Abstract—Motivated by the power-grid-side challenges in the integration of electric vehicles, we propose a decentralized protocol for negotiating day-ahead scheduling for electric vehicles. The overall goal is to shift the load due to electric vehicles to fill the overnight electricity demand valley. In each iteration of the proposed protocol, electric vehicles choose their own charging profiles for the following day according to the price profile broadcast by the utility, and the utility updates the price profile to guide their behavior. This protocol is guaranteed to converge, irrespective of the specifications (e.g., maximum charging rate and deadline) of electric vehicles. At convergence, the l_2 norm of the aggregated demand is minimized, and the aggregated demand profile is as “flat” as it can possibly be. The proposed protocol needs no coordination among the electric vehicles, hence requires low communication and computation capability. Simulation results demonstrate convergence to optimal collections of charging profiles within few iterations.

I. INTRODUCTION

Electric vehicles (EVs) offer great potential for increasing energy efficiency, reducing greenhouse gas emissions, and relieving reliance on foreign oil for transportation [1]. Currently, several types of EVs are either already in the U.S. market, or about to enter [2], and electrification of transportation is at the forefront of many research and development agendas [3]. On the other hand, the potential comes with a multitude of challenges including those in the integration with the electric power grid. EV charging increases the electric loads, and potentially amplifies the peak demand or creates new peaks [4]. It also increases the demand side uncertainties, and potentially reduces the distribution circuit and transformer lifespan [5]. Moreover, power losses and voltage variations become more likely [6].

The simulation-based study in [7] suggests that, if no regulation on EV charging is implemented, even a 10% penetration of EVs may cause unacceptable variations in the voltage profiles. On the other hand, many studies demonstrate that adopting “smart” charging strategies can mitigate some of the integration challenges, defer infrastructure investment needed otherwise, and even stabilize the grid. For example, scheduling EV charging so that aggregated EV load fills the overnight demand valley may reduce daily cycling of power plants and operational cost of the electricity utility [8]. Furthermore, the energy stored in EVs may be utilized as an alternative ancillary service resource [9] for regulating voltage profiles, ride-through support for fault protection, and even compensating fluctuating renewable energy generation [10].

Studies on EV charging control fall into three categories: effect of time-of-use rates [11], coordinated charging scheduling [6], [10], [12], and decentralized scheduling [13] [14]. Reference [11] explores the effect of higher price during peak hours on shifting EV load, but does not provide strategies for setting the price. Reference [6], [10], [12] study centralized control strategies that minimize power losses, load variance, or maximize load factor, allowable EV penetration level. These strategies require a centralized structure to collect all information of all EVs and optimize over the charging profiles of all EVs, hence incur prohibitive communication and computation requirements. Reference [13] demonstrates, through a simulation-based study, that EV load can be smoothed by introducing load-side participation into the power market. They propose a decentralized strategy, but do not provide any analytical optimality guarantees. Reference [14] proposes another decentralized charging strategy, and proves its optimality in the case where all EVs plug in at the same time with the same state-of-charge (SOC), and have the same deadline and allowable charging rates. For future reference, we call this setting homogeneous.

In this paper, we partially alleviate some of the restrictions imposed in [14]. First, we define optimal charging profiles of EVs explicitly (this definition generalizes the implicit definition in [14]). Second, we propose a decentralized charging strategy that guarantees optimality in both homogeneous and non-homogeneous cases, where EVs can plug-in at different times with different SOC, have different maximum charging speed and deadlines. Third, we remove the artificial tracking error penalty in EV owners’ objective in [14] by introducing another penalty term that vanishes at convergence.

The rest of the paper is organized as follows. Section II formulates EV charging control as a global optimization problem. Section III explores properties of optimal charging profiles, proposes a decentralized algorithm and proves its convergence to optimal charging profiles. Numerical simulations are used to illustrate these results in section IV, and conclusions and future works are presented in section V.

