INTELLIGENT AUTOLANDING CONTROLLER BASED ON NEURAL NETWORKS

S. M. B. Malaek¹, Hojjat Izadi², Mehrdad Pakmehr³

¹ Associate Professor of Aerospace Engineering
Aerospace Engineering Department, Sharif University of Technology, Azadi Ave, Tehran, I.R. IRAN, P.O. Box: 11365-8639, Email: malaek@sharif.edu
² Graduate Student, Mechanical Engineering Department, Tarbiyat Modarres University
All-e-Ahmad Highway, Tehran, Iran, Email: Izadi_hojjat@yahoo.com
³ Graduate Student, Mechanical Engineering Department, Concordia University, Room H-549, 1455 de Maisonneuve Blvd. West, Montreal, QC, H3G 1M8, Canada, Email: MPakmehr@me.concordia.ca

Abstract: To expand the flight envelope of a typical jet transport and to minimize number of tests for the certification process, a design methodology has been proposed based on neural networks. The design procedure leads to an intelligent neuro-controller for landing phase that can handle different wind patterns. The procedure uses, a classical PID controller as the teaching mechanism of a neuro-controller. Finally, a hybrid neuro-PID controller which its inner loop is PID-based and its outer loop is neural-based has been proposed. Two wind patterns, Strong and Very Strong winds in comparison to JFK Airport Downburst, have been investigated to test the performance of the proposed controllers. To discuss the complexity of the controllers, three aspects have been considered. Simulation results show that the hybrid controller provides the necessary performance conditions in presence of Very Strong wind.

Copyright © 2003 IFAC

Keywords: Intelligent Controller, Neural Networks, Autolanding, Flight Safety Envelope, Atmospheric Conditions.

1. NOMENCLATURE

u : perturbed longitudinal velocity (ft/sec.)
w : perturbed vertical velocity (ft/sec.)
q : perturbed pitch rate (deg/sec.)
θ : perturbed pitch angle (deg.)
x : horizontal position of aircraft (ft)
h : altitude (ft)
h : sink rate (fps)
h₀f : flare initiation altitude (ft)
g : gravity (32.2 ft/sec²)
ug : longitudinal wind velocity (ft/sec.)
wg : vertical wind velocity (ft/sec.)
δₑ : elevator angle setting (deg.)
δ₉ : throttle setting (deg.)
U₀ : normal speed (235 ft/sec.)
γ₀ : flight path angle (-3 deg.)
h₀g : glide initiation altitude (ft)
α₀ : stall angle of attack (deg.)

2. INTRODUCTION

Strong downbursts such as the one shown in Fig. 1 are responsible for number of hard landing and crash each year (Shen et al., 1996). Many research activities have been conducted to design an automatic landing controller for different classes of aircraft, especially heavy jet transports. For example, Ref. (Iguni et al., 1998) describes an automatic landing system (ALS) based on a human skill model. The model is expressed as a nonlinear I/O mapping from the aircraft state to the control command provided by a human expert; a gain adaptation technique has also been introduced for robustness. In Ref. (Shue et al., 1999), a mixed H₂/H∞ control technique has been employed to develop controllers for automatic landing system of a commercial airplane. In Ref. (Kaminer et al., 1990),
1. A suitable altitude should be selected for the aircraft autopilot to start to glide mode or flare mode initiation.
2. At a height of about 15 meters (45 ft) AGL, the flare manoeuvre is started which results in nose being lifted, reducing the vertical speed of the aircraft and allowing the main gear to touch the ground firstly and smoothly. During this limited time interval the control law has to be adjusted continuously.
3. Through continuous decrease in the aircraft altitude, the ground effect starts to play a major role and the aircraft dynamics becomes affected accordingly.
4. Gust and downburst, which have an inevitable influence on the aircraft dynamics, do not follow a well-known pattern.

Based on design performance outlined in (Hueschen, 1986 a), (Hueschen, 1986 b) and (Heffley et al., 1982), it is desired to have controllers to satisfy the following conditions:

- $|\dot{\alpha}| \leq 20 \text{ deg} \quad (**)$
- $|\dot{\theta}| \leq 20 \text{ deg} \quad (*)$
- $|\alpha| \leq 10\text{ deg} \quad (***)$

It is further assumed that glide mode begins at 500 ft AGL and finishes at 45 ft AGL, which is the start point of flare mode (Roskam, 1979) (Fig. 2). The flare mode continues until a smooth touch down is achieved. During a glide-slope mode, an automatic landing system guides the aircraft along a straight line with a constant slope (with a constant glide angle, γ). Autopilot also attempts to prevent any changes in aircraft vertical and horizontal speeds, that is, during glide mode the sink rate is constant.

