Detailed Energy Assessment at Oil Refinery: Tools and Results

Ali H Al-Qahtani, Abdullah Y Al-Juhani, and Jimmy D Kumana

AIChE Annual Meeting
San Francisco (Nov 12-17, 2006)
Synopsis

- First Time Pinch Analysis was applied in SA Refinery (2003)

- Expected Savings ~ 10-15% of Baseline Energy Cost

- Actual Savings Identified ≈ 37% (despite low fuel/power costs)
Introduction

• SA management adopted Energy Policy in 2000 with the goal of 50% reduction in corporate energy index over 10 years

• Energy Systems Unit was established to help plants w.r.t. technology transfer
Scope of Work

- Fuel Savings via Heat Recovery optimization (using Pinch Analysis)
- Power Reduction via ASDs
- Optimization of Combined Heat & Power (CHP) design and operation
- Development and deployment of on-line Energy Indices (Solomon EII)
Pinch Analysis - Scope

- Overall Plant Energy Balance

- Thermal Targets and HEN design for:
 - CDU (retrofit)
 - HSRN hydrotreater (retrofit)
 - DHT complex (new)
 - CCR (revamp)
 - LSRN hydrotreater and Isomerization (new)
Pinch Analysis – Procedure

- Prepare reconciled HMB from RIS for existing units (using Data Recon s/w package)
- Confirm HMB with PMT for new units
- Develop proposed new HEN designs
- Discuss with refinery/FPD/PMT for agreement
- HX sizing
- Capital cost estimating
- Project feasibility analysis
- Report preparation
Composite Curves – CDU

ΔT_m = 20°F
Target Savings – CDU (details)

<table>
<thead>
<tr>
<th></th>
<th>Actual PFD</th>
<th>Pinch Target</th>
<th>Savings Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ΔT = 20°F</td>
</tr>
<tr>
<td>Total heating duty</td>
<td>581.7</td>
<td>502.9</td>
<td>78.8</td>
</tr>
<tr>
<td>Total cooling duty</td>
<td>661.4</td>
<td>581.8</td>
<td>79.6</td>
</tr>
<tr>
<td>Fuel supplied</td>
<td>684.4</td>
<td>591.6</td>
<td>92.7</td>
</tr>
<tr>
<td>Steam</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>60 Steam Gen</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Air cooling</td>
<td>523.7</td>
<td>573.0</td>
<td>-49.3</td>
</tr>
<tr>
<td>Sea Water cooling</td>
<td>137.7</td>
<td>8.8</td>
<td>128.9</td>
</tr>
<tr>
<td>Energy Cost, K$/yr</td>
<td>8729</td>
<td>6900</td>
<td>21.0</td>
</tr>
</tbody>
</table>

K$/yr savings:
- Total heating duty: 13.5
- Total cooling duty: 12.0
- Fuel supplied: 13.5
- Steam: 100.0
- 60 Steam Gen: 100.0
- Air cooling: -9.4
- Sea Water cooling: 93.6

Total energy cost savings: 1829.3 K$
Composite Curves for others ...
Overall Thermal Energy Targets

<table>
<thead>
<tr>
<th>Unit No.</th>
<th>Name</th>
<th>Normal feed rate</th>
<th>Optimum DT, °F</th>
<th>Actual Energy Consumption</th>
<th>Target Energy Consumption</th>
<th>Savings Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Actual Energy Consumption</td>
<td>Target Energy Consumption</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heating MMBtu/h</td>
<td>Cooling MMBtu/h</td>
<td>Cost K$/yr</td>
</tr>
<tr>
<td>V-04</td>
<td>CDU</td>
<td>235 MBD</td>
<td>20</td>
<td>581.7</td>
<td>661.4</td>
<td>8729</td>
</tr>
<tr>
<td>V-09</td>
<td>Heavy NHT</td>
<td>37 MBD</td>
<td>16</td>
<td>85.1</td>
<td>120.9</td>
<td>1332</td>
</tr>
<tr>
<td>V-05</td>
<td>DHT + ARU</td>
<td>95 MBD</td>
<td>24</td>
<td>255.2</td>
<td>347.8</td>
<td>4523</td>
</tr>
<tr>
<td>V-10</td>
<td>SRU (2 trains)</td>
<td>190 TPD</td>
<td>40</td>
<td>10.4</td>
<td>65.0</td>
<td>-771</td>
</tr>
<tr>
<td>V-11</td>
<td>CCR (revamp)</td>
<td>47 MBD</td>
<td>24</td>
<td>265.0</td>
<td>116.4</td>
<td>3645</td>
</tr>
<tr>
<td>V17, 18</td>
<td>LSRN ht+isom</td>
<td>12 MBD</td>
<td>18</td>
<td>59.9</td>
<td>45.3</td>
<td>958</td>
</tr>
<tr>
<td>V-32</td>
<td>Utilities (CHP)</td>
<td>future</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blue = New Unit
Purple = Revamped Unit
Black = Existing Unit