II. PROBLEM FORMULATION

We consider a scenario where an electric utility negotiates with N electric vehicles (indexed $1, \ldots, N$) for a day-ahead charging schedule over T time slots (indexed $1, \ldots, T$), each of length ΔT. Let $D(t)$ denote the base demand (aggregated non-EV demand) at time t, $r_n(t)$ denote the charging rate of EV n at time t, for all $t \in \{1, \ldots, T\}$.
TABLE I
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>time horizon</td>
</tr>
<tr>
<td>t</td>
<td>time, $t \in {1, \ldots, T}$</td>
</tr>
<tr>
<td>N</td>
<td>number of EVs</td>
</tr>
<tr>
<td>n</td>
<td>EV n, $n \in {1, \ldots, N}$</td>
</tr>
<tr>
<td>$D(t)$</td>
<td>base demand at time t</td>
</tr>
<tr>
<td>$D(\cdot)$</td>
<td>base demand profile</td>
</tr>
<tr>
<td>$r_n(t)$</td>
<td>charging rate of EV n at time t</td>
</tr>
<tr>
<td>$r_n(\cdot)$</td>
<td>charging profile of EV n</td>
</tr>
<tr>
<td>$R_n(\cdot)$</td>
<td>charging profile of all EVs</td>
</tr>
<tr>
<td>R_n</td>
<td>aggregated charging profile corresponding to r</td>
</tr>
<tr>
<td>$\Sigma_n(t)$</td>
<td>charging rate lower bound for EV n at time t</td>
</tr>
<tr>
<td>$\Pi_n(t)$</td>
<td>charging rate upper bound for EV n at time t</td>
</tr>
<tr>
<td>R_n</td>
<td>charging rate upper bound of EV n</td>
</tr>
<tr>
<td>D_n</td>
<td>set of feasible charging profiles for EV n</td>
</tr>
<tr>
<td>D</td>
<td>set of feasible charging profiles for all EVs</td>
</tr>
<tr>
<td>S</td>
<td>set of optimal charging profiles</td>
</tr>
<tr>
<td>\leq</td>
<td>if $a, b \in \mathbb{R}^n$, $a \leq b$ if and only if $a_i \leq b_i$ for all $i \in {1, \ldots, n}$.</td>
</tr>
</tbody>
</table>

Let $r_n := (r_n(1), \ldots, r_n(T))$ denote the charging profile of vehicle n, for all $n \in \{1, \ldots, N\}$. Then, roughly speaking, a charging profile $r := (r_1(\cdot), \ldots, r_N(\cdot))$ is “valley-filling”, if it minimizes

$$
\sum_{t=1}^{T} \left(D(t) + \sum_{n=1}^{N} r_n(t) \right)^2.
$$

A more rigorous discussion on valley-filling will be given in section III-A. The overall goal is to achieve a valley-filling charging profile, subject to the following constraints.

For EV n, due to battery specification, its charging rate should be within some interval $[\Sigma_n, \Pi_n]$. Taking deadline into account, we let r_n and Π_n be time-dependent and set $r_n(t) = \Pi_n(t) = 0$ for t outside the allowable charging period of EV n. Hence

$$
\Sigma_n(t) \leq r_n(t) \leq \Pi_n(t)
$$

for all $n \in \{1, \ldots, N\}$ and all $t \in \{1, \ldots, T\}$. Let B_n, $s_n(0)$, and η_n denote the battery capacity, initial SOC and charging efficiency of EV n. By its deadline, EV n should be fully charged, this is captured by the total energy stored over the whole time horizon $\eta_n \sum_{t=1}^{T} r_n(t) \Delta T = B_n (1 - s_n(0))$. Define $R_n := B_n (1 - s_n(0)) / \eta_n / \Delta T$, it is equivalent to

$$
\sum_{t=1}^{T} r_n(t) = R_n.
$$

for all $n \in \{1, \ldots, N\}$. Reference [15] summarizes some of the recently announced EV models, and typical values of Π_n and R_n can be derived from these models. Σ_n is usually set to be 0.

Definition 1: Let $D \in \mathbb{R}^T$ be the base demand. A charging profile $r = (r_1, \ldots, r_N)$, where $r_n \in \mathbb{R}^T$ for all $n \in \{1, \ldots, N\}$, is optimal, or valley-filling, if it solves

$$
\begin{align*}
\text{minimize} & \quad \sum_{t=1}^{T} \left(D(t) + \sum_{n=1}^{N} r_n(t) \right)^2 \\
\text{subject to} & \quad \Sigma_n \leq r_n \leq \Pi_n, \quad n = 1, \ldots, N, \\
& \quad \sum_{t=1}^{T} r_n(t) = R_n, \quad n = 1, \ldots, N,
\end{align*}
$$

where $\Sigma_n, \Pi_n \in \mathbb{R}^T$ and $R_n \in \mathbb{R}$ for all $n \in \{1, \ldots, N\}$.

Definition 2: A charging profile is feasible if it satisfies the constraints in (1).

