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Abstract— We analyze reachability properties and local in-
put/output gains of systems with polynomial vector fields.
Upper bounds for the reachable set and nonlinear system
gains are characterized by polynomial Lyapunov (storage)
functions satisfying certain bilinear constraints. A methodology
utilizing information from simulations to generate Lyapunov
function candidates satisfying necessary conditions for bilinear
constraints is proposed. The suitability of Lyapunov function
candidates are assessed solving linear sum-of-squares optimiza-
tion problems. Qualified candidates are used to compute upper
bounds for the reachable set and nonlinear system gains and
to initialize further coordinate-wise affine optimization. We
illustrate the method on several examples from the literature.

I. INTRODUCTION

We consider the problem of computing upper bounds for

the reachable set and local input-to-output (IO) gains of

nonlinear dynamical systems with polynomial vector fields

around asymptotically stable equilibrium points. Similar

problems were studied in [1], [2], [3], [4], [5]. This paper

is an extension of the work reported in [2] and proposes a

methodology that incorporates prior information from sim-

ulations in reachability and local gain analysis of nonlinear

systems.

Following [1], [2], we characterize upper bounds on the

reachable sets and the local IO gains due to bounded L2

(and possibly L∞) disturbances by Lyapunov (storage) func-

tions which satisfy certain “local” dissipation inequalities

[6]. Using sum-of-squares (SOS) relaxations for polynomial

non-negativity [7], it is possible to search for polynomial

Lyapunov functions for systems with polynomial (and/or

rational) dynamics using semidefinite programming [3], [8],

[1], [2]. However, the SOS relaxations for the problems in the

papers lead to bilinear matrix inequality (BMI) constraints.

Motivated by the difficulties associated with bilinear pro-

gramming, we here propose a methodology that incorpo-

rates information from system simulations in formal proof

construction (computing certifying Lyapunov functions) and

extend the applicability of reachability and local IO gains

analysis for nonlinear systems. Although the information

from simulations is inconclusive, i.e., cannot be used to prove
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certain properties (such as upper bounds for reachable sets

and local IO gains or lower bounds for regions-of-attraction)

of the system, it provides insight into the system behavior.

Following a similar technique developed for computing in-

variant subsets of the (robust) regions-of-attraction in [9], the

method proposed here relaxes the bilinear problem (using a

specific system theoretic interpretation of the corresponding

optimization, specifically SOS optimization, problem) to a

linear problem, and the true feasible set is a subset of the

linear problem’s feasible set. If large amount of simulation

data is used, samples from the linear problem’s feasible set

often are suitable Lyapunov functions, i.e., provide subop-

timal solutions for the actual problem, and certify certain

upper bounds. They can also be used as initial seeds for

further optimization (e.g. coordinate-wise linear search).

We demonstrate the development of the method for com-

puting upper bounds for the reachable set due to bounded

L2 disturbances (or local L2 → L∞ gain) in detail and only

comment on how to modify the method for computing upper

bounds for local L2 → L2 gain. The rest of the paper is

organized as follows: Characterization of upper bounds for

the reachable set with Lyapunov functions and a method

for computing lower bounds are explained in section II.

Section III is devoted to the simulation-based relaxation for

the bilinear problem. The method is demonstrated on a few

examples in section IV. Extensions of the simulation-aided

technique to local L2 → L2 gain analysis is discussed in

section V, which is followed by concluding remarks.

Notation: Rn denotes the n-dimensional Euclidean space.

For Q = QT ∈ Rn×n, Q � 0 (Q ≻ 0) means that

xT Qx ≥ 0 (≤ 0) for all x ∈ Rn. R[x] represents the

set of polynomials in x of certain finite degree with real

coefficients. The subset Σ[x] := {π ∈ R[x] : π =
π2

1 + π2
2 + · · · + π2

m, π1, · · · , πm ∈ R[x]} of R[x] is the

set of SOS polynomials. For π ∈ R[x], ∂(π) denotes the

degree of π. We do not specify the degree of polynomials

in R[x] and Σ[x], unless it causes confusion, and it is to be

understood in the context. ⊳

II. REACHABLE SET DUE TO L2 DISTURBANCES

Consider the nonlinear dynamical system

ẋ(t) = f(x(t), w(t)) (1)

where x(t) ∈ Rn, w(t) ∈ Rnw , and f is a n-vector with

elements in R[(x, w)] such that f(0, 0) = 0. Let φ(t; ξ, w)
denote the solution to (1) at time t with the initial condition

x(0) = ξ driven by the input/disturbance w. The set Ωγ of

points reachable from the origin under (1), provided that the
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disturbance satisfies ‖w‖2
2 :=

