Impacts of New Technologies and Policies on Biofuels Production and Trade

Bhima Sastri, Ph.D.
Audrey Lee, Ph.D.

Office of Policy and International Affairs,
Department of Energy, Washington DC

Thomas Alfstad
Brookhaven National Laboratory

Richard Bain
National Renewable Energy Laboratory

November 16-21, 2008
AIChe Annual Meeting
• Policies - U.S. and worldwide
• Model Methodology
• Technologies for Biofuels
• Results
 – Reference Case
 – Scenario Cases
 • CO₂ price, oil price, E20
• Conclusions

• Renewable fuel standards for feedstocks & GHG emissions:
 – Renewable Fuel: Fuel derived from renewable biomass (Including corn starch)
 – Advanced Biofuel: Renewable fuel (not from corn starch) with fewer GHG emissions
 – Cellulosic Biofuel: Advanced biofuel from cellulose, hemicellulose or lignin
 – Biomass-based Diesel: Advanced biofuel replacing diesel

• Requirements are nested:
 – Firm requirements for cellulosic biofuels and bio-diesel.
 – Advanced biofuels may be all cellulosic and bio-diesel.
 – Renewable fuels may be all advanced biofuels.

• Waivers available – financial buyout for cellulosic biofuels.
EISA’07 RFS Restrictions

- **Minimum GHG Reductions:**
 - Renewable Fuel: 20%
 - Advanced Biofuel: 50%
 - Cellulosic Biofuel: 60%
 - Biomass-Based Diesel: 50%

- **Land Use Must Be:**
 - Cleared or under cultivation & non forested prior to EISA’07 (crops)
 - Managed plantations (trees)

- **Feedstocks May Include:**
 - Crops from previously cleared, non-forested land
 - Biomass from private forest lands*
 - Algae
 - Separated yard and food wastes

- **Feedstocks Do Not Include:**
 - Biomass from ecologically sensitive, protected lands
 - Biomass from federal forest lands

*Includes native-American lands, privately held forests and tree plantations
Worldwide National Policies

<table>
<thead>
<tr>
<th>Country/region</th>
<th>Gasoline tax</th>
<th>2010 Biofuel tax exemption</th>
<th>Ethanol tariffs</th>
<th>Other, modeled</th>
<th>Other, not-modeled in current study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>$1.40/gal</td>
<td>100%</td>
<td>90¢/gal</td>
<td></td>
<td>5% market share by 2010</td>
</tr>
<tr>
<td>Canada</td>
<td>$0.25/gal</td>
<td>100%</td>
<td>20¢/gal</td>
<td></td>
<td>15% market share 2015</td>
</tr>
<tr>
<td>China</td>
<td>$0.15/gal</td>
<td>100%</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central & S. America</td>
<td>$0.70/gal</td>
<td>50%</td>
<td>27¢/gal</td>
<td>Subsidy for hydrous ethanol & FFV; Brazil blending requirement of 20-25%</td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>$2.80/gal</td>
<td>90%</td>
<td>90¢/gal</td>
<td>5.5% market share 2010 10% market share 2020</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>$1.90/gal</td>
<td>0%</td>
<td>200%</td>
<td></td>
<td>5% market share by 2015</td>
</tr>
<tr>
<td>Japan</td>
<td>$1.85/gal</td>
<td>90%</td>
<td>17%</td>
<td>500 million liters gasoline equivalent by 2010</td>
<td></td>
</tr>
<tr>
<td>S. Korea</td>
<td>$3.02/gal</td>
<td>90%</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>$0.42/gal</td>
<td>51¢/gal</td>
<td>54¢/gal</td>
<td>36 billion gallons renewable fuels 2022</td>
<td></td>
</tr>
</tbody>
</table>
MARKAL Model Structure

Energy Technology Perspectives Model

- Technology Characteristics
 - Energy Sources Used
 - Efficiency
 - Costs (Capital and O&M)
 - Availability

- Energy Resources
 - Cost and Availability

- Energy Service Demands
 - By Sector/Region

- Other Assumptions
 - Long-Term Discount Rate
 - System Reserve Requirements

- Other Constraints
 - Max. CO₂ Emissions by Time Period

Dynamic LP Optimization

Technology Mix for Each Time Period That Satisfies Energy Demand Given Constraints
Updates to ETP Model-Feedstocks

* Countries/feedstocks that have only a single data point, rather than a stepped projection.

