Analysing the interaction between braking control and speed estimation: the case of two-wheeled vehicles

Mara Tanelli, Maria Prandini, Fabio Codecà, Alessandro Moia and Sergio M. Savaresi

Abstract—The availability of actuators capable of a very fine-grained modulation of both traction and braking torques makes the design of slip-based braking control strategies for two-wheeled vehicles a real possibility. As the wheel slip cannot be directly measured, one has to use some estimate of the vehicle speed. The most commonly used speed estimate for two-wheeled vehicles is the fastest wheel speed. This paper investigates the interaction between control and estimation in braking control design for two-wheeled vehicles. Specifically, it is shown that a slip controller can be designed which guarantees global asymptotic stability under perfect knowledge of the vehicle speed. Conversely, when such a controller is fed by the fastest wheel speed stability is lost.

I. INTRODUCTION

Nowadays, four-wheeled vehicles are equipped with many different active control systems which enhance driver’s and passengers’ comfort and safety. Among these active control systems, the Anti-lock Braking System (ABS) has recently become a standard equipment on all cars, see e.g., [1], [2], [3], [4]. In the field of two-wheeled vehicles, instead, the development of electronic control systems is still in its infancy, and only few commercial motorbikes are equipped with ABS. The current trend in automotive braking control system design is to move from threshold-based discrete control logics, mainly relying on wheel deceleration measurements, to more standard continuous slip-control (see e.g., [2], [5], [1]). The main motivation behind this major change in ABS design is due to the new actuators (both electro-hydraulic and electro-mechanical) which are replacing hydraulic brakes with discrete dynamics and which enable a continuous modulation of the braking torque, thereby allowing to formulate slip-control as a classical regulation problem. This trend is also affecting the two-wheeled vehicles field, [6], and it is fostered by the introduction of actuators capable of a very fine-grained modulation of both traction and braking torque as, for instance, the electric motors used as propulsion and braking systems in the latest generation of electric scooters. However, since the wheel slip cannot be directly measured, the vehicle longitudinal speed must be estimated to perform slip regulation. While speed estimation is a well-studied problem in four-wheeled vehicles, see e.g., [7],[8], this is not the case for two-wheeled vehicles. Estimating a two-wheeled vehicle speed is a far more complex task due to its peculiar nature, which makes the design of slip-based braking control strategies for two-wheeled vehicles context. As a matter of fact, the most commonly used speed estimation method for two-wheeled vehicles is as simple as setting the vehicle speed equal to the fastest wheel speed, which can be easily measured by wheel encoders. Thus, it is of particular interest to investigate the interactions between braking control and speed estimation. This paper analyzes this interaction with reference to the in-plane dynamics of a two-wheeled vehicle, assuming that the braking maneuver is carried out on a straight line. It is shown that, under perfect speed knowledge, a slip controller can be designed which guarantees the existence of a unique equilibrium that is globally asymptotically stable for all choices of the set point at the front and rear wheels and for all road conditions. Conversely, when such a controller is fed by the fastest wheel speed taken as estimate of the vehicle speed, stability is lost. The obtained results suggest that the slip controller and the speed estimation algorithm, which in the industrial practice are often responsibility of different teams, should be carefully designed through a coordinate effort.

II. TWO-WHEELED VEHICLE MODEL

Motivated by the fact that we consider braking maneuvers taking place on a straight line, we adopt a simplified in-plane model of a two-wheeled vehicle, where the dynamic load transfer is assumed to be proportional to the vehicle deceleration only. Namely, the two-wheeled vehicle dynamics are described by the following set of equations

\[
\begin{align*}
J\dot{\omega}_f &= r_f F_{xf} - T_{b_f} \\
J\dot{\omega}_r &= r_r F_{xr} - T_{b_r} \\
m\dot{v} &= -F_{sf} - F_{sr},
\end{align*}
\]

where \(\dot{\omega}_f\) and \(\dot{\omega}_r\) [rad/s] are the angular speed of the front and rear wheels, respectively, \(v\) [m/s] is the longitudinal speed of the vehicle center of mass, \(T_{b_f}\) and \(T_{b_r}\) [Nm] are the front and rear braking torques, \(F_{sf}\) and \(F_{sr}\) [N] are the front and rear longitudinal tire-road contact forces, \(J\) [kg m^2], \(m\) [kg] and \(r_f = r_r = r\) [m] are the moment of inertia of the wheel, the vehicle mass, and the wheel radius, respectively (see Figure 1). For simplicity, we assume that the front and rear wheel radii are equal and denote both with \(r\). The system is nonlinear due to the dependence of \(F_{si}\), \(i = \{f, r\}\), on the state variables \(v\) and \(\omega_i\), \(i = \{f, r\}\). The expression of \(F_{si}\) as a function of these variables is involved and influenced by...
a large number of features of the road, tire, and suspension; however, it can be approximated as, [9]

