Influence of tire damping on the ride performance potential of quarter-car active suspensions

Semiha Türkay and Hüseyin Akçay

Abstract—In this paper, performance limitations are studied for a quarter-car active suspension system excited by sinusoidal or random road disturbances. It is demonstrated that the influence of tire damping on the closed-loop performance of the active suspension system can be significant.

I. INTRODUCTION

Active and semi-active control of vehicle suspensions have been the subject of considerable investigation since the late 1960s; see, for example [1], [2] and the references therein. Constraints and trade-offs on achievable performances have been studied in [3], [4], [5], [6], [7], [8].

In [6], for a quarter-car model of an automotive suspension a complete set of constraints on several transfer functions of interest from the road and the load disturbances were determined by making use of the factorization approach to feedback stability and the Youla parameterization of stabilizing controllers. These constraints typically arise in the form of finite and nonzero invariant frequency points and the growth restrictions on the frequency responses and their derivatives at zero and infinite frequencies.

In most works, tire damping is ignored when modeling automotive active suspension systems. This is partly due to the fact that tire damping is difficult to estimate. The tire damping by itself has little influence on the wheel-hop vibration since this mode is mainly damped by the shock absorber. The ignorance of damping in tire models compelled misleading conclusions that at the wheel-hop frequency, motions of the sprung and unsprung masses are uncoupled, and the vertical acceleration of the sprung mass will be unaffected [3], [4], [6]. It is pointed out in [9] that by taking tire damping to be small but nonzero, the motions of the sprung and unsprung masses are coupled at all frequencies, and control forces can be used to reduce the sprung mass vertical acceleration at the wheel-hop frequency. The effect of introducing tire damping can be quite large.

The study of the constraints on the achievable performance has remained largely restricted to point-wise constraints in the frequency domain while ride comfort and safety criteria are mostly expressed in terms of the root–mean–square (rms) values of the sprung mass vertical acceleration, the suspension travel, and the tire deflection frequency responses. It is generally agreed that typical road surfaces may be considered as realizations of homogeneous and isotropic two-dimensional Gaussian random processes and these assumptions make it possible to completely describe a road profile by a single power spectral density evaluated from any longitudinal track [10]. Then, the spectral description of the road, together with a knowledge of traversal velocity and of the dynamic properties of the vehicle, provide a response analysis which will describe the response of the vehicle expressed in terms of displacement, acceleration, or stress.

This paper is structured as follows. In § II, a two-degree-of-freedom quarter-car model is reviewed. In § III, all achievable transfer functions from the road disturbance to the sprung mass vertical acceleration, the suspension travel, and the tire deflection are parametrized. A complete set of constraints are derived in § IV. In § V, the effect of tire damping on the controller design is illustrated by a numerical example. In § VI, all achievable rms responses of the quarter-car model to white-noise velocity road inputs are parameterized and an optimization problem that aims to minimize weighted sums of the rms values of the outputs with respect to the class of all stabilizing controllers is formulated. Solution of this problem is obtained in § VII for a range of tire damping coefficient. The paper is concluded by § VIII.

II. THE QUARTER-CAR MODEL

A two-degree-of-freedom quarter-car model is shown in Fig. 1. In this model, the sprung and unsprung masses are denoted, respectively, by m_s and m_u. The suspension system is represented by a linear spring of stiffness k_0 and a linear damper with a damping rate c_s. The tire is modeled by a linear spring of stiffness k_t and a linear damper with a damping rate c_t. The parameter values, except c_t, chosen for this study are shown in Table 1.

![Fig. 1. The quarter-car model of the vehicle.](image)

Assuming that the tire behaves as a point-contact follower that is in contact with the road at all times, the equations of
TABLE I
THE VEHICLE SYSTEM PARAMETERS FOR THE QUARTER-CAR MODEL.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprung mass (m_s)</td>
<td>240 kg</td>
</tr>
<tr>
<td>Unsprung mass (m_u)</td>
<td>36 kg</td>
</tr>
<tr>
<td>Damping coefficient (c_t)</td>
<td>980 Ns/m</td>
</tr>
<tr>
<td>Secondary suspension stiffness (k_t)</td>
<td>16,000 N/m</td>
</tr>
<tr>
<td>Primary suspension stiffness (k_c)</td>
<td>160,000 N/m</td>
</tr>
</tbody>
</table>

motion take the form

\[
\begin{align*}
 m_s \ddot{x}_1 &= -k_s(x_1 - x_2) - c_s(x_1 - x_2) - u, \\
 m_u \ddot{x}_2 &= k_s(x_1 - x_2) + c_s(x_1 - x_2) + u - k_t(x_2 - w) - c_t(x_2 - \dot{w})
\end{align*}
\]

where \(x_1\) and \(x_2\) are respectively the displacements of the sprung and unsprung masses, and \(w\) is the road unevenness. The variables \(x_1, x_2,\) and \(w\) are measured with respect to an inertial frame, and the control input \(u\) is a force.

