Specification and Planning of UAV Missions: A Process Algebra Approach

I. INTRODUCTION

Unmanned Vehicles constitute an emerging technology to be used in civilian and military missions in several domains, where the tasks that need to be handled are dull, dangerous, complex, or even impossible for humans to do. Within the last decade, there has been considerable amount of research on designing algorithms for high-level reasoning and coordination of multiple Unmanned Aerial Vehicles (UAVs) [1]–[3].

This work focuses on augmenting cooperative control algorithms with a formal language to state mission objectives and constraints (the mission specifications), using which human operators can interface effectively with multiple UAVs to execute complex tasks. Recently, temporal logics were utilized for automated controller design from complex specifications [4], [5]. Mainly inspired by this literature, formal languages such as Linear Temporal Logic (LTL) and Metric Temporal Logic (MTL) had been considered for specification purposes in optimal cooperative control, and Mixed Integer Linear Programming (MILP) based algorithms were utilized to generate optimal plans [6], [7].

While these languages are very expressive, they generally require computationally intensive algorithms, especially when utilized for optimal planning purposes. In fact, the model checking problem for, e.g., LTL, is PSPACE-complete [8]. Moreover, MILP-based optimal planning algorithms generally run in exponential time and are not guaranteed to return even a feasible solution within a polynomial time bound. On the other hand, one can consider languages that, at the cost of a more limited expressive power, allow efficient algorithms for, e.g., model checking. For example, in [9], a fragment of LTL was used for specification of temporal properties in reactive robotic motion planning problems, leading to polynomial-time algorithms. In a similar spirit, in this paper we will consider formal languages that may not be as expressive as LTL, but are amenable to efficient planning algorithms, while preserving the ability to describe a broad class of mission specifications of practical interest.

In this paper, we consider Process Algebra (PA) [10]–[12] as a language to describe a class of mission specifications, applicable to UAV operations. Process algebra was first proposed to reason about concurrent software and prove their correctness properties (see also [13] and the references therein), and successively used in several application contexts (see, for example, [14]–[16]). However, to our knowledge, this paper constitutes the first application in UAV cooperative control problems. The main advantage in using PA as a mission specification language is that a feasible plan (i.e., a plan that meets the mission specification) can be constructed efficiently, in polynomial time. In this paper, we extend the tree search algorithm in [17] to handle PA specifications.

The contributions of this paper are as follows. Firstly, we propose process algebras for the specification of complex tasks in UAV operations. We also provide examples to motivate the specification language in this application domain. Secondly, we provide a computationally effective algorithm for complex UAV operations specified via process algebra. The computational effectiveness of the algorithm stems from the fact that it returns a feasible plan in polynomial time and is guaranteed to return the optimal solution in finite time.

The rest of the paper is organized as follows. Section II introduces the basics of process algebra. In Section III, the problem definition is given and in Section IV the tree search algorithm is extended to handle complex mission specifications that are expressed in PA. A numerical example is solved in Section V and concluding remarks are given in Section VI.
II. PROCESS ALGEBRA

Process Algebra is used in computer science to study the behavior of software. In this context, the atomic building blocks of behavior, called actions, are defined as discrete events which happen instantaneously in time, and represent the output of the software. A behavior is a sequence of actions which have been observed from the software over the course of time.

Within the context of UAV cooperative control, the actions will refer to atomic individual tasks such as target classification, sector search, or reconnaissance, performed by exactly one UAV. Any mission plan will refer to a temporal ordering of actions, which resembles a behavior. Each process will encode a mission specification, and a plan will be called feasible only if the temporal ordering of the actions is one of the behaviors that this process can exhibit. In order to make the paper self contained, we summarize the description of process algebras given in [12] in this section.

A. Syntax of Process Algebra

An important element of the Process Algebra (PA) is the set of terms, which is formally defined as follows:

Definition II.1 (Terms of Basic Process Algebra)
Given a finite set A of actions, the set T of BPA terms is defined inductively as follows:

- each action $a \in A$ is in T;
- if $p, p' \in T$, then $p + p' \in T$, $p \cdot p' \in T$, and $p \parallel p' \in T$.