\[F_i = F_i \mu(\lambda_i, \beta_i; \vartheta), \quad i = \{f, r\}, \] (2)

where \(F_i \) is the vertical force at the tire-road contact point and \(\mu(\cdot, \cdot; \vartheta) \) is a function of the longitudinal slip \(\lambda_i \in [0, 1] \), which, during braking, is defined as

\[\lambda_i = (v - \omega_i r)/v; \] (3)

and of the wheel side-slip angle \(\beta_i \). Vector \(\vartheta \) in \(\mu(\cdot, \cdot; \vartheta) \) represents the set of parameters that identify the tire-road friction condition. Since for braking maneuvers performed along a straight line one can set the wheel side-slip angle equal to zero (\(\beta_i = 0 \)), we shall omit the dependence of \(F_i \) on \(\beta_i \) and denote the \(\mu \) function as \(\mu(\cdot; \vartheta) \).

Remark 2.1: It is worth mentioning that the results in this work remain valid if we remove the assumption that \(\beta_i = 0 \). In fact, changes in \(\beta_i \) cause a shift in the peak position of the \(\mu(\cdot; \vartheta) \) curve and act as a scaling factor (in this resembling the effect of changes in the vertical load). Accordingly, as the controller is designed assuming no knowledge both of the current road conditions and of the value of the vertical load, it can handle non-zero values of \(\beta_i \).

Many empirical analytical expressions for function \(\mu(\cdot; \vartheta) \) have been proposed in the literature. A widely-used expression (see [9]) is

\[\mu(\lambda; \vartheta) = \vartheta_1 (1 - e^{-\lambda \vartheta_2}) - \lambda \vartheta_3, \] (4)

where \(\vartheta_i, i = 1, 2, 3, \) are the three components of vector \(\vartheta \). By changing the values of these three parameters, many different tire-road friction conditions can be modeled. In Figure 2 the shape of \(\mu(\cdot; \vartheta) \) in four different conditions is displayed.

From now on, for ease of notation, the dependency of \(\mu \) on \(\vartheta \) will be omitted, and the function in equation (4) will be referred to as \(\mu(\lambda) \). To describe the load transfer phenomena between front and rear axles, we model the vertical force on the front and rear wheels as follows

\[F_{zf} = \frac{mgl_f}{l} - \frac{mh}{l} v = W_f - \Delta F_z^s; \] (5)

\[F_{zr} = \frac{mgl_r}{l} + \frac{mh}{l} v = W_r + \Delta F_z^s; \]

where (see also Figure 1) \(l \) is the wheelbase, \(l_f \) and \(l_r \) are the distances between the projection of the center of mass on the road and the front and rear wheel contact points, respectively, \(h \) is the height of the center of mass and \(g \) is the gravitational acceleration. Note that \(\dot{v} \) is the vehicle acceleration, hence negative during braking.

In system (1) the state variables are \(v \) and \(\omega_i \). As \(\lambda_i, v \) and \(\omega_i \) are linked by the algebraic equation (3), it is possible to replace \(\omega_i \) with \(\lambda_i \) as state variable. As for the last equation in (1), it is easily shown that it can be rewritten as

\[\dot{v} = - \frac{W_f \mu(\lambda_f)}{m - \Delta F_z^s(\mu(\lambda_f) - \mu(\lambda_r))}, \]
by using expression (2) for \(F_x \), and incorporating the vertical force description (5). The equation governing the evolution in time of \(\lambda \) is obtained by plugging into \(\dot{\lambda} = -\frac{\xi}{\omega} \dot{\omega} + \frac{\xi}{\omega} \dot{v} \) the expression \(\omega = \frac{1}{\xi} (1 - \lambda) \) and that for \(\dot{\omega} \) taken from (1), with \(F_x \) also in this case given by (2) together with the vertical force description (5). This leads to the set of equations

\[
\begin{align*}
\dot{\lambda}_f &= -\frac{\xi}{\mu_f(\lambda_f)} \left(\Psi_f(\lambda_f, \lambda_r) - T_{bf} \right) \\
\dot{\lambda}_r &= -\frac{\xi}{\mu_r(\lambda_r)} \left(\Psi_r(\lambda_f, \lambda_r) - T_{br} \right) \\
\dot{v} &= -\frac{1}{m} \left(\Delta \Psi(\lambda_f, \lambda_r) - m \lambda_f \right),
\end{align*}
\]

where we set

\[
\Psi_f(\lambda_f, \lambda_r) = \frac{r(W_f - \Delta \xi \dot{v})}{f_r(\lambda_f)} \mu_r(\lambda_r) - \frac{1}{r} (1 - \lambda_f) \dot{v}
\]