Cellulosic feedstocks also generally have limited price points.
Updates to ETP Model-Technologies

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Source</th>
<th>Conversion Technology</th>
<th>Product</th>
<th>Distribution/Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar</td>
<td>Sugarcane</td>
<td>Sugar-ethanol mill</td>
<td>Ethanol</td>
<td>• New distribution infrastructure required
• Consumption limited to E10 for most of existing vehicle fleet
• Higher blends (i.e. E85) can be used in small portion of fleet</td>
</tr>
<tr>
<td>Starch</td>
<td>Corn</td>
<td>Dry mill</td>
<td>Ethanol</td>
<td></td>
</tr>
<tr>
<td>Starch</td>
<td>Wheat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulose</td>
<td>Bagasse/other agricultural residues</td>
<td>Biochemical conversion</td>
<td>Ethanol</td>
<td></td>
</tr>
<tr>
<td>Cellulose</td>
<td>Forest residues</td>
<td>Thermo-chemical alcohol synthesis</td>
<td>Ethanol/ higher alcohols</td>
<td></td>
</tr>
<tr>
<td>Cellulose</td>
<td>Energy crops</td>
<td>Fischer-Tropsch synthesis</td>
<td>Distillates, naphtha</td>
<td></td>
</tr>
<tr>
<td>Oil</td>
<td>Oil Palm</td>
<td>Transesterification</td>
<td>Biodiesel (FAME)</td>
<td>• Products are refining feedstocks
• Compatible with conventional fuel infrastructure
• Can be blended with petrodiesel at high ratios in most applications</td>
</tr>
<tr>
<td>Oil</td>
<td>Soybean</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conversion Technologies

- **Ethanol**
 - Sugarcane
 - Dry Mill – Corn, Wheat
 - Thermo-chemical Process for Cellulosic Feedstocks (Alcohol Synthesis)
 - Biochemical Process for Cellulosic Feedstock
- **Biodiesel**
 - Soy Oil
 - Palm Oil
- **Biomass-to-Liquids products**
 - Thermo-chemical Process for Cellulosic Feedstocks (Fischer-Tropsch)
Dry Corn Mill

1 tonne corn

Milling → Liquefaction → Saccharification

Rectification/dehydration

Steam

Distillation

Yeast

Fermentation

Whole stillage

Centrifugation

Condensate

Thin stillage

Evaporation

Wet grains

Ethanol storage

330 kg dry DDG

90 kWh electricity

Steam

Enzyme

Acid

112 gallon ethanol

Enzyme

4 MMBtu natural gas
1 tonne cane →

Receiving/Preparation → **Extraction** → **Sugar process** → 57 kg Sugar

Steam boiler

Steam → **Electricity generation**

Bagasse → **Ethanol process** → 12.3 gallons ethanol

Juice → Molasses

Excess bagasse → Stillage
Bio-chemical Conversion

1 tonne biomass

- **Feed handling**
- **Pretreatment conditioning**
- **Saccharification co-fermentation**

- **Nutrients/Enzyme**
- **Lime/Steam/Acid**
- **Gypsum**

Wastewater treatment

- **Nutrients**
- **Recycled Water**
- **Wastewater**

Burner/boiler turbogenerator

- **Methane**
- **Solids/Syrup**

Ethanol process

- **Steam**

Wastewater treatment

- **Nutrients**

99 gallons ethanol

- **216 kWh net electricity**
Thermo-chemical Conversion

1 tonne biomass

- Gasification
- Syngas cooling & cleaning
- Two-stage water gas shift
- Acid gas removal
- F-T synthesis & refining

