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Abstract— This paper concerns the problem of optimally
scheduling a set of appliances at the end-user premises. The
user’s energy fee varies over time, and moreover, in the context
of smart grids, the user may receive a reward from an energy
aggregator if he/she reduces consumption during certain time
intervals. In a household, the problem is to decide when to
schedule the operation of the appliances, in order to meet a
number of goals, namely overall costs, climatic comfort level
and timeliness. We devise a model accounting for a typical
household user, and present computational results showing that
it can be efficiently solved in real-life instances.

I. INTRODUCTION

The advances of information technologies and the in-
creased accessibility of renewable energy resources to end
users have triggered new concepts in electricity power dis-
tribution and consumption. One such new concept is Active
Demand (AD), which has been introduced in the context of
the European project ADDRESS. The key idea is that the
end users play an active role in the electricity distribution
process, adjusting their consumption patterns depending on
the dynamics of the energy markets.

Since individual consumers do not have direct access to the
energy market, a new intermediary subject, the aggregator,
is needed to coordinate the consumers’ behavior with the
market. Each aggregator has a pool of subscribers (end
users), and is able to send them price-volume signals in
order to affect their consumption pattern. These signals
essentially consist in specifying a monetary reward (price)
if power consumption, during certain hours of the day, is
below specified thresholds (volume). Since consumers have
a certain degree of flexibility, they might find it convenient
to schedule certain tasks (e.g., running an appliance) so that
they obtain the reward, actively contributing to the overall
reduction of carbon dioxide production.

In this way, over specified time intervals the aggregator
collects a certain amount of energy, i.e., the energy saved by
a number of end users accepting the aggregator’s offer. This
energy can be used for several purposes. For instance, the
DSO (Distribution System Operator) may ask an aggregator
to enforce energy reduction in a given load area over a
given time interval, if an overload is foreseen in that area, in
order to counteract possible network unbalancing. Another
reason for the aggregator to collect energy is that he has
sold options for providing a certain amount of energy, and
the option holder has now decided to exercise the option.
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Or, the aggregator can simply strive to gather energy during
the time slots in which the market energy price is higher in
order to sell the energy, possibly sharing part of the revenue
with the users (the reward).

The aggregator interfaces with the end user through a
device called Energy Box (EB). Devices of this type have
started being installed in many houses, and their role is to
manage and optimize electrical consumption. On one side,
the EB receives information from the aggregator, and on
the other side from the end user, specifying his/her own
preferences. The EB also retains information on consumption
characteristics of the appliances installed in the household,
energy price paid to the retailer, and possibly other informa-
tion related to forecasting energy consumption (see Section
III).

Actually, the need for appropriately managing electrical
loads exists even outside the framework of active demand.
However, the savings opportunity offered by the aggregator
and the variety of signals that, in principle, can be sent to the
end users can result in a very complex scheduling problem,
which has therefore to be tackled by an appropriate model
and algorithm.

In this paper we focus on the problem faced by the end
user, who will adjust his/her daily consumption schedule to
account for the current calling plan as well as the signal(s)
sent by the aggregator. Clearly, the profitability and the feasi-
bility of an offer to an end user may depend on several issues,
depending on the end user’s own preferences and needs, the
types of appliances installed at the user’s premises and on
the possibility of generating and/or storing energy in-house.
Here we propose a mathematical programming approach
which can be viewed as a support tool for the end user,
integrating personal preferences and technical information
and constraints. The very same approach can be used for a
variety of end users, such as households or industrial users.
However, for the sake of clarity and since this is the main
focus of the ADDRESS project, from now on we refer to
domestic users.

