Observation-based Output Tracking Control for A Class of Linear Networked Control Systems

Dawei Zhang and Qing-Long Han*

Abstract—This paper is concerned with the problem of model reference tracking control for a class of linear networked control systems (NCSs) in which a controlled plant is connected to an observer-based controller via a communication network. In the presence of network-induced delays and packet dropouts in the sensor-to-controller and controller-to-actuator connections, the inputs of the plant and the controller are updated in an asynchronous way. In this case, the resulting NCS is equivalent to a linear system with two interval time-varying delays. A sufficient stability condition that ensures the NCS with an H_{∞} tracking performance is derived by using an Lyapunov-Krasovskii functional approach. Due to the asynchronous input errors, a separation principle cannot be used to design the observer-based controller. A novel design algorithm of tracking control is presented by using the stability condition and a particle swarm optimization (PSO) technique. The effectiveness of the algorithm is illustrated by a numerical example.

I. INTRODUCTION

Output tracking control has many industrial applications such as flight control, robot control, motor control and so on. Generally speaking, the objective of tracking control is to drive the outputs of a controlled plant to follow those of a reference model or some predefined trajectories as close as possible. In many modern industrial systems, system components (the controlled plant, sensors, actuators and controllers) are often located in different physical places. To exchange information among these system components, a shared communication network is used to interconnect the plant and the controller. Such control systems with the control loop closed through a network are called networked control systems (NCSs) [1]-[2]. NCSs have exhibited a wide range of applications due to their advantages such as flexible deployment, low cost and easy maintenance. The existing research on NCSs is mainly focused on two aspects, i.e., design of network protocols and system architectures [3], [4] and design of performance requirements on NCSs [5]. In particular, much work has been done to deal with stability and stabilization for NCSs [6]-[8]. In recent years, tracking control for NCSs has been increasingly highlighted since the insertion of a network between a physical plant and a controller enables an execution of remote tracking control.

For point-to-point wired systems, several methods have been presented to investigate the output tracking control, for example, an H_{∞} tracking control strategy [9]-[11]. Such a strategy is extended to design the state feedback tracking controller for NCSs in [12]-[14]. More specifically, Gao and Chen (2008) apply continuous-time systems with an interval time-varying delay to describe the NCSs and analyze an H_{∞} tracking performance by a Lyapunov-Krasovskii functional method [12]. They derive some existence conditions of the tracking controller in terms of linear matrix inequalities (LMIs). Wang and Yang (2008) formulate linear NCSs with a constant or a time-varying sampling period as two kinds of augmented discrete-time systems and consider the H_{∞} model reference tracking control [13]. Jia et al. (2009) employ a T-S fuzzy model to represent the nonlinear NCSs and design a controller to guarantee the tracking error systems with a desired H_{∞} tracking performance [14]. Different from the previous H_{∞} method, Van de Wouw et al. introduce an input-to-state stability property to achieve a tracking performance for network-based tracking error systems modeled by a discretization technique and a delay impulsive approach, respectively [15]. It should be pointed out that all the states of the controlled plants in [12]-[15] are assumed to be measurable. In fact, it is impossible or prohibitively expensive to measure all of the process variables in many practical situations. Moreover, the state feedback controllers in [12]-[15] depend only on network-induced delays and packet dropouts in the sensor-to-actuator channel because they are designed by specific state information that successfully drives the actuator. Therefore, the first concern of this paper is to study the observer-based tracking control for NCSs by taking the sensor-to-controller channel and the controller-to-actuator channel into account.

