Robust Estimation of Road Friction Coefficient

Changsun Ahn, Huei Peng, and H. Eric Tseng

Abstract—Vehicle active safety systems stabilize the vehicle by controlling tire forces. They work well only when the commanded tire forces are within the friction limit. Therefore, knowledge of the tire/road friction is important to improve the performance of vehicle active safety systems. This paper presents two methods to estimate the friction coefficient: one based on lateral dynamics, and one based on longitudinal dynamics. The two methods are then integrated to improve working range of the estimator and robustness. The first method is a nonlinear observer based on vehicle lateral/yaw dynamics and Brush Tire model, the second method is a recursive least squares method based on the relationship between tire longitudinal slip and traction force. The performance of the estimation algorithm is verified using test data under a wide range of friction and speed conditions.

I. INTRODUCTION

Tire-road friction influences the ability of tires to generate steering, traction, and braking forces and thus affects vehicle motion. Knowledge of the friction coefficient of the road is thus important for the design and analysis of vehicle control systems, especially active safety systems. When friction is unknown, the design is usually conservative, resulting in reduced performance.

Many approaches to estimate tire-road friction have been proposed based on different dynamics and phenomena. The approaches can be categorized into cause-based and effect-based methods. Cause-based methods [1-3] detect materials covering road surfaces, such as water, ice, and snow, by using vision, temperature or other sensors. These methods can estimate the friction coefficient of the road ahead which can be beneficial. However, they usually do not manifest other factors affecting friction, such as tire conditions. The effect-based methods utilize vehicle and tire dynamic behaviors directly, e.g., the relationship between tire slip ratio and longitudinal force [4-6], wheel speed frequency content [7], vehicle lateral dynamics [8-11], and front tire aligning moment [12, 13].

Vehicle lateral dynamics is more robust to high frequency disturbances than tire-based methods because the vehicle lateral dynamics are low-pass by nature. Furthermore, the measurement of front tire aligning moment is readily available in vehicles equipped with Electronic Stability Control (ESC), Electronic Power Assisting System (EPAS), and Active Front Steering (AFS). However, quite often in daily driving, significant level of lateral excitation does not exist. Longitudinal tire force based methods then must be used. The availability of required sensors and the straightforward force-friction coefficient relationship are two key benefits of longitudinal dynamics based methods.

In the authors’ previous papers [14, 15], an algebraic and a dynamic estimator were developed based on lateral dynamics and front tire aligning moment. The estimator achieves good performance under nominal conditions. In a subsequent paper [16], the dynamic method is improved and a synthesis method for robust performance is presented. In this paper, we enhance the previous method by developing a longitudinal dynamics based estimator and integrate it with the lateral-dynamics based method. The integrated estimator increases the working ranges of the estimators. The integrated algorithm is verified by vehicle tests on several surfaces.

II. LATERAL DYNAMICS BASED METHOD

A. Observer Design Synthesis

The synthesis process proposed in [16] is summarized below. A nonlinear system with an unknown state and a parameter is expressed as

\[
\dot{x} = f(x,u,\theta), \quad y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} h_1(x,u,\theta) \\ h_2(x,u,\theta) \end{bmatrix},
\]

(1)

For which an observer can be designed:

\[
\dot{\hat{x}} = f(\hat{x},u,\hat{\theta}) + L_{11}(y_1 - \hat{y}_1) + L_{12}(y_2 - \hat{y}_2),
\]

\[
\hat{\theta} = L_{21}(y_1 - \hat{y}_1) + L_{22}(y_2 - \hat{y}_2),
\]

(2)

where

\[
L_{11} = k_1 \left(\frac{\partial h_1}{\partial x} + \frac{\partial f}{\partial x} \right)_{x=\hat{x},\theta=\hat{\theta}}, \quad L_{12} = k_2 \left(\frac{\partial h_2}{\partial x} \right)_{x=\hat{x},\theta=\hat{\theta}},
\]

