Position-Based Visual Servo Control of Leader-Follower Formation Using Image-Based Relative Pose and Relative Velocity Estimation

A. P. Dani, N. Gans, and W. E. Dixon

Abstract—A position-based visual servo control strategy is proposed for leader-follower formation control of unmanned ground vehicles (UGVs). The proposed control law only requires the knowledge of a single known length on the leader. The relative pose and the relative velocity of the leader are estimated with respect to the follower in the follower reference frame. The relative pose and the relative velocity are obtained using a geometric pose estimation technique and a nonlinear velocity estimation strategy, respectively. A Lyapunov analysis indicates global asymptotic tracking of the leader vehicle, and simulation results are provided to illustrate the performance of the developed controller.

I. INTRODUCTION

Formation control of nonholonomic unmanned guided vehicles (UGVs) has been a topic of extensive research [1]–[4]. Various strategies have been applied for formation control of a group of UGV’s, including leader-follower techniques, behavior-based methods [5], [6] and virtual structure techniques [7]. In the leader-follower approach, one of the UGV’s is considered as leader and other UGV’s track the position and the orientation of the leader with prescribed offsets [8]–[10].

Vision-based control methods have been applied to the leader-follower problem in a variety of ways (cf. [11]–[15]). These methods can generally be grouped as image-based visual servo control (IBVS) and position-based visual servo control (PBVS). IBVS methods [16], [17], use image features as the state in control laws to regulate the camera to a desired goal pose, which is usually defined as a goal image (i.e. an image captured at a predefined goal pose). The PBVS method [16], [18], uses three dimensional scene information that is reconstructed from image information to regulate the camera motion to a desired pose. Some pose reconstruction methods [19], [20] can be used in PBVS, but require knowledge of the depth to the target in at least one reference image. Other pose reconstruction methods [21] provide depth to the target, but require a model of the target. Recently, some methods have been developed [22]–[24] to reconstruct the pose of an object and velocity of the object with respect to camera using the knowledge of a single length on the object. These methods can be applied in the design of a PBVS leader-follower formation controller for nonholonomic UGV’s.

This paper focuses on vision-based formation control of UGV’s using the leader-follower approach. The proposed controller uses a recently developed vision-based algorithm to estimate the relative pose of the leader in the camera field of view given a single known length [22]. The relative velocity of the leader is estimated using the nonlinear estimator proposed in [23] and used in the control development to provide more knowledge about the motion of the leader. The developed decentralized controller eliminates the need for any communication between the agents by using relative image information instead of the position and the velocity of the leader in the global reference frame.

The pose and velocity estimation methods in this paper utilize the Euclidean Homography that exists between pairs of images [20], but returns estimates of a targets pose and velocity relative to the camera. In [13], [14], the Euclidean Homography is successfully used in leader-follower control, but the goal pose of the follower must be defined by an a priori goal image. The method in [14], does not include an estimate of the relative velocity of the leader. Omnidirectional vision-based formation control is developed in [12] where optic flow measurements are used for position estimation. The controller developed in [25] estimates the leader velocity using an extended Kalman filter (EKF). The EKF is blended with a neural network (NN) in [15] to provide robustness to unmodeled and unknown dynamics while estimating the motion of the leader. In [26], the velocity of the leader is estimated using a high gain observer (HGO). Stability of these methods is generally limited to ultimately bounded stability, since convergence of the velocity estimate can only be guaranteed to within an arbitrary bound using EKF, NN or HGO. The leader-follower method in this paper uses a nonlinear estimator [23] that is guaranteed to converge to the correct signal, so asymptotic stability can be achieved.

II. BACKGROUND

A. UGV Model

For small steering angles, the kinematic equations of motion for the nonholonomic UGV are assumed to have the following form [27]:

\[
\begin{bmatrix}
\dot{x}_{ci} \\
\dot{z}_{ci} \\
\dot{\varphi}_i
\end{bmatrix} =
\begin{bmatrix}
\cos \varphi_i & -\sin \varphi_i \\
\sin \varphi_i & \cos \varphi_i
\end{bmatrix}
\begin{bmatrix}
v_i \\
\omega_i
\end{bmatrix},
\]

