Stochastic Pareto Near-Optimal Strategy for Weakly-Coupled Large-Scale Systems with Imperfect Local State Measurements

Hiroaki Mukaidani and Hua Xu

Abstract—This paper is concerned with the infinite horizon stochastic Pareto-optimal static output feedback control problem for a class of weakly-coupled large-scale systems with state-dependent noise. Necessary conditions, which are related with the solutions of the cross-coupled stochastic algebraic Riccati equations (CSAREs), are given for the existence of a controller that guarantees exponentially mean square stable (EMSS) of the system and minimizes a cost function. After analyzing the asymptotic structure for the solutions of the CSAREs, we will construct a parameter independent Pareto near-optimal controller. We will also propose a new sequential numerical algorithm for solving the reduced-order CSAREs. A numerical example for a practical megawatt-frequency control problem will be solved to show the efficiency of the proposed algorithm.

I. INTRODUCTION

When we consider optimal control problems of weakly-coupled large-scale interconnected system that are parameterized by a small coupling parameter ε, the algebraic Riccati equations (AREs) play an important role in the design of the controller. We can find various reliable approaches to solve the AREs in literatures (see e.g., [15]). However, a drawback of these approaches is that the small parameter is required to be exactly known. Therefore, these approaches are not applicable to the problems where the small parameter represents the unknown perturbation to a system.

On the other hand, designing a controller for stochastic systems governed by Itô’s differential equation has been the subject of many papers during the past few decades [1], [2], [3], [4]. Although many results obtained in these papers are very elegant theoretically, there exist the issues on how to calculate and implement a controller easily. From the viewpoint of implementation, a output feedback controller is extremely desirable since state variables are not always available in practice. Although some results on output feedback designing can be found in the papers [5], [13], the stochastic static output feedback control problem with multiple decision makers has not been considered.

Decisions in large-scale systems are usually made by multiple decision makers who have different information sets. For example, we can consider an optimal megawatt-frequency control of multi-area electric energy systems [6]. This problem has been treated as the Nash games of weakly coupled large scale-systems with multiple decision makers [7]. The study on the linear quadratic Gaussian games in large-scale population systems is another example [14]. Since it is not easy or even possible to obtain information of other subsystems in a large-scale system, it is common that a local decision maker can only use local information and simplified models to construct his own strategies. Moreover, we can find problems where only the partial information on the system be utilized through output measurement.

In this paper, we investigate the static output feedback Pareto optimal control problem of stochastic systems governed by Itô differential equations with state-dependent noise. This study is relevant to [5] where only a regular static output feedback optimal control problem is studied. Our problem involves multiple decision makers who use their local information from output measurement of each subsystem in the design of the controller. We extend the existing results [4] to the decentralized stochastic static output feedback problem with multiple decision makers. Moreover, a new stabilization concept called exponentially mean square stable (EMSS) is used in the design of static output feedback Pareto optimal strategies.

The outline of the study is as follows. Firstly, we present the necessary conditions, which are related with the solutions of the cross-coupled stochastic algebraic Riccati equations (CSAREs), for a decentralized controller to be Pareto near-optimal. The boundedness of the solution to the CSAREs and their asymptotic structures are established. Using the obtained asymptotic structure, we construct a parameter independent approximate Pareto strategy. Moreover, a new sequential numerical algorithm to solve the reduced order CSAREs, which are independent of the parameter ε, is developed for the first time. The degradation analysis of the costs by applying the proposed approximate Pareto strategies is provided. It is proved that the proposed strategy achieves $O(\varepsilon)$ approximation of the optimum value. Finally, a numerical example for a two-area electric energy system is solved to show the efficiency of the proposed algorithm.

Notation: The notations used in this paper are fairly standard. I_n denotes an $n \times n$ identity matrix. block diag denotes a block diagonal matrix. $\|\cdot\|$ denotes the Euclidean norm of a matrix. E denotes the expectation. \otimes denotes the Kronecker product. δ_{ij} denotes the Kronecker delta.
II. DEFINITION AND PRELIMINARY

We first introduce the concept of the exponentially mean square stable (EMSS) and the related facts. These results are essential (see, e.g., [1], [2] and the references therein for more details).

Definition 1: [1] The stochastic system

\[dx(t) = Ax(t)dt + \sum_{k=1}^{N} A_k x(t)dw_k(t) \]

is said to be EMSS if it satisfies the following equation.

\[E\|x(t)\|^2 \leq pe^{-\psi(t-t_0)}E\|x(t_0)\|^2, \quad \exists \rho, \psi > 0. \]

Lemma 1: [1], [2] The trivial solution of a stochastic differential equation as follows:

\[dx(t) = f(t, x)dt + g(t, x)dw(t), \]

where \(f(t, x) \) and \(g(t, x) \) sufficiently differentiable maps, is EMSS if there exists a function \(V(x(t)) \) which satisfies the following inequalities

\[a_1\|x(t)\|^2 \leq V(x(t)) \leq a_2\|x(t)\|^2, \quad a_1, a_2 > 0, \]

\[\frac{dV(x(t))}{dx}f(t, x) + \frac{1}{2}\text{Tr}\left[g^T(t, x)\frac{d^2V(x(t))}{dx^2}g(t, x)\right] \leq -c\|x(t)\|^2, \quad c > 0 \]

for \(x(t) \neq 0 \).