The objective of this paper is to study the performance limits of an actively controlled vehicle imposed by the road surface unevenness. The vehicle response variables that need to be examined are the vertical acceleration of the sprung mass as an indicator of the vibration isolation, the suspension travel as a measure of the rattling space, and the tire deflection as an indicator of the road-holding characteristic of the vehicle. These variables, denoted respectively by \(z_1, z_2,\) and \(z_3,\) can be written in terms of the state variables \(x_1, x_2,\) their derivatives, and the exogenous input \(w\) as follows:

\[
\begin{align*}
 z_1 &= \dot{x}_1, \\
 z_2 &= x_1 - x_2, \\
 z_3 &= x_2 - w.
\end{align*}
\]

Passenger comfort requires \(z_1\) to be as small as possible while compactness of rattle space, good handling characteristics, and improved road-holding quality require \(z_2\) and \(z_3\) be kept as small as possible.

It is a well-known fact [5] that these objectives can not be met simultaneously with a passive suspension system. The conflicting three goals can be attained up to a certain level by replacing passive suspension system with an active or semi-active suspension system [1], [2], [6].

III. FACTORIZATION APPROACH TO FEEDBACK STABILITY

Let \(Z(s), U(s),\) and \(W(s)\) denote respectively the Laplace transforms of the signals \(z(t) = [z_1(t) \ z_2(t) \ z_3(t)]^T, u(t)\) and \(w(t),\) where for a given vector \(b, b^T\) denotes the transpose of \(b.\) From (1)–(4),

\[
Z(s) = G_{11}(s)W(s) + G_{12}(s)U(s)
\]

where

\[
G_{11}(s) = \frac{1}{\Delta(s)} \begin{bmatrix} s^2(c_s s + k_s) & (c_s s + k_t) \\ -m_s s^2 & s^2 \end{bmatrix},
\]

\[
G_{12}(s) = \frac{1}{\Delta(s)} \begin{bmatrix} -s^2(m_u s^2 + (m_u + m_u)c_s s \\ (m_u + m_u)s^2 & c_s s + k_t \end{bmatrix},
\]

and

\[
\Delta(s) = m_u m_u s^4 + [(m_u + m_u)c_u + m_u c_s]s^3 + [(m_u + m_u)k_u + m_u k_t + c_u c_s]s^2 + (c_u k_t + c_u k_k) s + k_u k_k.
\]

For the design of a feedback law, we consider the suspension travel measurement:

\[
y = x_1 - x_2.
\]

From (1)–(4),

\[
Y(s) = G_{21}(s)W(s) + G_{22}(s)U(s)
\]

where

\[
G_{21}(s) = -\frac{m_s s^2(c_s s + k_t)}{\Delta(s)},
\]

\[
G_{22}(s) = -\frac{(m_u + m_u)s^2 + c_u s + k_t}{\Delta(s)}.
\]

Hence, the generalized plant defined by

\[
G(s) = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix}
\]

maps the pair of inputs \([w \ u]^T\) to the pair of outputs \([z^T \ y]^T.\)

Now, let \(K(s)\) denote the transfer function of the controller with input \(y\) and the output \(u.\) The feedback configuration is shown in Fig. 2. The stabilization problem is to find a proper feedback transfer function \(K\) such that the closed-loop system in Fig. 2 is internally stable. Assuming that \(G\) and \(G_{22}\) share the same unstable poles, it is a well-known fact that \(K\) internally stabilizes \(G\) if and only if \(K\) internally stabilizes \(G_{22}.\)

![Fig. 2. Standard block diagram.](image)

Assuming that \(G_{22}\) is internally stabilizable, the set of all compensators which stabilize \(G\) can be parametrized in terms of a coprime factorization of \(G_{22}.\) This parametrization is called the Youla parametrization. The Youla parametrization of all stabilizing controllers takes the form:

\[
K = (Y - MQ)(X - NQ)^{-1}, \quad Q \in \mathcal{RH}_\infty,
\]

\[
det(1 - X^{-1}NQ)(\infty) \neq 0
\]
where \mathcal{RH}_∞ denotes the set of stable real-rational transfer functions. With this parametrization, the transfer matrix from w to z denoted by $T_{zw}(s)$ takes a particularly convenient form:

$$T_{zw} = G_{11} + G_{12}(Y - MQ)Mg_{21}.$$ \hspace{1cm} (6)

As Q varies over \mathcal{RH}_∞, (6) parametrizes all achievable transfer matrices.