The problem of domestic energy management has gained
increasing interest in the last years due to the evolution
of the current energy grid into a ‘smart grid’, which ac-
counts for a direct involvement of end-users in the energy
management. This paradigm requires setting up a control
scheme of residential loads, which typically consists of a
local energy management unit, possibly coordinated with
the smart meter ([1]). Some approaches proposed in the
literature focus on load shedding only ([1], [2]) — thus
neglecting possible load shifting; these authors formulate
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an optimization problem aiming at balancing electricity
costs and end user’s comfort through a stochastic dynamic
programming approach; however, they limit their analysis
to temperature control and battery management, including
the option to sell back energy to the grid. Other research
studies ([3], [4]) formulate an optimization problem to find
a trade-off between cost reduction and minimization of the
waiting time for starting the appliances. They also propose
a distributed scheme based on game theory for coordination
of a set of end-users; in this case, the minimization of the
peak-to-average ratio is included for the overall area. [5]
also propose a simulation study accounting for peak demand
reduction for both single houses and a neighborhood; the
dynamic programming approach proposed focuses on cost
minimization of one appliance at a time, including penalties
for delayed starting. With respect to most of these papers, one
distinctive feature of our model is that we let the user specify
(and possibly modify over time) the relative importance (to
him/her) of the various objectives.
In [6], a constraint satisfaction formulation is presented and a
sub-optimal algorithm, based on tabu search, is proposed for
a household energy management problem. The problem is
similar to that addressed in this paper. However, our model,
based on a mathematical programming formulation, allows
to optimally and efficiently solve real-life instances of the
problem.

II. THE EBOX SCHEDULING PROBLEM

In this section we describe the household energy con-
sumption optimization problem. As already outlined in the
previous section, our prototypical consumer acts in a smart
grid framework, in which a new player of the energy market,
the Aggregator, communicates AD requests via the EB.

Domestic power consumption is due to a number of elec-
trical loads, which can be roughly divided into manageable
and non-manageable.

Manageable loads can be characterized in terms of a cer-
tain consumption cycle, i.e., the specification of the energy
consumption profile over time. For instance, the delicate
program of a given washing machine is characterized by a
duration and a certain power consumption profile throughout
the program. It can therefore be viewed as a (nonpreemptive)
task which should be scheduled within certain time limits,
specified by the end user and more or less strict depending on
user’s preferences. Manageable loads can be further divided
into adjustable loads, which can be altered by directly modi-
fying their actual energy consumption (e.g. air conditioning),
and shiftable loads, whose working cycle can be shifted in
time (e.g. the washing machine). The devices corresponding
to manageable loads are assumed to be ”smart”, i.e., they
are able to exchange signals and information with the EB.
Adjustable loads correspond to Type 1 devices, which can
be driven by modifying their power absorption (e.g., air
conditioning or devices controlled through “smart plugs”);
whereas shiftable loads correspond to Type 2 devices, which
can be programmed by the consumer and, when the delayed

start command is set, send the EB complete information
about their working cycle.

Other types of loads are inherently non-manageable, i.e.,
they are continuously run and little can be done to reduce or
re-schedule them. Examples of these loads are the refrigera-
tor or the lighting. The corresponding devices do not directly
exchange information with the EB.

In addition, the user may have distributed generators, such
as solar panel or micro-CHP, and storage devices, such as
batteries used as energy buffers.

Our model addresses decisions concerning manageable
loads, but it takes into account the availability of other
resources as well as a forecast pattern for non-manageable
loads. Coherently with the ADDRESS framework, the con-
sumer does not have to explicitly respond to each AD
requests, nor is the consumer asked to set up each appliance
in order to satisfy the related consumption conditions. Rather,
the EB is in charge of these functions, which controls the
“smart appliances” taking into account the preferences spec-
ified by the user. The consumer will physically program the
appliances via “delayed start” commands, which correspond
to allowing the EB schedule their work cycle. Then, the EB
solves the optimization problem and prompts the consumers
to commit to the computed schedule.

Since in this framework non-manageable loads play the
same role of disturbances, knowledge about their power
absorption over time is needed, so that the EB can properly
arrange smart appliances. We assume that an estimate of non-
manageable load consumption (for each 15-minute time slot)
is available. This type of information can either be provided
by a direct link between EB and meter (if allowed by contrac-
tual and technical constraints), or by the aggregator. In any
case, uncertainty about the actual household consumption
due to non-manageable appliances still remains and it has to
be treated as a disturbance.
The EB is called to schedule manageable loads in order to
maximize the utility function of the user. In our model, such
function encompasses three different criteria:
• cost minimization – this is pursued by exploiting the

differences among retailer energy prices over time and
the aggregator’s proposals;

• maximization of climatic comfort – this is assumed to be
directly related to the consumption of Type 1 devices,
either it be air conditioning or electric heating;

• scheduling convenience – this is expressed by specifying
preferred starting and ending times of working cycles
for Type 2 devices.