Lemma 2: [1] Consider an autonomous stochastic system

\[dx(t) = Ax(t)dt + \sum_{p=1}^{M} A_p x(t)dw_p(t), \quad x(0) = x^0 \]

and the corresponding cost function

\[J = E \int_{0}^{\infty} x^T(t)Qx(t)dt, \quad Q = Q^T \geq 0. \]

For any given positive definite symmetric matrix \(Q \), if there exists a positive definite symmetric matrix \(X \) that satisfies the following stochastic algebraic Lyapunov equation (SALE):

\[XA + A^TX + \sum_{p=1}^{M} A_p^TXA_p = 0, \]

then the stochastic system (5) is EMSS. Moreover, \(J = E[x^T(0)Xx(0)] \).

III. STOCHASTIC PARETO OPTIMAL STATIC OUTPUT FEEDBACK STRATEGY

We now study the static Pareto near-optimal control problem with state dependent noise. Consider linear time-invariant weakly-coupled large-scale stochastic systems.

\[dx(t) = \left[A_x x(t) + \sum_{k=1}^{N} B_k u_k(t) \right] dt + \sum_{k=1}^{N} \bar{A}_k x(t)dw_k(t), \quad x(0) = x^0, \]

\[y_i(t) = C_i x(t) = C_{ii} x_i(t), \quad i = 1, \ldots, N, \]

where

\[x(t) := \begin{bmatrix} x_1^T(t) & \cdots & x_N^T(t) \end{bmatrix}^T, \]

\[A_e := \begin{bmatrix} A_{11} & eA_{12} & \cdots & eA_{1N} \\ eA_{21} & A_{22} & \cdots & eA_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ eA_{N1} & eA_{N2} & \cdots & A_{NN} \end{bmatrix}, \]

\[\bar{A}_{ie} := \begin{bmatrix} e^{1-\delta_i}A_{ii} & e^{1-\delta_i}A_{i1} & \cdots & e^{1-\delta_i}A_{iN} \\ e^{1-\delta_1}A_{i1} & B_{11} & \cdots & e^{1-\delta_i}B_{1N} \\ \vdots & \vdots & \ddots & \vdots \\ e^{1-\delta_{N-1}}A_{iN} & e^{1-\delta_{N-2}}B_{iN} & \cdots & B_{NN} \end{bmatrix}, \]

\[C_i := \begin{bmatrix} 0 & \cdots & 0 & C_{ii} & 0 & \cdots & 0 \end{bmatrix}. \]

\[x_i(t) \in \mathbb{R}^{n_i}, \quad i = 1, \ldots, N \]

represent the \(i \)th state vectors. \(u_i(t) \in \mathbb{R}^{m_i}, \quad i = 1, \ldots, N \)

represent the \(i \)th control inputs. \(y_i(t) \in \mathbb{R}, \quad i = 1, \ldots, N \)

represent the \(i \)th output measurements vectors. \(w_i(t) \in \mathbb{R}, \quad i = 1, \ldots, N \)

is a one-dimensional standard Wiener process defined in the filtered probability space [2], [3], [4]. Here, \(\varepsilon \) denotes a relatively small coupling parameter that relates the linear system with the other subsystems. The initial state \(x(0) = x^0 \)

is assumed to be a random variable with a covariance matrix \(E[x(0)x^T(0)] = I, \quad \bar{n} := \sum_{k=1}^{N} n_k \). It should be noted that although \(A_e \) has a special form, it arise in the practical systems [6]. Indeed, it will be demonstrated in the numerical example.

Generally, it is impossible or too costly to incorporate many feedback loops into the controller designing for a large-scale system. These facts motivate the study of decentralized control theory such that each subsystem can be controlled independently by a controller using its locally available information. We now make a realistic assumption that each decision maker can only know the locally simplified model of (8). Moreover, each decision maker can only use the local output feedback information in the design of a controller. In other words, the simplified decomposition system

\[dx_i(t) = [A_{ii} x_i(t) + B_{ii} u_i(t)] dt + A_{i1} x_i(t) dw_i(t), \]

\[y_i(t) = C_i x_i(t), \quad i = 1, \ldots, N \]

is only known by the \(i \)th decision maker.

The main purpose of this paper is to establish a parameter independent static output feedback strategy and to analyze its reliability. Suppose that the \(i \)th decision maker will design a control strategy based on local information and the designing specification of minimizing a cost function \(J_i \). We consider the situation in which decision makers decide their strategies in a cooperative way. This is a Pareto optimal control problem which has the meaning that no variation from Pareto optimal strategy can decrease the costs of all decision makers [10]. It is very important to note that a dynamic multiple decision making problem can be converted to a regular optimal control problem [8].
The cost function for each strategy subset is defined by
\[
J_i = E \int_0^\infty [x^T(t)Q_{ii}x(t) + u^T_i(t)R_iu_i(t)]dt,
\]
where \(i = 1, \ldots, N\), \(Q_{ii} = Q_i^T \geq 0 \in \mathbb{R}^{n_i \times n_i}\) with \(Q_{ii} = Q_i^T = \begin{bmatrix}
\varepsilon^1 \delta_i x_1 \\
\varepsilon Q_{i12} & \cdots & \varepsilon Q_{i1N} \\
\varepsilon Q_{i12} & \varepsilon^1 \delta_i x_2 & \cdots & \varepsilon Q_{i2N} \\
\vdots & \vdots & \ddots & \vdots \\
\varepsilon Q_{i1N} & \varepsilon Q_{i2N} & \cdots & \varepsilon^1 \delta_N x_i
\end{bmatrix} \geq 0 \in \mathbb{R}^{n \times n},
\]
and \(R_i = R_i^T > 0 \in \mathbb{R}^{m_i \times m_i}\).