Each element of T is called a PA term.

The compositions $p + p'$, $p \cdot p'$, and $p \parallel p'$ of processes p and p' are called the alternative, sequential, and parallel compositions, respectively. Intuitively, the process that is associated with the term $a \in T$, where $a \in A$, can execute a and then terminate. The process $p + p'$, behaves either like the process p or process p', i.e., $p + p'$ executes either a behavior of p or one of p', which introduces a logical coupling between the actions. The process $p \cdot p'$, on the other hand, first executes a behavior of process p and then, after p terminates, executes a behavior of p'; the process $p \parallel p'$ terminates when p' terminates. Finally, $p \parallel p'$ executes the actions of p and p' in an interleaving manner and terminates when they both terminate. A process which has terminated and can execute no further actions will be denoted by \square.

The size of a term is defined as the number of actions and operators in it. Without loss of any generality, we assume that each action appears at most once in a term.

B. Semantics of Process Algebra

As noted before, each term represents a process, and thus a set of behaviors. A behavior is formalized as a sequence of actions, referred to as a trace, that a process can execute. Indeed, each process can be associated with a set of traces, which describes all its behaviors, i.e., all the traces that the process can execute. The function that maps each one of the processes in T to a set of traces can be defined using a process graph.

Definition II.2 (Process Graph) A process graph $p_0 \in T$ is a labeled transition system (Q, A, \Rightarrow) together with a root state $q_0 \in Q$, and a function $\pi : Q \rightarrow T$, where Q is a set of states, A is a finite set of actions, $\Rightarrow = Q \times A \times Q$ is a ternary relation, π associates each state $q \in Q$ with a term $t \in T$ such that q_0 is mapped to p_0.

On the process graph of a given process, a transition from a state $q_1 \in Q$ to $q_2 \in Q$ with action $a \in A$, denoted by $q_1 \xrightarrow{a} q_2$, exists if and only if $(q_1, a, q_2) \in \Rightarrow$. If there is a transition $q_1 \xrightarrow{a} q_2$ such that $\pi(q_1) = p_1$, $\pi(q_2) = p_2$, then process p_1 is said to evolve to p_2 after executing Action a, denoted as $p_1 \xrightarrow{a} p_2$. If there is a set of actions $a_1, \ldots, a_k \in A$ and a set of processes $p_0, \ldots, p_k \in T$ such that $p_{i-1} \xrightarrow{a_i} p_i$ for all $i \in \{1, \ldots, k\}$, then process p_0 is said to evolve to process p_k after executing the sequence (a_1, a_2, \ldots, a_k) of actions. The corresponding sequence of transitions is denoted as $p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} \cdots \xrightarrow{a_k} p_k$. Formally, a trace of a PA term p is a sequence $\gamma = (a_1, a_2, \ldots, a_n)$ of actions, for which a corresponding sequence (p_1, p_2, \ldots, p_n) of processes exists such that $p_i \in T$ and $p_i \xrightarrow{a_i} p_{i+1}$ for all $i \in \{1, 2, \ldots, n\}$. The set of all traces that $p \in T$ can execute will be denoted as Γ_p.

Operational semantics can be used to define the process graph of each process via a finite set of transition rules defined as follows.

Definition II.3 (Transition Rule) A transition rule ρ is an expression $\frac{H}{\gamma}$, where H is a set of transitions $p \xrightarrow{a} p'$, called the positive premises of ρ, and π is a transition $p \xrightarrow{a} p'$, called the conclusion of ρ, where $p, p' \in T$.

Intuitively, if the set H of premises is possible transitions, then so is π. A set of transition rules will be referred to as a transition system specification.