(7)

\[
\Psi_r(\lambda_f, \lambda_r) = \frac{r(W_r + \Delta \xi \dot{v})}{f_r(\lambda_f)} \mu_r(\lambda_r) - \frac{1}{r} (1 - \lambda_r) \dot{v}.
\]

(8)

Figures 3(a) and 3(b) show a plot of the functions \(\Psi_f(\cdot, \lambda_r) \) and \(\Psi_r(\lambda_f, \cdot) \), respectively, obtained for different values of \(\lambda_r \) and \(\lambda_f \). As it is apparent by inspecting these figures, the front wheel behavior is substantially independent from that of the rear wheel, while the latter is strongly coupled to the front one. In the following, we shall disregard the dependence of \(\Psi(\lambda_f, \lambda_r) \) from \(\lambda_r \) and adopt the notation \(\Psi_f(\lambda_f) \).

III. PROBLEM FORMULATION AND MAIN RESULTS

In what follows it is assumed that the longitudinal dynamics of the vehicle (expressed by the state variable \(v \)) are significantly slower than the rotational dynamics of the wheels (expressed by the state variables \(\lambda \) or \(\omega \)) due to the differences in inertia. Henceforth, \(v \) is considered as a slowly time-varying parameter when analyzing the evolution of \(\lambda \) (see e.g., [2], [3]). Under this assumption, the third equation (center of mass dynamics) in (6) is neglected, and the model reduces to a second order model of the wheels dynamics only. Moreover, to concentrate on the core of the problem and to provide simple yet insightful results, for analysis purposes a simple proportional feedback controller is considered. Needless to say, the performance of proportional controllers can be improved by higher order control architectures, but the basic results and conclusions remain untouched, as shown in Section IV by simulation.

We first analyze the case where the vehicle speed \(v \) is known, so that an error-free measure of the controlled variables \(\lambda_i, \ i = \{ f, r \} \) is available. In this case, letting

\[
T_{bf} = k_f (\lambda_f^* - \lambda_f), \quad T_{br} = k_r (\lambda_r^* - \lambda_r),
\]

(9)

where \(\lambda_f^* \) and \(\lambda_r^* \) are the set-point values for the front and rear wheel slip, respectively, and \(k_f, k_r \) are positive constants, the closed-loop dynamics become

\[
\begin{align*}
\dot{\lambda}_f &= -\frac{r}{f_r(\lambda_f)} \left[\Psi_f(\lambda_f) - k_f (\lambda_f^* - \lambda_f) \right] \\
\dot{\lambda}_r &= -\frac{r}{f_r(\lambda_f)} \left[\Psi_r(\lambda_f, \lambda_r) - k_r (\lambda_r^* - \lambda_r) \right].
\end{align*}
\]

(10)

For the closed-loop system (10), we can state the following result.

Proposition 3.1: Consider the closed-loop system described by (10) with \(v > 0 \), and let \(\lambda_i^* \in (0, 1), \ i = \{ f, r \} \).

Then, there exist positive gain values \(k_f \) and \(k_r \) such that, for any \(k_f > k_f^* \) and \(k_r > k_r^* \), the closed-loop system admits a unique globally asymptotically stable equilibrium for all initial conditions \(\lambda_f(0), \lambda_r(0) \in (0, 1) \), for all choices of \(\lambda_f^* \) and \(\lambda_r^* \) and for all road conditions.

