A ROBUST ITERATIVE LEARNING CONTROL WITH NEURAL NETWORKS FOR ROBOT
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Abstract: Using identification of neural networks, a new robust iterative learning control algorithm is proposed in the
paper. Combined with feedback control in real time, the neural network is employed to identify the nonlinear system
online and to produce the feed-forward actions of iterative learning control algorithm to realize continuous trajectory
tracking task for robot. Simulation results demonstrate that the algorithm can not only overcome uncertainties and
external disturbances, but also meet the trajectory command with few iterative learning and network training, and

thus possess better robustness and control performance. Copyright © 2003 IFAC
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1. INTRODUCTION

Robot is a kind of high nonlinear, closely coupled
and time-varying dynamic system, so that its exact
dynamic model is difficultly established. In order to
satisfy the requirement of high-precision motion
control of robot, some of the literatures have
proposed many new control methods, such as
computed torque method, adaptive control method,
varying-structured control method and iterative
learning control method. Among these methods,
iterative learning control has been aroused general
interest. This scheme can utilize a prior knowledge
regarding the controlled system, combining its output
and desired signals, so as to make the controlled
system yield the desired movement. Especially for
high nonlinear and close coupled dynamical systems,
meanwhile with high-precision requirement of
position, like industrial robot and digital machine
tool, iterative learning control has acquired some
useful application results (Xie, Z.D et al., 2000)
However, the complex industrial plant like robot not
only possesses high nonlinear properties but also
operates in an environment with external
uncertainties in most cases. Therefore, it is more
significant to investigate the robust learning control
strategy for nonlinear system in the presence of
uncertain disturbances.

Since neural network not only has the satisfactory
capacity of approximating any nonlinear mapping
but also can learn and adapt to the dynamical
property of unknown system, neural network based
control system has fairly strong adaptability and

robustness (He, Y.B. and X.Z. Li, 2000). In resent
years, neural network control considered as a new
approach has been applied to robot control and
obtained some research results. When introducing
neural network to identify and control the nonlinear
system, a double-neural network structure is to be
used in most cases. One is to learn positive model of
the controlled system as a identifying one itself,
another is used to learn the inverse model as a
controller. But the structure may lead to more
parameters from controller to be adjusted, and
stability and robustness of the closed loop system
cannot be ensured. In (Li, M.Z. and F.L. Wang, 1998),
on the basis of positive model identification of neural
network, the control problem was converted to an
optimizing one and then processed iterative solution.
But it remains to be further studied to advance the
precision of neural-identifying model and to select
weight coefficients and step factors. A neural
network controller with iterative learning algorithm
is presented in (Wang, C.Q, 1998) incorporating
feedback control actions, in order to overcome the
uncertainties and load disturbances of model. The
neural network based controller was to directly
realize inverse-dynamic control, which means that
the plant must be dynamically invertible, and thus the
tracking precision lay on the precision of the inverse
model. A case of existing uncertainties and parameter
varieties was considered in (Ozaki T and Suzuki T,
1991) where two neural network controllers were
employed to identify different parts of the model so
as to compensate effects of uncertainties and
parameter varieties. But this kind of neural network
structure may induce many tuning parameters and
need much more repetitive trials. Usually, there isn't



standard procedure to select the structure of neural
network and effective algorithm; the training
numbers over hundreds of neural network and the
low convergence rate become one of the primary
open problems. Simulation results in (Wang, C.Q,
1998) and (Ozaki T and Suzuki T, 1991) illustrated
that the learning numbers and tracking error
performance of iterative learning control based on
neural network would be modified greatly.

This paper presents a new neural network based
iterative learning control algorithm, which combines
iterative learning control with neural network
identification for the purpose of trajectory tracking
control of robot. As neural network has the ability of
self-learning, that utilizes the prior output data of
uncertain system to estimate iteratively the system
static state property to achieve ideal approaching
precision for identification of positive model, a
robust iterative learning control scheme on the basis
of the better positive model is designed. The neural
network is used to identify the positive model of the
nonlinear system on iterative axis, which can give
feed forward actions of iterative learning controller
to reduce the effects of nonlinearities and model
uncertainties. Meanwhile, the feedback actions of
iterative learning controller make joint movement
follow the desired trajectory on time axis by using
the control parameters derived by the neural network.
That is, after obtaining better approaching precision
of network training for model identification
iteratively trail by trail, the feed-forward actions of
iterative learning control law of the next trail are
constructed by the output signals of the neural
network, and then integrated with feedback control
to track the desired trajectory of robot in real time.
The feedback control is introduced to compensate
effects of both errors of identification and iterative
learning, so the controlled system can get better
robustness and control precision. As there exist many
architectures of neural network, the paper uses the
most common multi-layered neural network to
identify the positive model. Simulation results
indicate that the method is very effective to robotic
systems with unknown external disturbances, and it
can also acquire satisfying tracking performance by
fewer numbers of network training and iterative
learning processes.