A Pareto solution is a set \(u_i, i = 1, \ldots, N\) which minimizes
\[
J = \sum_{k=1}^N \gamma_k J_k, \quad 0 < \gamma_k < 1, \quad \sum_{k=1}^N \gamma_k = 1,
\]
for some \(\gamma_k, k = 1, \ldots, N\) [10], [11].

The optimal linear quadratic regulator problem is a special case of this problem when the decision makers agree on a choice of \(\gamma_k, k = 1, \ldots, N\) as weight factors.

It should be noted that in this study, the strategies \(u_i(t) := F_i x(t) = \bar{u}_i(t) := F_i \tilde{C}_{ii} x_i(t)\) are restricted as the linear feedback strategies [9].

To develop necessary conditions for this problem, \(F_i, i = 1, \ldots, N\) must be restricted to the following set
\[
\mathcal{F}_i := \left\{ F_i \in \mathbb{R}^{n_i \times l_i} \mid \text{There exists a positive definite symmetric matrix } X_i \text{ that satisfies the following parameter independent SALE:} \right\}
\]
\[
X_{ii} (A_{ii} + B_{ii} F_i C_{ii}) + (A_{ii} + B_{ii} F_i C_{ii})^T X_{ii} + A_{ii}^T X_{ii} A_{ii} + \gamma_i (C_{ii}^T F_i^T R_i F_i C_{ii} + Q_{ii}) = 0.
\]
Moreover, \(I_{n_i} \otimes (A_{ii} + B_{ii} F_i C_{ii})^T + (A_{ii} + B_{ii} F_i C_{ii})^T \otimes I_{n_i} + A_{ii}^T \otimes A_{ii}^T\) is nonsingular.

Using Lemma 2 and the assumption of \(E[x(0)x^T(0)] = \hat{F}_i\), it is immediately obtained that the closed-loop stochastic system is EMSS and the integral portion of \(J\) satisfies the relation
\[
J = \text{Tr}[P_{i*}],
\]
if there exists a solution to the following SALE.

\[
\begin{align*}
\mathcal{F}(\varepsilon, P_{i*}, F_{i1}, \ldots, F_{iN}) &= P_{i*} \left(A_{i*} + \sum_{k=1}^N B_{ik} F_k C_k \right) + \left(A_{i*} + \sum_{k=1}^N B_{ik} F_k C_k \right)^T P_{i*} \\
&+ \sum_{k=1}^N A_{ik}^T P_{i*} A_{ik} + \sum_{k=1}^N \gamma_i C_{ik}^T F_k^T R_k F_k C_k + Q_{i*} = 0,
\end{align*}
\]
where \(Q_{i*} := \sum_{k=1}^{N} \gamma_k Q_{ik} \).

In order to clarify the existence of \(P_{i*}\) of (14), we now investigate the asymptotic structure of the solution and establish the existence condition that is confirmed by the reduced-order and the parameter independent calculation.

Since \(A_{i*}, A_{ik}, B_{ik}\) contain the parameter \(\varepsilon\), the solutions \(P_{i*}\) of CSARE (14) - if it exists - should contain the parameter \(\varepsilon\). Therefore, we assume that the solutions of SALE (14) have the following structure [15].

\[
P_\varepsilon := \begin{bmatrix}
P_{11} & \varepsilon P_{12} & \cdots & \varepsilon P_{1N} \\
\varepsilon P_{12}^T & P_{22} & \cdots & \varepsilon P_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
\varepsilon P_{1N}^T & \varepsilon P_{2N}^T & \cdots & P_{NN}
\end{bmatrix} \in \mathbb{R}^{n \times \hat{n}}.
\]

Substituting these matrices into SALE (14), letting \(\varepsilon = 0\), and partitioning SALE (14), the following reduced-order SALE (14) is obtained, where \(\tilde{P}_{i*}\) and \(\tilde{F}_{i*}\), \(i = 1, \ldots, N\) are the 0-order solutions of SALE (14) as \(\varepsilon = 0\).

The asymptotic expansion of CSARE (14) for \(\varepsilon = 0\) is described by the following Lemma.

Lemma 3: Suppose that \(\tilde{F}_i \in \mathcal{F}_i\). There exists a small constant \(\sigma^*_i\) such that for all \(\varepsilon \in (0, \sigma^*_i)\), SALE (14) admits the unique positive definite solution \(P_{i*}\) that can be expressed as
\[
P_{i*} := P_{i*} = \tilde{P} + O(\varepsilon),\]
where \(\tilde{P} = \text{block diag}(\tilde{P}_{11}, \ldots, \tilde{P}_{NN})\).
\[
\tilde{P}_{i*}(A_{i*} + B_{i*} F_{i*} C_{i*}) + (A_{i*} + B_{i*} F_{i*} C_{i*})^T \tilde{P}_{i*} + A_{i*}^T \tilde{P}_{i*} A_{i*} + \gamma_i (C_{i*}^T F_{i*}^T R_{i*} F_{i*} C_{i*} + Q_{i*}) = 0.
\]
Proof: This can be proved by performing the implicit function theorem on SALE (14). To do so, it is sufficient to show that the corresponding Jacobian is nonsingular at \(\varepsilon = 0\). Since this follows the same lines of [15], it is omitted.}

It follows from Lemma 2 that the closed-loop stochastic system (8a) with \(\tilde{u}_i(t) = F_i C_{ii} x_i(t)\) is EMSS because SALE (14) admits the unique positive definite solution. Moreover, it is easy to verify that the behavior of the closed-loop stochastic system (8a) for small value of \(\varepsilon\) can be stated as the following observation.