Proof: Fix the set-point values \(\lambda_f^*, \lambda_r^* \in (0, 1) \). Let \((\lambda_f, \lambda_r) \) be an equilibrium of system (10) associated with \(\lambda_f^*, \lambda_r^* \), i.e.,

\[
\begin{align*}
\Psi_f(\lambda_f) &= k_f (\lambda_f^* - \lambda_f) \\
\Psi_r(\lambda_f, \lambda_r) &= k_r (\lambda_r^* - \lambda_r).
\end{align*}
\]

(11)

As a preliminary step, we rewrite the equations (10) in a form that is more useful for analyzing the stability properties of \((\lambda_f, \lambda_r) \). We start from the equation governing \(\lambda_r \)

\[
\dot{\lambda}_r = -\frac{r}{f_r(\lambda_f)} \left[k_r (\lambda_r - \lambda_r^*) + \Psi_r(\lambda_f, \lambda_r) - k_r (\lambda_r^* - \lambda_r) \right] \\
+ \Psi_r(\lambda_f, \lambda_r) - \Psi_r(\lambda_f, \lambda_r^*),
\]

(12)

where the first equality is obtained by adding and subtracting \(k_r \lambda_r^* \) and \(\Psi_r(\lambda_f, \lambda_r) \) to the expression within the brackets in (10), whereas the second equality is obtained using the equilibrium condition (11).

A similar procedure applied to the equation in (10) governing \(\lambda_f \) leads to the following equivalent form for the closed-loop system equations (10)

\[
\begin{align*}
\dot{\lambda}_f &= -\frac{r}{f_r(\lambda_f)} \left[k_f (\lambda_f - \lambda_f^*) + \Psi_f(\lambda_f) \right] \\
\dot{\lambda}_r &= -\frac{r}{f_r(\lambda_f)} \left[k_r (\lambda_r - \lambda_r^*) + \Psi_r(\lambda_f, \lambda_r) \right] + \Psi_r(\lambda_f, \lambda_r) - \Psi_r(\lambda_f, \lambda_r^*),
\end{align*}
\]

where we set

\[
\alpha_f(\lambda_f) = \frac{\Psi_f(\lambda_f) - \Psi_f(\lambda_f^*)}{\dot{\lambda}_f - \dot{\lambda}_f^*}, \quad \alpha_r(\lambda_r) = \frac{\Psi_r(\lambda_f, \lambda_r) - \Psi_r(\lambda_f, \lambda_r^*)}{\dot{\lambda}_r - \dot{\lambda}_r^*},
\]

(13)

\[
\gamma(\lambda_f, \lambda_r) = -\frac{r}{f_r(\lambda_f)} \left[\Psi_r(\lambda_f, \lambda_r) - \Psi_r(\lambda_f, \lambda_r^*) \right].
\]

Note that we are studying a cascade system where \(\lambda_f \) evolves independently of \(\lambda_r \) and affects the dynamics of \(\lambda_r \) through the additive term \(\gamma(\lambda_f, \lambda_r) \), which vanishes when \(\lambda_f \) is at the equilibrium, i.e., \(\gamma(\lambda_f, \lambda_r) = 0, \ \forall \lambda_r \). Also, \(\gamma(\lambda_f) \) represents the slope of the straight line intersecting the curve \(\Psi_f(\cdot) \) in the two points of coordinates \(\lambda_f \) and \(\lambda_f^* \). Thus, \(\gamma(\lambda_f) \) is lower bounded by the negative steepest slope of the friction curve \(\Psi_f(\cdot) \) obtained in different road conditions \(\delta \).

A similar geometric interpretation holds for \(\alpha_f(\lambda_f) \).

We next show that, for \(i \in \{ f, r \} \), if \(k_i \) is large enough, then the equilibrium \(\lambda_i \) of the subsystem

\[
\dot{\lambda}_i = -\frac{r}{f_r(\lambda_i)} \left[k_i + \alpha_i(\lambda_i) \right] (\lambda_i - \lambda_i^*)
\]

(13)
is globally exponentially stable (GES) and, hence, also globally asymptotically stable (GAS). Note that subsystem (13) with \(i=r\) is obtained from the cascade system (12) by removing the interconnection term \(\gamma(\lambda_f, \lambda_r)\) and setting \(\lambda_f\) at the equilibrium. Consider the candidate Lyapunov function \(V(\lambda_f) = (\lambda_f - \lambda_0)^2/2\), which, by construction, is positive definite \((V(\lambda_f)) > 0\) for all \(\lambda_f \neq \lambda_0\), and \(V(\lambda_f) = 0\) and radically unbounded. The time derivative of \(V\) along the subsystem trajectories is

\[
\dot{V}(\lambda_f) = (\lambda_f - \lambda_0)\dot{\lambda}_f = -\frac{r}{J_v} \left[k_f + \alpha_f(\lambda_f) \right] (\lambda_f - \lambda_0)^2.
\]

