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Abstract— A numerical framework for continuous-time
consumption-portfolio problems is set up by Markov chain
approximation with the logarithmic transformation (We call
it MCALT 1 algorithm). We show that the complexity of
the algorithm is a polynomial. An example with and with
prohibition of short-sale on risky securities is provided to
demonstrate the proposed numerical method.
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I. INTRODUCTION

Continuous-time consumption-portfolio problems
have been extensively studied in the literature since
the work of Merton (1969, 1971). However, two obser-
vations are worth mentioning: First, no explicit solution
exists for general utility functions. Second, it is difficult,
if not impossible, to obtain explicit solutions for con-
strained cases but there are various constraints which
are important in applications, like prohibition of short
sale on securities, etc. Therefore, effective numerical
methods are called for.

The direct Markov chain approximation method has
been used for the consumption-portfolio problems with
an infinite horizon by Fitzpatrick and Fleming [3].
However, they imposed a restrictive condition on util-
ity functions, namely, the constant relative risk aversion
(CRRA for short) parameter is in the range of (0, 1).
This condition greatly limits the application of the
Markov chain approximation in continuous-time eco-
nomics, since the range of CRRA parameters is (−∞, 1).
There are very few studies, if any at all, in literature
on using the direct Markov chain approximation to
consumption-portfolio problems with a finite horizon.

Recently, Monte Carlo methods have been applied
to continuous-time consumption-portfolio problems by
Detemple, Garcia, and Rindisbacher [2] and Cvitanić,
Goukasian, and Zapatero [1]. their methods require
that markets are complete as mentioned in Cvitanić,
Goukasian, and Zapatero [1]. Therefore, their methods
are inapplicable to constrained optimization problems
due to the fact that constrained financial markets
and/or constrained insurance markets are no longer
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complete since some contingent claims are not hedge-
able in such markets.

The aim of this paper is two-fold: First, MCALT
algorithm is used to set up the numerical framework
for consumption-portfolio problems in the setting of
the generalization of usual utility functions. MCALT al-
gorithm resolves the deficiencies of the above two men-
tioned numerical methods for consumption-portfolio
model. Second, we show that the complexity of the
algorithm is a polynomial of the number of risky
securities, the number of computed grid points, and
the input size in the binary number system. There-
fore MCALT algorithm is a powerful tool to study
continuous-time (un)constrained portfolio problems.

This paper is organized as follows. In the next sec-
tion we describe the consumption-portfolio problems
and state the HJB equation with the boundary con-
ditions. In Section 3 we introduce MCALT algorithm
to consumption-portfolio problems, and apply it to an
example with and without a nonnegative constraint on
portfolio. We conclude with some remarks in Section 4.

II. MODEL DESCRIPTIONS AND HJB EQUATIONS WITH
BOUNDARY CONDITIONS

Let W (t) = (W1(t), · · · ,WN (t))′, here ′ is a trans-
pose operator, be a standard N -dimensional Brownian
motion defined on a given probability space (Ω,F , P ).
Let Ft at time t be the P-augmentation of the filtration
σ{W (s), s ≤ t}, t ∈ [0, T ], it represents the information
at time t.

There is a riskless security and N risky securities
in the financial market. The riskless security evolves
according to

dS0(t) = r(t)S0(t)dt, (1)

and N risky securities evolves according to

dSi(t) = Si(t)

µi(t)dt+
N∑
j=1

σij(t)dWj(t)

 ,

i = 1, · · · , N. (2)

Assume r(t), µ(t) , (µ1(t), · · · , µN (t))′, and σ(t) ,
(σij(t))N×N , satisfy the usual assumptions such that
the market is complete.

We define some processes describing the investor’s
input and decisions at time t:

• i(t) , Income rate at time t.
• c(t) , Consumption rate at time t.
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• θi(t) , Dollar amount in the risky security i at time
t, i = 1, · · · , N . θ(t) , (θ1(t), · · · , θN (t))′.

The wealth process X(t) satisfies the stochastic differ-
ential equation

dX(t) = r(t)X(t)dt− c(t)dt+ i(t)dt

+θ′(t)[(µ(t)− r(t)1̄)dt+ σ(t)dW (t)]. (3)

Where 1̄ is the N -dimensional vector whose every
component is 1.

Suppose that the investor’s preference structure is
given by (U1, U2). U1(·, t) is a utility function for the
consumption with the subsistence consumption c̄(t) :
[0, T ] 7→ [−∞,∞), and U2(·) is a utility function for the
terminal wealth with the subsistence terminal wealth
X̄ ∈ [−∞,∞).