III. MAIN RESULTS

In this section, we first explore properties of optimal charging profiles, and then propose a decentralized algorithm for solving (1). In the end, we prove that the algorithm we propose converges to the set of optimal charging profiles. Given a charging profile $r := (r_1, \ldots, r_N)$, let

$$
R_r := \sum_{n=1}^{N} r_n
$$

denote the aggregated charging profile corresponding to r.

A. Optimal Charging Profiles

Property 1: Let r be a feasible charging profile. If there exists $A \in \mathbb{R}$, such that $R_r(t) = \max \left\{ \sum_{n=1}^{N} \Sigma_n(t), A - D(t) \right\}$ for all $t \in \{1, \ldots, T\}$, then r is optimal.

Proof: Note that R_r is the unique solution to the problem

$$
\begin{align*}
\text{minimize} & \quad \sum_{t=1}^{T} (D(t) + R(t))^2 \\
\text{subject to} & \quad \sum_{t=1}^{T} R(t) = \sum_{n=1}^{N} R_n
\end{align*}
$$

For any r' feasible for (1), $R_{r'}$ is feasible for (2). Furthermore, the objective function in (2) evaluated at $R_{r'}$ is equal to the objective function in (1) evaluated at r'. Hence, the optimal value d_* of (2) is a lower bound for the optimal value p_* of (1). The aggregated profile R_r attains d_*, so r attains $d_* \leq p_*$. Since r is feasible, it is optimal. \(\square\)

Let $D_n := \{r_n | \Sigma_n \leq r_n \leq \Pi_n, \sum_{t=1}^{T} r_n(t) = R_n \}$ denote the set of feasible charging profiles of EV n. Then $D := D_1 \times \cdots \times D_N$ is the set of feasible charging profiles of all EVs.

Property 2: If the set D of feasible charging profiles is non-empty, then optimal charging profiles exist.

Proof: D is the feasible set of (1) by Definition 2. Since D_n is compact for each n, D as a product of N compact sets is also compact. Furthermore, D is non-empty, and the objective function of (1) is continuous. Hence, its optimal value is attained at some $r \in D$. \(\square\)
shown in Figure 1 (bottom), a valley-filling charging profile indeed gives a “smoother” aggregated demand, compared to non-valley-filling charging profiles.

We now establish an equivalence relation between charging profiles, and use it to describe an important property of the set of optimal charging profiles.

Definition 3: Feasible charging profiles \(r \) and \(r' \) are equivalent, denoted as \(r \sim r' \), if \(R_r = R_{r'} \).

That is, \(r \) and \(r' \) are equivalent if their aggregated charging profiles are the same. It is easy to check that this is indeed an equivalence relation. Now, we can define equivalence classes based on this equivalence relation. Given base demand \(D \), define

\[
S := \{ r \in D | \text{ optimal w.r.t } D \}
\]
as the set of optimal charging profiles.

Theorem 1: If feasible charging profiles exist, then the set \(S \) of optimal charging profiles is non-empty, compact, convex, and an equivalence class.

Proof: Property 2 implies that \(S \) is nonempty when feasible charging profiles exist. Let \(r \) be an optimal charging profile, then \(r \in S \). Define \(S' := \{ r' \in D | r' \sim r \} \). It is easy to show that \(S' \) is closed and convex. Since \(S' \subseteq D \), which is compact, \(S' \) is also compact. Hence \(S' \) is non-empty, compact, convex, and an equivalence class (by construction).

It is easy to see that \(S' \subseteq S \). In order to prove \(S = S' \), we now show that \(S \subseteq S' \). For all \(r' \in S \), from the first order optimality condition for (1),

\[
(D + R_r, R_{r'}, R_r - R_{r'}) = 0,
\]

\[
(D + R_{r'}, R_r, R_{r'} - R_r) = 0.
\]

Reverse \(R_{r'} - R_r \) in the first equation and subtract the second one to obtain \((R_r - R_{r'}, R_r - R_{r'}) = 0 \). Hence \(R_r = R_{r'} \), \(r' \sim r \), \(r' \in S' \), \(S \subseteq S' \). Consequently, \(S = S' \) is non-empty, compact, convex, and an equivalence class.

Corollary 1: Optimal charging profile is generally not unique.