where \((x_{ci}(t), z_{ci}(t)) \in \mathbb{R}^2\) denotes the position of the UGV in a world reference frame, and \(\varphi_i(t) \in \mathbb{R}\) is the heading...
angle. The vectors $\vec{v}_i(t)$ and $\vec{\omega}_i(t)$ denote the linear and angular velocity of the i^{th} UGV, where $v_i(t)$ and $\omega_i(t)$ denote the magnitudes of $\vec{v}_i(t)$ and $\vec{\omega}_i(t)$ respectively. The distance between driving wheel axis Q_2 to the point C, where camera is mounted, is denoted by h in the $x-z$ plane as shown in Fig. 1. The relative distance between the UGVs is denoted by $l_{12}(t)$ and is measured as the distance between the center of the rear wheel axis of the leader UGV and the camera mounted on the follower UGV. The relative distance $l_{12}(t)$ can be calculated as vector addition of the relative pose of a feature point P on the leader UGV and a known distance between P and Q_1. The relative orientation between two UGVs can be defined as

$$\varphi_{12}(t) = \varphi_{1}(t) - \varphi_{2}(t).$$

The relative bearing between $\vec{v}_2(t)$ and $l_{12}(t)$ is given by

$$\beta_1(t) = \pi - \psi_{12} - \varphi_{12}$$

where $\psi_{12}(t)$ is the angle between $\vec{v}_1(t)$ and vector $l_{12}(t)$ as shown in Fig. 1.

B. Relationships between Image and Euclidean Space

Consider a camera with an attached, orthogonal reference frame F_c as shown in Fig. 2. The camera views four or more planar and non-colinear feature points lying fixed in a visible plane π_r of an object in front of the camera. The 3D coordinates of the feature points expressed in the camera frame F_c are $\vec{m}_j^c \in \mathbb{R}^3$ given as

$$\vec{m}_j^c = [x_j^c, y_j^c, z_j^c]^T, \forall j \in \{j = 1, 2, ..., n\}.$$

These feature points, projected on the image plane π_i, are given by normalized coordinates $m_j^i \in \mathbb{R}^3$ as

$$m_j^i = \left[\frac{x_j^i}{z_j^i}, \frac{y_j^i}{z_j^i}, 1\right]^T, \forall j \in \{j = 1, 2, ..., n\}.$$

An orthogonal coordinate frame F_r is attached to plane π_r. The normal vector to plane π_r, measured in F^*_r, is given by $n^* \in \mathbb{R}^3$. The plane is rotated by $\bar{R}(t) \in SO(3)$ and translated by $\bar{t}(t) \in \mathbb{R}^3$ to a new location denoted as π_c. An orthogonal reference frame, denoted by F_c, is attached to the plane π_c. The rotation between the camera frame F^*_c and the current object frame F_r is denoted by $R(t) \in SO(3)$ and the rotation between the camera frame F^*_c and the reference object frame F_r is denoted by $R(t) \in SO(3)$. The translation vector between F^*_c and F_r is given as $x^* \in \mathbb{R}^3$. The feature points in π_c have Euclidean coordinates denoted by $\vec{m}_j^c(t) \in \mathbb{R}^3$ and normalized Euclidean coordinates $m_j(t) \in \mathbb{R}^3$, measured in camera frame F^*_c, given as

$$m_j = \begin{cases} x_j^c, & y_j^c, & z_j^c, & \forall j \in \{j = 1, 2, ..., n\}, \\
\begin{bmatrix} x_j^c \\
y_j^c \\
z_j^c \end{bmatrix}, & \text{if } j = 1, 2, ..., n. \end{cases}$$

The feature points m_j^c and $m_j(t)$, measured in camera frame F^*_c, are related by a depth ratio $\alpha(t) \in \mathbb{R}$ and the matrix $H(t) \in \mathbb{R}^{3 \times 3}$ as

$$m_j = \begin{pmatrix} x_j^c \\
y_j^c \\
z_j^c \end{pmatrix} \frac{\bar{R}(t) + \bar{t}(t) n^*^T}{\alpha(t)} m^c_j. \quad (2)$$

The Homography matrix can be decomposed to recover the rotation $\bar{R}(t)$ between π_r and π_c, the normal vector n^*, a scaled translation $\bar{t}(t)$, and depth ratio $\alpha(t)$ using standard techniques [28].