It is not uncommon to design an observer-based controller for hardwired systems by a separation principle. To use the separation principle, the matrix variables in Lyapunov functionals are usually set to be diagonal, which introduces some conservatism [9]-[11]. For NCSs with an observer-based controller, some stability and stabilization results are reported in recent years [16]-[18]. Naghshtabrizi and Hespanha [16] characterize the network-induced delays and packet dropouts that occur in the sensor-to-controller and the controller-to-actuator channels by two independent interval time-varying delays. They introduce a numerical procedure to design an observer-based controller by means of some non-convex matrix inequalities. Seuret et al. [17] present a GPS technique to ensure that the control inputs of a controlled plant and an observer-based controller in NCSs are synchronous, but
different from the observer inputs. In this framework, control gain and observer gain are first solved separately; then these gains are checked by a stability condition of the closed-loop system [17]. When there is no GPS synchronization, Seuret et al. address the stability of NCSs in [18] and reveal that the separation principle cannot be used to design the control gains and observer gains. Accordingly, another concern of this paper is to develop an observer-based tracking control design method without using the separation principle, which can determine the control gains and observer gains by solving an optimization problem of an H_{∞} tracking performance.

Notice that some heuristic search methods play a key role in solving complex design optimization problems. A typical method is the Genetic Algorithm (GA), which was introduced in the mid 1970s by John Holland. Recently, GA has been extended to design the delay-dependent controller [19], [20]. In [19], the implementation architecture of NCSs is established via Probus-IP protocols and a PID tuning of remote controller is designed by GA [19]. Du and Zhang show the merits of GA in finding solutions of delay-dependent conditions by some numerical examples [20]. Another well-known stochastic optimization algorithm is the Particle Swarm Optimization (PSO) technique invented by Kennedy and Eberhart in the mid 1990s [21]-[22]. PSO is a population-based optimization algorithm which is inspired by the social behavior of animals such as fish schooling and birds flocking. This algorithm has been well studied because of its easy implementation, stable convergence characteristic and computational efficiency. However, the potentials of PSO in finding the solutions of a network-based controller for an NCS has not been explored. In this study, we will develop a new strategy to design the observer-based controller by a PSO algorithm with the feasibility of the LMI-based stability condition without using the separation principle.

II. PROBLEM STATEMENT

Consider the following reference model

$$\begin{align*}
\dot{x}_r(t) &= A_r x_r(t) + B_r r(t), \\
y_r(t) &= C_r x_r(t),
\end{align*}$$

where $x_r(t) \in \mathbb{R}^n$ is the state vector, $r(t) \in \mathbb{R}^r$ is the energy bounded input vector and $y_r(t) \in \mathbb{R}^q$ is the output vector, respectively. A_r, B_r and C_r are constant matrices with appropriate dimensions. It is assumed that A_r is Hurwitz and $x_r(t)$ is measurable to be used for control signal.

The controlled plant is described as follows

$$\begin{align*}
\dot{x}(t) &= A x(t) + Bu(t) + D\omega(t), \\
y(t) &= C x(t),
\end{align*}$$

where $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^q$ and $\omega(t) \in L_2[0, \infty)$ are the state, the input, the output, the external disturbance, respectively. A, B, C and D are real constant matrices. $x(0) = x_0$ is the initial condition.

Suppose that a communication network is used to connect the plant (2) and the following observer-based controller

$$\begin{align*}
\dot{\hat{x}}(t) &= A \hat{x}(t) + B \hat{u}(t) + L(y(t) - \hat{y}(t)), \\
\dot{\hat{y}}(t) &= C \hat{x}(t), \\
\hat{u}(t) &= F(\hat{x}(t) - x_r(t)),
\end{align*}$$

where $\hat{x}(t) \in \mathbb{R}^n$ is the state estimate vector, $\hat{u}(t) \in \mathbb{R}^m$ is the input vector, and $\hat{y}(t) \in \mathbb{R}^q$ is the output vector. The observer gain L and the control gain F are to be determined. First, $\gamma(h)$ and $\gamma_c(h)$ are augmented as a single packet and transferred over the sensor-to-controller channel and the controller-to-actuator channel, where h is a sampling period. After the sensor-to-controller delay τ_{sc}, $y(b_j h)$ and $x_r(b_j h)$ are available update the following event-driven controller (3) on the interval $[b_j h + \tau_{sc}^b, b_{j+1} h + \tau_{sc}^b]$