Definition II.4 (Operational Semantics of PA) The operational semantics of the process algebra is given by the following transition system specification:

\[
\begin{array}{c}
\frac{p_1 \xrightarrow{a} \square}{p_1} \\
\frac{p_1 + p_2 \xrightarrow{a}}{p_1 + p_2} \\
\frac{p_1 \cdot p_2 \xrightarrow{a}}{p_1 \cdot p_2} \\
\frac{p_1 \parallel p_2 \xrightarrow{a}}{p_1 \parallel p_2} \\
\end{array}
\]

where $a \in A$ and $p_1, p_1', p_2, p_2' \in T$.
The definition above yields a process graph for each process in \(T \). Notice that, by the first rule, the process \(a \in T \) where \(a \) is an action, i.e., \(a \in A \), can only execute the action \(a \) and then terminate. The rest of the rules similarly define the semantics of alternative, sequential, and parallel composition operators.

C. Parse Trees of Process Algebra Terms

Process algebra terms can either be single actions, or be composed of other terms, called subterms. Thus, a term can be represented as a tree, called a parse tree, where each branch of the tree represents a term. Given two branches which correspond to terms \(p_1 \) and \(p_2 \), one of the operators from \(+, \cdot, \| \) can be used to bind these two branches to build up the process \(p_1 + p_2 \), \(p_1 \cdot p_2 \), or \(p_1 \| p_2 \), respectively. The parse tree of this process can be represented as a tree, which has the binding operator in the root and the two branches corresponding to \(p_1 \) and \(p_2 \) as the left and right children.

Consider, for example, the term \(p = (a + (b \cdot c)) \| d \), where \(a, b, c, d \in A \). The corresponding parse tree is given in Figure 1. As better seen from the parse tree, \(p_1 = (a + (b \cdot c)) \), \(p_2 = d \), \(p_3 = a \), \(p_4 = (b \cdot d) \), \(p_5 = b \), and \(p_6 = d \) are subterms of \(p \), where \(p_1 \) and \(p_2 \) are bound by \(\| \). Similarly, \(p_3, p_4, p_5, \) and \(p_6 \) are subterms of \(p_1 \), etc.

![Fig. 1. The parse tree of the term \((a + (b \cdot c)) \| d\).](image)

III. PROCESS ALGEBRA SPECIFICATIONS OF MULTIPLE-UAV MISSIONS

In this section, PA is used to address a class of mission specifications for multiple UAVs. It is also pointed out through examples that complex tasks can be built from simpler ones in an hierarchical manner, thus possibly simplifying the creation and readability of mission specifications by human operators.

Before presenting the details, let us note the following notation. Given a set \(S \), a (finite) sequence \(o \) of (distinct) elements from \(S \) is a function which maps \(\{1, 2, \ldots, K\} \) to \(S \), where \(K \in \mathbb{N} \) and \(o(i) = o(j) \) implies that \(i = j \). The number \(K \), denoted by \(|o|\), is called size of the sequence \(o \). For convenience, \(o \) is denoted as \(o = (o(1), o(2), \ldots, o(K)) \). An element \(s \in S \) is said to appear in the sequence \(o \), denoted by \(s \in o \), with an abuse of notation, if there exists some \(k \) such that \(o(k) = s \). Element \(s_1 \) is said to precede element \(s_2 \) in \(o \) if \(s_1, s_2 \in o \) and \(o^{-1}(s_1) < o^{-1}(s_2) \). Given a sequence \(o = (o(1), \ldots, o(K)) \), any sequence \(\bar{o} = (o(1), \ldots, o(l)) \), where \(l < K \), is called a prefix of \(o \).

A. Atomic Objectives

An atomic objective is an abstraction of a generic individual task, which is very similar to the task abstraction given in [18], which we will use in the following. Every atomic objective is represented by two spatial and one temporal parameter: the entry and exit points, and the duration of the task. Intuitively, the entry point is a point in the two dimensional plane which the UAV has to get to in order to start executing the task. Similarly, the exit point refers to the point where the UAV will be after executing the task. The duration indicates the time required to execute the task. Also, each atomic objective is associated with a set of vehicles which are capable of executing it. More formally, an atomic objective \(o \) refers to the tuple \([x_i, y_i]_o, [x_f, y_f]_o, T_o, U_o\), where first two elements are in \(\mathbb{R}^2 \), \(T_o \in \mathbb{R}_{\geq 0} \), \(U_o \subseteq U \).