Using projective geometry, the normalized coordinates of the feature points in the image plane, m_j^i and $m_j(t)$, are related to the pixel coordinates as

$$p_j = Am_j, \quad p_j^* = Am_j^c \quad (3)$$

where $A \in \mathbb{R}^{3 \times 3}$ is a constant, invertible camera calibration matrix [29]. Using (3), the Euclidean relationship in (2) is given as

$$p_j = \alpha_j AH A^{-1} p_j^*.$$
If A is known and at least four feature points are available, a set of linear equations can be solved to get $\tilde{R}(t)$, which can be decomposed into $\tilde{R}(t)$, n^*, $\frac{z(\tilde{t})}{|z(\tilde{t})|}$, and $\alpha_j(t)$.

III. Estimation of Relative Pose and Relative Velocity Using a Single Camera

A. Pose Reconstruction using Coplanar Feature Points

An approach, presented in [22], to reconstruct the pose of the frame F_c, attached to the object plane, with respect to the camera frame F_c^* is described in this section. The pose is calculated using only the knowledge of a single length between \tilde{m}_1 and \tilde{m}_2, denoted by S_1. Using the rotation matrix $\tilde{R}(t)$ and normal vector n^* recovered from the homography decomposition, as shown in (2), the normal $n(t)$ to the plane π_c can be determined as

$$n = \tilde{R}n^*.$$

Without loss of generality, the origin of the frame F_c is attached to the feature point $\tilde{m}_1(t)$. The orthogonal matrix formed by three axes of F_c gives the rotation between F_c and F_c^* as

$$R = [i_x, i_y, i_z].$$

If $\tilde{m}_1(t)$ and $\tilde{m}_2(t)$ are known, i_x, i_y, and i_z can be calculated as shown in [22]. To determine $\tilde{m}_1(t)$ and $\tilde{m}_2(t)$, consider a new plane π'_c parallel to plane π_c containing the normalized image point $m_1(t)$. A line l is defined from the origin of F_c^* through $m_2(t)$ and $\tilde{m}_2(t)$. The plane π'_c intersects l at a point $m'_2(t)$. The unknown distance between $m_1(t)$ and $m'_2(t)$ is S_1, as illustrated in Fig. 3.

The point of intersection of the plane π'_c and the line l, denoted by $m'_2(t)$, can be obtained as [22]

$$m'_2 = \frac{n \cdot m_1}{n \cdot m_2}.$$

The vector $m_1(t)$ can be computed using (3), and S_1 can be computed as $S_1 = \|m_1 - m'_2\|$. Thus, all three sides of triangle $Om_1m'_2$ are known. Using the properties of similar triangles, between triangles $Om_1m'_2$ and $O\tilde{m}_1\tilde{m}_2$, and the known length S_1, the vectors $\tilde{m}_1(t)$ and $\tilde{m}_2(t)$ can be recovered. Solutions for i_x, i_y, and $R(t)$ can now be determined. Since the origin of F_c is placed at $\tilde{m}_1(t)$, the translation is given by $x(t) = \tilde{m}_1(t)$. Similarly, the translation $x(t)$ and rotation $R(t)$ can be calculated for every frame.

B. Feedforward Velocity Estimation

A continuous nonlinear estimator is developed in [23] to calculate the linear and angular velocity of a moving object in a stationary camera reference frame. The strategy developed in [23] requires a single known length on the plane and also the rotation matrix R^* between camera frame F_c^* and initial object reference frame F_c. This nonlinear estimator design is used in the subsequent design. The pose estimation method of Section III-A can be used to compute the rotation matrix R^*. The measurable signals $\tilde{R}(t)$, R^*, $\tilde{x}(t)$, $\tilde{d}(t)$, d^*, and $\alpha_j(t)$ are available to estimate the velocity. The translation error $e_v(t) \in \mathbb{R}^3$ and rotation error $e_\omega(t) \in \mathbb{R}^3$ given in [30] are quantized as

$$e_v = p_e - p_e^*, \quad e_\omega = u\theta$$

where $u(t) \in \mathbb{R}^3$ represents a unit rotation axis, $\theta(t) \in \mathbb{R}$ denotes the rotation angle, and $p_e(t)$, $p_e^* \in \mathbb{R}^3$ denote the extended image coordinates as defined in [23].