Corollary 1 is a direct consequence of the fact that \(S \) is an equivalence class. In general, two EVs can exchange their charging profiles in the opposite direction without affecting the objective value. For instance, EV 1 raises its charging rate at time \(t_1 \) by \(\Delta r \) and decreases its charging rate at \(t_2 \) by \(\Delta r \), while not violating the constraints in (1). Conversely, EV 2 decreases its charging rate at time \(t_1 \) by \(\Delta r \) and increases its charging rate at \(t_2 \) by \(\Delta r \), while not violating the constraints in (1). If the original charging profile is optimal, the new profile, which is equivalent to the original one, is also optimal, due to Theorem 1.

B. Algorithm ODC

We develop a decentralized algorithm to solve (1). System diagram of the algorithm is shown in Figure 2. Given broadcast electricity price profile, each EV makes an independent decision and chooses its charging profile. The utility guides their behavior by setting the prices.

Algorithm ODC (optimal decentralized charging): Given \(T, N, K, D(t), R_n, \tau_n(t), \tau_n(t) \), for all \(n \in \{1, \ldots, N\} \) and all \(t \in \{1, \ldots, T\} \), define \(\alpha := N/2 \).
TABLE II
LIST OF SYMBOLS IN ALGORITHM

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p^k(\cdot))</td>
<td>price profile in iteration (k)</td>
</tr>
<tr>
<td>(r^k_n(\cdot))</td>
<td>charging profile of vehicle (n) in iteration (k)</td>
</tr>
<tr>
<td>(K)</td>
<td>maximum number of iterations</td>
</tr>
</tbody>
</table>

1) Initialization:

\[p^0(\cdot) := D(\cdot), \quad r^0_n(\cdot) := 0, \quad k \leftarrow 0. \]

2) Utility broadcasts \(p^k(\cdot) \).

3) EV \(n \) calculates a new charging profile \(r^{k+1}_n(\cdot) \) as

\[
\arg\min_{r_n(\cdot)} \sum_{t=1}^{T} p^k(t) r_n(t) + \alpha \left(r_n(t) - r^k_n(t) \right)^2 \]

subject to \(r_n(t) \leq r_n(\cdot) \leq \bar{r}_n(\cdot) \), \(\sum_{t=1}^{T} r_n(t) = R_n \).

4) Utility collects new charging profiles of all EVs, and updates the price according to

\[
p^{k+1}(\cdot) := D(\cdot) + \sum_{n=1}^{N} r^{k+1}_n(\cdot). \tag{3}
\]

5) \(k \leftarrow k + 1 \), go to (2) until \(k = K \) or convergence.

In iteration \(k + 1 \), the algorithm can be split into two parts. In the first part, EV \(n \) chooses a charging profile that minimizes its objective function

\[
C_n(r_n) = \sum_{t=1}^{T} p^k(t) r_n(t) + \alpha \left(r_n(t) - r^k_n(t) \right)^2. \tag{4}
\]

The first term is the electricity cost and the second term penalizes deviations from the charging profile computed in the previous iteration. This extra penalty term ensures convergence of Algorithm ODC. In section III-C, we prove that \(r^{k+1}_n(t) - r^k_n(t) \to 0 \) for all \(n \) and all \(t \) as \(k \to \infty \). Hence, the objective function of each EV boils down to its electricity cost at convergence.

In the second part of iteration \(k + 1 \), the utility updates the price according to (3). It sets high prices for the periods with high aggregated demand. Intuitively, in the next iteration, vehicles are given the incentive to shift their charging profiles. As a result, aggregated demand may be smoothened.

As proved in section III-C, Algorithm ODC converges to optimal charging profiles. Furthermore, simulation results demonstrate fast convergence (usually within a few iterations) of Algorithm ODC.

C. Analysis of Algorithm ODC

We now analyze the convergence properties of Algorithm ODC. Since optimal charging profile is generally not unique, we need to establish an appropriate notion of convergence to optimal charging profiles. Let superscript \(k \) denote the respective value of in iteration \(k \) of Algorithm ODC. For example, \(r^k_n \) denotes the charging profile of vehicle \(n \) in iteration \(k \). Similarly, \(R^k := \sum_{n=1}^{N} r^k_n \) denotes the aggregated charging profile in iteration \(k \), \(d^k := (D + R^k)/N \) denotes the normalized aggregated demand profile in iteration \(k \).

Lemma 1: If feasible charging profiles exist, then the inequality

\[
\| d^k + r^{k+1}_n - r^k_n \|_2 = \| d^k \|_2 - \| r^{k+1}_n - r^k_n \|_2 \leq 0 \tag{5}
\]

holds for all \(n \in \{1, \ldots, N\} \) and all \(k \geq 1 \).