$$\begin{align*}
\dot{\hat{x}}(t) &= A \hat{x}(t) + B \hat{u}(t) + L(y(b_j h) - \hat{y}(t)), \\
\dot{\hat{y}}(t) &= C \hat{x}(t), \\
\hat{u}(t) &= F(\hat{x}(t) - x_r(b_j h)),
\end{align*}$$

where b_j ($j = 1, 2, \ldots$) are time-stamps of packets that successfully reach the controller. Notice that the controller outputs the control signals in the update instants instead of re-sampling itself due to the redundant samplings of $x_r(t)$. Similarly, the control signal $\hat{u}(l_k h)$ is available to input the controlled plant after the controller-to-actuator delay τ_{ca}, where l_k ($k = 1, 2, \ldots$) are time-stamps of control signals received by the actuator. Then the actuator holds the signal until next update. Clearly, on $[l_k h + \tau_{ca}, l_{k+1} h + \tau_{ca}]

$$
\begin{align*}
u(t) &= \hat{u}(l_k h) = F(\hat{x}(l_k h) - x_r(l_k h)).
\end{align*}$$

Let $\tau_1(t) = t - b_j h$ for $t \in [b_j h + \tau_{sc}^b, b_{j+1} h + \tau_{sc}^b]$ and $\tau_2(t) = t - l_k h$ for $t \in [l_k h + \tau_{ca}, l_{k+1} h + \tau_{ca}]$. One obtains

$$\begin{align*}
\tau_{sc}^b \leq \tau_1(t) \leq (b_{j+1} - b_j) h + \tau_{sc}^b, & \quad k = 1, 2, \ldots, \\
\tau_{ca} \leq \tau_2(t) \leq (l_{k+1} - l_k) h + \tau_{ca}, & \quad k = 1, 2, \ldots,
\end{align*}$$

Remark 1: Packet dropouts may occur in both the sensor-to-controller channel and the controller-to-actuator channel. So one obtains $\{l_k\}_{k=1}^\infty \subseteq \{b_j\}_{j=1}^\infty \subseteq \mathbb{Z}^+$, and \mathbb{Z}^+ denotes the set of positive integers. Both the controller (4) and the actuator (5) are assumed to recognize and drop outdated data actively. On $[l_k h + \tau_{ca}, l_{k+1} h + \tau_{ca}]$, the actuator (5) holds $\hat{u}(l_k h)$ while the controller (4) may witness more than one update. Specifically, the controller (4) holds the signal $y(b_{m(k-1)+1} h + x_r(b_{m(k-1)+1})$ on $[b_{m(k-1)+1} h + \tau_{sc}^b, b_{m(k-1)+1} h + \tau_{sc}^b]$ and are updated by the signals $y(b_{m(k-1)+1} h + x_r(b_{m(k-1)+1})$, $y(b_{m(k-1)+1} h + x_r(b_{m(k-1)+1})$, \ldots, $y(b_{m(k-1)+1} h + x_r(b_{m(k-1)+1})$, $x_r(b_{m(k-1)+1})$ on $[b_{m(k-1)+1} h + \tau_{sc}^b, b_{m(k-1)+1} h + \tau_{sc}^b]$, \ldots, $[b_{m(k-1)+1} h + \tau_{sc}^b, b_{m(k-1)+1} h + \tau_{sc}^b]$, respectively, where $m \leq b_{m(k-1)}$, and $m \leq b_{m(k-1)}$. Define $\tau_m = \min_{k \in \mathbb{Z}} \{\tau_{sc}^b\}$, $\tau_M = \max_{k \in \mathbb{Z}} \{\{b_{k+1} - b_k) h + \tau_{sc}^b\}$ and $\tau_M = \max_{k \in \mathbb{Z}} \{\{b_{k+1} - b_k) h + \tau_{sc}^b\}$. Then, for $t \in [l_k h + \tau_{ca}, l_{k+1} h + \tau_{ca}]$, we have

$$\begin{align*}
0 \leq \tau_m \leq \tau_1(t) \leq \tau_M, \\
0 \leq \tau_m \leq \tau_2(t) \leq \tau_M.
\end{align*}$$

where τ_m is the lower bound of network-induced delays, τ_M and τ_M can be viewed as the synthetical index involving information about network-induced delays and packet dropouts in the sensor-to-controller and sensor-to-actuator channels.