The relative weight to be given to the three above objectives
is specified by the user’s preferences. A money-aware user
will put more weight on objective 1, a comfort-seeking user
will privilege objective 2 etc.

Summarizing, the EB Scheduling Problem (EBSP) can be
stated as follows. Given:
• price/volume signals received from the aggregator
• the selected working cycles of Type 2 devices
• the forecast consumption pattern of non-manageable

loads
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• the user’s settings, including desired home temperature
and desired limits on starting and ending times of Type
2 appliances

• forecast external temperature (if air conditioning or
heating is present)

• storage device (battery) charge level
• contractual issues (upper bound on power absorption

from the network, hourly energy price paid to the
retailer etc)

• other possible technical constraints (e.g. the impossibil-
ity to inject energy into the power grid)

compute an overall consumption schedule, i.e.
• the prescribed start time of Type 2 devices
• the amount of power to be used during each time slot

to control Type 1 devices (e.g. air conditioning)
• the charging/discharging profile for storage devices

so that the user’s utility function, as specified by the user’s
preferences, is maximized.

In the next section, the mathematical formulation of EBSP
is presented in terms of a mixed-integer linear program.

III. THE OPTIMIZATION MODEL FOR EBSP

In this section, a Mixed Integer Linear Programming
(MILP) formulation is presented for EBSP. To this aim,
assumptions and notation useful to formally describe EBSP
are first introduced.

We assume that the scheduling time horizon (typically,
one day) is divided into a set of time slots T = {1, . . . , ttot},
each of duration Θ (e.g. one day divided into ttot = 96 slots,
corresponding to time slots of Θ = 15 minutes =0.25 hours).
Let N = {a1, . . . , an} be the set of the Type 2 devices (also
called appliances in the following), whose starting times can
be directly controlled by the EB (e.g., dishwasher, washing
machine, etc.). Each appliance ai ∈ N is characterized by
a working cycle. Let Di be the length, in terms of number
of time slots, of the working cycle of appliance ai. For each
time slot s = 1, . . . , Di, let Πi,s be the power consumption
(in kW) of appliance ai in the s-th time slot of the working
cycle. Power consumption is supposed to be constant within
one time slot (possibly, this is obtained as the average
consumption during that time slot). The end-user may specify
how desirable it is for him/her to run an appliance throughout
the time horizon. Let σi,t ∈ {1, 2, 3, 4, 5} be a conventional
coefficient expressing how desirable is that appliance i ∈ N
starts in time slot t (1 and 5 indicating highest and lowest
desirability respectively). Manageable loads include an air
conditioning system (AC), characterized by a desired value
of the house internal temperature (set by the user) in each
time slot t ∈ T , denoted as T set

t .
Regarding non-manageable loads, i.e., the devices which

are not directly controlled by the EB, let PNM
t be the power

absorbed (kW) by the non-manageable appliances in time
slot t ∈ T .

We also consider distributed generators, such as photo-
voltaic cells, and a storage system for the produced energy
(e.g., a battery used as a buffer). In this context, let BIt be

the forecasted battery input (kW), coming from photovoltaic
panels in time slot t.

The aggregator proposals are modeled as price-volume
signals sent to the end-user. The user gets the reward (e.g.,
Euro) Rred

t (Rinc
t ) from the aggregator if the power drawn

from the network in time slot t is less (greater) than or equal
to V red

t (V inc
t ).

For each time slot t ∈ T , there is an upper limit on power
consumption, according to the contract with the retailer. Let
Mt and Ψt respectively be the maximum power (kW) that
can be drawn from the net and the price of energy (e.g.,
Euro/kWh) in time slot t.

Our mathematical model makes use of a number of
forecasts. One is the forecasted non-manageable load (that
can be computed on the basis of historical data), another
is the weather forecast. The latter allows the Ebox to have
information on external temperature (during each time slot)
as well as on the amount of energy coming from the
distributed generators (e.g., photovoltaic cells) that is likely
to be input (and stored in the battery) in the various time
slots.

