Radiopaque flame-made Ta$_2$O$_5$/SiO$_2$ nanoparticles with controlled refractive index and transparency

Heiko Schultza (speaker), Lutz Mädlera, Sotiris E. Pratsinisa, Peter Burtscherb, Norbert Mosznerb

aParticle Technology Laboratory, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology Zurich, CH-8092 Zurich, Switzerland
bIvoclar Vivadent AG, FL-9494 Schaan, Liechtenstein

Mixed Ta$_2$O$_5$-containing SiO$_2$ powders with high specific surface area, controlled refractive index, transparency and crystallinity were prepared by flame spray pyrolysis as fillers for dental composites. The production rate ranged from 6.7 – 100 g/h in a lab scale reactor. The effect of the Ta-precursor, the solvent, the total metal concentration and the Ta-content were studied by nitrogen adsorption, x-ray diffraction, light microscopy, HRTEM, DIFTS analysis, as well as the composite transparency within a polymer matrix of dimethylacrylate for dental restoration applications. Filler properties such as transparency, crystallinity and Ta-dispersion in the SiO$_2$ matrix altered the composite performance. Ta$_2$O$_5$ crystallites and a low Ta-dispersion within the SiO$_2$ matrix decreased the filler and composite transparency. Powders with identical specific surface area, refractive index and Ta$_2$O$_5$-loading (24 wt%) showed a wide range of composite transparencies from 33 – 78 % depending on filler properties. Fillers with an amorphous structure, a high Ta-dispersion and a matching refractive index with the polymer matrix showed the highest composite transparency of 86 % for a 16.5 wt% filler loading including 35 wt% Ta$_2$O$_5$ giving an optimal radiopacity.