From a practical point of view, these parameters can be UAV dependent, i.e., each one of the three parameters can vary for different UAV types. This approach can easily be extended to cover such cases.

Examples of atomic objectives include the classification, attack, and verification tasks as well as object tracking, reconnaissance, area search, etc. (see [18]).

B. Complex Objectives

This section presents two examples of hierarchical specification in UAV cooperative control problems via objectives, followed by the formal problem definition.

1) The Target Engagement Scenario: Consider a scenario with \(n \) targets and \(m \) UAVs, where each target has to be (i) classified, (ii) attacked, and (iii) verified for damage inflicted, in this order. The problem is to assign these tasks to UAVs in such a way that (i) all three tasks are executed on each target and (ii) the cost of the resulting plan is minimized (see for example [17]).

Let \(c_i, a_i, \) and \(v_i \) be the atomic objectives for classify, attack, and verify tasks on Target \(i \). Then, the set of atomic objectives \(O \) is identified as \(O = \{c_1, a_1, v_1, c_2, a_2, v_2, \ldots, c_m, a_m, v_m\} \). Even though this scenario is simple enough to write the specification immediately from the atomic objectives, let us consider a middle layer, in which engaging a target is specified as a complex objective, \(t_i \). More precisely, \(t_i \) has the set \(\{c_j, a_j, v_j\} \) of children objectives and PA term \(t_i = c_i \cdot a_i \cdot v_i \). Then, the specification \(p \) for this problem can be written as follows: \(p = t_1 \| t_2 \| \ldots \| t_n \), which, in turn, can be written in terms of atomic objectives as:

\[s = c_1 \cdot a_1 \cdot v_1 \| c_2 \cdot a_2 \cdot v_2 \| \ldots \| c_m \cdot a_m \cdot v_m. \]

In this approach, at different levels the task specification can be changed rather easily. Consider, for example, the case in which there exists an attack option with a powerful UAV that does not require a verification task. However, assume that this attack option is
available for only some of the targets. Let us denote this attack option with \bar{a}_i, which is indeed an atomic objective. Next, introducing a new complex objective t_i such that the corresponding term is defined as $t_i = c_i \cdot (a_i \cdot \bar{v}_i + \bar{\bar{a}}_i)$, the specification p can be rearranged as: $p = t_1 \| t_2 \| \ldots \| t_k \| t_{k+1} \| \ldots \| t_l$.

2) The Rescue Mission: A rescue mission scenario, which involves logical and temporal constraints, was presented in [6]. Let us study a similar example using the hierarchical task specification framework.

In this scenario, a friendly infantry unit is pinned down by enemy in a certain location. There are three targets, T1, T2, and T3, that needs to be neutralized for the friendly unit be rescued. Two of the targets, T1 and T2, are protected by missile sites, S1 and S2, respectively. There are two friendly bases: Base B1 and Base B2. There are three types of friendly UAVs: the first type, V1, can only engage by missile sites, and the second type, V2, can only engage the missile sites, and the third one, V3, can engage any of them, but it is a relatively low-speed asset. A map of this scenario can be seen in Figure 2. In order to successfully accomplish this mission, the infantry unit can either escape to Base B1, by the targets T1 and T3 being neutralized, or to Base B2 after the UAVs neutralize targets T2 and T3. Moreover, if the latter option is chosen a type V3 UAV has to head to B2 with necessary medical equipment, even if it does not engage any target along the way.

Fig. 2. Map of the Rescue Mission. Infantry unit is shown in blue.