As flare mode starts, autopilot starts to nose up the aircraft by changing the glide angle to prepare aircraft for a smooth touchdown. The trajectory of aircraft during this mode is estimated by an exponential function. Through this mode the sink rate is reduced to the desired value of -1.5 fps. A longitudinal control surface such as elevator in addition to the throttle is the usual control during these modes.

4. AIRCRAFT EQUATIONS OF MOTION AND TURBULANCE MODEL
In this work, 3-DOF equations of motion in the vertical plane known as longitudinal dynamics have been used to design the controller, however, the procedure is very well extendable to a complete 6-DOF equations of motion. Based on (Roskam, 1979), these equations are given by (1) through (9).

\[\dot{u} = X_u (u - u_\theta) + X_w (w - w_\theta) + X_q q - (\pi / 180) \cos(\gamma) \Theta + X_\epsilon \delta_e + X_r \delta_r \]

\[\dot{\omega} = Z_u (u - u_\epsilon) + Z_w (w - w_\epsilon) + (\pi / 180) U_0 \Omega \]

\[\dot{\theta} = M_u (u - u_\theta) + M_w (w - w_\theta) + M_q q + M_\epsilon \delta_e + M_r \delta_r \]

The initial conditions are assumed as:

\[u(0) = w(0) = q(0) = \Theta(0) = 0 \]

\[h(0) = 500 \text{ ft}, x(0) = h(0) / t_g \]

\[\dot{x}(0) = U_0 \]

Wind disturbance, which are shown by \((u_g, w_g)\), consists of two components: constant velocity \((u_{gc}, 0)\) and turbulence \((u_{gt}, w_{gt})\). It is further assumed that the constant velocity component exists only in the horizontal direction, given by (10),

\[u_{gc} = \begin{cases} u_0 (1 + \text{Ln}(h/510)/(\text{Ln}51)) & \text{h} \geq 10 \\ 0 & \text{h} < 10 \end{cases} \]

Here \(u_0\) is the wind speed at altitude 510 ft and its typical value is 20 ft/sec. Turbulence is represented by (Iiguni et al., 1998).

\[u_{gt} = w_{gt} = u_{gt}^{\frac{1}{2}} + u_{gc} \]

\[\dot{u}_{gt} = 0.2 \left| u_{gt} \right| \sqrt{2a_u N_1 - a_{u} u_{gt}} \]

\[\dot{w}_{gt} = N_2 - a_{w} w_{gt} - 2a_{w} w_{gt} \]

Where

\[a_u \begin{cases} U_0 / (100 \sqrt{h}) ; & h > 230 \\ U_0 / 600 ; & h \leq 230 \end{cases} \]

\[a_{w} = U_0 / h \]

\[\sigma_u \begin{cases} 0.2 \left| u_{gt} \right| ; & h > 500 \\ 0.2 \left| u_{gt} \right| (0.5 + 0.0009 h) ; & h \leq 500 \end{cases} \]

And \(N_1\) and \(N_2\) are the Gaussian Random Noises with mean zero and different variances. In this approach means, wind patterns with different velocities and intensities can be generated.

5. AUTOLAND CONTROLLER DESIGN

As previously mentioned, a conventional PID controller, a modern neuro-controller and also a hybrid neuro-PID controller are designed to show the effectiveness of a hybrid system. To design a PID controller to train the Neuro-controller, longitudinal controls are \textit{throttle} and \textit{elevator}. Throttle is used in such a way that the aircraft speed during landing phase remains constant (Iiguni ET AL., 1998).

\[T = K_T (u_e - u) + K_\omega \omega + \int (u_e - u) dt \]

In this case: \(K_T = 3, w_e = 0.1\).