IV. ACHIEVABLE PERFORMANCE FOR QUARTER-CAR MODEL

In the design of active suspension systems, it is desirable to keep the road response amplitudes $|T_{zw}(j\omega)|$, $k = 1, 2, 3$ as small as possible, at least in the frequency range of interest.

By using different measurements for feedback, constraints on the closed-loop transfer functions T_{zw} were derived in [8]. In the following, a subset of these results are presented.

Proposition 4.1: Consider the quarter-car model (1) with $k_s, c_s, c_l > 0$. Let H_1 be an arbitrary function in \mathcal{RH}_∞. Then, $H_1 = T_{z1w}$ for some stabilizing control law if and only if:

1) $H_1(s) = \frac{c_sc_l}{m_km_0} + O(s^{-1}),$

2) $H_1(0) = H_1^3(0) = H_1^2(0) = 0, \quad H_1^2(0) = 2.$

Now, assume that $c_l = 0$ and $k_s, c_s > 0$. Two new constraints arise at the frequencies:

$$\omega_1 = \sqrt{\frac{k_s}{m_s + m_0}}, \quad \omega_2 = \sqrt{\frac{k_s}{m_s}}$$ \hspace{1cm} (7)

which have already been observed in [4], [6]. The results for this case are captured in the following.

Proposition 4.2: Consider the quarter-car model (1) with $k_s, c_s > 0$, and $c_l = 0$. Let H_1 be any function in \mathcal{RH}_∞. Then, $H_1 = T_{z1w}$ for some stabilizing control law if and only if:

1) $H_1(s) = \frac{k_sc_l}{m_km_0} s^{-1} + O(s^{-2}),$

2) $H_1(0) = H_1^3(0) = H_1^2(0) = 0, \quad H_1^2(0) = 2,$

3) $H_1(j\omega_2) = -j(\omega_2)^2 \frac{m_0}{m_s}.$

Similar results can be obtained for H_2 and H_3 corresponding to T_{z2w} and T_{z3w}. No matter how small, observe that tire damping couples the wheel-hop and the heave modes. This coupling eliminates the constraints of the conventional quarter-car model, which neglects tire damping at the so-called invariant frequencies ω_1 and ω_2. As will be seen in the next section, tire damping improves ride comfort without sacrificing road holding.

V. ACTIVE CONTROL OF THE QUARTER-CAR MODEL

The purpose of this section is to illustrate the effect of tire damping on the controller design for the quarter-car model. The vehicle is assumed to traverse a random road profile with a constant forward velocity v. For simplicity, the random process V_i is modeled as

$$V_i = \dot{w} = 2\pi n_0 \sqrt{kv} \eta(t), \quad t \geq 0$$ \hspace{1cm} (8)

where $\eta(t)$ is a zero-mean white-noise process with an auto covariance function $R_\eta(\tau) = \delta(\tau); \kappa = 0.76 \times 10^{-5}$ and $n_0 = 0.15708$ are the road roughness parameters for the road data in [8]; $\delta(t)$ is the unit-impulse function.

Notice the relation $T_{zV_i} = s^{-1}T_{zw}$. Thus, the Q-parametrization of T_{zV_i} can be deduced from the Q-parametrization of T_{zw}. In particular, they share the same invariant frequencies ω_1 and ω_2.

The controllers are designed using the Linear-Quadratic-Gaussian (LQG) design methodology. In Fig. 3, the frequency response magnitudes of the passive and the active suspensions using either suspension travel measurement or both the acceleration and the suspension travel measurements are plotted for the parameter values in Table 1, and $c_l = 0$. The rms values of z_1,z_2,z_3 were computed, respectively, as follows: 0.5424, 0.0046, 0.0017 (the passive suspension): 0.5240, 0.0034, 0.0016 (the active suspension with single measurement): 0.5234, 0.0034, 0.0016 (the active suspension with two measurements).

Fig. 4. The acceleration frequency response magnitude: --- Passive suspension; --- active suspension using the suspension travel measurement with tire damping; -- active suspension using the acceleration and the suspension travel measurements without tire damping.

The natural frequency and the damping ratio of the heave mode are computed as $\omega_n^{h} = 1.2507$ Hz and $\zeta_n^{h} = 0.2178$ for the passive suspension. For the wheel-hop mode, they are computed as $\omega_n^{wh} = 11.0247$ Hz and $\zeta_n^{wh} = 0.2013$. The
Fig. 5. The acceleration frequency response magnitude: — Passive suspension; . . . active suspension using the suspension travel measurement with tire damping $c_t = 0.1c_s$; — active suspension using the acceleration and the suspension travel measurements with tire damping $c_t = 0.1c_s$.