Remark 2: The sensor-to-controller delay and controller-to-actuator delay can be lumped together τ_{ca} for NCSs with fixed controllers in [6], [12], [13] and [15]. But this is not the case for NCSs with an observer-based controller because of
the difference between $\hat{u}(t)$ and $u(t)$: different packets may be available at the controller and the actuator since packet dropouts may occur in the controller-to-actuator channel; due to the controller-to-actuator delay $τ_{k}^c$, the data stamped by l_kh cannot update synchronously the actuator and the controller at the time instant $l_kh + τ_k$.

Then, the closed-loop system can be given by

\[
\begin{align*}
 \dot{\xi}(t) &= \tilde{A}\xi(t) + \tilde{B}_1\xi(t-τ_1(t)) + \tilde{B}_2\xi(t-τ_2(t)) + \tilde{D}\bar{\omega}(t), \\
 e(t) &= \tilde{C}\xi(t), \quad t \in [l_kh + τ_k, l_{k+1}h + τ_{k+1}], \quad ∀k \in \mathbb{Z}^+,
\end{align*}
\]

where

\[
\begin{align*}
 \tilde{A} &= \begin{bmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & A_r \end{bmatrix},
 \tilde{B}_1 = \begin{bmatrix} 0 & 0 & 0 \\ LC & BF-\bar{L}C & -BF \end{bmatrix}, \\
 \tilde{B}_2 &= \begin{bmatrix} 0 & BF & -BF \\ 0 & 0 & 0 \end{bmatrix}, \quad \tilde{D} = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}, \quad \tilde{C} = \begin{bmatrix} C^T & 0 & -C^T \end{bmatrix}^T,
 \xi(t) = \begin{bmatrix} x^T(t) & \dot{x}^T(t) & x_2^T(t) \end{bmatrix}^T, \quad \bar{\omega}(t) = \begin{bmatrix} \omega^T(t) & \tau^T(t) \end{bmatrix}^T.
\end{align*}
\]

The initial condition of the state $x(t)$ on $[t_0 - τ_{2M}, t_0]$ is supplemented by $x(t) = \psi(t), \quad t \in [t_0 - τ_{2M}, t_0]$. Then the initial states of the augmented system NCS can be given by $\xi(t) = \phi(t) = [\psi^T(t) \, 0]^T$ with $\phi(t_0) = \xi_0$.

Remark 3: Some techniques such as network protocols including round-trip acknowledgement signals [8] and a state predictor [16] are introduced to implement a synchronized control input in the controlled plant (2) and the controller (4), i.e., $τ_1(t) = τ_2(t)$ for $t \in [l_kh + τ_k, l_{k+1}h + τ_{k+1}], \quad ∀k \in \mathbb{Z}^+$. Then an interesting question arises: can the controller designed for the system (9) with $τ_1(t) = τ_2(t)$ guarantee the stability of the system (9) with $τ_1(t) \leq τ_2(t)$? In particular, we exhibit the answer to this question by a simple numerical example. A linear system with two constant delays (a special case of the system (9)) is given by

\[
\begin{align*}
 \dot{\xi}(t) &= \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \xi(t) + \begin{bmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xi(t-τ_1) \\
 &\quad + \begin{bmatrix} 0 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xi(t-τ_2),
\end{align*}
\]

(10)

The initial state is set to be $\xi(0) = [1 \, -1 \, 0.5]^T$. Fig. 1. and Fig. 2 show the responses of the system (10) with $τ_1 = τ_2 = 3s$ and $τ_1 = 1.5s$ and $τ_2 = 3s$, respectively. One can clearly see that the system (10) with $τ_1 = τ_2 = 3s$ is asymptotically stable but unstable even $τ_1$ is less than the delay $τ_2$. Thus, the synchronization technique in [8] and [16] cannot be used in this paper and the condition (8) must be ensured in the stability analysis and controller synthesis for the system (9).