∫ T

0 w(t)T w(t) dt ≤ γ, T ≥ 0
is defined

Ωγ :=
{

φ(T ; 0, w) ∈ Rn : T ≥ 0, ‖w‖2
2 ≤ γ

}

.

Next, we review characterizations of the upper and lower

bounds of the reachable set.

A. Upper bound of the reachable set

Following a Lyapunov-like argument in [10, §6.1.1],

Lemma 1 provides a characterization of sets containing Ωγ .
For γ > 0 and a function V : Rn → R, define

Ωγ,V := {ξ ∈ Rn : V (ξ) ≤ γ} .

Lemma 1: [1], [2] If a continuously differentiable function

V satisfies

V (x) > 0 for all x ∈ Rn\{0} with V (0) = 0, and (2)

∂V
∂x

f(x, w) ≤ wT w for all x ∈ Ωγ,V , w ∈ Rnw , (3)

then Ωγ,V contains Ωγ . ⊳
In order to compute a tight upper bound for the reachable

set by choice of V, we introduce a fixed positive definite

convex function p and a variable sized region Pβ := {ξ ∈
Rn : p(ξ) ≤ β} and minimize β imposing the constraint

Ωγ,V ⊆ Pβ . This can be written as

min
β>0,V ∈V

β subject to (2), (3), and Ωγ,V ⊆ Pβ . (4)

Here V denotes the set of candidate Lyapunov functions over

which the maximum is computed.

In order to make (4) amenable to numerical optimization

(specifically SOS optimization), we restrict V and p to be

all polynomials of some fixed degree and use the well-

known sufficient condition for polynomial non-negativity: for

a polynomial π ∈ R[ξ] with ξ ∈ Rn, if π ∈ Σ[ξ], then π
is positive semidefinite [7]. Using simple generalizations of

the S-procedure (Lemma 3), we obtain sufficient conditions

for the set containment constraint in (3). Specifically, let l1
be a positive definite polynomial (typically ǫxT x for some

small real number ǫ). Then, the constraint

V − l1 ∈ Σ[x] (5)

and V (0) = 0 are sufficient conditions for the constraints in

(2). By Lemma 3, if s1 ∈ Σ[x] and s2 ∈ Σ[(x, w)], then

(β − p) − (γ − V )s1 ∈ Σ[x] and (6)

−
[

(γ − V )s2 + ∂V
∂x

f(x, w) + wT w
]

∈ Σ[(x, w)] (7)

imply Ωγ,V ⊆ Pβ and the constraint in (3), respectively.

Using these sufficient conditions, an upper bound on optimal

value of β in (4) can be defined as an optimization:

Proposition 1: Let β∗
B be defined as

β∗
B(Vpoly,S) := min

V,β,s1,s2

β subject to (5) − (7), (8)

V (0) = 0, V ∈ Vpoly , s1 ∈ S1, s2 ∈ S2, and β > 0.

Here, Vpoly ⊂ V and S’s are prescribed finite-dimensional

subspaces of R[x] and Σ[x], respectively. Then, β∗
B(Vpoly,S)

is an upper bound for the optimal value of β in (4). ⊳

Although β∗
B depends on Vpoly and S, it will not always

be explicitly notated. The optimization problem in (8) is

bilinear because of the product terms V s1 in (6) and V s2 in

(7). However, the problem has more structure than a general

BMI problem. If V is fixed, the problem becomes affine in

s1 and s2 and vice versa. In section III, we will construct a

convex outer bound on the set of feasible V , sample from

this outer bound set to obtain candidate V ’s, and then solve

(8) for S, holding V fixed. Construction of this outer bound

on the set of feasible V relies on data provided by simulation

trajectories of (1) driven by admissible disturbance signals.