Thus, recalling the definition of \(\alpha_f(\lambda_f)\) and \(\alpha_r(\lambda_r)\), if

\[
k_f > \tilde{k}_f = -\min_{\theta, \lambda_f, \lambda_r} \frac{\Psi_f(\lambda_f) - \Psi_f(\lambda_r)}{\lambda_f - \lambda_r}
\]

\[
k_r > \tilde{k}_r = -\min_{\theta, \lambda_f, \lambda_r} \frac{\Psi_r(\lambda_f, \lambda_r) - \Psi_r(\lambda_r, \lambda_r)}{\lambda_r - \lambda_r}
\]

we get that \(\dot{V}(\lambda_f) < -c_f(\lambda_f - \lambda_0)^2\), with \(c_f > 0\), which concludes the proof that the equilibrium \(\lambda_0\) of subsystem (13) is GES, [10]. To complete the proof, we need to show that the cascade interconnection of the two subsystems through \(\gamma(\lambda_f, \lambda_r)\) does not destroy global asymptotic stability. To prove that the cascade of the two subsystems is GAS, [11], [12], it is enough to show that the \(\lambda_r\) dynamics have the Converging-Input-Bounded-State (CIBS) property with respect to the input \(\lambda_f\), which is guaranteed if the trajectories of the full system (10) exist for all \(t \geq 0\) and are bounded. The GES property of the equilibrium \(\lambda_0\) guarantees that we are dealing with a converging input, i.e., \(\lambda_f(t) \to \lambda_0\) as \(t \to \infty\). From the expression of \(\Psi_f(\lambda_f, \lambda_r)\) (8) (see also Figure 3(b)), one may notice that the closed-loop \(\lambda_0\) dynamics in (10) with \(k_r > \tilde{k}_r\) - which can be compactly written in the form \(\dot{\lambda}_r = g(\lambda_f, \lambda_r)\) - are such that \(g(\cdot, \cdot)\) is \(C^1\) in \(H = [0, 1] \times [0, 1]\) and bounded for all \(\lambda_f, \lambda_r \in (0, 1)\). This implies that \(g(\cdot, \cdot)\) is Lipschitz in both arguments on \(H\). Note also that \(H\) is compact; moreover, analyzing the vector fields of (10) at the boundary of \(H\), one finds that \(H\) is positively invariant. This, together with compactness and Lipschitz continuity, [10], ensures that a unique solution exists for all \(t \geq 0\) and that it is bounded. Hence the thesis follows.

Remark 3.1: A solution to (11) always exists for \(k_f, k_r > 0\) and can be graphically identified by first intersecting \(\Psi_f(\lambda_f)\) in Figure 3(a) with the line of negative slope \(-k_f\) cutting the \(\lambda_f\) axis in \(\lambda_f^*\) to determine \(\lambda_f^*\), and then intersecting \(\Psi_r(\lambda_f, \lambda_r)\) in Figure 3(b) with the line of negative slope \(-k_r\) cutting the \(\lambda_r\) axis in \(\lambda_r^*\) to determine \(\lambda_r^*\). If \(k_f\) and \(k_r\) satisfy the bound for the global asymptotic stability result to hold, the equilibrium is unique. Note also that, as we are using a proportional controller, the values \(\lambda_f^*\) and \(\lambda_r^*\) are in general different from \(\lambda_f^\#\) and \(\lambda_r^\#\). From (11), however, it is clear that \(\lambda_f^*\) and \(\lambda_r^\#\) are close to \(\lambda_f^\#\) and \(\lambda_r^*\) if the gains \(k_r\) and \(k_f\) are sufficiently large.

Remark 3.2: In [3], a similar condition on the gain of a proportional slip controller (gain greater than the steepest negative slope of the friction curve for all road conditions) for local stability was derived based on the linearized quarter-car model. Proposition 3.1 thus extends the results in [3] to the in-plane model (10), and also from a local to a global stability result.