Let p be the mission specification, which states that the infantry unit must be rescued by either escaping to Base B1 or Base B2, i.e., $p = o_B + o_{B2}$, where o_B and o_{B2} are complex objectives. Noting that both targets T1 and T3 have to be engaged in order to accomplish the objective o_B, we can write $o_B = o_{T1} \| o_{T3}$, where o_{T1} and o_{T3} denote the objectives of neutralizing targets T1 and T3 respectively. Similarly, $o_{B2} = o_{T2} \| o_{T3} \| o_{V3\#B2}$, where o_{T2} is the objective of neutralizing Target T2 and $o_{V3\#B2}$ is the objective of moving a V3 type vehicle to Base B2 with the necessary health equipment. Even though $o_{V3\#B2}$ is an atomic objective, notice that o_{T1}, o_{T2}, and o_{T3} are still complex objectives that need to be identified in terms of atomic objectives. As noted before there are two possible ways of neutralizing Target T1: (i) either the missile site S1 can be attacked by a vehicle of type V2 after the neutralization of T1 by a vehicle of type V1, (ii) or T1 can be neutralized directly using a vehicle of type V3. Hence, $o_{T1} = (o_{V2\#S1} \cdot o_{V1\#T1}) + o_{V3\#T1}$. Similarly, $o_{T2} = (o_{V2\#S2} \cdot o_{V1\#T2}) + o_{V3\#T2}$. Noting that Target T3 is not protected by any missile sites, $o_{T3} = o_{V1\#T3} + o_{V3\#T3}$.

C. Problem Definition

Let us fix a set $O = \{o_1, o_2, \ldots, o_l\}$ of atomic objectives and a set $U = \{u_1, u_2, \ldots, u_n\}$ of UAVs. Given a specification p expressed as a PA term, the task assignment problem for PA specifications is, informally, to assign a necessary number of atomic objectives from O to the UAVs in U such that the “temporal ordering” of atomic objectives in the resulting assignment is a trace of p, and a given cost function is minimized.

More formally, let T_{σ, u_i} be time it takes for UAV u to travel from the exit point of o_i to the entry point of o_j. Then, a single UAV schedule σ_i for a UAV $u_i \in U$ is a sequence of atomic objective and execution time pairs, $\sigma_i = \{(o_1, t_{w_1}), (o_2, t_{w_2}), \ldots, (o_l, t_{w_l})\}$, such that $o_j \in O$, $t_i \in \mathbb{R}_{\geq 0}$ for $i \in \{1, 2, \ldots, l\}$, and $t_{w_1} + T_{o_1 \rightarrow o_2} \leq t_{w_{l-1}}$ for $i \in \{1, 2, \ldots, l-1\}$. Notice that the execution time t_{w_0} of o_1 must be chosen such that the UAV has time to complete the previous atomic objective o_{l-1} and fly to the entry point of o_1. Each single UAV schedule σ_i is naturally associated with a completion time, denoted by T_{σ, u_i}, which refers to the completion time of the last atomic objective assigned in σ_i, i.e., $T_{\sigma, u_i} = t_{w_l} + T_{o_l}$ where o_1 is such that $\sigma_i([o_\sigma]) = (o_1, t_{w_1})$. A complete schedule S is a set of schedules such that there exists a unique single UAV schedule $\sigma_S \in S$ for all $u_i \in U$. A complete schedule can be associated with a cost function in several ways. Two of the commonly used cost functions are the minimum mission time and the cumulative execution time, which can be written in terms of completion times respectively as

$$\max_{u_i \in \mathbb{U}} T_{\sigma, u_i}, \quad \text{or} \quad \sum_{u_i \in \mathbb{U}} T_{\sigma, u_i}.$$

An atomic objective is said to be scheduled in a complete schedule S if there exists a single UAV schedule $\sigma_S \in S$ such that (o_i, t_i) appears in σ_S for some $t_i \in \mathbb{R}_{\geq 0}$. Each schedule is associated with a set of temporal orderings through the notion of observation. An observation of a complete schedule S is a sequence $\pi = (o_1, o_2, \ldots, o_l)$ of atomic objectives such that (i) an atomic objective o_i appears in π if and only if it is scheduled in S, (ii) for all $i = 1, 2, \ldots, l$, there exists $t_i \in \mathbb{R}_{\geq 0}$, for which $t_i \leq t_{i+1}$, $t_i \leq t_i + T_{o_i \rightarrow o_j}$, and for any $i, j \in \{1, 2, \ldots, l\}$ if $t_j < t_i$ then o_i precedes o_j in π. Intuitively, each o_i that appears in π is assigned a time t_i, which is within the execution interval of o_i in S and the atomic objectives o_i are ordered in π according to the natural ordering of their corresponding t_i.