74 gallons of naphtha and distillates

Unconverted syngas + C₁-C₄ gases

70 kWh process electricity

Power island

Air separation unit

Air

O₂
Reference Case Assumptions

- EISA Renewable Fuel Standard
- $1.01/gallon cellulosic biofuel subsidy extended until cost competitive
- $1.00/gallon biodiesel subsidy
- Blenders' ethanol credit of $0.51/gallon and Tariff of $0.54/gallon expire in 2010
- Includes existing national biofuels policies worldwide

Oil prices are OECD import basket prices (typically much lower than NYMEX oil prices).
• Grain production levels off after 2015
• Large growth in cellulosic biofuels
• Subsidy for early cellulosic plants is crucial to this growth
• We project more imports than EIA’s Annual Energy Outlook.
• Both domestic & imported cellulosic biofuels will contribute to meeting the mandate.
• Main challenge is building cellulosic plants fast enough.
Scenarios Modeled

Policy Scenarios
- Tariff/Credit Extension
- Credit Extension
- $50/tCO₂ (global)
- E20 Certification
- Grower’s payment

Market Scenarios
- High/Low Feedstock Supply
- Low/High/Higher Oil Price
- Higher share of Brazilian sugar to ETOH
- High Oil Price + High Feed
- Low Oil Price + Low Feed

Global CO₂ Price

<table>
<thead>
<tr>
<th>Year</th>
<th>CO₂ Price (2005$/tonne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>$0</td>
</tr>
<tr>
<td>2010</td>
<td>$5</td>
</tr>
<tr>
<td>2015</td>
<td>$10</td>
</tr>
<tr>
<td>2020</td>
<td>$20</td>
</tr>
<tr>
<td>2025</td>
<td>$30</td>
</tr>
<tr>
<td>2030</td>
<td>$50/60</td>
</tr>
</tbody>
</table>

2017 Brazil Feedstock Curve

![Graph showing cumulative production and average value over time.](image)
• **Global CO₂ price:**
 - RFS is met after 2025
 - High oil price: little change from reference because buy-out for cellulosic varies with oil price
- **Global CO₂ price:**
 - Closer to meeting RFS than Reference Case
 - Sugar replaces corn and fills in RFS gap in 2025
 - Cellulosic replaces sugar and corn in 2030
- **High oil price:** slightly more corn in place of sugar
The barrier to meeting RFS?

Biofuels Supply or Infrastructure

- We used the E20 certification scenario to investigate whether ethanol infrastructure was the barrier to meeting the RFS.

- The E20 scenario is a hypothetical scenario that allows increased use of ethanol without new pipelines, fueling stations, and flex fuel vehicles.
E20 Scenario: U.S. Supply

U.S. Biofuels Supply

- Only case to meet RFS
- Illustrates E85 infrastructure constraints
 - Pipelines, fueling stations, flexible fuel vehicles
E20 Scenario: U.S. Supply Shares

- Significant increase in ethanol use.
- E20 allows lower cost ethanol to replace some F-T liquids and compliance credits (gasoline).
- E20 case shows benefits to reduce ETOH distribution constraints (e.g., expanded E85 retail outlets & more fuel-flexible vehicles).

E20 (2020)

- Ethanol replacing compliance credits/gasoline
- Ethanol replacing F-T Liquids
- F-T Liquids
- Biodiesel

Total: 28 B gallons in Ref
30 B gallons in E20
E20 Scenario: U.S. Supply Shares

- Increase in ethanol is partly made possible by imports.
- Imports increase by 60%.
Conclusions

• Cellulosic biofuels are crucial share of RFS
 – Importance of learning investment and technology penetration
• E85 infrastructure constraints
 – Demonstrated by E20 scenario
 – Switch between biochemical and Fischer-Tropsch cellulosic
• Large volumes mandated, production is at inelastic portion of feedstock supply curve
 – Additional subsidies have little impact
• Sizeable role of imports (sugar and cellulosic)
• Implicit global price on CO₂, decline in grain ethanol
• High oil price, lower exports to U.S.
World Biofuels Study (WBS)

Collaboration

Project Management by Office of Policy and International Affairs

With Funding Support from EERE / Office of Biomass Programs

Feedstock Resource Potential

Conversion Process

Integrated Assessment

ORNL & NREL reports at http://www.osti.gov/bridge/ search 924080, 921804