The following decision and auxiliary variables are em-
ployed in the optimization model.

• xit an integer variable equal to 1 if the appliance i starts
at slot t and 0 otherwise.

• yt an integer variable equal to 1 if the reduction proposal
of the aggregator is accepted in slot t and 0 otherwise.

• zt an integer variable equal to 1 if the increase proposal
of the aggregator is accepted in slot t and 0 otherwise.

• wt the power (kW) drawn from the network in time slot
t.

• pAC
t the power absorbed (kW) by the AC system in

time slot t.
• pM

t the power absorbed (kW) by the other manageable
appliances in time slot t (AC is excluded).

• blt the battery level (kWh) in time slot t.
• bot the battery output (kW) in time slot t.
• TH

t the internal house temperature in time slot t.
• T gap

t the absolute deviation between the desired and the
actual house temperature in time slot t.

• T gap
max the maximum value attained by variables T gap

t ,
for t ∈ T .
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A MILP formulation for EBSP is the following.

maxα1

∑
t∈T

(Rred
t yt +Rinc

t zt −ΘΨtwt)

+α2

∑
t∈T

∑
ai∈N

σitxit − α3

∑
t∈T

T gap
t − α3T

gap
max (1)

subject to∑
t∈T

xit = 1 ∀ai ∈ N (2)

∑
ai∈N

Di∑
s=1

Πisxit = pM
t ∀t ∈ T (3)

wt ≤ V red
t yt +Mt(1− yt) ∀t ∈ T (4)

wt ≥ V inc
t zt ∀t ∈ T (5)

blt ≤ blt−1 + Θ(BIt − bot) ∀t ∈ T (6)
blt ≤ BLmax ∀t ∈ T (7)

TH
t = TH

t−1 − β(TH
t − TE

t )− γpAC
t ∀t ∈ T (8)

TH
t − T set

t ≤ T gap
t ∀t ∈ T (9)

−TH
t + T set

t ≤ T gap
t ∀t ∈ T (10)

T gap
t ≤ T gap

max ∀t ∈ T (11)

pM
t + pAC

t + PNM
t = bot + wt ∀t ∈ T (12)

xit, yt, zt ∈ {0, 1} ∀t ∈ T (13)

pM
t , pAC

t , bot, blt, wt, T
H
t , T gap

t ≥ 0 ∀t ∈ T (14)

The objective function (1) takes into account the three
sensible terms introduced in the previous section, i.e.: overall
energy costs (i.e.,

∑
t∈T

(Rred
t yt + Rinc

t zt − ΘΨtwt)), the

scheduling preferences (i.e.,
∑
t∈T

∑
ai∈N

σitxit) and climatic

comfort (i.e., T gap
max +

∑
t∈T

T gap
t ). Observe that the latter term

consists of two elements: the sum of the absolute deviations
between desired and actual house temperature (through all
the time slots), and the maximum absolute deviation (i.e.,
T gap

max), the latter penalizing high values of T gap
t in any slot

t. The three terms are weighted with the three parameters α1,
α2 and α3. By changing the three parameters, different end-
user behaviors can be modeled. For example, the ”money
saver” user can be modeled assigning a high value to the
parameter related to the first objective and low values to the
other two objectives.

Constraints (2) ensure that the working cycle of each
appliance ai is run. Constraints (3) state that, for each time
slot t, the overall power required by manageable appliances
is the total power required by all working cycles in execution
at t. Constraints (4) and (5) refer to the price-volume signals
received by the aggregator. If the power drawn from the
network in time slot t is less (greater) than the value V red

t

(V inc
t ) then the reduction (increase) requirement is met and

the corresponding variable yt (zt) can be set to 1, else it
must be set to 0. The charge of the battery is modeled by
the balance equations (6). They state that the charge in time
slot t is equal to the charge in the previous slot minus the
energy supplied to the electric loads (a variable), plus the

TABLE I
WORKING CYCLE DETAILS OF SELECTED APPLIANCES

Appliance
Working cycle Min power Max power

duration consumption consumption
(time slots) (kW) (kW)