Proof: Since feasible charging profiles exist, feasible charging profiles for EV \(n \) exist, and \(r^k_n \in D_n \) for all \(n \in \{1, \ldots, N\} \) and all \(k \geq 1 \). Further,

\[
r^{k+1}_n = \arg\min_{r_n \in D_n} \sum_{t=1}^{T} p^k(t) r_n(t) + \alpha \left(r_n(t) - r^k_n(t) \right)^2
\]

\[
= \arg\min_{r_n \in D_n} \sum_{t=1}^{T} 2d^k(t) r_n(t) + \left(r_n(t) - r^k_n(t) \right)^2
\]

\[
= \arg\min_{r_n \in D_n} \sum_{t=1}^{T} \left(d^k(t) + r_n(t) - r^k_n(t) \right)^2
\]

\[
= \arg\min_{r_n \in D_n} \| d^k + r_n - r^k_n \|_2^2. \tag{6}
\]

From the first order optimality condition for (6),

\[
\langle d^k + r^{k+1}_n - r^k_n, r_n - r^{k+1}_n \rangle \geq 0 \tag{7}
\]

for all \(r_n \in D_n \). Choose \(r_n = r^k_n \) to obtain

\[
\langle d^k + r^{k+1}_n - r^k_n, r^{k+1}_n - r^{k+1}_n \rangle \geq 0.
\]

Split the first term to obtain

\[
\langle d^k, r^{k+1}_n - r^k_n \rangle \leq - \| r^{k+1}_n - r^k_n \|_2^2.
\]

Hence,

\[
\| d^k + r^{k+1}_n - r^k_n \|_2^2 = \| d^k \|_2^2 + \| r^{k+1}_n - r^k_n \|_2^2 + 2 \langle d^k, r^{k+1}_n - r^k_n \rangle \leq \| d^k \|_2^2 - \| r^{k+1}_n - r^k_n \|_2^2
\]
for all \(n \in \{1, \ldots, N \} \) and all \(k \geq 1 \).

Lemma 2: If feasible charging profiles exist, then for all \(n \in \{1, \ldots, N \} \) and all \(k \geq 1 \), \(r_{n+1}^k = r_n^k \) if and only if
\[
(d^k, r_n - r_n^k) \geq 0
\]
for all \(r_n \in D_n \).

Proof: Follows from (7) and the strict convexity of (6). \(\square \)

Theorem 2: Let \(r^k := (r_1^k, \ldots, r_N^k) \) be the charging profile in iteration \(k \) of Algorithm ODC. If feasible charging profiles exist, then, for all \(n \in \{1, \ldots, N \} \) and all \(k \geq 1 \), \((\bar{d}^k, \bar{r}_n - \bar{r}_n^k) \geq 0 \). Hence, choose \(r_n^k = 0 \) for all \(t \). We set \(R_n = 10, 25, 40 \) for three different types (sedan, compact,)

Theorem 3: Let \(r^* \) be the charging profile in iteration \(k \) of Algorithm ODC. If feasible charging profiles exist, then \(r^k \) converges to \(r^* \), i.e.,
\[
\lim_{k \to \infty} r^k = D + R_r^*;
\]
for each EV, the change in charging profile between consecutive iterations of Algorithm ODC converges to 0, i.e.,
\[
\lim_{k \to \infty} ||r_{n+1}^k - r_n^k||_2 = 0
\]
for all \(n \in \{1, \ldots, N \} \).

Proof: Since the set \(S \) of optimal charging profiles is an equivalence class, for all \(r' \in S \), \(R_{r'} = R_r \). Let \(r^k \) be the charging profile in iteration \(k \). Theorem 2 implies that we can find a sequence in \(S \), such that the distance between \(r^k \) and the \(k^{th} \) element of the sequence converges to 0 as \(k \to \infty \). It follows that \(R^k \to R_r \), as \(k \to \infty \). The price profile converges as a direct consequence of (3). Inequality (9) implies
\[
L(r^k) - L(r^{k+1}) \geq N \sum_{n=1}^{N} ||r_{n+1}^k - r_n^k||_2^2
\]
Since \(L(r^k) \) converges, \(L(r^k) - L(r^{k+1}) \to 0 \). Hence \(||r_{n+1}^k - r_n^k||_2 \to 0 \), for all \(n, k \to \infty \). \(\square \)

Theorem 3 implies that in Algorithm ODC, the aggregated charging profile and price profile converge to that of an optimal charging profile. Furthermore, change in the charging profile for each EV between consecutive iterations vanishes as \(k \to \infty \). Hence, the objective function (4) reduces to the electricity cost after certain number of iterations.