Next, we propose a method adapted from [11] for comput-

ing lower bounds of the reachable set. The input signals

generated by this procedure will be used both in assessing

the suboptimality of the upper bounds and in forming the

simulation-based relaxation for the bilinear SOS problem (8).

B. Lower bound

For any positive T , it follows that

max
w∈L2[0,T ]

‖w‖2
2≤γ

p(x(T )) ≤ max
w∈L2[0,∞)

‖w‖2
2≤γ

p(x(t)) ≤ β∗
B. (9)

The conditions for stationarity of the finite horizon max-

imum in (9) are the existence of signals (x, λ) and w

which satisfy ẋ = f(x, w), ‖w‖2
2 = γ, λ(T ) = ∂p(x(T ))

∂x

T
,

λ̇(t) = −∂f(x(t),w(t))
∂x

T
λ(t), and w(t) = µ∂f(x(t),w(t))

∂w

T
λ(t)

for t ∈ [0, T ], where µ is chosen such that ‖w‖2
2 = γ. Tierno

et al. [11] proposed a power-like method to solve a similar

maximization, and this method was adapted for computing

lower bounds of the reachable set in [2]:

1) Pick T > 0 and w with ‖w‖2
2 = γ.

2) Compute solution φ(T ; 0, w) of (1).

3) Set λ(T ) = ∂p(x(T ))
∂x

T
.

4) Compute solution of λ̇(t) = −∂f(x(t),w(t))
∂x

T
λ(t),

t ∈ [0, T ].

5) Update w(t) = µ∂f(x(t),w(t))
∂w

T
λ(t).

6) Repeat steps (2) – (5) until w converges.

In practice, step (2) of each iteration gives a valid lower

bound on maximum (over ‖w‖2
2 = γ) of p(x(T )), indepen-

dent of whether the iteration converges.

III. SIMULATION BASED RELAXATION FOR THE

BILINEAR SOS PROBLEM

The usefulness of using simulation data in local stability

analysis was demonstrated in [9] where a methodology

that incorporates simulation data in formal proof construc-

tion for estimating the region-of-attraction of locally stable

equilibrium points of autonomous dynamical systems with

polynomial vector fields. In this section, we propose a similar

technique for reachability analysis for nonlinear dynamical

systems with polynomial vector fields. To this end, for given

β > 0 and disturbance level γ > 0, let’s ask the question

whether the reachable set Ωγ is contained in the set Pβ .
Certainly, just one disturbance signal w (with ‖w‖2

2 ≤ γ)

that leads to a system trajectory on which p takes on a value
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larger than β certifies that Ωγ * Pβ . Conversely, a large

collection of input signals w with ‖w‖2
2 ≤ γ that do not

drive the system out of Pβ hints to the likelihood that indeed

Ωγ ⊆ Pβ . In this latter case, let W be a finite collection of

signals

W :=







(w, x) :
w ∈ L2[0,∞),
‖w‖2

2 ≤ γ,
p(φ(t; 0, w)) ≤ β, ∀t ≥ 0







.

With β and γ fixed, the set of Lyapunov functions

which certify that Ωγ ⊆ Pβ , using conditions (5)-(7), is

simply {V ∈ R[x] : (5) − (7) hold for some si ∈ Σ[x]} . Of

course, this set could be empty, but it must be contained in

the convex set {V ∈ R[x] : (10) holds}, where

l1(x(t)) ≤ V (x(t)), (10a)

V (x(t)) ≤ γ, (10b)
∂V (x(t))

∂x
f(x(t), w(t)) ≤ w(t)T w(t) (10c)

for all (w, x) ∈ W and t ≥ 0. Informally, these conditions

simply say that, on the trajectories starting at the origin and

driven by disturbance signals with ‖w‖2
2 ≤ γ, any V which

verifies that Ωγ ⊆ Pβ using the conditions (5)-(7) must take

on values between 0 and γ and its rate of change along the

corresponding system trajectory cannot exceed w(t)T w(t).