Remark 2.1: • Here we loose the nonnegative re-
quirements on the subsistence levels c̄(·), and X̄
(see Definition 3.4.1, Karatzas and Shreve [4]).
Moreover they can possibly take −∞, in this case,
it means no subsistence level. Examples are expo-
nential utility functions which has no subsistence
level.

• There are nonnegative constraints on consumption
and the terminal wealth. Together with subsistence
levels, we define

c̄0(t) , max{c̄(t), 0}, t ∈ [0, T ],

X̄0 , max{X̄, 0},

which we call the essential levels for consumption
and the terminal wealth, respectively.

Given an wealth x at time t ≤ T and a pair of
investor’s decisions, (c, θ), his expected utility at time
t with the wealth x is

V (c,θ)(t, x) , E

[∫ T

t

U1(c(s), s)ds

+U2(X(T ))
∣∣∣Ft

]
. (4)

The investor’s problem at time t with the wealth x
is to choose consumption c∗ and portfolio strategies
θ∗ to maximize his expected utility (4). Denote by
V (t, x) the maximized expected utility at time t with
the wealth x . By the dynamic programming technique
(see Merton [7], [8]), we have

Vt(t, x) + sup(c≥c̄0(t),θ) Ψ(t, x; c, θ) = 0 (5)

on the domain D , {(t, x) ∈ [0, T ] × (−∞,+∞), x >
b̄0(t)− b(t)}. Where

Ψ(t, x; c, θ)

, 1

2
θ′σ(t)σ′(t)θVxx(t, x) + (θ′(µ(t)− r(t)1̄)

+r(t)x+ i(t)− c)Vx(t, x) + U1(c, t), (6)

In addition, V satisfies a boundary condition

V (T, x) = U2(x), (7)

and an absorbing boundary condition

V (t, b̄0(t)− b(t))

=

∫ T

t

U1(c̄0(s), s)ds+ U2(X̄0). (8)

Remark 2.2: In the absorbing boundary condition (8),
b(t) is define as

b(t) =

∫ T

t

i(s) exp

{
−
∫ s

t

r(v)dv

}
ds, (9)

and b̄0(t) is defined as

b̄0(t) =

∫ T

t

c̄0(s) exp

{
−
∫ s

t

r(v)dv

}
ds

+X̄0 exp

{
−
∫ T

t

r(s)ds

}
. (10)

The absorbing boundary condition (8) is the gener-
alization of the one in Theorem 3.8.11, Karatzas and
Shreve [4]).

We do the following transformations on (5)

w , x+ b(t)− b̄0(t), (11)
Ṽ (t, w) , V (t, x), (12)

c̃(t) , c(t)− c̄0(t). (13)

We have

Ṽt(t, w) + sup(c̃≥0,θ) Ψ̃(t, w; c̃, θ) = 0 (14)

on the domain D̃ , {(t, w) ∈ [0, T ]× (0,+∞)} with the
boundary conditions

Ṽ (T,w) = U2(w + X̄0), (15)

Ṽ (t, 0) =

∫ T

t

U1(c̄0(s), s)ds+ U2(X̄0). (16)

Where

Ψ̃(t, w; c̃, θ)

, 1

2
θ′σ(t)σ′(t)θṼww(t, w) + (θ′(µ(t)− r(t)1̄)

+r(t)w − c̃)Ṽw(t, w) + U1(c̃+ c̄0(t), t). (17)

Now the term i is disappeared in (14) compared to
(5), and the absorbing boundary is no more a moving
boundary after the transformations.

For CRRA utility functions with nonnegative subsis-
tence levels, if any one of CRRA parameters for U1

and U2 is negative or zero, the absorbing boundary
condition (16) is singular. At this point, if we introduce
the numerical scheme to (14), the scheme will be greatly
limited since the possibly singular boundary condition
(16) is involved in it.
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III. MCALT ALGORITHM

To resolve the difficulty mentioned in the previous
section, we will do the logarithmic transformation on
(14) as follows

u , lnw, (18)
V̂ (t, u) , Ṽ (t, w), (19)

ĉ , c̃

w
= e−uc̃, (20)

θ̂ , θ

w
= e−uθ. (21)

Here ĉ and θ̂ are consumption proportion and portfolio
proportions.