Theorem 4: Algorithm ODC is a gradient projection algorithm for minimizing \(L(r) \). That is,
\[
r_n^{k+1} = \arg\min_{r_n \in D_n} ||r_n - \left(r_n - \gamma \frac{\partial L}{\partial r_n} \right) ||_2^2
\]
for all \(n \in \{1, \ldots, N \} \) and all \(k \geq 0 \), where \(\gamma = 1/(2N) \).

Proof: Since
\[
\gamma \frac{\partial L}{\partial r_n}(r^k) = 2\gamma (D + R^k) = d^k,
\]
Theorem 4 directly follows from (6). \(\square \)

IV. SIMULATIONS

We compare the convergence properties and optimality of Algorithm ODC with the decentralized scheduling algorithm proposed in [14], in homogeneous and non-homogeneous cases. For notational brevity, we call the algorithm in [14] DAP, standing for "Deviation from Average Penalty". Recall that the optimality of DAP is only guaranteed in the homogeneous case. We choose the average residential load profile in the service area of South California Edison from 20:00 on Feb. 13th 2011 to 19:00 on Feb. 14th 2011 as the normalized base demand profile. According to the typical charging characteristics of EVs in [15], we set \(\bar{r}_n(t) = 3.3 \) kW if EV \(n \) can be charged at time \(t \), and 0 kW otherwise. We assume charging rate can change continuously in \([0, r_n(t)]\), hence choose \(\bar{r}_n(t) = 0 \) for all \(t \). We set \(R_n = 10, 25, 40 \) for three different types (sedan, compact,
and roadster) of EVs. We consider the penetration level of one EV in every 5 households. Time is divided into 24 slots, each of 1 hour, during which the charging rate of each EV is not changed. As proposed in [14], we choose the price function and parameters for Algorithm DAP as following: \(p(d) = 0.15d^2 \), \(c = 1 \), \(\delta = 0.15 \).

Figure 3 shows the normalized aggregated demand profile in each iteration of Algorithm ODC and DAP. In this case, all EVs are of type sedan, plug in at 20:00, and have deadline 19:00 the next day. Algorithm ODC and DAP both converge to a valley-filling charging profile. Moreover, ODC converges after 1 iteration, while DAP takes several iterations to converge. It can be easily shown that algorithm ODC will always converge after 1 iteration in homogeneous cases.

Figure 4 shows the normalized aggregated demand profiles at convergence in a non-homogeneous case, where one third of the EVs belong to each of the three types: sedan, compact, and roadster. All EVs plug in at 20:00 and have deadline 19:00 the next day.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, we studied utilizing decentralized EV charging control to fill the overnight electricity demand valley.
We defined optimality of a charging profile as minimizing the l_2 norm of the aggregated demand, and proposed a decentralized EV charging control algorithm (ODC). In each iteration of ODC, each EV calculates its own charging profile according to the price profile broadcast by the utility, and the utility guides their behavior by updating the price profile. ODC requires low communication and computation capability, and is guaranteed to converge to the set of optimal charging profiles, in both homogeneous and non-homogeneous cases. Simulations support these results, and demonstrate fast convergence of ODC.

B. Future Works

Algorithm ODC deals with day-ahead negotiation of charging profiles. That is, all EVs participate the negotiation at the same time, and implement the schedules they commit to. In a more realistic scenario, EVs may participate the negotiation at different times, not necessarily known to the utility beforehand. We are currently extending the methodology proposed here to study this real-time setting by incorporating predictions on EV arrivals and their energy demand, and accounting for the uncertainties in these predictions.

Distributed energy storage, though currently costly, offers alternative sources for ancillary services to support for the integration of intermittent and uncertain renewable energy generation, as well as for regulating voltage profiles and fault protection. Therefore, the energy storage capacity embedded in EVs may provide a similar flexibility and a long term research goal is to develop probably optimal scheduling protocols to exploit this potential.

VI. ACKNOWLEDGMENT

The authors express their gratitude to Prof. K. Mani Chandy from California Institute of Technology and Dr. Sachin Adlakha from California institute of Technology for their valuable help and advice.

REFERENCES