Proposition 3.1 shows that, if \(v\) is perfectly known, the system dynamics (10) can be stabilized by a proportional controller, provided that the controller gains are properly chosen. Now, we consider the case in which the vehicle speed \(v\) cannot be directly measured, but it is estimated as the fastest wheel speed. Even though this estimation may appear quite rough, it is in fact the common practice in the two wheeled-vehicles context, where it appears to be very difficult to set-up an efficient speed estimation algorithm, [6]. Formally, the vehicle speed is estimated as \(\hat{v} = \max\{\omega_f, \omega_r\}r\). Correspondingly, given the definition (3) of the wheel slip, the estimate of the front wheel slip \(\hat{\lambda}_f\) is given by

\[
\dot{\hat{\lambda}}_f = 1 - \frac{\omega_f}{\omega_f} = 0, \quad \text{if } \omega_f \geq \omega_r \iff \hat{\lambda}_f \leq \lambda_r.
\]

\[
\dot{\hat{\lambda}}_r = 1 - \frac{\omega_f}{\omega_r} = \frac{\lambda_f - \lambda_r}{1 - \lambda_r}, \quad \text{if } \omega_f < \omega_r \iff \hat{\lambda}_f > \lambda_r.
\]

Analogous expressions hold for the rear slip estimate \(\hat{\lambda}_r\).

Thus, if the proportional controller (9) is used with \(\lambda_f\) replaced by \(\hat{\lambda}_f\), the closed-loop system dynamics keep continuous but have two different expressions in two different regions of the state space

Region I \((\lambda_f \leq \lambda_r)\):

\[
\dot{\hat{\lambda}}_f = -\frac{r}{J_v} \left(\Psi_f(\lambda_f) - k_f \lambda_f^2 \right)
\]

\[
\dot{\hat{\lambda}}_r = -\frac{r}{J_v} \left(\Psi_r(\lambda_f, \lambda_r) - k_r \left[\lambda_r^* - \lambda_f \right] \right)
\]

Region II \((\lambda_f > \lambda_r)\):

\[
\dot{\hat{\lambda}}_f = -\frac{r}{J_v} \left(\Psi_f(\lambda_f) - k_f \left[\lambda_f^* - \lambda_r \right] \right)
\]

\[
\dot{\hat{\lambda}}_r = -\frac{r}{J_v} \left(\Psi_r(\lambda_f, \lambda_r) - k_r \lambda_r^2 \right)
\]

In Proposition 3.2, we analyze the behavior of the system described by (17) and (18), when the gains of the wheel slip controller are chosen to be high, as suggested by Proposition 3.1 and the considerations in Remark 3.1.

Proposition 3.2: Consider the closed-loop system described by equations (17)-(18) with \(k_f > \max \lambda_r, \lambda_f(\lambda_f, \lambda_r)\). Then, there exist set-point values \(\lambda_f^* \in (0, 1), i = \{r, f\}\) such that, for all initial conditions \(\lambda_f(0), \lambda_r(0) \in (0, 1)\) the wheels lock, that is \(\lambda_i \to 1, i = \{r, f\}\).

Proof: Given the bounds on the controller gains, we can choose \(\lambda_f^* \in (0, 1), i = \{r, f\}\) so as to satisfy

\[
\Psi_f(\lambda_f) - k_f \lambda_f^* < 0, \forall \lambda_f
\]

\[
\Psi_r(\lambda_f, \lambda_r) - k_r \lambda_r^* < 0, \forall \lambda_f, \lambda_r
\]

Three different situations may occur: i) the state of the system remains in Region I from some time \(t \geq 0\) on: \(\lambda_f(t) \leq \lambda_r(t), t \geq T\); ii) the state of the system remains in Region II from some time \(t \geq 0\) on: \(\lambda_f(t) > \lambda_r(t), t \geq T\); iii)
the state of the system keeps switching between Region I and Region II. Let us start considering case i). By the first equation in (17) and (19), within Region I, we have both \(\lambda_f > 0 \) and \(\lambda_r > \lambda_f \). Thus, as time grows, \(\lambda_f \rightarrow 1 \), so that the front wheel locks and, as \(\lambda_f > \lambda_r \), also \(\lambda_r \rightarrow 1 \). The same reasoning applies to case ii). As for case iii), we shall prove by contradiction that it cannot actually occur. To this purpose, we start by observing that the time derivative of \(\Delta \lambda = \lambda_f - \lambda_r \) for \(\lambda_f = \lambda_r = \lambda \) is given by

\[
\Delta \dot{\lambda} = \frac{r}{\nu} \left(r(W_f - W_r - 2\Delta_F \dot{v}) \mu(\lambda) - k_1 \lambda_f^* + k_r \lambda_r^* \right),
\]

which is obtained based on (17) and the definitions of \(\Psi_f(\cdot) \) and \(\Psi_r(\cdot, \cdot) \) in equations (7) and (8). Thus, on the boundary between Region I and Region II, \(\Delta \lambda \) is zero for those values of \(\lambda_f = \lambda_r = \lambda \) satisfying the equation

\[
\mu(\lambda) = [k_f \lambda_f^* - k_r \lambda_r^*] / [r(W_f - W_r - 2\Delta_F \dot{v})].
\]