We have

V̂t(t, u) + sup(ĉ≥0,θ̂) Ψ̂(t, u; ĉ, θ̂) = 0 (22)

on the domain D̂ , {(t, u) ∈ [0, T ] × (−∞,+∞)} with
the boundary conditions

V̂ (T, u) = U2(e
u + X̄0), (23)

V̂ (t,−∞) =

∫ T

t

U1(c̄0(s), s)ds+ U2(X̄0). (24)

Where

Ψ̂(t, u; ĉ, θ̂)

, 1

2
θ̂′σ(t)σ′(t)θ̂(V̂uu(t, u)− V̂u(t, u))

+(θ̂′(µ(t)− r(t)1̄) + r(t)− ĉ)V̂u(t, u)

+U1(e
uĉ+ c̄0(t), t). (25)

The absorbing boundary condition moves to −∞ un-
der the logarithmic transformation, the domain of the
above HJB equation becomes [0, T ]× (−∞,∞). Clearly
the absorbing boundary condition won’t be involved
in numerical methods since it occurs at −∞.

Now we introduce the following approximating
rules (Kushner and Dupuis [6]):

V̂ (t, u) → V̂ h,δ(t, u). (26)

V̂t(t, u) →
V̂ h,δ(t+ δ, u)− V̂ h,δ(t, u)

δ
. (27)

If a coefficient of V̂u is positive,

V̂u(t, u) →
V̂ h,δ(t+ δ, u+ h)− V̂ h,δ(t+ δ, u)

h
.

(28)
If a coefficient of V̂u is negative

V̂u(t, u) →
V̂ h,δ(t+ δ, u)− V̂ h,δ(t+ δ, u− h)

h
.

(29)
V̂uu(t, u)

→ V̂ h,δ(t+ δ, u+ h)

h2
− 2

V̂ h,δ(t+ δ, u)

h2

+
V̂ h,δ(t+ δ, u− h)

h2
. (30)

The discretized version of (22) is

V̂ h,δ(t, u) = sup(ĉ≥0,θ̂) Ψ̂
h,δ(t, u; ĉ, θ̂) (31)

with the boundary condition

V̂ h,δ(T, u) = U2(e
u + X̄0). (32)

Where

Ψ̂h,δ(t, u; ĉ, θ̂)

, P̂(ĉ,θ̂)(t, u;u+ h)V̂ h,δ(t+ δ, u+ h)

+P̂(ĉ,θ̂)(t, u;u)V̂
h,δ(t+ δ, u)

+P̂(ĉ,θ̂)(t, u;u− h)V̂ h,δ(t+ δ, u− h)

+δU1(e
uĉ+ c̄0(t), t),

(33)

here

P̂(ĉ,θ̂)(t, u;u+ h)

, δ

2h2
θ̂′σ(t)σ′(t)θ̂

+
δ

h
(θ̂′(µ(t)− r(t)1̄)1θ̂′(µ(t)−r(t)1̄)≥0 + r(t)),

(34)
P̂(ĉ,θ̂)(t, u;u− h)

, (
δ

2h2
+

δ

2h
)θ̂′σ(t)σ′(t)θ̂

− δ

h
(θ̂′(µ(t)− r(t)1̄)1θ̂′(µ(t)−r(t)1̄)≤0 − ĉ),

(35)
P̂(ĉ,θ̂)(t, u;u)

, 1− P̂(ĉ,θ̂)(t, u;u+ h)− P̂(ĉ,θ̂)(t, u;u− h).

(36)

Here (31) is the finite difference equation which needs
to be solved backward in time. P̂(ĉ,θ)(t, u;u + h),
P̂(ĉ,θ)(t, u;u), and P̂(ĉ,θ)(t, u;u − h) are interpreted as
transition probabilities of a Markov chain at time t since
the sum of them is 1, and they are associated with
three states u + h, u − h, u at time t + δ, respectively.
Hence the key assumption is that the right hand sides
of (34) – (36) are nonnegative. The right hand sides
of (34) – (36) do not depend on the state variable u

explicitly. In addition, the proportions ĉ and θ̂ are small
in practice. So we can choose some appropriate values
of δ and h such that the right hand sides of (34) – (36)
are uniformly nonnegative.