The function of elevator is to control the pitch angle and pitch rate during landing phase, so:

\[E = K_\theta (\theta_e - \theta) - K_q \dot{q} \]

And it is further assumed that, the desired pitch angle is a function of error in \(h\) and \(\dot{h}\), so

\[\theta = k_h (h - h_e) + k_q \int (h - h_e) dt + k_p (\dot{h} - \dot{h}_e) + \theta_p \]

Where

\[K_h = 0.3, \quad W_h = 0.1, \quad K_p = 0.3 \]

At Glide mode: \(K_\theta = 3, K_q = 3, \quad \theta_p = 0 \)

At Flare mode: \(K_\theta = 12, K_q = 6.0, \quad \theta_p = 0.0698 \)

The PID controller gains are estimated by applying the Linear Matrix Inequality (LMI) method, which is normally used to design PID controllers for MIMO systems. This method guarantees the stability of the designed system (Zheng et al., 2002). However, to achieve the desired performance one needs to optimize the gains through a trial and error process.

6. NEURO-CONTROLLER DESIGN

One neural network is designed for Elevator control. As previously mentioned the outputs of PID controller are used to train the neural network. The neural network used for Elevator control is a Multi Layer Perceptron (MLP) with the name of \textit{elevatornet}, which has 3 layers and 4 inputs \((\theta, q, h\) and \(\dot{h}\)). The output of elevatornet is the elevator
setting. The hidden layer has 7 neurons (N47,1). In this neural network, tangent-sigmoid function is used in input and hidden layers and pure-linear function is used in output layers. To train the network classical error back propagation method (Levenberg-Marquardt back propagation) is used. This method updates weight and bias values according to Levenberg-Marquardt optimization (Demuth et al, 2000).

7. HYBRID NEURO-PID CONTROLLER DESIGN

To achieve a better performance in the presence of very strong winds and gusts a new controller has been proposed. In this controller inner loop that provides stability of the system, is designed with the aid of classic methods (such as root locus plot), in other words, according to equations for elevator setting (θ), we tune K_p and K_q by classical methods. The outer loop (θ) is estimated by a type of neural networks named General Regression Neural Networks (GRNN). A GRNN is often used for function approximation and has a radial basis layer as it hidden layer and a special linear layer as its output layer (Demuth et al, 2000).

8. CASE STUDIES AND SIMULATION RESULTS

To train the networks, the M-files and Neural Networks Toolbox (Demuth et al, 2000) of Matlab software have been used, and to simulate the system, Simulink Toolbox (Simulink Toolbox User’s Guide, 2000) of Matlab software has been used; also, suitable links between the M-files and Simulink environment have been provided. The initial conditions for all of the aforementioned controllers have been introduced in Equations (7) to (9). According to FAR 25 Federal Aviation Administration regulations (FAA AC20-57A, 1971), environmental conditions considered in the determination of dispersion limits are: headwinds up to 25 knots (42.23 fps); tailwinds up to 10 knots (16.9 fps). The simulation result of the designed hybrid controller was found to be robust enough to properly handle all of the imposed turbulences proposed by the FAA in landing phase of flight.

Fig. 3 to 6, show the horizontal and vertical components of Strong and Very Strong winds applied to the controllers. Simulation results have been presented separately for the Strong wind and Very Strong wind. The profiles of strong wind are depicted in Fig. 3 and 4. And the simulation results for this wind have been shown in Fig. 7 to 12. Followed and commanded trajectories of aircraft for all of three controllers are shown in Fig. 7 to 9. It is observed that for all of controllers have acceptable performances. The sink rate variations for the controllers are shown in Fig. 10 to 12, which all of them satisfy the requested performance (*). It is observed that the variations of angles of attack for all of the cases are in the acceptable range, with regard to angle of attack limitation (Stall angle, α_s) (**). Consequently, all of the controllers- PID, Neuro, and Neuro-PID controller- have good capabilities to guide the aircraft throughout the landing phase in presence of Strong wind.

