lambda v - bu.$$

Since $\lim_{s \to \infty} s^2G(s)$ exists, $b \in D(C_A)$ and since $D(A) \subseteq D(C_A)$. Also,

$$C_A v = \langle Av, c \rangle = \lambda \langle v, c \rangle + u(b, c) = 0 + 0.$$

Thus, $v \in D(A_K)$. It follows that

$$\begin{bmatrix} \lambda I - A & b \\ c & 0 \end{bmatrix} \begin{bmatrix} v \\ Kv + u \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Since $b \notin Z_A, Kv + u = 0$ and λ is an eigenvalue of A_K on $c^{|}$ with the given domain. \square

The following result follows immediately from Theorem 4.3.

Corollary 4.9: Suppose (A, b, c) has relative degree 2 and $\lim_{s \to \infty} s^2G(s)$ exists. If $c \notin D(A^*)$ then the operator A_K with domain $D(A_K)$ defined in (4.22) is not closable.

It is shown in the next example that, in general, it is not possible to restrict $D(A_K)$ to $D(A^2)$ and obtain the invariant zeros.

Example IV.1 continued. Recall that this controlled delay system has no largest feedback-invariant subspace. A straightforward calculation shows that the invariant zeros of this control system are $i2n\pi r$, where n is any integer. We now verify that these are the eigenvalues of A_K on $c^{|}$.

We can calculate C_A from its definition to be

$$C_A x = r_2 - \lim_{s \to \infty} s e^{-s} \int_{-1}^{0} e^{-s\tau} \phi_2(\tau)d\tau.$$

Denote the limiting value of

$$\lim_{s \to \infty} s e^{-s} \int_{-1}^{0} e^{-s\tau} \psi(\tau)d\tau$$

by $E_{-1}\psi$, when this limit exists. (If the value of ψ at -1 exists, $E_{-1}\psi = \psi(-1)$.) Then

$$D(C_A) = \{|r_1, r_2, \phi_1, \phi_2|^T \in X; E_{-1} \phi_2 \text{ defined}\}$$

$$\cup \{|r_1, r_2, \phi_1, \phi_2|^T \in X; \phi_2 \in H_1(-1, 0)\}.$$

We have $C_A b = 1$ and $A_K = A + bK$, where

$$Kx = -C_A(Ax) = E_{-1} \phi_2,$$ (4.24)

with $D(A_K)$

$$\{(0, r_2, \phi_1, \phi_2); \phi_1(0) = 0, \phi_2(0) = \phi_2(-1) = r_2, \phi_1 \in H_1(-1,0), \phi_2 \in H_1(-1,0), E_{-1} \phi_2 \text{ defined}\}.$$

When $A_K x = \lambda x, x \in D(A_K)$, we obtain

$$0 = 0$$

$$E_{-1} \phi_2 = \lambda r_2$$

$$\phi_1 = \lambda \phi_1$$

$$\phi_2 = \lambda \phi_2.$$

2479
This system of equations has a non-trivial solution in $D(A_K)$ for $\lambda = i2n\pi$ with

$$x = \begin{bmatrix} 0 \\ r_2 \\ 0 \\ r_2 e^{i2\pi n t} \end{bmatrix}. $$

Thus, the invariant zeros of this system are $i2n\pi$. These are exactly the invariant zeros. Suppose we restrict the domain $D(A_K)$ to the more obvious

$$D(A_K) = \{ x \in D(A) \cap c^+ | Ax \in D(A), \langle Ax, c \rangle = 0 \}. $$

This yields that A_K is invariant on Z as defined in (4.8). For this example, $D(A_K)$ is

$$\{(0, r_2, \phi_1, \phi_2); \phi_1(0) = 0, \phi_2(0) = \phi_2(-1) = r_2, \phi_1 \in H_2(-1), 0), \phi_2 \in H_2(-1, 1), \phi_1(0) = 0, \phi_2(0) = 0 \}. $$

However, with this choice of domain, A_K does not have any eigenvalues. □

The feedback (4.24) matches that obtained in [18] by direct calculation on the delay differential equation. However, not only do we now have a general definition of the appropriate feedback, we have an rigorous definition of its domain.

Example IV.2 We give here a system (A, b, c) for which there is no largest feedback invariant subspace of c^+. Let X be the Hilbert space ℓ^2, with index set N. Let $h = [1, 1, 1, \ldots], \bar{0} = [0, 0, 0, 0, \ldots]^T$ and $D = \text{diag}\{\lambda_2, \lambda_3, \lambda_4, \ldots\}$, where $\lambda_j = -j$ for $j = 2, 3, \ldots$. Define

$$A = \begin{bmatrix} -1 & h \\ 0 & D \end{bmatrix}, \quad c = [1, 0, 0, 0, \ldots]^T, $$

and, for any fixed integer $N > 2$,

$$b = [0, b_2, b_3 \ldots b_N, 0, 0, \ldots]^T, \quad \sum_{j=2}^{N} b_j \neq 0. $$

It is easy to verify that $\langle b, c \rangle = 0$ and $c \notin D(A^*)$. Also, since $b \in D(A)$, $C_A b = \langle Ab, c \rangle = \sum_{j=2}^{N} b_j \neq 0$. For positive integers $n > N$, define the subspace of X

$$V_n = \{[0, x_2, \ldots, x_n, 0, \ldots]^T; x_j = 0 \text{ if } j > n, \sum_{k=2}^{n} x_k = 0 \}; $$

For $x \in V_n$, define

$$K_n x = \frac{1}{C_A b} \sum_{j=2}^{n} jx_j. $$

It is easy to verify that V_n is $A + bK_n$-invariant. Define $V = \cup_{n \in N} V_n$.

Any largest feedback-invariant subspace must contain V. It is clear that V is dense in $Z = \{[x_j]_{j \in N} \in D(A) | x_1 = 0, \sum_{j \in N} x_j = 0 \}$. Since Z can also be written as (4.8), Theorem (4.1) implies that V is dense in c^+. However, $b \in c^-$ and so, from Theorem 2.3 the closure of V is not feedback invariant. Hence, no largest feedback-invariant subspace exists. □

Acknowledgement: The research of K.A. Morris was supported by a grant from the Natural Sciences and Engineering Research Council of Canada. The research of R. Rebarber was partially supported by National Science Foundation Grant DMS-0206951.

REFERENCES