Throughout this paper, the following $H_∞$ tracking performance for the system (9) is required [9]-[14].

\[
\int_{t_0}^{t_f} e^T(t)Me(t)dt \leq V(\xi_0) + γ^2 \int_{t_0}^{t_f} \bar{\omega}^T(t)\bar{\omega}(t),
\]

(11)

where $γ > 0$ is the tracking level, $M > 0$ is the weighting matrix, and $V(\xi_0)$ is the energy function of initial states.

The purpose of this paper is to analyze the $H_∞$ tracking performance (11) and to design the observer-based controller (4) for the system (9).

III. MAIN RESULTS

In this section, a sufficient condition on the existence of the tracking controller for the system (9) is first derived by a Lyapunov-Krasovskii functional method. The stability condition is given by the following proposition.

Proposition 1: For given positive scalars $γ_m, τ_{1M}, τ_{2M}$ and $γ$, gain matrices F and L, the system (9) is asymptotically stable with the $H_∞$ tracking performance $γ$ if there exist matrices $P > 0, \quad Q_i > 0$ and $R_i > 0 \quad (i = 1, 2, 3)$ such that

\[
Ψ = \begin{bmatrix} Ψ_{11} & Ψ_{12} \\ * & Ψ_{22} \end{bmatrix} < 0,
\]

(12)

where

\[
Ψ_{11} = \begin{bmatrix} Ψ(1, 1) & \frac{P}{2}B_1 & \frac{P}{2}B_2 & \frac{R_1}{2} \\ * & -2R_2 - 2R_3 & -R_1 & R_2 + R_3 \\ * & * & -2R_3 & 0 \\ * & * & * & Ψ(4, 4) \end{bmatrix},
\]

1658
$\Psi_{12} = \begin{bmatrix} 0 & 0 & P\overline{D} & \overline{A}T \Lambda \\ R_2 & 0 & 0 & \overline{B}_i \Lambda \\ 0 & R_3 & 0 & \overline{B}_i \Lambda \\ 0 & 0 & 0 & 0 \end{bmatrix},$

$\Psi_{22} = \begin{bmatrix} Q_3 - Q_2 - R_2 & 0 & 0 & 0 \\ * & -Q_3 - R_3 & 0 & 0 \\ * & * & -\gamma^2 I & D^2 \Lambda \\ * & * & * & -\Lambda \end{bmatrix},$

$\Lambda = \tau_2^2 R_1 + (\tau_1 M - \tau_m)^2 R_2 + (\tau_2 M - \tau_m)^2 R_3,$

$\Psi(1.1) = PA + A^T P + Q_1 + C^T M C - R_1,$

$\Psi(4.4) = Q_2 - Q_1 - R_1 - R_2 - R_3.$

Proof: First, we consider the stability of the system (9) with $\hat{\omega}(t) = 0$. Choose the following Lyapunov-Krasovskii functional including information about $\tau_m, \tau_1 M$ and $\tau_2 M$.

$V(\xi) = \xi^T(t)P\xi(t) + \int_{t-m}^{t}\xi^T(s)Q_1\xi(s)ds$

$+ \int_{t-m}^{t-M} \xi^T(s)Q_2\xi(s)ds + \int_{t-M}^{t-\tau_1 M} \xi^T(s)Q_3\xi(s)ds$