Fig. 6. The acceleration frequency response magnitude: — Active suspension using the suspension travel measurement with the (fictitious) tire damping $c_t = 2c_s$; — active suspension designed by a mixture of the LQG methodology and the interpolation approach using the suspension travel measurement with the (actual) tire damping $c_t = 0.1c_s$.

invariant frequencies are calculated from (7) as $\omega_l = 3.832$ Hz and $\omega_h = 10.610$ Hz. Since $\omega_h \approx w_{wh}^a$, it is difficult to control the wheel-hop mode as clearly seen from Fig. 3. The 3.5% drop in the rms vertical acceleration comes from the suppression of the heave mode vibration.

Now, let $c_t = 2c_s$. This value is unrealistic for tire damping because it yields $\zeta_{1h} = 1.2463$ Hz, $\zeta_{2h} = 0.2211$; $w_{wh}^a = 11.0628$ Hz, and $\zeta_{1h} = 0.5919$. If c_t is set to 0.1c_s, then $w_{wh}^a = 1.2504$ Hz, $\zeta_{1h} = 0.2180$; $w_{wh}^a = 11.0267$ Hz, and $\zeta_{1h} = 0.2209$. Hence, the latter seems to be a realistic assumption. In Fig. 4, the counter part of Fig. 3 for the same values of the vehicle and the control design parameters but $c_t = 2c_s$ is plotted. Clearly, the response has been improved due to the removal of the invariant frequency at ω_h. For the rms values of z_1, z_2, z_3, the following were respectively computed: 0.4513, 0.0043, 0.0011 (the passive suspension); 0.2834, 0.0036, 0.0010 (the active suspension with single measurement); 0.2724, 0.0037, 0.0010 (the active suspension with two measurements). Comparison of Fig. 4 with Fig. 3, and the modal natural frequencies and the damping ratios show that the improved responses are achieved by suppressing the wheel-hop vibration.

In Fig. 5 the vertical acceleration frequency response magnitude is plotted for the case $c_t = 0.1c_s$. The rms values for this case are, respectively, 0.5259, 0.0045, 0.0017 (the passive suspension); 0.4895, 0.0034, 0.0016 (the active suspension with single measurement); 0.4900, 0.0034, 0.0016 (the active suspension with two measurements). The rms vertical acceleration is reduced by 6.83% which is about twice of the reduction computed for the case $c_t = 0$. The rest of this section will be devoted to further enhancement of the closed-loop performance by means of the interpolation approach of this paper.

Put $c_t = \alpha c_s$ ($\alpha > 0$) and $H_k(s; \alpha, \hat{Q}) = T_{z_1 V_1}$, $k = 1, 2, 3$ where $\hat{Q} = 1 - Q$ and $Q \in \mathcal{RH}_\infty$. Let $\alpha_1 = 0.1$, $\alpha_2 = 2$, and Q^1 and Q^2 denote the \hat{Q} parameters of the compensators designed by the above LQG methodology with $c_t = \alpha_1c_s$ and $c_t = \alpha_2c_s$, respectively. As far as the closed-loop performance is concerned, $H_k(s; \alpha_2, Q^2)$, $k = 1, 2, 3$ are satisfactory while $H_k(s; \alpha_1, Q^1)$ are not. Thus, the interpolation problem to be studied:

Does there exist a $\hat{Q} \in \mathcal{RH}_\infty$ satisfying the equation:

$$H_1(s; \alpha_1, \hat{Q}) = H_1(s; \alpha_2, Q^2)?$$

If there exists a solution to this problem denoted by \hat{Q}, then the quarter-car model in Fig. 1 with $c_t = 0.1c_s$ will have the closed-loop responses $H_k(s; 2c_s, Q^2)$, $k = 1, 2, 3$ using the unique controller K corresponding to this \hat{Q}. Unfortunately, the formulated problem has no solution. To see this, first obtain the complete interpolation conditions for $T_{z_1 V_1}$ as follows

1) $H_1(s) = \frac{c_sc_t}{m_pm_0} s^{-1} + O(s^{-2}),$
2) $H_1(0) = H'_1(0) = 0, \quad H_1(0) = 1.$

Then, from the first interpolation condition above

$$s H_1(s; \alpha_1, \hat{Q})|_{s=\infty} = s H_1(s; \alpha_2, Q^2)|_{s=\infty}$$

which forces α_1 equal to α_2; hence, no solution. Having seen the infeasibility of this interpolation problem, consider now the following variant:

Does there exist a $\hat{Q} \in \mathcal{RH}_\infty$ satisfying the equation:

$$H_1(s; \alpha_1, \hat{Q}) = H_1(s; \alpha_2, Q^2)\Psi(s) \quad \text{for some } \Psi \in \mathcal{RH}_\infty?$$

Fortunately, there exists a solution to the latter problem. In fact, from the interpolation conditions for $T_{z_1 V_1}$, it suffices to pick any $\Psi \in \mathcal{RH}_\infty$ satisfying
1) $\Psi(0) = 1$,
2) $\Psi'(0) = 0$,
3) $\Psi(\infty) = \alpha_1 / \alpha_2$.

It is easy to see that the following transfer function

$$\Psi(s) = ...$$

is a good approximation for the following solution of the Riccati equation:

$$(A - BD^{-1} DT C)^T X + X(A - BD^{-1} DT C) - XBD^{-1} BT X + CT (I - DD^{-1} DT)C = 0.$$

The autocovariance function of z is calculated from (8) as

$$J(Q) = \frac{\sigma^2}{\pi} ||T_{AVi}||^2.$$

We will consider weighted and optimized version of (10):
The inner factor is then
\[H_i(s) = H(s)H_0^{-1}(s). \]

The next step is the calculation of a complementary inner factor \(N_\perp \) of \(H_i \), i.e., finding a matrix \(N_\perp \) that makes \([H, N_\perp]\) square and inner. If \([A_1, B_1, C_1, D_1]\) is a minimal state-space realization of \(H_i \), then a realization of \(N_\perp \) is given by the formula [12][Lemma 13.31]:
\[
N_\perp = (A_1, -Y^{-1}C_1^T D_\perp, C_1, D_\perp)
\]
where \(D_\perp \) is an orthogonal complement of \(D_1 \) such that \([D_1, D_\perp]\) is square and orthogonal and \(Y \) is the observability Gramian:
\[
A_1^T Y + YA_1 + C_1^2 C_1 = 0.
\]

Observe that \(H_1 \) and \(N_\perp \) have four common poles. Note that
\[H^T(\infty) = (\lambda_1/m_s, 0, 0). \]
Thus, \(D_\perp \) can be chosen as
\[
D_\perp = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.
\]

Let \(\mathcal{H}_2 \) denote the Hilbert space of complex functions that are analytic on the open right half plane and let \(\mathcal{H}_2^\perp \) be its complement in \(\mathcal{L}_2 \), the set of complex functions which are square integrable on the imaginary axis. Let \(\Pi \) and \(\Pi^\perp \) denote respectively the orthogonal projections from \(\mathcal{L}_2 \) onto \(\mathcal{H}_2 \) and \(\mathcal{H}_2^\perp \). Then,
\[
\inf_{Q \in \mathcal{H}_\infty} \|F - HQ\|_2^2 = \|N_\perp^2 F\|_2^2 + \|\Pi^\perp H_\infty^{-1} F\|_2^2
\]
with
\[
Q = H_0^{-1} \Pi \Pi^\perp F.
\]

Hence,
\[
J^*(\Lambda) = (2\pi n_0)^2 \kappa \nu \left\{ \|\Pi \Pi^\perp F\|^2_2 + \|\Pi^\perp \Pi^\perp F\|^2_2 + \|\Pi^\perp H_\infty^{-1} F\|^2_2 \right\}.
\]

Note that \(Q \) in (12) is only an approximation to the \(\Lambda \)-parameter of the optimal controller. If \(w \) is not an integrated white-noise process, but its derivative is a colored-noise process, i.e., \(V_t = \dot{\Psi} \eta \) for some linear shape filter \(\Psi \in \mathcal{H}_\infty \) with \(\Psi_{-1} \in \mathcal{H}_\infty \), the whole argument above is the same provided that \(F \) is replaced with \(F\Psi \).

Finally, we investigate the effect of tire damping on the optimal cost \(J^*(\Lambda) \) for a given nonnegative diagonal weight matrix \(\Lambda \). We fix \(\Lambda \) as \(\text{diag}(1,1,1) \). It will be more convenient to define a dimensionless quantity:
\[
\mu(c_t) = \left[\frac{J^*(\text{diag}(1,1,1))}{J(0)} \right]^{1/2}.
\]

Thus, \(\mu(c_t) \) is a measure of active suspension performance relative to the passive suspension performance in the root-mean-square sense. In Fig. 8, \(\mu(c_t) \) is plotted versus \(c_t \). Tire damping remarkably improves the closed-loop performance as predicted by the theory.

REFERENCES

