Physicochemical Denitrification Process for Drinking Water Resources at Ambient Conditions

Masamichi Tsuji1, Mitsuo Kawamura2 and Harue Tsuji1,
(1) Aquea Design, Inc., Fujisawa, Kanagawa, Japan,
(2) Tatsumi Industries, Ltd., Kawaguchi, Saitama, Japan

November 16-21, 2008
The AIChE 2008 Annual Meeting
Philadelphia, PA
The American Institute of Chemical Engineers
Nitrogen oxide decomposition to N\textsubscript{2} is economically rational

This is absolutely different from CO\textsubscript{2} decomposition which was proposed in the past.

Benefits of nitrogen oxides decomposition technology:

- N\textsubscript{2}O decomposition contributes to mitigation of global warming.
- NO decomposition contributes to removal of air pollutant.
- NO\textsubscript{3}-, NO\textsubscript{2}- decomposition contributes to groundwater purification.
Conventional nitrogen oxides decomposition processes are not sustainable. Why?

Conventionally this energy was supplied through H₂, noble-metal catalyst or others, resulting in energy-intensive processes.

Degree of oxidation

E

N₂, O₂, C

N₂O, C₂O?

NO, CO

NO₂, CO₂

+ H₂O

NO₃⁻, CO₃²⁻
Catalytic processes proposed for nitrogen oxide decomposition are “three-body collision”.

- These are an energy-intensive process requiring lots of high quality energy, e.g., H₂, NH₃ or hydrocarbon.
- Head-on collision of NOₓ and H₂ is not sufficient to react at ambient conditions.
- Biological process proceeds at more mild conditions, but too sluggish.
RITE PJ: Catalytic decomposition of \(\text{NO}_3^- \) in flow of \(\text{H}_2 \)

Results:
Large amount of byproducts: \(\text{NO}_2^- \) and \(\text{NH}_3 \)

Similar unsustainable results have been reported by Hokkaido University and others.
Dr. T. Okuhara (Hokkaido Univ)

40% remained

Cu-Pd cluster AC
Pd/β-zeolite

Byproduct NH₃ is formed.

Our greener & sustainable idea: spillover-based NO x decomposition

- NO x decomposition is possible at ambient temperature and pressure.
- Energy input to dissociate NO x is minimal.
Requisite materials for this greener & sustainable process

Properties of materials:
1. charge-transferable surface
2. serve sufficiently reactive sites even in aqueous conditions.
3. chemically insoluble
4. economical
5. available worldwide
6. non-toxic (for food-level safety, heavy metal free)
Conventional adsorption process

Cost-effective NOx decomposition process has not been known using conventional adsorption process and well-known materials such as activated carbon and ion exchange resin.

Effluent is not free from NO$_2^-$ or NO$_3^-$.
Our simple device to generate metabolites-free water with minimal energy at ambient conditions: conceptual drawing

Charged surface is generated on materials at low voltage.

Voltage (<5V) & ”zero” current (<1mA)

Water free from metabolites (NO$_2^-$, NO$_3^-$) and pollutants (F$^-$, P, As)

Notes: No use of organics, bacteria, NH$_3$, or H$_2$ as reductant of NO$_x^-$.
Postulated Mechanism for Decomposition of N and S Oxides

Feed containing H^+, NO_3^-, NO_2^-, and SO_4^{2-}

N$_2$(↑) , S (fixed on materials)

Process at anode: dissociation of water and charge transfer

$\text{H}_2\text{O} \Rightarrow \text{H}^+ + \text{OH}^- \Rightarrow \text{H}_2\text{O}$

- $\text{H}^+ + \text{NO}_3^-, \text{NO}_2^- \text{ or } \text{SO}_4^{2-} \Rightarrow \text{N}_2 \text{ or } \text{S} + \text{H}_2\text{O} + \text{e}^- \quad$ (decomposition of oxoanions)
- $\text{OH}^- + \text{H}^+ \Rightarrow \text{H}_2\text{O}$ \quad (neutralization of acidic water)
Treatment of goldfish bath water

<table>
<thead>
<tr>
<th>Ions</th>
<th>Feed (ppm)</th>
<th>Feed 1.1L (ppm)</th>
<th>Feed 1.76L (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO_4^{3-}</td>
<td>2.95</td>
<td><0.01</td>
<td>2.39</td>
</tr>
<tr>
<td>Cl^-</td>
<td>23.5</td>
<td>97.0</td>
<td>48.5</td>
</tr>
<tr>
<td>NO_3^-</td>
<td>143</td>
<td>0.66</td>
<td>0.67</td>
</tr>
<tr>
<td>SO_4^{2-}</td>
<td>68.5</td>
<td>5.44</td>
<td>111</td>
</tr>
<tr>
<td>pH</td>
<td>3.84</td>
<td>6.90</td>
<td>6.77</td>
</tr>
</tbody>
</table>

Volume of reactor = 0.1L
Total volume of feed = 1.76 L
Feeding time = 4 h
$SV = \frac{1.76 \text{ L}}{4 \text{ h}} / 0.1 \text{ L} = 4.4$
Materials balance of water treatment

<table>
<thead>
<tr>
<th>Constituent</th>
<th>uptaken (mequiv.)</th>
<th>released (mequiv.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO$_4^{2-}$</td>
<td>1.11</td>
<td>-</td>
</tr>
<tr>
<td>HPO$_4^{2-}$</td>
<td>0.12</td>
<td>-</td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>4.04</td>
<td>-</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>-</td>
<td>2.71</td>
</tr>
<tr>
<td>Heavy metals</td>
<td>< 0.05</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Total</td>
<td>5.27</td>
<td>2.71</td>
</tr>
</tbody>
</table>

Totally different ⇒ not simple ion exchange

(Other anions (CO$_3^{2-}$, OH$^-$, H$^+$) may be involved in this treatment process. Open for study)
FTIR spectrum of material used at anode

Oxygen of NO_3^-, SO_4^{2-} were transferred?

- Wave number, cm$^{-1}$
 - 1157 cm$^{-1}$
 - 1217 cm$^{-1}$
 - 1518 cm$^{-1}$
 - 1560 cm$^{-1}$ (CO$_3^{2-}$)
 - 2360 cm$^{-1}$
 - 2333 cm$^{-1}$ (CO$_2$ gas)

Almost no water
Speciation of sulfur in activated carbon by wave-dispersed PIXE

Sulfate was reduced to elemental sulfur.
Conclusion (a)
Operational features

1. Contact time of water with material is very short (<10min).

2. Decomposition of nitrate/nitrite and sulfate is feasible without side reactions to form NH$_3$.

3. It works at room temperature and at normal pressure.

4. Driving energy is minimal.
Conclusion (b)
Requisite materials in this process

This innovative process does not require:

1. bacteria
2. organic fertilizer or chemicals
3. hydrogen gas
or
4. expensive noble metal-loaded catalysts
Conclusion (c)
Quality of treated water

1. Treatment lowers concentration of NO$_3^-$ from 140ppm to 0.7ppm.

3. NH$_3$ will be never admixed into treated water.

4. Device possesses large neutralization capacity. Acidic groundwater of pH 4 can be neutralized to 7.

5. All the treated water can be utilized. Only 30-40% for conventional reverse osmosis separation method