$+ \int_{t-M}^{t-M} \xi^T(\theta)(\tau_1 M - \tau_m)R_2\xi(\theta)d\theta ds$

$+ \int_{t-M}^{t-M} \xi^T(\theta)(\tau_2 M - \tau_m)R_3\xi(\theta)d\theta ds$

$= \xi^T(t)P\xi(t) + \int_{t-m}^{t-M} \xi^T(s)Q_1\xi(s)ds$

$+ \xi^T(t)(\tau_1 M - \tau_m)R_2\xi(t)$

$+ \xi^T(t)(\tau_2 M - \tau_m)R_3\xi(t)$

$= \xi^T(t)(\tau_1 M - \tau_m)R_2\xi(t)$

$+ \xi^T(t)(\tau_2 M - \tau_m)R_3\xi(t)$

$= \xi^T(t)(\tau_1 M - \tau_m)R_2\xi(t)$

$+ \xi^T(t)(\tau_2 M - \tau_m)R_3\xi(t)$

Taking the time-derivative of $V(\xi)$ on $[l_k h + \tau_{k}, l_{k+1} h + \tau_{k+1})$ along the trajectory of the system (9), we have

$V(\xi) = 2\xi^T(t)P\xi(t) + \sum_{i=1}^{2} \overline{B}_i \xi(t - \tau_i(t)) + \xi^T(t)Q_1\xi(t)$

$+ \xi^T(t)(\tau_1 M - \tau_m)R_2\xi(t)$

$+ \xi^T(t)(\tau_2 M - \tau_m)R_3\xi(t)$

Considering $\overline{C}^T M \overline{C} + P\overline{D}P/\gamma^2 \geq 0$ and the LMI (12) by the schur complement technique, we can conclude the asymptotical stability of the system (9) with $\hat{\omega}(t) = 0$ by following the similar analysis method in [7].

Next, under the zero initial condition, we consider the H_m tracking performance (11) for all nonzero $\hat{\omega}(t) \in L_2[0, \infty)$. For $[l_k h + \tau_{k}, l_{k+1} h + \tau_{k+1})$, it follows from (11) that

$\int_{l_k h + \tau_k}^{t} e^T(s)Me(s)ds = V(\xi|l_k h + \tau_k) - V(\xi)$

$+ \int_{l_k h + \tau_k}^{t} (V(\xi_0) + e^T(s)Me(s))ds.$

Define $t_f = l_{T+1} h + \tau_{T+1}$, where T is the time stamp that the last control signal successfully arrived the actuator. And we have $\bigcup_{k=0}^{T}[l_k h + \tau_k, l_{k+1} h + \tau_{k+1}) = [t_0, t_f]$. Then one can see the H_m tracking performance (11) is ensured in consideration of the continuity of the LKF $V(\xi)$ on $[t_0, t_f]$, which completes the proof.

Now, we are in a position to design an observer-based controller for the system (9). It is a routine way to use a separation principle to solve the control gain and observer gain for traditional systems. However, due to the synchronization errors introduced by communication networks, $x(t)$ and $\hat{x}(t)$ in (9) are interconnected so that F and L are coupled in \hat{B}_1. As a result, the separation principle does not work for the system (9). In this paper, an algorithm which utilizes the random search of PSO and the feasible solution of the LMI-based stability condition, is presented to obtain the optimal tracking performance γ and the corresponding feedback gains F and L. In the PSO technique, the particle status are characterized by two factors: its position and velocity, which are updated by the following equations [21]-[22]

$v_{id}(k+1) = \omega \cdot v_{id}(k) + c_1 \cdot rand() \cdot (p_{id}(k) - x_{id}(k))$

$+ c_2 \cdot rand() \cdot (p_{gd}(k) - x_{id}(k)),$

$f_{id}(k+1) = f_{id}(k) + v_{id}(k+1),$

$\omega = (\omega_m - \omega_m)(m_{\eta} - c_{\eta})/m_{\eta} + \omega_m.$

where $v_{id}(k)$ is the d^th dimensional velocity ($d = 1, 2, \ldots, l$) of the i^{th} particle ($i = 1, 2, \ldots, N_p$) at the discrete-time index k; f_{id} and p_{id} are the current position and previous best position of the i^{th} particle, respectively; p_{gd} is the global best position; $rand()$ is a uniformly distributed random variables lied on $[0, 1]$; c_1 and c_2 are two acceleration coefficients; ω is the inertia weight; ω_m and ω_m represent the maximum and minimum inertia weight respectively; m_{η} and c_{η} denote the maximum iteration and the current iteration, respectively.