Remark 3.1: In this remark, we are going to verify the
local consistency (see Equation 12.1.5 in Kushner and
Dupuis [6]) of the approximation scheme (31) . Let

U(t) , ln(X(t) + b(t)− b̄0(t)),

ĉ(t) , c(t)− c̄0(t)

X(t) + b(t)− b̄0(t)
,

θ̂(t) , θ(t)

X(t) + b(t)− b̄0(t)
.
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According to (4), by Itô lemma, we have

dU(t) =

(
r(t)− 1

2
θ̂′σ(t)σ′(t)θ̂ − ĉ(t)

+θ̂′(t)(µ(t)− r(t)1̄))

)
dt+ θ̂′(t)σ(t)dW (t)

Which is the dynamics corresponding to HJB equa-
tion (22).
From (34) – (35),

E[U(t+ δ)− u | U(t) = u]

, P̂(ĉ,θ̂)(t, u;u+ h) ∗ h− P̂(ĉ,θ̂)(t, u;u− h) ∗ h

= δ

(
r(t)− 1

2
θ̂′σ(t)σ′(t)θ̂ − ĉ(t)

+θ̂′(t)(µ(t)− r(t)1̄))

)
(37)

and

P̂(ĉ,θ̂)(t, u;u+ h) ∗ h2 + P̂(ĉ,θ̂)(t, u;u− h) ∗ h2

−(E[U(t+ δ)− u | U(t) = u])2

= δθ̂′σ(t)σ′(t)θ̂ +O(hδ). (38)

Therefore, the approximation scheme (31) is locally
consistent.

We are going to discuss the optimal decisions in the
difference equation (31). From (34) – (36), after some
algebra, we have

sup
(ĉ≥0,θ̂)

Ψ̂h,δ(t, u; ĉ, θ̂)

= δ sup
θ̂

{
1

2
(V̂ h,δ

uu (t, u)− V̂ h,δ
u,−(t, u))θ̂

′σ(t)σ′(t)θ̂

+V̂ h,δ
u,+(t, u)θ̂

′(µ(t)− r(t)1̄)1θ̂′(µ(t)−r(t)1̄)≥0

+V̂ h,δ
u,−(t, u)θ̂

′(µ(t)− r(t)1̄)1θ̂′(µ(t)−r(t)1̄)≤0

}
+δ sup

ĉ≥0

{
U1(e

uĉ+ c̄0(t), t)− V̂ h,δ
u,−(t, u)ĉ

}
+δr(t)V̂ h,δ

u,+(t, u) + V̂ h,δ(t+ δ, u).

= δmax

[
sup

θ̂′(µ(t)−r(t)1̄)≥0

{
1

2
(V̂ h,δ

uu (t, u)− V̂ h,δ
u,−(t, u))θ̂

′σ(t)σ′(t)θ̂

+V̂ h,δ
u,+(t, u)θ̂

′(µ(t)− r(t)1̄)

}
,

sup
θ̂′(µ(t)−r(t)1̄)≤0

{
1

2
(V̂ h,δ

uu (t, u)− V̂ h,δ
u,−(t, u))θ̂

′σ(t)σ′(t)θ̂

+V̂ h,δ
u,−(t, u)θ̂

′(µ(t)− r(t)1̄)

}]
+δ sup

ĉ≥0

{
U1(e

uĉ+ c̄0(t), t)− V̂ h,δ
u,−(t, u)ĉ

}
+δr(t)V̂ h,δ

u,+(t, u) + V̂ h,δ(t+ δ, u).

(39)

Where

V̂ h,δ
u,+(t, u)

, V̂ h,δ(t+ δ, u+ h)− V̂ h,δ(t+ δ, u)

h
, (40)

V̂ h,δ
u,−(t, u)

, V̂ h,δ(t+ δ, u)− V̂ h,δ(t+ δ, u− h)

h
, (41)

V̂ h,δ
uu (t, u)

, V̂ h,δ(t+ δ, u+ h)

h2
− 2

V̂ h,δ(t+ δ, u)

h2

+
V̂ h,δ(t+ δ, u− h)

h2
. (42)

Note, the first term of the right hand side of (39) is a
combination of two quadratic programming problems
with linear constraints, and the second term of it is
a single-variable convex programming problem with a
nonnegative constraint.