Observation 1: If \(\tilde{u}_i(t) = F_i C_{ii} x_i(t), i = 1, \ldots, N\) are designed subject to \(F_i \in \mathcal{F}_i\), then, for all \(t\), there exists a positive scalar \(\delta^*_i\) such that for all \(\varepsilon \in (0, \delta^*_i)\), the following approximations hold.

\[
E[x_i^T(t)x_i(t)] = E[\tilde{x}_i^T(t)\tilde{x}_i(t)] + O(\varepsilon),
\]
where \(d\tilde{x}_i(t) = [A_{i*} + B_{i*} F_{i*} C_{i*} \tilde{x}_i(t)]dt + A_{i*} \tilde{x}_i(t)dw_i(t)\).

Necessary condition for Pareto optimality will be obtained in term of the CSAREs.

Theorem 1: Suppose that \(F_i \in \mathcal{F}_i\) forms the gain of the static output feedback Pareto near-optimal strategies. Then, it is necessary that there exist the symmetric positive definite solutions \(P_{\varepsilon}\) and \(S_{\varepsilon}\) that satisfy the SALE (14) and the following SALE (19a), respectively, such that \(F_i\) is obtained.
by (19b).

$$G(\epsilon, S_\epsilon, F_1, \ldots, F_N) = S_\epsilon \left(A_\epsilon + \sum_{k=1}^{N} B_{k\epsilon} F_k C_k \right)^T + \left(A_\epsilon + \sum_{k=1}^{N} B_{k\epsilon} F_k C_k \right) + \left(A_\epsilon + \sum_{k=1}^{N} B_{k\epsilon} F_k C_k \right)^T N_\epsilon + \sum_{k=1}^{N} \bar{A}^T_{k\epsilon} N_{k\epsilon} \bar{A}_{k\epsilon} + C^T_{\epsilon} \bar{F}^T_{i\epsilon} R_{i\epsilon} F_{i\epsilon} C_{i\epsilon} + Q_{\epsilon} = 0. \quad (19b)$$

where \(i = 1, \ldots, N \).

Proof: The result can be proved by using a Lagrange multiplier approach. First, the closed-loop cost with the static output feedback controller \(\tilde{u}_i(t) = F_i C_i x_i(t) \) can be obtained by \(J = \text{Tr}[P_\epsilon] \), where \(P_\epsilon \) is the solution of the SALE (14). Let us consider the Hamiltonian \(\mathcal{L} \)

$$\mathcal{L}(\epsilon, P_\epsilon, S_\epsilon, F_1, \ldots, F_N) = \text{Tr} \left[P_\epsilon + \text{Tr} [F(\epsilon, P_\epsilon, F_1, \ldots, F_N) S_\epsilon] \right], \quad (20)$$

where \(S_\epsilon \) is a symmetric positive definite matrix of Lagrange multipliers. Necessary conditions for a \(F_i \) to be optimal can be found by setting \(\frac{\partial \mathcal{L}}{\partial P_\epsilon} \) and \(\frac{\partial \mathcal{L}}{\partial F_i} \) equal to zero, and solving the resulting equations (19b) simultaneously for \(F_i \).

Remark 1: It should be noted that Theorem 1 only gives the necessary conditions for a controller to be optimal. However, it is quite possible that the solutions of (14) and (19) will not lead to a Pareto optimal controller.

Remark 2: It is obvious that there will be many Pareto solutions. Different criteria are required to make the choice of multiple Pareto solutions.

Remark 3: The stochastic static output feedback Pareto optimal problem in this paper cannot be treated using the technique of [5] because the multiple decision makers exist. In fact, the obtained CSAREs (14) and (19) are quite different from the results of [5].

Observation 2: If full state information is available, i.e., \(C_i := I_{ni} \) and \(S_\epsilon \) is nonsingular, then, according to (19b),

$$F_i = -\gamma_i R_i^{-1} B_{k\epsilon}^T P_{\epsilon}, \quad (21)$$

and, with this \(F_i \), it is possible to show that (14) implies

$$P_\epsilon A_\epsilon + A_\epsilon^T P_{\epsilon} + \sum_{k=1}^{N} \bar{A}_{k\epsilon}^T P_{\epsilon} \bar{A}_{k\epsilon} - P_{\epsilon} U_{\epsilon} P_{\epsilon} + Q_{\epsilon} = 0, \quad (22)$$

where \(U_{\epsilon} := \sum_{k=1}^{N} \gamma_k^{-1} B_{k\epsilon} R_k^{-1} B_{k\epsilon}^T \).

The discussion on the uniqueness and the stabilizing solution of (22) will be given in a later section.

If \(C_i S_i C_i^T \) is nonsingular then (19b) may be solved for \(F_i \) to obtain

$$F_i = -\gamma_i R_i^{-1} B_{k\epsilon}^T P_{\epsilon} S_i C_i^T (C_i S_i C_i^T)^{-1}. \quad (23)$$

In the remaining part of the section, in order to propose a new concept of the parameter independent Pareto near-optimal strategy set, we will discuss the asymptotic structure of \(S_\epsilon \) and \(F_i \).