The PSO algorithm is given as follows.

Procedure 1:

Step 1: Initialization

1.1) Randomly initialize the population of N_p particles. Each particle consists of the elements the feedback matrices F, L and scalar γ, and these elements f_i lie in the range $[a_i, b_i]$ ($i = 1, 2, \ldots, mn+1$).

1.2) Initialize the parameters $c_1, c_2, \omega_M, \omega_m, V_{max}$ and iteration number.

Step 2: Repeat until a given maximum number of iteration

2.1) Evaluate the individual fitness. First, decode individual produced in Step 1.1) to obtain the F_j and L_j ($j = 1, 2, \ldots, N_p$). Second, search the γ for every F_j and L_j satisfying the LMI-based stability condition. And take every γ as the objective value corresponding to F_j and L_j.

2.2) Store the global best particle and its fitness.

2.3) Store the previous best particles and their fitnesses.

2.4) Update the velocity and position according to (15).

Step 3: Obtain the minimum γ and the corresponding feedback gains F_j and L_j from the global best particle.

Remark 4: The convergence speed of Procedure 1 mainly depends on the search space $[a_i, b_i]$. How to determine the
orders of magnitude (α_i and β_i), is vital to the control design.
Usually, one can refer to the expert knowledge database, the other is in virtue of the following traditional control strategy.

If no network exists between the controlled plant and the controller we have the following hardwired system from (9)

$$
\begin{align*}
\dot{\xi}(t) &= (A + B)\xi(t) + \bar{D}\vartheta(t), \\
e(t) &= C\xi(t),
\end{align*}
$$

(18)

where $\bar{B} = \bar{B}_1 + \bar{B}_2$.

Based on the separation principle and the result in [11], we have the following proposition.

Proposition 2: For given scalars $\gamma > 0$, $\varepsilon > 0$ and a weighting matrix $M > 0$, the system (18) is asymptotically stable and satisfies the H_{∞} tracking performance γ if there exist matrices $X_i > 0$ ($i = 1, 2, 3$) such that $\Theta < 0$, where

$$
\Theta = \begin{bmatrix}
-2\varepsilon X_1 & 0 & 0 & -(\bar{B}^T)^T & 0 & 0 & \varepsilon I & 0 \\
* & -2\varepsilon & 0 & \bar{D}^T & 0 & 0 & 0 & \varepsilon I \\
* & * & \Theta_{33} & X_1 B_r & \Theta_{36} & 0 & 0 & \\
* & * & * & \Theta_{44} & -B_r & X_1 C^T & 0 & 0 \\
* & * & * & * & -\gamma^2 I & 0 & 0 & \\
* & * & * & * & * & -M^{-1} & 0 & 0 \\
* & * & * & * & * & * & \Theta_{77} & X_2 D \\
* & * & * & * & * & * & * & -\gamma^2 I
\end{bmatrix}
$$

$\Theta_{33} = X_3 A_r + A_r^T X_3$, $\Theta_{44} = X_4 A_r + X_4 B_r^T + (\bar{A}X_1 + \bar{B}_1 B_r^T)^T$, $\Theta_{34} = (\bar{A} - A_r)^T$, $\Theta_{36} = (\bar{C} - C_r)^T$, $\Theta_{77} = X_2 A + \bar{A}^T X_2 - Z C - \bar{C}^T Z^T$.

Moreover, if the above condition is feasible, the gains are obtained by $F = Y X_1^{-1}$ and $L = X_2^{-1} Z$, respectively.

Proof: The proof is a routine case and omitted.