A. Affine relaxation

Let V be linearly parameterized as V := {V ∈
R[x] : V (x) = ϕ(x)T α}, where α ∈ Rnb and ϕ is

nb-dimensional vector of polynomials in x. Given ϕ(x),
constraints in (10) can be viewed as constraints on α ∈ Rnb

yielding the convex set {α ∈ Rnb : (10) holds for V =
ϕ(x)T α}. For each (w, x) ∈ W, let Tw be a finite subset

of the interval [0,∞). A polytopic outer bound for this set

described by finitely many constraints is Ysim := {α ∈
Rnb : (11) holds}, where

l1(x(t)) ≤ ϕ(x(t))T α, (11a)

ϕ(x(t))T α ≤ γ, (11b)

∂ϕ(x(t))T α

∂x
f(x(t), w(t)) ≤ w(t)T w(t) (11c)

for all (w, x) ∈ W and t ∈ Tw.

The constraint that
∂V (x)

∂x
f(x, w) ≤ wT w be satisfied on γ

sublevel set of V and for all w implies that
∂V (x)

∂x
f(x, w) ≤

wT w holds on a neighborhood of the origin in the (x, w)-
space. While it is possible to approximately impose this

constraint on a sample in a small enough neighborhood of the

origin, in some case (e.g. exponentially stable linearization)

it is easy to analytically express as a constraint on the low

order terms of the polynomial Lyapunov function. To this

end, let λ > 1 and PT = P ≻ 0 be such that xT Px is the

quadratic part of V and define Lin(P ) as

Lin(P ) :=

[

∂f(0,0)
∂x

T
P + P ∂f(0,0)

∂x
P ∂f(0,0)

∂u
∂f(0,0)

∂u

T
P −λI

]

.

Then, if (3) holds, it must be

Lin(P ) � 0, (12)

in other words, (12) is a necessary condition for (3) (conse-

quently for (7)). Now, let Ylin := {α ∈ Rnb : P = PT ≻
0 and Lin(P ) � 0}. It is well-known that Ylin is convex

[10]. Furthermore, define YSOS := {α ∈ Rnb : (5) holds}.

By [7], YSOS is convex. Since Ysim, Ylin and YSOS are

convex, Y := Ysim ∩ Ylin ∩ YSOS is a convex set in

Rnb . Equations (11) and (12) constitute a set of necessary

conditions for (5)-(7); thus, we have Y ⊇ B := {α ∈ Rnb :
∃s1 ∈ Σ[x], s2 ∈ Σ[(x, w)] such that (5) − (7) hold}. Since

(6) and (7) are not jointly convex in V and the multipliers,

B may not be a convex set and even may not be connected.

A point in Y can be computed solving an affine (fea-

sibility) SDP with the constraints (5), (11) and (12). An

arbitrary point in Y may or may not be in B. However, if

we generate a collection A := {α(k)}NV −1
k=0 of NV points

distributed approximately uniformly in Y , it may be that

some of the points are in B. To this end, we use the so-called

“Hit-and-Run” (H&R) random point generation algorithm as

described in [12].

B. Algorithms

Since an appropriate (feasible and not too conservative)

value of γ is not known a priori, an iterative strategy to

simulate and collect trajectories is necessary. This process

when coupled with the H&R algorithm constitutes the

Lyapunov function candidate generation.

Simulation and Lyapunov function generation (SimLFG)

algorithm: Given positive definite convex p ∈ R[x], a vector

of polynomials ϕ(x), positive constants β, γ, NSIM

(integer), NV (integer), γshrink ∈ (0, 1), and empty set W.

1) Generate NSIM input signals w with ‖w‖2
2 ≤ γ and

integrate (1) from the origin.

2) If all trajectories stay in Pβ , add the input signals and

corresponding trajectories to W and go to step (3).

Otherwise, set γ to γshrinkγ and go to step (1).