Lemma 4: Suppose that \(\bar{F}_i \in F_1 \). There exists a small constant \(\sigma_2^2 \) such that for all \(\epsilon \in (0, \sigma_2^2) \), SALE (19a) and the linear equation (19b) admit a positive definite solution \(S_\epsilon^* \) and a feedback gain \(F_i^* \) that can be expressed as

$$S_\epsilon := S_\epsilon^* = \bar{S} + O(\epsilon), \quad (24a)$$

$$F_i := F_i^* = \bar{F}_i + O(\epsilon), \quad (24b)$$

where \(\bar{S} = \text{block diag} \left(\bar{S}_{11} \cdots \bar{S}_{NN} \right) \).

$$\bar{S}_{ii}(A_{ii} + B_{ii} \bar{F}_i C_{ii})^T + (A_{ii} + B_{ii} \bar{F}_i C_{ii}) \bar{S}_{ii} + A_{ii}^T \bar{S}_{ii} A_{ii} + I_{ni} = 0, \quad (25a)$$

$$\gamma_i R_i F_i C_i \bar{S}_{ii} C_i^T + B_{k\epsilon}^T P_{\epsilon} \bar{S}_{ii} C_i^T = 0. \quad (25b)$$

Without loss of generality, as an additional technical assumption, we suppose that \(\bar{F}_i \) is confined to the following set.

$$L_i := \{ F_i \in F_1 \mid C_i \bar{S}_{ii} C_i^T > 0 \},$$

where \(\bar{S}_{ii} \) satisfies (25a).

IV. PARAMETER INDEPENDENT PARETO NEAR-OPTIMAL STRATEGY WITH LOCAL OUTPUT MEASUREMENTS

We now propose a new design approach for constructing Pareto near-optimal strategy. The new \(\epsilon \)-independent Pareto near-optimal strategy \(F_i \) of (26) can be obtained by solving reduced-order algebraic equations (17) and (25). The \(\epsilon \)-independent Pareto near-optimal strategy is obtained by neglecting the term of \(O(\epsilon) \) of the full-order strategy (23). The main result of this paper is as follows.

Theorem 2: The approximate Pareto near-optimal strategy \(\tilde{u}_i(t) := \bar{F}_i C_i x_i(t) \) that is based on (26) results in the following relation.

$$\bar{J}_i - J_i^* = O(\epsilon), \quad (27)$$

where

$$\bar{J}_i := \text{Tr}[M_{i\epsilon}], \quad (28a)$$

$$J_i^* := \text{Tr}[N_{i\epsilon}], \quad (28b)$$

$$M_{i\epsilon} \left(A_{\epsilon} + \sum_{k=1}^{N} B_{k\epsilon} F_k C_k \right)^T + \left(A_{\epsilon} + \sum_{k=1}^{N} B_{k\epsilon} F_k C_k \right) + \sum_{k=1}^{N} \bar{A}_{k\epsilon}^T M_{i\epsilon} \bar{A}_{k\epsilon} + C_i^T F_i R_i F_i C_i + Q_{i\epsilon} = 0, \quad (28c)$$

$$N_{i\epsilon} \left(A_{\epsilon} + \sum_{k=1}^{N} B_{k\epsilon} F_k C_k \right)^T + \left(A_{\epsilon} + \sum_{k=1}^{N} B_{k\epsilon} F_k C_k \right) + \sum_{k=1}^{N} \bar{A}_{k\epsilon}^T N_{i\epsilon} \bar{A}_{k\epsilon} + C_i^T F_i^T R_i F_i C_i + Q_{i\epsilon} = 0. \quad (28d)$$
Proof: Subtracting (28d) from (28c) and using the result of (24b), $L_{iε} = M_{iε} - N_{iε}$ satisfies the following SALE

$$L_{iε} \left(A_{ε} + \sum_{k=1}^{N} B_{kε} F_{k} C_{k} \right) + \left(A_{ε} + \sum_{k=1}^{N} B_{kε} F_{k} C_{k} \right)^{T} L_{iε}$$

$$+ \sum_{k=1}^{N} A_{kε}^{T} L_{kε} A_{kε} + O(ε) = 0. \tag{29}$$

Without loss of generality, it is supposed that SALE (29) has the following structure [15].

$$L_{iε} := \begin{bmatrix} L_{i11} & εL_{i12} & \cdots & εL_{i1N} \\ εL_{i21} & L_{i22} & \cdots & εL_{i2N} \\ \vdots & \vdots & \ddots & \vdots \\ εL_{iN1} & εL_{iN2} & \cdots & L_{iNN} \end{bmatrix} \in \mathbb{R}^{n \times n}. \tag{30}$$

Using the implicit function condition under the condition of $F_{i} \in \mathbb{F}_{i}$, it can be shown that there exists a neighbourhood of $ε = 0$ and a function $L_{iε} := L_{i} + O(ε)$, where $L_{i} = \text{block diag} \left(L_{i11}, \ldots, L_{iNN} \right)$. Substituting L_{i} into (29) and letting $ε = 0$, $L_{i,jj}$, $j = 1, \ldots, N$ satisfies the reduced-order parameter independent SALE (31).

$$\bar{L}_{i,jj}(A_{ii} + B_{ii} F_{i} C_{ii}) + (A_{ii} + B_{ii} F_{i} C_{ii})^{T} \bar{L}_{i,jj}$$

$$+ A_{ii}^{T} \bar{L}_{i,jj} A_{ii} = 0. \tag{31}$$

Then, since $F_{i} \in \mathbb{F}_{i}$, $I_{ii} \otimes (A_{ii} + B_{ii} F_{i} C_{ii})^{T} + (A_{ii} + B_{ii} F_{i} C_{ii})^{T} \otimes I_{ii} + A_{ii}^{T} \otimes A_{ii}$ is nonsingular. Hence, $L_{i,jj} = 0$, $j = 1, \ldots, N$ and for all i. Consequently,

$$L_{iε} = O(ε) \tag{32}$$

results in (27) because $L_{i} = 0$.