Washing machine 6 0.10 2.00
Dishwasher 8 0.10 2.10

Dryer 6 0.30 2.00
Oven 3 0.60 2.00

Water heater 4 0.05 2.00

energy supplied by photovoltaic panels (a forecasted data).
Constraint (7) takes into account the maximum charge level
of the battery, denoted as BLmax.
The AC system is modeled as a simple first-order heat-
transmission process by constraints (8)–(10). Constraint (8)
describes the dynamics of such process, driven by the
power absorbed by the AC system. Here, β is an insulation
parameter representing the temperature increase due to the
difference of 1◦C between internal and external temperature
during one time slot, and γ is the temperature decrease
yielded by 1 W of air conditioning during one time slot.
Constraints (9) and (10) are used to set the value of the
variable T gap

t to the absolute deviation between desired and
actual house temperature in time slot t. Inequalities (11)
force the value of the variable T gap

max to the maximum value
achieved by variables T gap

t , for t ∈ T . Constraints (12) are
simple balances, for each time slot t, among the total power
load from manageable appliances, the AC system, the non-
manageable loads, and the power drawn from the network
and supplied by the battery.

IV. SIMULATION RESULTS

Here we report on a set of computational experiments, ana-
lyzing the solution obtained in various scenarios, for different
user preferences and varying offers from the aggregator.
We also show how possible additional storage or generation
devices can be adequately introduced in the model. Tests
have been performed using the CPLEX 12.2 MILP solver
on a 3 GHz Intel Core 2 Duo processor with 3.25 GB of
RAM. In all cases, the computation time required to find an
optimal solution was less than one minute.

We experimented with a set of appliances, chosen among
those from Table I. In this table, we specify the duration
of the working cycle of each appliance (number of time
slots) and the minimum and maximum power consumption
throughout the working cycle. Recall that we assume the
power consumption as constant within a time slot. In what
follows, we focus on N = 5 appliances, whose consumption
profile has been generated based on the data from Table
I, with random variations across instances (thus mimicking
possible variations due to different manufacturers).

In our experiments, we accounted for an overall load
profile of non-manageable appliances, without distinguish-
ing among the specific appliances which contribute to that
profile. We randomly generate 10 alternative profiles, charac-
terized by minimum, maximum and average consumption as
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specified in Table II. Table II also shows the characteristics
of the battery level profile associated to different degrees of
solar insulation (identified as ‘high’, ‘medium’ and ‘low’).
To account for different weather conditions (which affect the
power required by the air conditioning system), we consider
two alternative scenarios for the outdoor temperature, namely
warm (W) and average (A); see again Table II for details.

We used the electricity rates provided by the Italian Reg-
ulatory Authority for Electricity and Gas. We consider two
tariffs, referred to as peak (typically applied to weekdays,
from 8 to 19) and off-peak rate (for weekdays, from 19 to 8,
and on weekends and national holidays). We consider four
options:
• a null option (N), in which there are no flexibility

requests from the aggregator; therefore, nominal elec-
tricity rates apply;

• a reduction option (R), in which the consumer gets a
reward if he/she accepts to reduce his/her consumption
in a specified time interval;

• an increase option (I), in which the consumer gets a
reward if he/she accepts to increase his/her consumption
in the specified time interval;

• an increase/reduction option (B), where the consumer
gets a reward if his/her consumption remains within two
given thresholds in the specified time interval.

Combining the three alternative configurations for the bat-
tery level profiles, the two scenarios for forecasted outdoor
temperature and the four options for the aggregator’s flex-
ibility requests, we obtain 24 scenarios. For each scenario,
we randomly generate 10 instances of EBSP with a 24-hour
time horizon, which implies ttot = 96 time slots and Θ = 15
minutes.

We run the optimization algorithm according to each of the
following operating modes, corresponding to different user
profiles:
• money saving (MS) – the user is only interested in

reducing the electrical bill, so we set α1 = 1, α2 = 0
and α3 = 0;

• user preferences (UP) – the user is only interested in
scheduling the appliances according to its preferences,
so we set α1 = 0, α2 = 1 and α3 = 0;

• climatic comfort (CC) – the user is only interested in
keeping the house temperature as close as possible to the
desired temperature he/she has set; so we set α1 = 0,
α2 = 0 and α3 = 1;

• balanced (BL) – the user is equally interested in all the
three aspects. Since the three objectives are expressed in
different units, a preliminary computational campaign
was needed to appropriately tune the alpha values,
which turned out to be α1 = 0.45, α2 = 0.15 and
α3 = 0.40.