(3)

\[
L_{21} = k_3 \left(\frac{\partial h_1}{\partial \theta} \right)_{x=\hat{x},\theta=\hat{\theta}}, \quad L_{22} = k_4 \left(\frac{\partial h_2}{\partial \theta} \right)_{x=\hat{x},\theta=\hat{\theta}},
\]

and \(k_1-k_4\) can be determined using an optimization routine that maximizes robust stability against plant uncertainties.
B. System Models for Lateral Dynamics

The lateral dynamics model is a standard bicycle model. Derivation of the equations of motion for the bicycle model follows from the force and moment balance:

\[m(\dot{v}_y + v_y r) = F_{sf} + F_{yr}, \quad I_x \dot{\delta} = aF_{sf} - bF_{yr}, \]
(4)

where \(v_y \) is the vehicle forward speed, \(v_y \) is the vehicle lateral speed, \(r \) is the yaw rate, \(m \) is the vehicle mass, and \(I_x \) is the yaw moment of inertia. \(F_{sf} \) is the lateral force at the front axle and \(F_{yr} \) is the lateral forces at the rear axles. \(\delta \) is the front wheel steering angle, and \(a \) and \(b \) are the distances from vehicle center of gravity to front and rear axles. Taking small angle approximations, the tire slip angles \(\alpha_f \) and \(\alpha_r \) are calculated from:

\[\alpha_f = (v_y + ar)/v_x - \delta, \quad \alpha_r = (v_y - br)/v_x. \]
(5)

The Brush Tire model is selected because it uses few parameters and captures fundamental nonlinear tire behavior. In the Brush Tire model, the lateral tire force and the tire self-aligning torque are calculated from:

\[
\begin{align*}
F_y &= -3\mu F_c \rho_\delta \left(1 - \rho_\delta + \frac{1}{2} \rho_\delta^2 \right), \quad \text{for } |\alpha| \leq |\alpha_\delta|, \\
\tau_a &= \mu F_c \rho_\delta \left(1 - \rho_\delta \right), \quad \text{for } |\alpha| > |\alpha_\delta|,
\end{align*}
\]
(6)

where \(\alpha_\delta = \tan^{-1}(1/\theta_\delta) \), \(\theta_\delta = 2c_f L/(3\mu F_c) \), \(\rho_\delta = \theta_\delta \sigma_\delta, \sigma_\delta = \tan(\alpha), \) \(L \) is half of tire contact length, \(\alpha \) is the tire slip angle, \(\mu \) is the tire-road friction coefficient, \(F_c \) is the tire normal force, and \(c_\rho \) is the tread stiffness in unit length.

Finally, the steering system in Fig. 1 is described by:

\[J_{eff} \ddot{\delta} + b_{eff} \dot{\delta} + k_\delta = \tau_a + f_y \cdot L_m - f_{rack} \cdot L_r, \]
(7)

where \(\delta \) is a road steer angle, \(J_{eff} \) is the effective moment of inertia, \(b_{eff} \) is the effective damping of the steering system, and \(k \) is the jack-up moment coefficient. \(\tau_a \) is the self-aligning moment of the tire. The jack-up moment is the moment caused by the returning tendency of the lifted vehicle body when steering angle increases.

C. Observer Design

From (4) and (5), we have:

\[\dot{\alpha}_f = \left(\frac{1}{mv_x} + \frac{a^2}{I_x v_x} \right) F_{sf} + \left(\frac{1}{mv_x} - \frac{ab}{I_x v_x} \right) F_{yr} - r - \dot{\delta}. \]
(8)

where \(F_{sf} \) and \(F_{yr} \) are functions of the state \(\alpha_f \) and the unknown parameter \(\mu \). We assume that tire normal force \(F_z \) can be achieved from vehicle mass and a load transfer model. The two measurements are

\[y = [m a_y \quad f_{rack}]^T. \]
(9)

where \(a_y \) is the vehicle lateral acceleration measured by a G-sensor, and \(f_{rack} \) is the steering rack force measured by strain gauges. Then the observer designed by the synthesis is