The proposed Pareto near-optimal strategy brings about the following reliability and usefulness. The strategy set can be computed with the reduced-order dimension even though the weakly coupled parameter is unknown. Particularly, it is worth pointing out that the design of the strategy can be solved for each subsystem independently. Moreover, the feedback information only rely on the local output measurement.

Solving the reduced-order CSAREs (17) and (25) is not an easy task in general even though each problem can be solved independently. In the rest of this section, we propose some numerical techniques for solving the reduced-order CSAREs (17) and (25).

A proposed approach is to use the following algorithm.

Step 1. Choose a matrix $\bar{F}_{i}^{(0)}$, $i = 1, \ldots, N$ such that there exists a positive definite symmetric matrix $\bar{P}_{i}^{(0)}$ that satisfy $\bar{F}_{i}^{(0)}(A_{ii} + B_{ii} \bar{F}_{i}^{(0)} C_{ii}) + (A_{ii} + B_{ii} \bar{F}_{i}^{(0)} C_{ii})^{T} \bar{P}_{i}^{(0)} + A_{ii}^{T} \bar{P}_{i}^{(0)} A_{ii} + \gamma_{i}(C_{ii}^{T} \bar{P}_{i}^{(0)} R_{i} \bar{F}_{i}^{(0)} C_{ii} + Q_{ii}) = 0$. That is, the closed-loop system $dx_{i}(t) = [A_{ii} + B_{ii} \bar{F}_{i}^{(0)} C_{ii}]x_{i}(t) + A_{iix}(t)dw_{i}(t)$ is EMSS.

Step 2. Set $n = 0$, and solve the following SALEs for $\bar{F}_{i}^{(n+1)}$ and $\bar{S}^{(n+1)}_{ii}$.

$$\bar{F}_{i}^{(n+1)} \left(A_{ii} + B_{ii} \bar{F}_{i}^{(n)} C_{ii} \right) + \left(A_{ii} + B_{ii} \bar{F}_{i}^{(n)} C_{ii} \right)^{T} \bar{F}_{i}^{(n+1)} + \bar{A}_{ii}^{T} \bar{S}^{(n+1)}_{ii} \bar{A}_{ii}$$

$$+ \gamma_{i}(C_{ii}^{T} \bar{F}_{i}^{(n)} R_{i} \bar{F}_{i}^{(n)} C_{ii} + Q_{ii}) = 0, \tag{33a}$$

$$\bar{S}^{(n+1)}_{ii} \left(A_{ii} + B_{ii} \bar{F}_{i}^{(n)} C_{ii} \right)^{T}$$

$$+ \left(A_{ii} + B_{ii} \bar{F}_{i}^{(n)} C_{ii} \right) \bar{S}^{(n+1)}_{ii} + \bar{A}_{ii}^{T} \bar{S}^{(n+1)}_{ii} \bar{A}_{ii} + I_{ii} = 0. \tag{33b}$$

Step 3. Compute

$$\bar{F}_{i}^{(n+1)} = -\left(\gamma_{i} R_{i} \right)^{-1} B_{ii}^{T} \bar{S}^{(n+1)}_{ii} C_{ii}^{T}$$

$$\times (C_{ii}^{T} \bar{S}^{(n+1)}_{ii} C_{ii}^{T})^{-1}. \tag{34}$$

Step 4. If the closed-loop system is EMSS with $\bar{F}_{i}^{(n+1)}$, compute

$$F_{i}^{(n+1)} = \bar{F}_{i}^{(n)} + \alpha(\bar{F}_{i}^{(n+1)} - \bar{F}_{i}^{(n)}), \tag{35}$$

where $\alpha \in (0, 1]$ is chosen to ensure the minimum is not overshot, that is,

$$J^{(n+1)} = \text{Tr}[P_{ε}^{(n+1)}] < J^{(n)} = \text{Tr}[P_{ε}^{(n)}]. \tag{36}$$

Moreover, set $n \rightarrow n + 1$ and return to Step 1; otherwise STOP.

Step 5. Pareto near-optimal static output feedback gain is

$$\bar{F}_{i} = \lim_{n \rightarrow \infty} \bar{F}_{i}^{(n)}$$

It should be noted that convergence of the above algorithm can be guaranteed by using the similar proof in [13]. However, the convergence rate is unclear even though this algorithm work well.