2. MODEL IDENTIFICATION BASED ON
NEURAL NETWORK

System identification is a basic and important work
for the control system design. But identification of
the complex system is a more difficult and
challengeable issue. Robot is a kind of high nonlinear,
close coupled and time-varying dynamical system,
with the effects of model uncertainties and external
disturbances, so it is difficult to establish its precise
dynamical model. Owing to complicated mechanism
of robot and many unknown uncertainties including
measurement errors, the conventional methods of
identification would not suit to high precision control
of robot. While the nonlinear approximating property
and the high parallel operation ability of neural
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Fig.1. Architecture of the neural network

based positive-model

network provide a valid way for identification of
complex systems, especially for nonlinear system.

Using multi-layered static network to get the positive
model of nonlinear system, the controlled plant can
be considered as a "black-box", which means that it
is unnecessary to analyze exactly the internal
structure of unknown process or plant. As an
approximate model of the actual system, if the neural
network based model can give sufficiently small
identification error, the output signals of the model
can be considered as the output estimates of the
actual plant. Therefore the following conventional
MIMO nonlinear input-output discrete time plant is
considered

y(@) = f(y@ =1,y =2),-,y(—n),

(1
u(t =1),u(t—2),--,u(t —m))

where
u(®) =[u, (),u, (0),--u, (0] OR”,
y(t) :[yl(t)’yz(t)""ayq(t)]T OR?

are the plant inputs and the plant outputs vectors of
dimensions p and g, respectively, m, n are called as
model orders and assumed to be known, and f is
allowed as an unknown nonlinear input/output vector

function of dimension g, i.e.

S =LA, £, (), f, (0]
Eqn. (1) can be simplified as

(O =fU@E-1) ©)

where
](t_l) :[y(t_l)Ta“'ay(t_n)Ta
u(t =07, u(t—m) JOR™™

It is pointed out in (He, Y.B. and X.Z. Li, 2000) that a
feed-forward neural network with simple hidden
layer has the capability of approximating arbitrary
nonlinear function if there are enough nodes on the
hidden layer of the neural network. A neural network
based positive model structure of the plant is
illustrated in Fig.1, where the used neural network is
a three-layered back propagation network showed in
Fig.2. Then the neural network based identifying
model can be described as follows

Y+ =NU@),W) 3)



Fig.2. Architecture of the three-layered BP neural
network

where W is the synaptic weights vector, N is the
input/output mapping function of the neural network;
I(t)OR"™™™ represents the inputs of the neural
network and (¢ +1) [ R? represents the neural
network outputs composed of N, output neurons.
So the number of the output neurons of the neural
network can be determined easily, i.e. N, =¢. In

the architecture of the three-layered BP neural
network showed in Fig.2, a nonlinear Sigmoid
function in the hidden layer and a linear function in
the output layer will be employed, and the outputs of
the hidden layer and the output layer can be
expressed as follows

Ny
S, = f(net,) = £,(S Wyl +6,),
i=1

j:1927'”9NH (4)
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WyisWey» 0,8, are the connection weights

where f (x) = is a sigmoid function,

and threshold values responding to the input layer to
the hidden layer and the hidden layer to the output

layer, respectively, [, denotes the input of the input

layer, net j is the input of the hidden

layer, S ; represents the output of the hidden layer,

 is the outputs of the output layer, N,,N,,N,

represent the neuron number of the input, hidden and
output layer, respectively. Define identification error
of the neural network as

e,(t+) =yt +) -yt +1)
=fU@)-NU@®),W)

When the neural network being trained sufficiently,

(6)

the optimal weighting value W™ can be obtained
and it holds that

FU@=-NUI@,W)
0[(t)OD

where &€ is a sufficiently small positive constant
standing for the given approximating precision, D is

e,(1+1)<¢,

(7

. . + . .
a strict compact set 1n R™™™ However, in this

paper the network training is integrated with iterative
learning control. In the kth trial, minimize the
following quadratic cost function to get an optimal

weighting value Wk* firstly by using all input-output
data of this trial

T

> i@ =5:@F, k=12 @
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where T is the period of the trials, y,(f) and

¥, (t) represents the system outputs and the

network outputs of the kth trial, respectively. To solve

Wk* from (8), the steepest descent algorithm is

employed in the paper.