3) Find a feasible point for (5), (11) and (12). If (5), (11)

and (12) are infeasible, set γ = γshrinkγ, and go to

step (1). Otherwise, go to step (4).

4) Generate NV Lyapunov function candidates using

H&R algorithm, and return γ and Lyapunov function

candidates. ⊳

Step (1) of SimLFG algorithm requires to generate input

signals w with ‖w‖2
2 ≤ γ. In the current implementation

of this algorithm, we use randomly generated piecewise con-

stant input signals and signals generated by the method from

section II-B using the given shape factor p and additional

randomly generated shape factors.

The suitability of a Lyapunov function candidate is as-

sessed by solving the optimization problem

Affine Problem: Given V ∈ R[x] (from SimLFG algo-

rithm), p ∈ R[x], and β, define

γ∗
L := max

γ,s1,s2

γ subject to

s1 ∈ Σ[x], s2 ∈ Σ[(x, w)], γ > 0,
(β − p) − (γ − V )s1 ∈ Σ[x],

−
[

(γ − V )s2 + ∂V
∂x

f(x, w) + wT w
]

∈ Σ[(x, w)].
(13)
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Although γ∗
L depends on the allowable degree of s1 and s2,

this is not explicitly notated. Note that for given V and fixed

γ the problem in (13) is affine in the multipliers and can be

solved as a linear SDP via a line search on the parameter γ.

Assuming Affine Problem is feasible, it is true that Ωγ ⊆
Ωγ,V ⊆ Pβ . The solution to Affine Problem provides a

feasible point for the problem in (8). This feasible point

can be further improved by solving the problem in (8) using

iterative coordinate-wise affine optimization schemes, one of

which is given next.

Coordinate-wise optimization (CWOpt) algorithm: Given

V ∈ R[x], positive definite l1 ∈ R[x], positive definite

convex p ∈ R[x], a constant εiter > 0 (stopping tolerance),

and maximum number of iterations Niter, set k = 0

1) Solve Affine Problem.

2) Given s1 and s2 from step (1), solve (8) for V and γ,

and set γ∗
L = γ∗

B .

3) If k = Niter or the increase in γ∗
L between successive

applications of step (2) is less than εiter, return V and

γ∗
L. Otherwise, set k to k + 1 and go to step (1). ⊳

Next, we review the following upper bound refinement

procedure from [2] that is applied once a Lyapunov function

V and corresponding γ satisfying the conditions in (5)-(7)

are computed.

Upper bound refinement from [2]: Let V and γ satisfy (5)-

(7), m ≥ 0 be an integer, define ǫ := γ/m, and partition the

set Ωγ,V into m subregions Ωγ,V,k := {x ∈ Rn : (k−1)ǫ ≤
V (x) ≤ kǫ} for k = 1, . . . , m. If

∂V

∂x
f(x, w) ≤ hkwT w for all x ∈ Ωγ,V,k, w ∈ Rnw , (14)

holds for some hk > 0, then for any k ≤ m, the system

in (1) with piecewise continuous w starting from the origin

satisfies
∫ T

0

wT w dt < ǫ

(

1

h1
+ · · · + 1

hk

)

⇒ V (φ(T ; 0, w)) ≤ kǫ.

Note that (14) already holds with hk = 1. Therefore, it

may be possible to make ǫ(1/h1 + . . . , 1/hk) (in particular

k = m) greater than γk/m (in particular γ) by minimizing

hk such that (14) holds. S-procedure and SOS programming

based sufficient conditions for (14) are proposed in [2].

IV. EXAMPLES

In the following examples, l1(x) = 10−6xT x, ∂(V ) = 2,

∂(s1) = 0, ∂(s2) = 2 (s2 does not have constant and linear

terms), NSIM = 100 in Example 1 and 600 in Examples

2 and 3, NV = 1 (in SimLFG algorithm), εiter = 0.01,
Niter = 20, and m = 10 (in the refinement procedure).