Observation 3: If the small parameter $ε$ is known, the full-order static output feedback gain F_{i}, $i = 1, \ldots, N$ can be obtained by using the following algorithm directly.

$$P_{ε}^{(n+1)} \left(A_{ε} + \sum_{k=1}^{N} B_{kε} F_{k}^{(n)} C_{k} \right)$$

$$+ \left(A_{ε} + \sum_{k=1}^{N} B_{kε} F_{k}^{(n)} C_{k} \right)^{T} P_{ε}^{(n+1)} + \sum_{k=1}^{N} A_{kε}^{T} P_{ε}^{(n+1)} A_{kε}$$

$$+ \sum_{k=1}^{N} \gamma_{k} C_{k}^{T} F_{k}^{(n+1)} R_{k} F_{k}^{(n)} C_{k} + Q_{ε} = 0, \tag{37a}$$

$$S_{ε}^{(n+1)} \left(A_{ε} + \sum_{k=1}^{N} B_{kε} F_{k}^{(n)} C_{k} \right)^{T}$$

$$+ \left(A_{ε} + \sum_{k=1}^{N} B_{kε} F_{k}^{(n)} C_{k} \right) S_{ε}^{(n+1)} + \sum_{k=1}^{N} A_{kε}^{T} S_{ε}^{(n+1)} A_{kε} + I_{n} = 0. \tag{37b}$$

$$F_{i}^{(n+1)} = \left(\gamma_{i} R_{i} \right)^{-1} B_{ii}^{T} P_{ε}^{(n+1)} S_{ε}^{(n+1)} C_{ii}^{T}$$

$$\times (C_{ii}^{T} S_{ε}^{(n+1)} C_{ii}^{T})^{-1}. \tag{37c}$$
It should be noted that $F^{(0)}_i$ is chosen such that the closed-loop stochastic systems (8a) with $u_i(t) = \tilde{u}^{(0)}_i := F^{(0)}_i C_{ii} x_i(t)$ are EMSS.

V. UNIQUENESS OF STOCHASTIC PARETO NEAR OPTIMAL STRATEGY

In this section, the uniqueness of the stochastic Pareto near-optimal strategy is discussed as a special case of the state feedback problems. Consider stochastic linear time-invariant weakly coupled large-scale systems with the state feedback strategy for the stochastic systems (8), where $C_i := I_{n_i}$. The following conditions are assumed.

Assumption 1: The following matrix is nonsingular.

$$
\left(\tilde{A} - \sum_{k=1}^{N} \tilde{U}_k \tilde{P} \right)^T \otimes I_n + I_n \otimes \left(\tilde{A} - \sum_{k=1}^{N} \tilde{U}_k \tilde{P} \right)^T + \sum_{k=1}^{N} \tilde{A}_k^T \otimes \tilde{A}_k^T,
$$

(38)

where

$$
\tilde{P} = \text{block diag} \left(\tilde{P}_{11} \cdots \tilde{P}_{NN} \right), \quad \tilde{A} = \text{block diag} \left(A_{11} \cdots A_{NN} \right), \quad \tilde{A}_i = \text{block diag} \left(0 \cdots 0 \ A_{ii} \ 0 \cdots 0 \right), \quad B_i = \left[\begin{array}{ccc} 0 & \cdots & 0 \ B_{ii}^T \ 0 & \cdots & 0 \end{array} \right]^T, \quad \tilde{U}_i = \gamma_{ii}^{-1} \tilde{B}_i R_i^{-1} \tilde{B}_i^T = \text{block diag} \left(0 \cdots 0 \ U_{ii} \ 0 \cdots 0 \right),
$$

$$
U_{ii} := \gamma_{ii}^{-1} \tilde{B}_i R_i^{-1} \tilde{B}_i^T,
$$

and

$$
\tilde{P}_{ii} A_{ii} + A_{ii}^T \tilde{P}_{ii} + A_{ii}^T \tilde{P}_{ii} A_{ii} - \tilde{P}_{ii} U_{ii} \tilde{P}_{ii} + \gamma_{ii} Q_{ii} = 0. \quad (39)
$$

Assumption 2: (A_{ii}, B_{ii}) is stabilizable, $(\sqrt{Q_{ii}}, A_{ii})$ is detectable, and $\inf_{F_i} \| \int_0^\infty \exp[(A_{ii} - B_{ii} F_i) t] A_{ii} \exp[(A_{ii} - B_{ii} F_i) t] dt \| < 1$.

The asymptotic expansion of stochastic algebraic Riccati equation (SARE) (22) at $\varepsilon = 0$ is described by the following theorem.

Theorem 3: Under Assumptions 1 and 2, there exists a small constant ρ^* such that for all $\varepsilon \in (0, \rho^*)$, SARE (22) admits the unique positive semidefinite solution P^*_ε that can be expressed as

$$
P_{\varepsilon} := P^*_{\varepsilon} = \tilde{P} + O(\varepsilon). \quad (40)
$$

In order to prove Theorem 3, the following lemma is used [12].

Lemma 5: Let us consider the following SARE

$$
X A + A^T X + \Pi(X) - X B R^{-1} B^T X + C^T C = 0, \quad (41)
$$

where Π denotes a positive linear map of the class of symmetric matrices into itself, i.e., $\Pi(X) \geq 0$ whenever $X \geq 0$.

If (A, B) is stabilizable, (C, A) is detectable, and $\inf_K \| \int_0^\infty \exp[(A - BK) t] \Pi(I_n) \times \exp[(A - BK) t] dt \| < 1$, then SARE (41) has a unique positive semidefinite solution such that $A - B R^{-1} B^T X$ is stable.