There are various constraints on consumption pro-
portion ĉ and portfolio proportions θ̂ due to various
requirements from the reality besides the nonnegativity
of essential levels, for example, prohibition of short sale
on securities, e.g., θ̂ ≥ 0. Such constraints on ĉ and
θ̂ are added to the right hand side of (39) to succeed
in mathematical modeling. Adding the constraints to ĉ
in the second term of (39), it is still a single-variable
convex programming which can be solved if we know
the forms of U1 by the elementary calculus. Adding
the constraints to θ̂ in the first term of (39), it is still
a quadratic programming. If θ̂ subjects to one or more
linear inequality and/or equality constraints like

Aθ̂ ≤ d, (43)
Bθ̂ = z, (44)

according to Kozlov, Tarasov, and Khachiyan (1979), the
complexity of quadratic programming in (39) is poly-
nomial solvability under the assumption V̂ h,δ

uu (t, u) <

V̂ h,δ
u,−(t, u).
We describe the procedure of the algorithm as fol-

lows. The time step δ and the spatial step h divide the
space (t, u) into grid points. Assuming the time step δ
divide the time interval [0, T ] into L time rows.

• Step 1: Compute the utility V for each grid point
at the L-th time row using the terminal condition
(32). Set the variable l = L− 1.

• Step 2: Solve the optimization problem (39) (possi-
bly with additional constraints) for each grid point
at the l-th time row, and store the utility value for
each grid point at the l-th time row by the equation
(31).

• Step 3: If l > 0, decrease l by 1 and go to Step 2.
Otherwise, the algorithm succeeds.

By the above descriptions, we have the following com-
plexity theorem:
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Theorem 3.2: Assuming θ̂ subjects to one or more
constraints in the forms of (43) – (44). If V̂ h,δ

uu (t, u) <
V̂ h,δ
u,−(t, u) holds for each grid point to be computed,

The complexity of the algorithm is bounded by a poly-
nomial of the number of risky securities, the number of
computed grid points, and the input size in the binary
number system.

Now we are in a position to implement the numerical
method. Let’s consider an investor to invest in stock 1
and stock 2 in the financial market for one year. His
CRRA parameter γ = −3, the utility discounted rate
ρ = 0.03, utility weights for the consumption and the
terminal wealth are 1, and the subsistence levels are
zero. Suppose the annual interest rate r = 4%. The drift
term for stock 1 and 2 is given by (µ1, µ2)

′ = (6%, 7%)′,
and the volatility is given by

σ =

[
12% 9%
9% 15%

]
We consider the example with and without a non-

negative constraint on portfolio. In both cases, the time
step δ is taken as 0.01 and the state step h is taken
as 0.02. All transition probabilities are nonnegative as
the computer programs check. We use the values of u
between −8 and 8 to plot the figures for both cases.
The values of u between −8 and 8 are equivalent to
the total available wealth between e−8 ≈ 0 and e8 ≈
2981 thousand dollars. As we note from the numerical
method, in order to compute the numerical solutions
for the discretized u ∈ [−10, 10] at time t = 0, it is
necessary to involve the terminal condition for every
discretized u ∈ [−12, 12] at time T = 1.

We plot Figures 1–3 for the example without the
prohibition of short sale on securities, while plot Fig-
ures 4 – 6 for the example with the prohibition of
short sale on securities. Figure 2 shows that optimal
portfolio proportion on stock 1 is a constant and close
to −0.3 which is calculated from explicit solutions,
meaning that the investor short sells stock 1, while
Figure 5 shows that the optimal portfolio proportion on
stock 1 is zero. Figure 3 shows that optimal portfolio
proportion on stock 2 is a constant close to the number
0.5 which is calculated from explicit solutions, while
Figure 6 shows that the optimal portfolio proportion
on stock 2 is a constant around 0.25.

IV. DISCUSSION

We set up the numerical framework for the
consumption-portfolio problems by MCALT algorithm.
MCALT algorithm consists of two steps: First, do the
logarithmic transformation to push the possibly singu-
lar absorbing boundary condition to −∞ and transform
the HJB equation. Second, apply Markov chain ap-
proximation to approximate the resulting HJB equation
from the first step. The polynomial complexity of the
algorithm shows that it is a powerful tool to study
continuous-time (un)constrained portfolio problems.

Fig. 1. Optimal Consumption Proportion without the Prohibition of
Short Sale on Securities

Fig. 2. Optimal Portfolio Proportion on Stock 1 without the
Prohibition of Short Sale on Securities

Fig. 3. Optimal Portfolio Proportion on Stock 2 without the
Prohibition of Short Sale on Securities

Fig. 4. Optimal Consumption Proportion with the Prohibition of
Short Sale on Securities
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Fig. 5. Optimal Portfolio Proportion on Stock 1 with the Prohibition
of Short Sale on Securities

Fig. 6. Optimal Portfolio Proportion on Stock 2 with the Prohibition
of Short Sale on Securities
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