SURPRISE! Significant Cost Savings Potential even in new licensed processes!!
<table>
<thead>
<tr>
<th>Name / Service</th>
<th>Crude vs Naphtha</th>
<th>Crude vs Kero</th>
<th>Crude vs LDO Product</th>
<th>Crude vs No 1 LDO P/A</th>
<th>Crude vs No 2 LDO P/A</th>
<th>Crude vs HDO Product</th>
<th>Crude vs Cold Red. Crude</th>
<th>Crude vs HDO P/A</th>
<th>Crude vs Hot Red. Crude</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of shells/coils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>series</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>16</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>parallel</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Area per shell, ft²</td>
<td>4078</td>
<td>4530</td>
<td>4821</td>
<td>4327</td>
<td>4327</td>
<td>4004</td>
<td>3197</td>
<td>4714</td>
<td>5072</td>
</tr>
<tr>
<td>Total area, ft²</td>
<td>32624</td>
<td>9060</td>
<td>19282</td>
<td>17308</td>
<td>17308</td>
<td>8008</td>
<td>51149</td>
<td>18858</td>
<td>40579</td>
</tr>
<tr>
<td>Max duty, MMBtu/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hot stream

<table>
<thead>
<tr>
<th>Description</th>
<th>Crude vs Naphtha</th>
<th>Crude vs Kero</th>
<th>Crude vs LDO Product</th>
<th>Crude vs No 1 LDO P/A</th>
<th>Crude vs No 2 LDO P/A</th>
<th>Crude vs HDO Product</th>
<th>Crude vs Cold Red. Crude</th>
<th>Crude vs HDO P/A</th>
<th>Crude vs Hot Red. Crude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow tag no.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean - µ</td>
<td>480.4</td>
<td>152.9</td>
<td>178.4</td>
<td>200.8</td>
<td>200.3</td>
<td>48.2</td>
<td>308</td>
<td>319.6</td>
<td>307.8</td>
</tr>
<tr>
<td>std dev - σ</td>
<td>m³/h</td>
<td>m³/h</td>
<td>m³/h</td>
<td>m³/h</td>
<td>m³/h</td>
<td>m³/h</td>
<td>m³/h</td>
<td>m³/h</td>
<td>m³/h</td>
</tr>
<tr>
<td>conversion</td>
<td>1338</td>
<td>1.415</td>
<td>1.454</td>
<td>1.415</td>
<td>1.415</td>
<td>1.314</td>
<td>1.737</td>
<td>1.282</td>
<td>1.309</td>
</tr>
<tr>
<td>Klb/h meas</td>
<td>643</td>
<td>216</td>
<td>259</td>
<td>284</td>
<td>397</td>
<td>63</td>
<td>535</td>
<td>410</td>
<td>403</td>
</tr>
<tr>
<td>Klb/h used</td>
<td>1810</td>
<td>212</td>
<td>553</td>
<td>262</td>
<td>393</td>
<td>414</td>
<td>1174</td>
<td>584</td>
<td>1174</td>
</tr>
<tr>
<td>phase</td>
<td>liquid</td>
<td>liquid</td>
<td>liquid</td>
<td>liquid</td>
<td>liquid</td>
<td>liquid</td>
<td>liquid</td>
<td>liquid</td>
<td>liquid</td>
</tr>
<tr>
<td>HHV, Btu/lb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>furnace eff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| Specific gravity | 0.660 | 0.717 | 0.792 | 0.789 | 0.789 | 0.859 | 0.949 | 0.865 | 0.949 |
| Liquid density, g/cc | 0.607 | 0.642 | 0.660 | 0.642 | 0.642 | 0.596 | 0.788 | 0.582 | 0.594 | |
| Temp In | 149.0 | 173.0 | 226.2 | 239.7 | 239.7 | 316.4 | 227.7 | 324.2 | 353.6 |
| deg F | 300 | 343 | 439 | 463 | 463 | 602 | 442 | 616 | 668 |
| Enthalpy, Btu/lb | 156 | 186 | 246 | 261 | 261 | 360 | 251 | 359 | 369 |
| Temp Out | tag no. | 71.2 | 85.1 | 88.4 | 116.2 | 136.4 | 154.4 | 173.2 | 188.1 | 227.8 |
| mean - µ | deg F | 160 | 185 | 191 | 241 | 278 | 310 | 344 | 371 | 442 |
| std dev - σ | deg F | 75 | 92 | 96 | 126 | 148 | 171 | 131 | 208 | 251 |
| Enthalpy, Btu/lb | Specific heat, Btu/lb-F | 0.583 | 0.597 | 0.605 | 0.605 | 0.605 | 0.614 | 0.612 | 0.614 | 0.612 |
| X = (T1+T2)200, F | 2.30 | 2.64 | 3.15 | 3.52 | 3.70 | 4.56 | 3.93 | 4.93 | 5.55 |
| film h, Btu/h-F | 120 | 121 | 104 | 108 | 109 | 93 | 51 | 94 | 63 |
| Duty MMBtu/h | 147.9 | 20.0 | 83.7 | 35.2 | 44.20 | 74.2 | 70.5 | 87.9 | 162.7 |</p>
<table>
<thead>
<tr>
<th>Name / Service</th>
<th>E-1</th>
<th>E-2</th>
<th>E-3</th>
<th>E-4</th>
<th>E-5</th>
<th>E-6</th>
<th>E-7</th>