Recalling the expression for \(\mu(\cdot) \) in (4), we then have that there is a single value, say \(\lambda_r \), such that \(\Delta \lambda(\cdot) = 0 \) when \(\lambda_f(t) = \lambda_r(t) = \lambda \). Assume now by contradiction that there exists \(\{t_k\}_{k \geq 0} \), with \(t_{k+1} > t_k \), \(k \geq 0 \), such that \(\lambda_f(\cdot) > \lambda_r(\cdot) \), \(t \in (t_{2h}, t_{2h} + 1) \), and \(\lambda_f(t) \leq \lambda_r(t), t \in (t_{2h+1}, t_{2h+2}) \), \(h \geq 0 \). Set \(\lambda_k := \lambda_f(t_k) = \lambda_r(t_k) \). We next show that from this assumption it follows that

\[
\lambda_{k+1} > \lambda_k, k \geq 0.
\]

(21)

Note that (21) implies that there exists a sequence \(\{\lambda_k\} \) of increasing values of \(\lambda \) such that \(\Delta \lambda \) in (20) keeps changing sign. Because of the continuity of \(\Delta \lambda \) as a function of \(\lambda \), this contradicts the fact that \(\Delta \lambda = 0 \) on a single point \((\lambda_f = \lambda_r = \lambda) \) of the boundary between Region I and Region II, thus concluding the proof of the proposition. For the state to commute at time \(t_{2h} \) from Region I where \(\lambda_f - \lambda_r \leq 0 \) to Region II where \(\lambda_f - \lambda_r > 0 \), it should hold that \(\lambda_f(t_{2h}) = \lambda_r(t_{2h}) = \lambda_{2h} \) and \(\Delta \lambda(t_{2h}) > 0 \). By a similar reasoning, it is easily seen that for the state to commute at time \(t_{2h+1} > t_{2h} \) from Region II to Region I, \(\lambda_f(t_{2h+1}) = \lambda_r(t_{2h+1}) = \lambda_{2h+1} \) and \(\Delta \lambda(t_{2h+1}) \leq 0 \). Thus, \(\lambda_{2h+1} \neq \lambda_{2h} \) because of the different sign of \(\Delta \lambda \) on the boundary at \(\lambda_f = \lambda_r = \lambda_{2h} \) and \(\lambda_f = \lambda_r = \lambda_{2h+1} \). Moreover, we know that \(\lambda_{2h+1} \geq \lambda_{2h} \). Since we have \(\lambda_f > 0 \) within Region I, \(\lambda_r > 0 \) within Region II, and both \(\lambda_f > 0 \) and \(\lambda_r > 0 \) on the boundary between Region I and Region II (this is a consequence of (19) and of the continuity of the vector field (17)-(18)). From \(\lambda_{2h+1} \geq \lambda_{2h} \) and \(\lambda_{2h+1} \neq \lambda_{2h} \), it follows that \(\lambda_{2h+1} > \lambda_{2h} \). In a perfectly analogous way it can be shown that \(\lambda_{2h+2} > \lambda_{2h+1} \), so that (21) is finally proven.

Remark 3.3: The result in Proposition 3.2 have been proved considering large values for the gains of the controller as suggested by a design of the controller that does not take into account the issue of speed estimation. As a matter of fact, considering the common set-point values for the application at hand, that is \(\lambda^* \in [0.1, 0.25] \), one finds that the equilibrium (11) corresponding to lower gains \(k_f < \max_{\lambda_f} \Psi_f(\lambda_f) \) and \(k_r < \max_{\lambda_r} \Psi_r(\lambda_r, \lambda_f) \), would take extremely low values, inappropriate for safely managing a braking maneuver. Thus, the only situation of potentially practical interest is that investigated in Proposition 3.2. ■

IV. SIMULATION RESULTS AND PERFORMANCE ANALYSIS

In Section III, we have considered a proportional controller of the front and rear wheel slips and shown that its performance dramatically deteriorates when the fastest wheel speed is used in place of the actual, not directly measurable, vehicle speed. We now present a simulation study which confirms that the results in Section III still hold when a PID controller is used instead of a simple proportional controller. Furthermore, we discuss what is the gain in performance potentially offered by a combined front and rear wheel slip control with respect to the front-braking-only solution that is currently adopted in most commercial two-wheeled vehicles. The simulation results presented in this section have been obtained with a detailed dynamical model of a two-wheeled vehicle, in which the suspensions dynamics are explicitly modeled, and tire elasticity and tire relaxation dynamics [9] are also taken into account. As for the actuator, a first order low-pass filter with 10Hz of bandwidth complemented with a pure delay of 10ms has been employed. The wheel slip controller has been implemented with a PID architecture.