To achieve the objective of estimating the linear and angular velocity of an object expressed in the camera reference frame and denoted by $V_c(t) = [v_1^T, \omega^T]^T \in \mathbb{R}^6$, the error kinematics are expressed as

$$\dot{e} = JV_r$$

where $e(t) = [e_v, e_\omega]^T \in \mathbb{R}^6$ is the error, $J(t) \in \mathbb{R}^{6 \times 6}$ is a Jacobian-like matrix given by [23]

$$J = \begin{bmatrix}
\frac{\alpha_1}{2} A_e L_v - \frac{\alpha_1}{2} A_e L_v[R[s_1]e R^T] \\
0 \\
L_\omega
\end{bmatrix}$$

where $A_e \in \mathbb{R}^{3 \times 3}$ is a camera calibration matrix, and $L_v(t) \in \mathbb{R}^{3 \times 3}$ and $L_\omega(t) \in \mathbb{R}^{3 \times 3}$ are Jacobian-like matrices as defined in [23]. The subsequent development assumes that $V_r(t)$ of (6) is bounded and is second order differentiable with bounded derivatives. It is also assumed that if $V_r(t)$ is bounded, then the structure of (6) ensures that $e(t)$ is bounded.

Let $\hat{e}(t) \in \mathbb{R}^6$ denotes the estimate of the error $e(t)$. An observer $\hat{e}(t) \in \mathbb{R}^6$ for $\hat{e}(t)$ is designed as [23]

$$\dot{\hat{e}} = \int_{t_0}^t (K + I_{6 \times 6})\hat{e}(\tau)d\tau$$

$$+ \int_{t_0}^t \rho \text{sgn}(\hat{e}(\tau))d\tau + (K + I_{6 \times 6})\hat{e}$$

where $\hat{e}(t) \in \mathbb{R}^6 \equiv e(t) - \hat{e}(t)$ is the estimation error, $K, \rho \in \mathbb{R}^{6 \times 6}$ are positive definite constant diagonal gain matrices, $I_{6 \times 6} \in \mathbb{R}^{6 \times 6}$ denotes the identity matrix, t_0 is the initial time, and the notation $\text{sgn}(\hat{e})$ denotes the standard signum function.

In [23], Lyapunov-based analysis technique are used to show that $\hat{e}(t) \to \epsilon(t)$ as $t \to \infty$, which means $\hat{e}(t) \to JV_r$.

5273
as \(t \to \infty \). Since \(J \) is known and invertible, the velocity of
an object in the Euclidean frame can be identified as

\[
V_r = J^{-1} \dot{e}.
\]

(9)

The position and velocity estimates facilitate the develop-
ment of a PBVS controller for kinematic control of a
UGV. The subsequently designed PBVS controller only uses
the velocity in three dimensions, viz.; linear velocity in \(x \)-
direction and \(z \)-direction and angular velocity in \(y \)-direction.
The following sections describe the kinematic model of the
UGV, define the control objective, and show the control
development.

IV. LEADER-FOLLOWER MODEL FOR UGVs

A. Kinematics of the relative states

The kinematics of the relative states of the UGV formation
can be determined as [10]

\[
M \begin{bmatrix} l_{12} \\ \psi_{12} \end{bmatrix} - N \begin{bmatrix} v_1 \\ \omega_1 \end{bmatrix} = \begin{bmatrix} v_2 \\ \omega_2 \end{bmatrix}
\]

(10)

where the matrices \(M(l_{12}, \beta_1) \in \mathbb{R}^{2 \times 2} \) and
\(N(l_{12}, \varphi_{12}, \beta_1) \in \mathbb{R}^{2 \times 2} \) are defined as

\[
M = \begin{bmatrix}
-\cos \beta_1 & -l_{12} \sin \beta_1 \\
\sin \beta_1/h & -(l_{12} \cos \beta_1)/h
\end{bmatrix},
\]

\[
N = \begin{bmatrix}
-\cos \varphi_{12} & l_{12} \sin \beta_1 \\
\sin \varphi_{12}/h & -(l_{12} \cos \beta_1)/h
\end{bmatrix}.
\]

By defining the relative states vector \(q(t) \in \mathbb{R}^2 \), as \(q = \begin{bmatrix} l_{12} \\ \psi_{12} \end{bmatrix}^T \), (10) can be expressed in a compact form as

\[
M \dot{q} - NV_1 = V_2
\]