<th>E-8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crude vs Naphtha P/A</td>
<td>Crude vs Kero</td>
<td>Crude vs LDO Product</td>
<td>Crude vs No 1 LDO P/A</td>
<td>Crude vs No 2 LDO P/A</td>
<td>Crude vs HD0 Product</td>
<td>Crude vs Cold Red. Crude</td>
<td>Crude vs HDO P/A</td>
</tr>
<tr>
<td>Cold stream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Crude Oil Feed</td>
<td>Crude Oil Feed</td>
<td>Crude Oil Feed</td>
<td>Crude Oil Feed</td>
<td>DS Crude Oil Feed</td>
<td>DS Crude Oil Feed</td>
<td>DS Crude Oil Feed</td>
<td>DS Crude Oil from flash drum</td>
</tr>
<tr>
<td>Flow</td>
<td>tag no.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean - µ</td>
<td>1569</td>
<td>1569</td>
<td>1569</td>
<td>1569</td>
<td>1569</td>
<td>1569</td>
<td>1569</td>
<td>1427</td>
</tr>
<tr>
<td>std dev - σ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>units</td>
<td>m3/h</td>
<td>m3/h</td>
<td>m3/h</td>
<td>m3/h</td>
<td>m3/h</td>
<td>m3/h</td>
<td>m3/min</td>
<td>m3/min</td>
</tr>
<tr>
<td>conversion</td>
<td>1.784</td>
<td>1.759</td>
<td>1.751</td>
<td>1.712</td>
<td>1.695</td>
<td>1.670</td>
<td>1.670</td>
<td>1.625</td>
</tr>
<tr>
<td>Klb/h meas</td>
<td>2799</td>
<td>2799</td>
<td>2799</td>
<td>2799</td>
<td>2799</td>
<td>2799</td>
<td>2799</td>
<td>2322</td>
</tr>
<tr>
<td>Klb/h used</td>
<td>2803</td>
<td>2803</td>
<td>2803</td>
<td>2803</td>
<td>2803</td>
<td>2803</td>
<td>2803</td>
<td>2663</td>
</tr>
<tr>
<td>phase</td>
<td>liquid</td>
<td>liquid</td>
<td>liquid</td>
<td>liquid</td>
<td>liquid</td>
<td>liquid</td>
<td>liquid</td>
<td>liquid</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>0.816</td>
<td>0.816</td>
<td>0.816</td>
<td>0.816</td>
<td>0.816</td>
<td>0.816</td>
<td>0.816</td>
<td>0.833</td>
</tr>
<tr>
<td>Liquid density, g/cc</td>
<td>0.809</td>
<td>0.798</td>
<td>0.794</td>
<td>0.777</td>
<td>0.769</td>
<td>0.758</td>
<td>0.738</td>
<td>0.738</td>
</tr>
<tr>
<td>Temp In</td>
<td>tag no.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>mean - µ</td>
<td>43.5</td>
<td>71.1</td>
<td>79.0</td>
<td>111.0</td>
<td>123.0</td>
<td>139.0</td>
<td>165.0</td>
</tr>
<tr>
<td>std dev - σ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deg F</td>
<td>110.3</td>
<td>160.0</td>
<td>174.2</td>
<td>231.8</td>
<td>253.4</td>
<td>282.2</td>
<td>329.0</td>
<td>358.5</td>
</tr>
<tr>
<td>Enthalpy, Btu/lb</td>
<td>36.0</td>
<td>60.2</td>
<td>67.4</td>
<td>97.2</td>
<td>108.8</td>
<td>124.6</td>
<td>151.0</td>
<td>168.1</td>
</tr>
<tr>
<td>Temp Out</td>
<td>tag no.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>mean - µ</td>
<td>102.0</td>
<td>79.0</td>
<td>111.0</td>
<td>124.0</td>
<td>139.0</td>
<td>165.0</td>
<td>187.0</td>
</tr>
<tr>
<td>std dev - σ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deg F</td>
<td>215.6</td>
<td>174.2</td>
<td>231.8</td>
<td>255.2</td>
<td>282.2</td>
<td>329.0</td>
<td>368.6</td>
<td>413.6</td>
</tr>
<tr>
<td>Enthalpy, Btu/lb</td>
<td>88.7</td>
<td>67.4</td>
<td>97.2</td>
<td>109.8</td>
<td>124.6</td>
<td>151.0</td>
<td>174.1</td>
<td>201.2</td>
</tr>
<tr>
<td>Sp heat, Btu/lb/F</td>
<td>0.501</td>
<td>0.502</td>
<td>0.518</td>
<td>0.536</td>
<td>0.547</td>
<td>0.564</td>
<td>0.583</td>
<td>0.600</td>
</tr>
<tr>
<td>X = (T1+T2)/200, F</td>
<td>1.63</td>
<td>1.67</td>
<td>2.03</td>
<td>2.44</td>
<td>2.68</td>
<td>3.06</td>
<td>3.49</td>
<td>3.86</td>
</tr>
<tr>
<td>film h, Btu/ft2-h-F</td>
<td>68.6</td>
<td>69.6</td>
<td>77.5</td>
<td>84.9</td>
<td>88.5</td>
<td>92.9</td>
<td>96.0</td>
<td>97.2</td>
</tr>
<tr>
<td>Duty</td>
<td>MMBtu/h</td>
<td>147.7</td>
<td>20.0</td>
<td>83.7</td>
<td>35.2</td>
<td>44.2</td>
<td>74.0</td>
<td>64.7</td>
</tr>
</tbody>
</table>
Errors must be reconciled before optimization
Proposed retrofit – CDU
Estd Op Cost Savings – CDU