We applied SimLFG and CWOpt algorithms for different but

fixed values of β and computed corresponding values of γ.
Then, using the refinement procedure, new values γrefine of

‖w‖2
2 are computed such that Ωγ,V contains the reachable

set for disturbance signals ‖w‖2
2 ≤ γrefine. We also solved

the problem of maximizing γ subject to (5)-(7) for fixed

values of β using PENBMI. When there runs return a feasible

solution, the optimal value of γ is usually equal or close to

0 5 10 15 20 25
0

5

10

15

γ

β

Fig. 1. Bounds on reachable sets due to disturbance w with ‖w‖2

L2
≤ γ

for Example 1 without delay (solid curve with markers: before refinement,
solid curve: after refinement, and dash-dot curve: the lower bound.

0 5 10 15 20
0

5

10

15

20

γ

β

Fig. 2. Bounds on reachable sets due to disturbance w with ‖w‖2

L2
≤ γ

for Example 1 with delay (solid curve with markers: before refinement,
solid curve: after refinement, dash-dot curve: the lower bound, and circles:
failed PENBMI runs).

the value shown (as dots on solid curves) in following figures.

But, PENBMI runs often terminate with numerical problems

or infeasible results (although a solution is known to exist

using the procedure proposed in this paper). For these values

of β, we put circles around corresponding dots on the solid

curves in the following figures.

a) Example 1 : Consider the nonlinear system from

[1], [2]

ẋ1 = −x1 + x2 − x1x
2
2, ẋ2 = u − x2

1x2 + w
y = x2, u = −y

with x1(t), x2(t), w(t) ∈ R and p(x) = x2
1 + x2

2. Figure

1 shows the upper bounds for β versus γ before and after

applying the refinement procedure and the lower bounds.

Next, we introduced td = 0.4 units of time delay at the

input and modeled the delay using a (balanced) first order

Pade approximation ẋ3(t) = −2/tdx3(t) + 2/
√

tdy(t) and

replaced the input by u(t) = 2/
√

tdx3(t) + y(t), where

x3(t) ∈ R, x3 is the state of delay dynamics, and used

p(x) = x2
1 + x2

2 + 0.01x2
3. Figure 2 shows the upper and

lower bounds for β versus γ before and after applying the

refinement procedure.

b) Example 2: (Pendubot dynamics) The pendubot is

an underactuated two-link pendulum with torque action only
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0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

γ

β

Fig. 3. Bounds on reachable sets due to disturbance w with ‖w‖2

L2
≤ γ for

Example 2 (solid curve with markers: before refinement, solid curve: after
refinement, dash-dot curve: the lower bound, and circles: failed PENBMI
runs).

on the first link. We designed an LQR controller to balance

the two-link pendulum about its upright position. Third order

polynomial approximation of the closed-loop dynamics with

a disturbance signal inserted to the input signal is ẋ1 = x2,

ẋ2 = 45w + 782x1 + 135x2 + 689x3 + 90x4, ẋ3 = x4

and ẋ4 = 279x1x
2
3 + 273x3

3 − 85w − 1425x1 − 257x2 −
1249x3 − 171x4. Here, x1 and x3 are angular positions of

the first link and the second link (relative to the first link)

and w is the scalar disturbance. Figure 3 shows the upper

and lower bounds for β versus γ before and after applying

the refinement procedure.

c) Example 3 : (Controlled short period aircraft dy-

namics) Consider the plant dynamics

ẋAC =





−3 −1.35 −0.56
0.91 −0.64 −0.02
1 0 0



xAC

+





0.08x1x2 + 0.44x2
2 + 0.01x2x3 + 0.22x3

2

−0.05x2
2 + 0.11x2x3 − 0.05x2

3

0





+





1.35 − 0.04x2

0.4
0



 (u + w)

(15)

y = [x1, x3]
T , where xAC = [x1, x2, x3]