(11)

where \(V_1(t) \in \mathbb{R}^2 = \begin{bmatrix} v_1 \\ \omega_1 \end{bmatrix}^T \), defines the absolute
velocity of the leader UGV, and \(V_2(t) \) given by \(V_2 \in \mathbb{R}^2 = \begin{bmatrix} v_2 \\ \omega_2 \end{bmatrix}^T \), defines the absolute velocity of the follower
UGV. The motion state of the follower UGV, \(V_2(t) \), can be
be measured using local sensor such as optical encoders mounted on the follower UGV, and \(q(t) \) can be calculated using
pose reconstruction techniques discussed in Section
III-A. The matrices \(M(l_{12}, \beta_1) \) and \(N(l_{12}, \varphi_{12}, \beta_1) \) can be
calculated by using the pose estimates of the leader UGV
with respect to the follower UGV, as discussed in Section
III-A. The motion state of the leader UGV, \(V_1(t) \), is not
known directly as no communication is assumed between the
UGVs, but can be estimated using the methods in Section
III-B.

V. POSITION-BASED VISUAL CONTROL DEVELOPMENT

The contribution of this work is to develop a PBVS
control law for controlling the motion of the follower UGV.
The subsequently designed controller uses the vision-based
relative position and relative velocity estimates of the leader
UGV with respect to the follower UGV. The vision-based
relative velocity estimation technique is fused with the
relative position feedback to achieve the global asymptotic
stability for the kinematic control of the non-holonomic
UGV. The control law is different from the other leader-
follower approaches [11]–[15] in the sense that the designed
controller uses the relative pose and the relative velocity of
the leader which are estimated using the geometric method
and a nonlinear estimator, respectively. The pose and velocity
estimation requires only the knowledge of a single length on
the leader. The control law does not require the knowledge
of the global position of the leader as well as the follower.
Also, the control law does not require the global velocity of
the leader UGV and does not require it to be a constant. The
following section describes the open-loop error system.

A. Control Objective

The PBVS control objective considered here is to design a
continuous kinematic controller for the follower UGV to
track the motion of the leader UGV. The subsequently de-
signed controller is based on the relative pose and the relative
velocity information of the leader UGV, estimated using the
camera mounted on the follower UGV. The relative velocity
of the follower UGV is measured using local sensors. To
quantify the control task in hand, a position tracking error,
denoted by \(\hat{q}(t) \in \mathbb{R}^2 \) can be expressed as

\[
\hat{q} = q - q_d
\]

(12)

where \(q_d \in \mathbb{R}^2 \) denotes the desired state of the follower UGV
with respect to the leader UGV. The control objective dictates
that \(q_d \) is a constant as it is desired to maintain a constant
distance and relative bearing between the leader UGV and
the follower UGV.

B. Error System Development

The open-loop tracking error system can be developed, by
utilizing the expressions (11) and (12) as

\[
\dot{\hat{q}} = M^{-1}(NV_1 + V_2)
\]

(13)

where \(V_2(t) \), the absolute velocity of the follower UGV, is the
control input and \(M^{-1}(l_{12}, \beta_1) \) exists \(\forall l_{12}(t) \neq 0 \). Based on
the open-loop error system given by (13), the control input
\(V_2(t) \) is designed as

\[
V_2 = -NV_1 - M K_c \hat{q}
\]

(14)

where \(K_c \in \mathbb{R}^{2 \times 2} \) is a control gain matrix. The feedback
term consists of the gain matrix multiplied by an error, given
by (12). The pose error \(\hat{q}(t) \) can be calculated as the dif-
ference between estimated relative pose and desired relative
pose of the leader UGV with respect to the follower UGV.
The relative pose is estimated as discussed in Section
III-A. The feedforward term \(\hat{V}_1(t) \) is an estimate of the absolute
velocity of the leader in the global reference frame estimated
as shown in Section III-B. The closed-loop tracking error can
be developed by substituting (14) into (13) as

\[
\dot{\hat{q}} = M^{-1}N \hat{V}_1 - K_c \hat{q}
\]

(15)

where \(\hat{V}_1(t) = V_1 - \hat{V}_1 \), is the velocity estimation error.
As stated in [23], it can be proved that \(\hat{V}_1(t) \) is uniformly
continuous, and \(\hat{V}_1(t) \to 0 \) as \(t \to \infty \).
C. Stability Analysis