\[\dot{\hat{\alpha}}_f = \left(\frac{1}{mv_x} + \frac{a^2}{I_x v_x} \right) \hat{F}_{sf} + \left(\frac{1}{mv_x} - \frac{ab}{I_x v_x} \right) \hat{F}_{yr} - r - \check{\delta} + L_1 (ma_y - (\hat{F}_{sf} + \hat{F}_{yr})) + L_2 (f_{rack} - \hat{f}_{rack}), \]
(10)

where \(\check{\delta} = [\hat{a}_a + \hat{f}_y \cdot L_{mr} - (J_{eff} \ddot{\delta} + b_{eff} \dot{\delta} + k_\delta)]/L_r. \)

The observer gain can be achieved by (3) with the following parameters obtained through the optimization process [16]:

\[k_1 = 2.5 \times 10^{-9}, \quad k_2 = 2.8 \times 10^{-6}, \quad k_3 = 1.8 \times 10^{-8}, \quad k_4 = 1.9 \times 10^{-4}. \]

The detail for observer gain optimization can be found in [16].

III. LONGITUDINAL DYNAMICS BASED METHOD

A. Estimator Design

Longitudinal excitations are almost always present in daily driving. When driving on straight roads, lateral excitations may not be present, and road friction can only be manifested through longitudinal dynamics. Longitudinal excitations are generally quite small (less than few % of longitudinal slip). Under these cases, the basis of estimation is longitudinal tire stiffness in the small slip region. Physics based tire models such as the Brush Tire model, predict that the longitudinal...
stiffness is independent of road surfaces in small slip region. However, in the literature, several experimental results show that longitudinal stiffness depends on the friction coefficient and the phenomenon has been used for road friction estimation [17-20]. Our experimental results also show that tire force is dependent on friction level at small slip ratio, as shown in Fig. 2.

![Graph showing experimental results at small longitudinal slip](image)

In the small-slip region, the longitudinal force can be expressed as follows:

$$F_x(\kappa) \approx k(\mu) \cdot \kappa, \quad \text{for } |\kappa| < 0.015,$$

(11)

The longitudinal stiffness $k(\mu)$ depends on the tire characteristics but it also changes with friction level μ. The friction coefficients and longitudinal stiffness between a tire (in our Jaguar S-type test vehicle, the Pirelli 255/50R-17) and three surfaces are listed in Table I. Equation (11) can be rewritten as a standard parameter identification form:

$$y(t) = \varphi^T(t) \theta(t),$$

(12)

where the output $y(t)=F_x$, the unknown parameter $\theta(t)=k(\mu)$, and the measured slip ratio $\varphi(t)=\kappa$ are identified, the friction coefficient can be calculated through interpolation using data in Table I.

B. Recursive Least Squares (RLS)

The recursive least squares method [21] iteratively updates the unknown parameter at each sampling time to minimize the sum of the squares of the modeling error, using the past data within the regression vector, $\varphi(t)$. The general synthesis of RLS algorithm is as follows:

Step 0: Initialize the unknown parameter $\theta(0)$ and the covariance matrix $P(0)$; select forgetting factor λ.

Step 1: Measure the system output $y(t)$ and compute the regression vector $\varphi(t)$.

Step 2: Calculate the identification error $e(t)$:

$$e(t) = y(t) - \varphi^T(t) \theta(t-1).$$

(13)

Step 3: Calculate the gain $K(t)$:

$$K(t) = P(t-1)\varphi(t)[\lambda + \varphi(t)^T P(t-1)\varphi(t)]^{-1}.$$

(14)

Step 4: Calculate the covariance matrix:

$$P(t) = \lambda^{-1}P(t-1) - K(t)\varphi(t)^T \lambda^{-1}P(t-1).$$

(15)

Step 5: Update the unknown parameter:

$$\theta(t) = \theta(t-1) + K(t)e(t).$$

(16)

Step 6: Repeat Steps 1–5 for each sampling time.