IV. NUMERICAL EXAMPLES

Example 1: The controlled plant is borrowed from [17]

$$
\begin{align*}
\dot{x}(t) &= \begin{bmatrix} 0 & 1 \\ 0 & -11.32 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ 1 & 11.32 \end{bmatrix} u(t), \\
y(t) &= \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} x(t).
\end{align*}
$$

The reference model is given as follows [11]

$$
\begin{align*}
\dot{x}_r(t) &= \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} x_r(t) + \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} r(t), \\
y_r(t) &= \begin{bmatrix} 1 \\ 0 \end{bmatrix} x_r(t).
\end{align*}
$$

(20)

Applying Proposition 2 with $M = 1$ and $\varepsilon = 0.5$, one can obtain the minimum tracking index $\gamma = 0.51$, the control gain $F_1 = [-1.1441 - 0.0983]$ and the observer gain $L_1 = [0.2182 6.5645]^T$. Suppose the network setting I to be $\tau_{m} = 60(ms)$, $\tau_{LM} = 100(ms)$, $\tau_{SM} = 200(ms)$ and the scalars in the algorithm $N_p = 20$, $c_1 = 2$, $c_2 = 2$, $\omega_m = 0.7$ and $\omega_m = 0.4$, which satisfy the convergence of criterion [22]. Then $\gamma_{\text{min}} = 0.0934$, $F_2 = [-3.2061 - 0.46114]$ and $L_2 = [9.9825 9.9574]^T$ are solved by Procedure 1 with Proposition 1.

In simulation, the sampling period is $h = 20(ms)$ and initial states are $x(0) = \hat{x}(0) = [0.5 \ 0]$, $x_r(0) = [-0.5 - 2]$. Moreover, we make brief of packet dropout and network-induced delay by assuming $b_1 = 2t_1$. $30(ms) \leq \tau_{m} \leq 60(ms)$, $l_k = 4k$ and $50(ms) \leq \tau_{\ell} \leq 120(ms)$, which satisfies that $30(ms) \leq \tau_{1}(t) \leq 100(ms)$ and $30(ms) \leq \tau_{2}(t) \leq 200(ms)$.

Then Fig. 3 shows the tracking response of (19)-(20) in the network setting I, where the controller with F_1 and L_1 is designed by Proposition 2. It is noted that an unsatisfactory tracking performance is obtained, though the stability of overall systems with the traditional controller (F_1 and L_1) is satisfied in the network environment. The output response of the controlled plant (19) and the reference model (20) in the network constraint I is depicted in Fig. 4. It can be shown in Fig. 4 that $y(\ell)$ tracks $y_r(\ell)$ with a satisfactory accuracy. In addition, we can calculate that

$$
\frac{e^T(t) Me(t)}{r^T(t) r(t)} = 0.0101 < \gamma_{\text{min}} = 0.0934.
$$

For the comparison purpose, setting the network setting II to be $\tau_{m} = 6(ms)$, $\tau_{LM} = 50(ms)$ and $\tau_{SM} = 100(ms)$, it follows the similar process that $\gamma = 0.04863$, $F_3 = [-9.0985 - 0.82043]$ and $L_3 = [9.9384 8.8150]^T$ are solved by Procedure 1 with Proposition 1. Applying these gains F_3 and L_3 in sim-
ulation, we can depict the trajectories of the controlled plant (19) and the reference model (20) in Fig. 5. Correspondingly, the comparison of tracking errors between the response by the controller with F_2 and L_2 (curve e1) and the response by the controller with F_3 and L_3 (curve e2) is given in Fig. 6. Apparently, the tracking effect is improved because of the smaller tracking index $\gamma = 0.04863$ and the higher network setting II, which explains the tradeoff between the tracking performance and the network constraint.

V. CONCLUSIONS

This paper has considered the output tracking control for a class of linear NCSs with an observer-based controller. A stability condition that ensures an H_∞ tracking performance is provided in terms of LMIs. To achieve a desired tracking performance, we have transformed the control design into an algorithm by using the PSO technique with the feasibility of LMI-based stability condition. An example has been given to show the effectiveness of the proposed method.

REFERENCES