Theorem: Given the closed loop error system in (15), the combined relative velocity feedforward and pose error feedback controller designed as (14) ensures that all the system signals are bounded under closed-loop operation and tracking error is regulated in the sense that

\[\| \tilde{q}(t) \| \to 0 \text{ as } t \to \infty. \]

Proof: Let \(V(\tilde{q}, t) \in \mathbb{R} \) be a positive-definite function defined as

\[V(t) \triangleq \frac{1}{2} \tilde{q}^T \tilde{q}. \]

After using the closed-loop error (15), the time derivative of \(V(t) \) can be expressed as

\[\dot{V} \leq -k \tilde{q}^T \tilde{q} + \tilde{q}^T M^{-1} \tilde{N}. \]

where \(k = \lambda_{\text{max}} \{ K_e \} \in \mathbb{R} \) where \(\lambda_{\text{max}} \{ \} \) denotes the maximum Eigenvalue of the argument. Since the second term in (18) can be proven to be uniformly continuous, the fact that

\[\tilde{V}_1 \to 0 \text{ as } t \to \infty, \]

can be used along with Extended Barbalat’s Lemma [31] to conclude that \(\tilde{q}(t), \dot{V}(t) \to 0 \) as \(t \to \infty. \)

VI. Simulation Results

The controller developed in Section V was implemented in C++. The leader UGV trajectory was generated using a constant linear velocity in z-direction and angular velocity about y-direction using the function \(A(1 - \sin(4\pi t)) \). The linear and the angular velocities about other axes were zero. The initial positions of the leader and the follower were set to \([0 \ 0 \ 100]^T \) \(m \) and \([0 \ 0 \ 10]^T \) \(m \), respectively in the global reference frame. The initial orientation of the leader and the follower was zero radians in global reference frame. The initial velocities of the leader and follower were set zero. Four feature points were fixed on the leader UGV, whose location is known in the leader reference frame. The feature points were tracked throughout the simulation. The relative pose (i.e. translation and rotation) of leader was reconstructed with respect to the follower in the follower reference frame using the pose estimation method described in Section III-A. The relative velocity of the leader was computed using the nonlinear estimator discussed in Section III-B. The desired relative states between the leader and the follower, i.e. the desired relative position, \(l_{12}(t) \) and relative orientation, \(\psi_{12}(t) \) between the leader and the follower were \(l_{12} = 7m \) and \(\psi_{12} = 3.14 \text{rad}. \) The trajectories of the leader and the follower are shown in the Fig. 4. The velocity estimator gains were chosen as \(K = \begin{bmatrix} 300 & 300 & 200 & 15 & 15 & 15 \end{bmatrix} \times 10^{-5} \) and \(\rho = \begin{bmatrix} 100 & 100 & 10 & 10 & 1 & 1 \end{bmatrix} \times 10^{-7}. \) The follower control parameters were chosen upon trial and error

\[K_e = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}. \]
The evolution of the position and orientation errors can be seen Fig. 5. From Fig. 6, the observation can be made that input velocity of the follower is bounded. Velocity estimator takes some time to converge to true value of the relative velocity of the leader and initially the error is high. Thus, initially the feedback part of the controller puts in more efforts and feedforward part does not have significant contribution. As the velocity estimates converge to true value, it can be observed from Fig. 6, that control input is dominated by feedforward part. Observations can be extended from Fig. 6 to see that as the follower achieves the velocities of the leader, i.e. feedforward term tends to zero and control input is solely guided by the position error.

VII. CONCLUSION AND FUTURE WORK

In this paper, a PBVS strategy is presented to address the problem of leader-follower formation control. The proposed controller uses vision-based estimation methods to estimate the relative position, relative orientation and relative velocity of the leader with respect to the follower in the reference frame. This eliminates the requirement of knowledge of the position and velocity of the leader and follower in the global reference frame. Thus, the proposed control strategy can work with only a single camera mounted on the follower UGV. The position error is fed back along with feedforward relative velocity, which adds more kinematic knowledge to the controller about the leader with respect to the follower. Global asymptotic stability is ensured for tracking the leader using the proposed control law.

Future efforts will focus on eliminating the need for the knowledge of single length on the leader. Also, the dynamics of the follower will be considered to achieve a more realistic control.

REFERENCES