Proof: By using the implicit function theorem, it is clear that there exists a neighbourhood of $\varepsilon = 0$ and a unique continuous function $P_{\varepsilon} := P^*_{\varepsilon} = \Psi(\varepsilon)$. Moreover, it should be noted that the asymptotic structure of solution (40) can also be obtained by applying the Newton-Kantorovich theorem [15]. On the other hand, the use of Assumption 2 yields a unique positive semidefinite solution P_{ε}^*. Therefore, there exists a small constant ρ^* such that for all $\varepsilon \in (0, \rho^*)$, SARE (22) admits the unique positive semidefinite solution P_{ε}^*.

VI. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of the stochastic Pareto near-optimal strategies, we present results for the megawatt-frequency control problem of multiarea electric energy systems. The model is based on the multi-stage decomposition of two interconnected areas [6]. The system matrices are given as follows.

$$
A_{11} = \begin{bmatrix} 0 & 0.315 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}, \quad A_{12} = \begin{bmatrix} -3.15 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad A_{21} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad A_{22} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -3.33 & 3.33 & 0 \end{bmatrix},
$$

$$
A_{11} = \text{block diag} \left(0 \ 0 \ 0.00249 \ 0 \ 0 \right), \quad A_{22} = \text{block diag} \left(0 \ 0 \ 0.00249 \ 0 \ 0 \right),
$$

$$
A_{112} = A_{212} = A_{211} = A_{22} = A_{221} = 0, \quad B_{11}^T = \left[\begin{array}{ccc} 0 & 0 & 0 & 33.333 \ 0 & 0 & 0 & 0 \end{array} \right], \quad B_{22}^T = \left[\begin{array}{ccc} 0 & 0 & 0 & 33.333 \ 0 & 0 & 0 & 0 \end{array} \right],
$$

$$
B_{12} = B_{21} = 0, \quad C_{11} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \quad C_{22} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},
$$

$$
Q_1 = \text{block diag} \left(\varepsilon_1 I_1 \right), \quad Q_2 = \text{block diag} \left(\varepsilon_1 I_1 \right), \quad R_1 = R_2 = 0.1, \quad \gamma_1 = \gamma_2 = 0.5.
$$

Referring to the design procedure, Pareto near-optimal strategies are given by

$$
\bar{F}_1 = \begin{bmatrix} -1.5084 & -2.1493 & -4.6392 \varepsilon - 001 \end{bmatrix}, \quad \bar{F}_2 = \begin{bmatrix} -2.4749 & -4.4046 & -1.9703 \end{bmatrix},
$$

where "e - f" stands for "×10^f".

4298
TABLE I
DEGRADATION OF COST.

\[
\begin{array}{cccccc}
\varepsilon & J_1 & J_2 & \phi_1 & J_3 & \phi_2 \\
1.0 \times 10^{-2} & 1.4466e + 002 & 1.4493e + 002 & 2.7574e + 001 & 6.2568e + 002 & 6.3271e + 002 & 7.0337e + 002 \\
1.0 \times 10^{-3} & 1.4281e + 002 & 1.4284e + 002 & 2.1209e + 001 & 6.2474e + 002 & 6.2552e + 002 & 7.7613e + 002 \\
1.0 \times 10^{-4} & 1.4206e + 002 & 1.4206e + 002 & 2.0551e + 001 & 6.2465e + 002 & 6.2473e + 002 & 7.8312e + 002 \\
1.0 \times 10^{-5} & 1.4261e + 002 & 1.4261e + 002 & 2.0485e + 001 & 6.2464e + 002 & 6.2465e + 002 & 7.8391e + 002 \\
\end{array}
\]

On the other hand, letting \(\varepsilon = 0.01 \), Pareto optimal strategies are given by
\[
F_1 = \begin{bmatrix}
-1.5102 & -2.1539 \\
-6.4900e - 001 & &
\end{bmatrix}, \quad (43a)
\]
\[
F_2 = \begin{bmatrix}
-2.4886 & -4.4284 \\
-1.9800 & &
\end{bmatrix}. \quad (43b)
\]

We evaluate the costs using Pareto near-optimal strategy (42). For the first decision maker, the average values of the performance index are \(J_1 = 1.4466e + 002 \), \(J_2 = 1.4493e + 002 \), where \(\varepsilon = 0.01 \). Hence, the loss of performance \(\bar{J}_1 \) is less than 0.19025% compared with \(J_1^* \). The values of the cost functional for various \(\varepsilon \) are given in Table 1, where \(\phi_i = \left| J_i - J_i^* \right|/\varepsilon, \ i = 1, 2 \).

It is easy to verify that \(\bar{J}_i = J_i^* + O(\varepsilon) \) which is given by (27) because of \(\phi_i < \infty \).

VII. CONCLUSION

In this paper, the static output feedback Pareto near-optimal strategy to the stochastic system governed by Itô differential equations where only the local output measurements are available has been developed. Firstly, we have derived the necessary conditions for a decentralized controller to be Pareto optimal strategy. The uniqueness and boundedness of the solution to the CSAREs and their asymptotic structures have been established. Using the obtained asymptotic structure, we have developed a new parameter independent approximation Pareto strategy. Secondly, a new sequential numerical algorithm for solving the reduced order CSAREs has been described for the first time. As the summary, the following appearing properties can be stated: 1) The strategy set can be computed with the reduced order dimension even though the weakly coupled parameter is unknown; 2) Particularly, the design of the strategies can be decentralized to each subsystem; 3) Since the near-optimal strategy can be implemented using the local output measurements, the design can be applied to practical situations more easily.

REFERENCES