Energy Savings

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>MMBtu/h</th>
<th>$/MMBtu</th>
<th>$/hr</th>
<th>h/yr</th>
<th>K$/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel gas or oil</td>
<td>20.1</td>
<td>1.25</td>
<td>25.1</td>
<td>8400</td>
<td>211</td>
</tr>
<tr>
<td>HP steam</td>
<td>psig</td>
<td>Klb/h</td>
<td>$/Klb</td>
<td>$/hr</td>
<td>h/yr</td>
</tr>
<tr>
<td></td>
<td>625</td>
<td>0</td>
<td>2.72</td>
<td>0</td>
<td>8400</td>
</tr>
<tr>
<td>MP steam</td>
<td>150</td>
<td>37.2</td>
<td>2.48</td>
<td>92.2</td>
<td>8400</td>
</tr>
<tr>
<td>LP steam</td>
<td>50</td>
<td>0</td>
<td>2.46</td>
<td>0</td>
<td>8400</td>
</tr>
<tr>
<td>Condensate</td>
<td>15</td>
<td>-37.9</td>
<td>0.90</td>
<td>-34.1</td>
<td>8400</td>
</tr>
<tr>
<td>Air cooling</td>
<td>temp, F</td>
<td>MMBtu/h</td>
<td>$/MMBtu</td>
<td>$/hr</td>
<td>h/yr</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>112.8</td>
<td>0.09</td>
<td>-10.2</td>
<td>8400</td>
</tr>
<tr>
<td>Cooling water</td>
<td>86</td>
<td>35.3</td>
<td>0.27</td>
<td>9.5</td>
<td>8400</td>
</tr>
<tr>
<td>Freon refg</td>
<td>20</td>
<td>0</td>
<td>2.74</td>
<td>0</td>
<td>8400</td>
</tr>
<tr>
<td>Elec power usage Δ</td>
<td>kw</td>
<td>$/kwh</td>
<td>$/hr</td>
<td>h/yr</td>
<td>K$/yr</td>
</tr>
<tr>
<td></td>
<td>0.0267</td>
<td>0</td>
<td>0</td>
<td>8400</td>
<td>0</td>
</tr>
<tr>
<td>Elec power generation Δ</td>
<td>kw</td>
<td>$/kwh</td>
<td>$/hr</td>
<td>h/yr</td>
<td>K$/yr</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.024</td>
<td>0</td>
<td>8400</td>
<td>0</td>
</tr>
</tbody>
</table>

Total savings (net) 685 K$/yr

37% of New Des

Est. Cap Cost = $300 K, Simple Payback < 6 months
Power Conservation (ASD for Seawater Circulation Pumps)

ASDs are a good option when there is significant flow or ΔP variation.
Proposed ASD Retrofit

Savings = $90K/yr, Cap cost = $200K
Summary and Status Report

- 35 projects were identified & evaluated
- 6 were accepted by Plant Mgmt
- Savings potential = $9.7 MM/yr (35%) for Cap Cost of $41 MM
- Implemented savings = $0.5 MM/yr
- Rest delayed for political or legal reasons
Thank You