VVHI = VV; - :Ba_J +aAWr—1’r =12, 9
.

where [ isalearning rate and O is a momentum

factor. The function of the momentum factor is to
memorize the changing direction of connection
weights in previous training procedure and restrain
vibration of the system that may be produced called a

smooth action. During the kth trial, the weight W,

can be modified recursively along optimal direction
as the training number 7 increases, so one hopes that
the identification error of model can be reduced
gradually. When themodel satisfies the given
approximating precision,the training process of (9)
will be completed andthe final weight obtained from

(9) will be set as Wk*. Then using Wk* calculates

the network outputs defined by )A/; (t) ¢TJ[0,T))

based on (4)and (5) for each trial that will be applied
to construct the feed-forward actions of the k+1th
iterative learning control law, and combined with
feedback control in real time to produce the control

inputs #,,, that will be described in next section.

3. NEURAL NETWORKS BASED ITERATIVE
LEARNING CONTROL FOR ROBOT

The dynamics equation of an n-degree-of —freedom
robot can be described in the following

M(6(1)6(t) +V (0(1),6(t))
+GO) +T,(1)=1(1)

(10)

where @(¢) 0 R” is the vector of generalized joint

position, M (B(¢))IR”? is a

positive inertia matrix; ¥ (0(¢),0(¢)) DR is the

vector

G(B(t)) O R” is the vector of gravitational term;

symmetrical

representing centrifugal and  Coriolis;

T(¢) L R” is the vector of joint torques supplied by

the actuators and 7, (#) JR” is an unknown term

arising from bounded disturbances. Due to the



uncertainties and external disturbances of the robotic
dynamic model, it is impossible to get the exact
value of generalized joint position. The paper
coordinates a P-type iterative learning controller with
identification model of neural network. Regarding
the disturbances as a part of the system itself, the
neural network is employed to identify the whole
nonlinear system so as to make the outputs of
network approach the actual outputs of the system
infinitely. As an identified model of the controlled
plant, if the model error € 1is small enough, the
outputs of neural network can be considered as the
actual outputs of the controlled system, i.e.
y(t) = P(t) . In order to improve robustness of the
controlled system and reduce the influence of
nonlinear uncertainties and disturbances to control
performance, a feed-forward compensation action is
firstly introduced based on the iterative learning
controller that may be either a conventional
controller such as PID, PI, P-type controller or an
intelligent controller like fuzzy controller and expert
controller, but a simple PD-type controller is used in
the paper. However an extension to other type of

controllers is easily made. Suppose that u » is

output of feedback controller and u© 7 is the one of
feed-forward controller based on the neural network
identification. Then a compound control law (%)
composed of Up and Uy will be derived. The

block diagram of architecture of control system is
illustrated in Fig.3.

In the kth iterative learning control process, it can be
known from the diagram that the control law of robot
trajectory tracking is,

u' (1) = uf (1) +ujy (1) (11)

Kooy — . ok -k .

where  u, (6) =k,e, () +k,e,(f) is the

feedback control action, k » ,k, are the positive

matrixes of position and velocity gains, respectively,
koo — k : .

e, )=y, () =y, (&), y,(t) is the desired

trajectory of the system, y]; (¢)is the actual output

including model uncertainties and external

disturbances in the kth trial. But u 7 is obtained by

KN — ok k
wy (t) =ufy () +kyce, (1) (12)
which is of the iterative learning controller, where
k. is the
et =y, )=y (@), yi(t)is the output of

neural network in the kth trial. To guarantee the
convergence of iterative learning control algorithm

(Pi, D.Y. and Y.X. Sun, 1999), the selection of k.
should satisfy

learning control gain matrix,

P ~k;D(0)) <1 (13)

where D is the close-loop transfer function matrix
of the system, P(D] represents the corresponding
spectrum radius.

For a two-degree-of-freedom robot, the orders p and
g of the system are both 2, and maximum differential
degree of its mathematical model is 2 also. The input
signals of neural network are fed by vectors of the
plant input signals and the desired trajectory signals
with delay degrees 0,1 and 2. The neuron numbers of
the input layer, hidden layer and output layer are
N; =12,Ny =10 and N, =2, respectively. The
training algorithm of the network is described by (9).
It is observed from next section that rather short
learning time is needed in general.