C. Stiffness Identification

For a rear-wheel drive vehicle, the standard form of parameter identification can be expressed as:

$$ma_x = F_{x,rl} + F_{x,rr} - D,$$

(17)

where $D=C_{drag} \rho v_x^2/2$ is the air drag, A is the cross-section area of the vehicle, and ρ is the air density. Using the linear tire force model shown in (11), (17) can be rewritten as:

$$a_x + \frac{D}{m} = \frac{\kappa_{rl} + \kappa_{rr}}{m} K(\mu).$$

(18)

We can then identify the stiffness $K(\mu)$ if an RLS problem is defined with $y(t)=a_x+D/m$, $\varphi(t)=(\kappa_{rl}+\kappa_{rr})/m$, and $\theta(t)=K(\mu)$.

IV. INTEGRATED ALGORITHM

The lateral dynamics and longitudinal dynamics based algorithms described above are used to create an integrated estimator, the switching between the two methods relies on the nature and magnitude of excitations. The lateral dynamics based method is useful under medium lateral excitations, and the longitudinal dynamics based method works when there is no lateral excitation and slip ratio less than 2%. In Fig. 3, the covered region of the two methods is shown. They were both developed based on pure slip cases. Their performance under combined slip cases cannot be guaranteed, and in fact we expect poor performance due to tire nonlinearities. To handle combined slip cases, we need to modify the underlying models.

The brush model with combined slip is as follows [22]:

$$F_x = F_x(\sigma_x), \quad F_y = F_y(\sigma_y), \quad M_z = -t(\sigma) \cdot F_x,$$

(19)

where

$$F(\alpha, \kappa, \mu) = \begin{cases} \mu F_x(1-\lambda^3) & \text{for } |\sigma| \leq |\sigma_x| \\ \mu F_x \text{sgn}(\alpha) & \text{for } |\sigma| > |\sigma_x| \end{cases}.$$
\[\lambda = 1 - \theta \sigma, \quad \theta = 2c_l f^2 / (3\mu F), \quad \sigma = \sqrt{\sigma_x^2 + \sigma_y^2}, \]
\[\sigma_x = \kappa / (\kappa + 1), \quad \sigma_y = (\tan \alpha) / (\kappa + 1), \quad \sigma_{sl} = 1 / \theta, \]
\[t(\sigma) = I(1 - [\theta \sigma]) / \left(3 - 3[\theta \sigma] + [\theta \sigma]^3\right). \]

To handle the difference between the longitudinal tire forces on left and right sides, the dynamics of the vehicle model shown in Fig. 4 is modified as follows:

\[m(\ddot{v} + v_i r) = F_{sf} + F_{yr}, \]
\[I_x \ddot{r} = a F_{sf} - b F_{yr} + \frac{w}{2} F_{lw} - \frac{w}{2} F_{sl}. \quad (20) \]

The combined slip brush model represents the real tire behavior when the slip is small. But when the combined slip is large, predicted and measured forces show large discrepancy, as shown in Fig. 5. It is difficult to model tire forces at large slip because they are affected by vertical tire forces, effect of suspension, tire structure, etc. Therefore, model error is unavoidable in large longitudinal slip cases. Instead of reducing the model discrepancy, we aim to reduce the effect of discrepancy. One way to do so is to reduce the magnitude of observer gains during high combined slip. Because the measurement model consists of the tire model, by reducing the observer gain magnitude we can reduce the effect of tire model error in the measurement model. The modified observer with the modified tire model, vehicle model, and adaptive gain to longitudinal slip is shown in the following:

\[\hat{\dot{x}} = \left(\frac{1}{mv_i} + \frac{a^2}{l_x v_y} \right) \hat{F}_{sf} + \left(\frac{1}{mv_i} - \frac{ab}{l_x v_y} \right) \hat{F}_{yr} + \frac{w}{2l_x V_y} (\hat{F}_{uw} - \hat{F}_{dl}) - r - \delta \]
\[+ L_1 \left(ma_y - (\hat{F}_{sf} + \hat{F}_{yr}) \right) + L_2 \left(f_{rack} - \hat{f}_{rack} \right), \]
\[\hat{\dot{\mu}} = k_{slip} \cdot l_3 \left(ma_y - (\hat{F}_{sf} + \hat{F}_{yr}) \right) + k_{slip} \cdot l_4 (r - \hat{r}_a). \quad (21) \]

where \(k_{slip} \) is the scale-down coefficient which can be tuned heuristically based on the slip ratio.