Both the front and rear wheel slip set-points have been set equal to \(\lambda_f^* = \lambda_r^* = 0.22 \).

Figure 4 shows a braking maneuver carried out with combined front and rear wheel slip control assuming perfect knowledge of the vehicle speed, i.e., the case discussed in Proposition 3.1. As can be seen Figure 4, when both the front and rear wheel slips \(\lambda_f \) and \(\lambda_r \) are regulated to the same set-point value, their estimated counterparts \(\hat{\lambda}_f \) and \(\hat{\lambda}_r \), obtained via (16) are zero at steady-state, as \(\omega_f = \omega_r \). Not surprisingly, when the estimated front and rear wheel slips are used, i.e., the case discussed in Proposition 3.2, both wheels lock as shown in Figure 5.

![Fig. 4. Braking maneuver with front and rear wheel slip control based on measured vehicle speed. Actual front wheel slip (solid line), estimated front wheel slip (dashed line), actual rear wheel slip (dashed line), estimated rear wheel slip (dotted line).](image)

If the vehicle speed cannot be estimated with sufficient precision, a viable alternative in two-wheeled vehicle is that of braking with the front wheel only [6], [13], [14]. As a matter of fact, this is the current braking strategy on most commercial two-wheeled vehicles. Braking with both front and rear wheels has only recently become possible thanks to the new generation of actuators. If only front braking is used, then the rear wheel speed provides a good estimate of the vehicle speed given that the rear wheel rolls freely. The braking performance obtained with front braking only can be appreciated inspecting Figure 6, where front and rear wheel
slip \(\lambda_f \) and \(\lambda_r \) and their estimated counterparts \(\hat{\lambda}_f \) and \(\hat{\lambda}_r \) obtained via (16) are shown.

Note that the rear wheel slip in Figure 6 is negative and not equal to zero. Namely, the rear wheel provides a traction torque. This fact can be surprising at a first glance, but can be explained by observing that the rear wheel has a kinetic energy given by \(\frac{1}{2}J\dot{\omega}_r^2 \), where \(\dot{\omega}_r \) is the rear wheel rotational speed at the beginning of the braking maneuver, and \(J \) is the inertia of the rear wheel. If the engine is disengaged during braking and only the front brake is used, this energy is not dissipated but it is transformed into a traction torque. This phenomenon clearly induces an increase in the braking distance when only the front brake is used. Nonetheless, as the rear wheel speed can be easily measured, if we impose the rear wheel braking with the compensation for the kinetic energy at the rear wheel. Notably, with the compensation, the performance loss occurs if one downgrades the braking control strategy to front-brake only. This loss of performance can be partially recovered by compensating the kinetic energy at the rear wheel. Namely, the rear wheel provides a traction torque when only the front brake is used, this energy is not dissipated but it is transformed into a traction torque. This phenomenon clearly induces an increase in the braking distance when only the front brake is used. Nonetheless, as the rear wheel speed can be easily measured, if we impose the rear wheel braking with the compensation for the kinetic energy at the rear wheel. Notably, with the compensation, the performance loss occurs if one downgrades the braking control strategy to front-brake only. This loss of performance can be partially recovered by compensating the kinetic energy at the rear wheel. Notably, with the compensation, the performance loss is reduced from 54% to 39.2%. Nonetheless, if speed estimation cannot be achieved with sufficient precision, this downgrade might be necessary for the sake of safety.

For comparison purposes, Table IV reports the stopping distance \(X_{br}[m] \) (from 100 to 0 km/h) obtained with the considered algorithms, together with the percentage performance loss with respect to the best solution offered by combined front and rear slip control with perfect vehicle speed measurements. As can be seen, a significant performance loss occurs if one downgrades the braking control strategy to front-brake only. This loss of performance can be partially recovered by compensating the kinetic energy at the rear wheel. Notably, with the compensation, the performance loss is reduced from 54% to 39.2%. Nonetheless, if speed estimation cannot be achieved with sufficient precision, this downgrade might be necessary for the sake of safety.

References