T is the plant state,

and x1, x2 and, x3 are the pitch rate, the angle of attack,

and the pitch angle, respectively. The input u is the elevator

deflection and determined by

ẋC =

[

−0.60 0.09
0 0

]

xC +

[

−0.06 −0.02
−0.75 −0.28

]

y (16)

u = x4 + 2.2x5, where xC = [x4 x5]
T is the controller

state, and w(t) ∈ R is the input disturbance. We applied the

algorithms as described above with p(x) = xT x and showed

the upper and lower bounds before and after the refinement

in Figure 4

V. EXTENSIONS TO LOCAL L2 → L2 GAIN ANALYSIS

We now discuss a straightforward extension of simulation-

aided analysis for computing upper bounds for L2 → L2 IO

0 20 40 60
0

10

20

30

40

γ

β

Fig. 4. Bounds on reachable sets due to disturbance w with ‖w‖2

L2
≤ γ

for Example 3 without delay (solid curve with markers: before refinement,
solid curve: after refinement, dash-dot curve: the lower bound, circles: failed
PENBMI runs).

gains of nonlinear systems. Consider the dynamical system

governed by

ẋ = f(x, w) and z = h(x), (17)

where x, w, and f are as before and h is an nz-vector of

polynomials in x such that h(0) = 0. We use the following

lemma characterizing an upper bound for the w to z induced

L2 → L2 gain of the system in (17) is proven in [2].

Lemma 2: If there exists a real scalar κ > 0 and a

continuously differentiable function V such that

V (0) = 0 and V (x) ≥ 0, (18)

∂V
∂x

f(x, w) ≤ wT w − zT z

κ
∀x ∈ Ωγ,V , and w ∈ Rnw

(19)

then the system in (17) starting from the origin and ‖w‖2
2 ≤

γ, we have ‖z‖2
2 ≤ κγ. ⊳

By Lemma 3, existence of s3 ∈ Σ[(x, w)] such that

−
[

(γ − V )s3 +
∂V

∂x
f(x, w) − wT w + κ−1zT z

]

∈ Σ[(x, w)]

(20)

implies (19). The constraint in (20) is bilinear with the

similar structure to the constraint in (7) that it becomes

affine in V with fixed s3 and vice versa. Therefore, if we

generate qualified Lyapunov function candidates, we can

assess these functions solving affine SDPs or further optimize

by using coordinate-wise affine schemes (similar to CWOpt

for reachability analysis). To this end, let κ, γ > 0 be given

and define G be a finite collection of signals

G :=

{

(w, x, z) :
w ∈ L2[0,∞), ‖w‖2

2 ≤ γ,
‖h(φ(t; 0, w))‖2

2 ≤ γκ

}

.

Then, the conditions in (21) for (w, x, z) ∈ G and t ≥ 0.

0 ≤ V (x(t))γ
∂V (x(t))

∂x
f(x(t), w(t)) ≤ w(t)T w(t) − κ−1z(t)T z(t)

(21)
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are necessary conditions for (20). These necessary conditions

along with that on the linearized dynamics can be used to

generate Lyapunov function candidates in a manner parallel

to the SimLFG algorithm for reachability analysis.

VI. CONCLUSIONS

We analyzed reachability properties and local input/output

gains of systems with polynomial vector fields. Upper bounds

for the reachable set and nonlinear system gains are charac-

terized with Lyapunov (storage) functions satisfying certain

conditions. Finite dimensional polynomial parameterizations

for Lyapunov functions were used. A methodology utilizing

information from simulations to generate Lyapunov func-

tion candidates satisfying necessary conditions for bilinear

constraints was proposed. The suitability of Lyapunov func-

tion candidates were assessed solving linear sum-of-squares

optimization problems. Qualified candidates were used to

compute upper bounds for the reachable set and nonlinear

system gains and to initialize further coordinate-wise affine

optimization. We illustrated the method on several examples

from the literature.
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VIII. BACKGROUND

The following lemma is a generalization of the well known

S-procedure [10], and is a special case of the Positivstellen-

satz theorem [13, Theorem 4.2.2].

Lemma 3 (Generalized S-procedure): Given {pi}m
i=0 ∈

Rn. If there exist {sk}m
i=1 ∈ Σn such that p0−

∑m
i=1 sipi ∈

Σn, then

m
⋂

i=1

{x ∈ Rn : pi(x) ≥ 0} ⊆ {x ∈ Rn | p0(x) ≥ 0}.
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