The two methods described earlier are integrated by a switching rule that is based on level of excitation. The excitation indices are normalized front tire slip angle and longitudinal slip ratio. The activation condition of the lateral dynamics based method is that the normalized slip angle should be between 0.1 and 0.7. The activation condition for the small slip ratio method is that both of rear wheels’ slip ratio should be less than 1.5%, which is from Fig. 2. Using the conditions, overall estimation flow of the integrated estimator is shown in Fig. 6. If neither methods are selected, an open-loop observer will be used, in which case the feedback terms in (20) are set to zero, i.e., the slip angle is updated based on vehicle dynamics and the friction coefficient is kept constant.

The method used to handle the combined slip cases...
increases the coverage of lateral dynamics based method, as shown in Fig. 7. A common driving condition is medium range of longitudinal acceleration or deceleration with little lateral excitation. These cases can be dealt with by examining the input/output relations of ABS system, which is beyond the scope of this paper.

V. EXPERIMENTAL VALIDATION

A. Experimental vehicle

Validation of the developed algorithms is performed on the winter test track of Ford Motor Company in Sault Ste. Maire, Michigan, USA. The test vehicle is a rear wheel drive Jaguar S-type, which is modified for the development of vehicle dynamics control algorithms. The vehicle has standard ESC sensors, including yaw rate and lateral acceleration sensors, four wheel speed sensors, a steering wheel angle sensor, and a steering torque sensor. For the rack force measurement, two strain gauges are installed on the steering racks. Fig. 8 shows the test vehicle and the GPS/INS system.

B. Vehicle and Tire Parameter Identification

The vehicle parameters are obtained from vehicle design specifications; however, the tire parameters are not available; therefore and need to be identified through bench tests and vehicle tests. We performed steady state turning maneuvers to identify tire stiffness and the length of the contact patch. The steering system parameters, such as the rotational inertia and the damping coefficient are identified through transient maneuvers. Finally, a transient maneuver with sinusoidal steering inputs is performed for the purpose of verification of the vehicle and tire models.

The identified parameters of the system models are evaluated by comparison between the signals from measurement and the model. Fig. 8 shows the tire model validation and Fig. 9 shows the validation of the vehicle model integrated with the identified tire and steering system models.

C. Experimental Results

The test car traveled on four different surfaces: concrete, ice, snow and slippery concrete surfaces, as shown in Fig. 10. The driver intentionally performed continuous sinusoidal steering to generate lateral excitation.

The test data for evaluation are plotted in Fig. 11 and estimation results are shown in Fig. 12. The longitudinal dynamics based algorithm shows poor performance due to infrequent longitudinal excitations. The lateral dynamics based algorithm generally tracks well the true friction...
coefficient except during abrupt changes. The combination of the two algorithms improves the tracking performance significantly.

The experimental results indicate that the proposed approach estimates slip angle and friction efficient but sometimes after a noticeable delay. Significant development effort is still needed to validate its robust performance.

Fig. 11. Example test data under sinusoidal steering input at 30 km/h

Fig. 12. Estimation results under sinusoidal steering input at 30 km/h

VI. CONCLUSION

This paper presents an observer for robust estimation of road friction coefficient and vehicle side slip angle. We integrate two methods each developed based on pure-slip excitations. The first estimator is based on a robust nonlinear observer methodology and vehicle lateral dynamics. The second estimator is designed using recursive least squares and longitudinal dynamics. The two methods are integrated by a switching rule. The performance of the integrated algorithm is verified through experiments. The algorithm works well under sudden surface changes and varying steering excitations. One limitation of the proposed method arises from the fact that one of the estimators is developed based on a small longitudinal slip model so that it cannot handle large longitudinal slip cases. This drawback is left for future studies.

REFERENCES