Figures 1-3 summarize our simulation results, showing
the values of the objective function at optimality, in terms
of its three components (cost, scheduling preferences and
climatic comfort respectively), for each of the four Ebox
operating modes. On the x-axis, we report the 24 scenarios

coded through the string ‘X-Y-Z’, where ‘X’ denotes the
outdoor temperature profile, ‘Y’ the insulation level, and ‘Z’
the flexibility request coming from the aggregator.

Fig. 1. Energy cost component of the objective function for the different
Ebox operating modes

Fig. 1 illustrates the values of the energy cost compo-
nent. Obviously, the lowest values are obtained in the MS
operating mode. Note that the external temperature does
not affect costs, which remain constant w.r.t. variations of
this factor (passing from W to A). This is because in this
operating mode climatic comfort is not taken into account.
On the other hand, the CC operating mode (which only
considers climatic comfort) requires the highest costs across
all scenarios: in order to reduce the gap between desired and
actual internal temperature as much as possible, significant
use of air conditioning is needed, which increases power
consumption and costs as well. From Fig. 1, we also note
that costs are higher when solar radiation is lower. This
behavior holds for all operating modes. Finally, observe that
flexibility requests only affect the energy cost component in
the MS operating mode: in fact, in this case the appliances
are scheduled in a way that allows getting the rewards from
the aggregator.

The BL operating mode, instead, partially pursues the
aggregator’s rewards. However, the energy cost of the BL
solution is worse than in the MS operating mode, showing
that the optimal schedule does not always allow to get the
reward.

Fig. 2. Scheduling preferences component of the objective function for
the different Ebox operating modes

Fig. 2 highlights that both UP and BL operating modes
follow the user’s preferences in scheduling the appliances
during the day across all the scenarios, whereas the other

5903



TABLE II
DETAILS ON THE INPUT DATA SETTING

Configuration Min value Max value Avg. value
Non-manageable load (kW) 0.2 0.9 0.6

Battery input level (kWh)
high insulation (H) 0 0.7 0.4

medium insulation (M) 0 0.5 0.3
low insulation (L) 0 0.3 0.1

Outdoor temperature (◦C) warm (W) 23 32 27
average (A) 16 26 20

two operating modes typically schedule the appliances irre-
spective of user’s preferences.

Fig. 3. Climatic comfort component of the objective function for the
different Ebox operating modes

Concerning climatic comfort, Fig. 3 shows that obviously
CC yields the best values across all the scenarios. Comfort
appears acceptable also in the BL operating mode, whereas,
as expected, both the MS and the UP operating modes
provide the lowest comfort, since it conflicts with cost mini-
mization and user preferences. We also note that all operating
modes provide higher values of this component when the out-
door temperature is high (i.e., for all the scenarios associated
to W) and they all decrease when the outdoor temperature
is average (i.e., for all the scenarios associated to A). This
derives from the fact that lower outdoor temperatures would
reduce the temperature gap, possibly without even requiring
the activation of air conditioning. As a consequence, even for
the MS operating mode the average temperature gap between
desired and actual temperature is smaller.

V. CONCLUSIONS

We presented an approach to the problem of planning
appliance tasks in a household, taking into account the
variability over time of the energy price paid by the consumer
to the retailer. Various user’s objectives are traded off against
each other to pursue a satisfactory schedule on the basis of
cost, climatic comfort and scheduling convenience consider-
ations. A mixed-integer linear programming formulation of
the problem allows to accommodate several issues, including
the availability of power generators (e.g. photovoltaic pan-
els), and/or storage devices. Preliminary experiments indicate
that the model achieves good schedules, in very limited
computation time, and without the need of sophisticated
computational hardware. In any case, the solutions obtained
using CPLEX can be used as a benchmark to possible

heuristic approaches, if EB hardware/software requirements
prevent the use of general-purpose MILP solvers. The de-
velopment of specific heuristics for problem (1)–(14) will
be the object of future research.
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