Horizontal and vertical components of Very Strong wind have been depicted in Fig. 5 and 6. Comparing these figures with JFK Airport Downburst, Fig. 1, it is seen that the wind named Very Strong wind is stronger than the JFK Airport Downburst. Fig. 13 to 18, show simulation results of the controllers in presence of Very Strong wind. Followed and commanded trajectories for the controllers, in presence of Very Strong wind, have been shown in Fig. 13 to 15. Fig. 13 shows that the classic controller follows the commanded trajectory well, but according to Fig. 14, the neuro controller does not have an acceptable behaviour, while following the commanded trajectory. Fig. 15 shows that the neuro-PID controller has a relative better performance. Desired and actual sink rates for the controllers have been shown in Fig. 16 to 18. Actual sink rate of classic controller (Fig. 16) exceeds -20 fps and does not satisfy the conditions (*). The neuro controller also does not satisfy the limitations in this case (Fig. 17). Sink rate of the aircraft with hybrid neuro-PID controller (Fig. 18) in presence of Very Strong wind does not exceed -20 fps limitation and satisfies the conditions (*). Variation of angle of attack with neuro controller is not acceptable. Angle of attack of the aircraft in presence of Very Strong wind, with applying the PID and neuro-PID controllers does not exceed -20 fps limitation and satisfies the conditions (*). The neuro-PID controller we can extend the flight envelop of the aircraft. So only with applying the hybrid neuro-PID controller we can extend the flight envelop of the aircraft.

9. DISCUSSION AND CONCLUSION

Three different types of controllers (Classic, Neuro, and Neuro-PID) have been designed and simulated. To evaluate performance of the controllers, two different wind patterns have been introduced, named Strong and Very Strong winds. Strong wind is weaker than the JFK Downburst and Very Strong wind is stronger than it. Results show that performance of controllers in presence of Strong wind is acceptable. But, only the hybrid neuro-PID controller behaves well in presence of Very Strong wind pattern. So only with applying the hybrid neuro-PID controller we can extend the flight envelop of the aircraft.

Complexity of the controllers could be discussed from three different aspects: 1- Number of required sensors. 2- Amount of required computations and calculations. 3- Required switching.

<table>
<thead>
<tr>
<th>Wind Pattern</th>
<th>Controller</th>
<th>PID Controller</th>
<th>Neuro Controller</th>
<th>Neuro-PID Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>Acceptable</td>
<td>Acceptable</td>
<td>Acceptable</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Very Strong</td>
<td>Unacceptable</td>
<td>Unacceptable</td>
<td>Acceptable</td>
<td>Acceptable</td>
</tr>
</tbody>
</table>

Table 1: Performance of the controllers in presence of different wind patterns
the controllers, so the number of required sensors for all of the controllers is equal. From the second point of view, the neuro-PID controller because of so many processing units of the GRNN network, performs a great amount of calculations, but this is not a negative point for the neuro-PID controller, since the overall time which is needed to generate the trajectory by the neuro-PID controller in comparison with the time which is needed by the aircraft to fulfill its mission, is negligible and this set of calculations can be done with the aid of new computers. From the third point of view, the only controller which does not need any switching is neuro controller.

It can be seen from the previous section that the PID controller needs different gains in glide slope and flare modes and this causes switching between these two modes. This switching generates some problems with the controller. For example; the switching needs the exact information of sensors to switch between these two modes and it is obvious that the PID controller needs precise measurements of sensors near the run way, while it is known that the sensors have some errors. In addition, switching also generates some noises in electronic systems of controller.

On the other hand, the neuro-controller has a good ability to estimate the system parameters in a condition that had not been trained before, and to extend the performance range of the system. In other words by this technique the flight envelope of the aircraft can be extended in a wide range and this make the landing system operate more safely in presence of sudden and unpredicted conditions and it is possible to decrease the number of flight tests. In overall, a mixed Neuro-Classic controller has a better performance in comparison with the controllers which are based only on classic methods or only on neural networks methods.

REFERENCES

Fig. 1: JFK Airport Downburst

Fig. 2: Typical trajectory in landing

Fig. 3: Strong wind pattern, Variation of u_g with h, $N=200$

Fig. 4: Strong wind Pattern, Variation of w_g with h, $N=100$

Fig. 5: Very Strong wind pattern, Variation of u_g with h, $N=300$

Fig. 6: Very Strong wind Pattern, Variation of w_g with h, $N=250$

Fig. 7: Trajectory for PID controller with Strong wind

Fig. 8: Trajectory for Neuro controller with Strong wind

Fig. 9: Trajectory for Neuro-PID controller with Strong wind

Fig. 10: Sink rate variations for PID controller with Strong wind

Fig. 11: Sink rate variations for Neuro controller with Strong wind