In conclusion, the iterative learning control scheme
proposed in this paper can be summarized as follows:
1) Fork =0, give an initial weight Wo* of Wk* to
produce j/f (t) (¢UJ[0,7T]) based on (4) and (5), and
only feedback control action is considered in (11).

2) Fork =1, use (9) to derive Wk* and then (12) to

calculate the feed forward action ul;f (1).

Furthermore an iterative learning control law u,

resulting from (11) will be available. The process of
iterative learning control is detached from neural
network training. When the kth procedure of iterative
learning control is completed, the neural network is
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Fig.3. The block diagram of architecture of control system



then trained by (9) using all inputs and outputs in the
kth trial.

4. SIMULATION AND ANALYSIS

The robot wused in  simulation is a
two-degree-of-freedom SCARA-type one given in
(Ozaki T, Suzuki T, 1991). The expression of each
term in the robotic dynamic equation is shown as
follows

My =m K} +my (L} + K3 +2L K, cos(6,))
+1,+1,

My =my (K3 + LK, cos(6,)) +1,

My =M,

My, =myKj +1,

Vi ==m, LK, sin(6,)(26, +6,)6, +D,,,6,

V, =myL,K,sin(8,)67 + D,,,0,

G, = g((m K, +myL;)cos(6,) +myK, [

cos(6, +0,))

G, = gm,K, cos(6, +0,)

where the following physical parameters of the robot
with two links are, arm length L, =0.25m, L, =0.16m;
link centers of gravity K, =0.2m, K, =0.14m; mass
m, =9.5kg, m,=5.0kg; inertia

I, =43%x107 kg Gn*, I, = 6.1x107 kg [n* ; motor
damping coefficients

D,, =3.85x10° N,

D,, =139x10° N3O~

gravitational acceleration g =9.81m B2,

The desired trajectories of two

T m . .
0,4 =—Ecos(%_5),92d :Esm(%'s) ; the gain
matrixes of the feedback controller are set at
k , =diag[300, 300], k,= diag[20, 20]; the external
disturbance was
T, =[0.13 cos(7%0+5),0.23 sin(7%0+4)]T . the

gain  matrix  of

joints are

learning  controller  is

K, - =diag[100,100]; the connection weights of the

neural network are randomly initialized between (
-0.5,0.5) ; the momentum factor is @ =0.9, the

learning rate is [3 =0.01. It takes about 5s for

simulation, and the sampling period is 0.01s. The
numbers of iterative learning and neural network
training for one iterative learning procedure are both
20. As convergence of the BP network depends on
the initial weights of its learning mode, we would
reinitialize the connection weights at the outset of
each learning trial. Fig.4 showed the tracking error of
the manipulator with two joints, and (a) —(d)
illustrate the error curves of the first, 7th,14th, and 20"
iterative learning trial. At the 20" iterative learning
control process, the index curve of training
performance for the neural network identifying

model was shown in Fig.5. It is easy to see from
Fig.4(a)—(d) that the error curves of two joints
possess clearly convergent trend as iterative learning
times increase. At the 20™ iterative learning control
process, the error satisfied the requirement of better
tracking precision. From Fig.5, it is clear that the
performance criterion of the BP network training
attain to le-6 level. Whereas the simulation results in
(Wang, C.Q, 1998) presented that there existed
certain error between the actual and desired trajectory
of the joints when only feedback control was
operated. At the 85" iterative learning control
procedure, the square sum of tracking errors on two
joints are 0.0059 and 0.064, respectively. As far as
other kinds of external disturbances are concerned,
such as a noise signal, an impulse at any time,
simulations are also performed in the paper. The
results show that the proposed scheme can also get
rather good requirement of tracking precision.

5. CONCLUSION

The paper presents a method of iterative learning
control combining with identifying model of neural
network. The BP neural network is employed to
identify the nonlinear system and to produce the
feed-forward action of iterative learning control
algorithm, and it is integrated with feedback control
in real time to form the neural network based robust
iterative learning control algorithm. The scheme
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Fig.4. The tracking error curves of two joints:
(a) First trial; (b) 7™ trial; (c) 14™ trial; (d) 20" trial.;
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Fig.5. The performance index curve of the neural
network identifying model

makes the robotic controller have the ability of
self-learning and eliminate the influences of
uncertainties and external disturbances of the
dynamical model. Further analysis performed in the
paper indicates that the control system can realize
high-precision tracking to any trajectory on the
condition that the identification precision of neural
network is good enough. Moreover, the simulation
investigation shows that the neural network based
control strategy can be used better for the complex
industrial processes.
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