Notice that the observation of a complete schedule does not have to be unique in general. Let us denote the set of all observations of a given complete schedule S by Π_S. Then the task assignment problem for PA specifications can be stated formally as follows:

Problem III.1 Given a set O of atomic objectives, a set U of UAVs, and a PA specification p, find a complete schedule S such that (i) any observation π of S is a trace of p, i.e., $\Pi_S \subseteq \Gamma_p$, (ii) one of the cost functions in (1) is minimized.
IV. OPTIMAL PLANNING FOR PROCESS ALGEBRA SPECIFICATIONS

The task assignment algorithm proposed in this paper builds the schedule that solves Problem III.1, in stages. Starting with a schedule S_0 in which no atomic objective is assigned, intuitively, at stage $L + 1$ the algorithm extends the schedule S_L of the previous stage by choosing an atomic objective o to be assigned, a UAV u which the task is assigned to, and an execution time t_o for o such that after the assignment (i) any observation of the resulting schedule S_{L+1} is a prefix of some trace of p, (ii) the completion time of σ_u is minimized in S_{L+1}.

In this manner, the algorithm extends the tree search algorithm given in [17] to handle PA specifications.

Each PA specification p represents a different tree structure, every node of which is labeled with an atomic objective and UAV pair. The nodes are connected such that any path on the tree corresponds to a trace of p and for all traces there is a corresponding path on the tree. For example, the tree structure of the rescue mission of Section III-B.2 is shown in Figure 3.

![Fig. 3. The tree structure of the rescue mission](image)

For effectiveness purposes, however, the structure of the tree should be constructed “on the fly” while executing the search algorithm. That is, given a node of the tree one has to efficiently determine the set of children nodes, in other words, the set of atomic objectives that can be assigned in the next stage. For the case of PA specifications, an algorithm that runs in time linear with respect to the size of the specification is given in Algorithm 1. This algorithm takes a specification p and returns a set of pairs of PA terms and atomic objectives such that $(p', o) \in Next(p)$ if and only if $p \Rightarrow p'$. The correctness of the algorithm is clear from the semantics of PA.

```
1 switch p do
2     case $p_1 + p_2$
3         return $Next(p_1) \cup Next(p_2)$
4     case $p_1 \cdot p_2$
5         return \{$(p'_1 \cdot p_2, o) | (p'_1, o) = Next(p_1)$\}
6     case $p_1 \parallel p_2$
7         return \{$(p'_1 \parallel p_2, o) | (p'_1, o) = Next(p_1)$\} \cup \{$(p_1 \parallel p'_2, o) | (p'_2, o) = Next(p_2)$\}
8     otherwise
9         return \{$\gamma(p)$\}
10 end
```

Algorithm 1: Computation of Next(p) for given $p \in T$

Moreover, at each stage, the newly assigned atomic objective o has to be associated with its execution time t_o. To achieve a minimum time complete schedule, intuitively, o must be assigned an execution time that is as early as possible. However, one must consider two constraints: firstly, the execution time must be such that the UAV it is assigned has time to complete its previous atomic objective and fly to the entry point of o, secondly, all observations of the resulting schedule must be a prefix of a trace of p. Regarding the latter constraint, the t_o is chosen such that it is later than all the assigned predecessors of o. Formally speaking, an atomic objective δ is said to be a predecessor of an atomic objective o in term p, if (i) there exists a trace γ of p such that δ precedes o in γ and (ii) there is no trace of p in which o precedes δ. An equivalent characterization is as follows. Consider the parse tree of p. It can be shown that δ precedes o in p if and only if there is a node in the parse tree that binds two subterms p_1 and p_2 with a sequential operator, i.e., $p_1 \cdot p_2$, where p_1 contains δ and p_2 contains o. Let $Pred_p(o)$ be the set of all predecessors of o in p. A naive algorithm to compute $Pred_p(o)$ for each $o \in O$ would be to consider every atomic objective and determine whether or not it precedes o via the above characterization. Note that such an algorithm runs in polynomial time; moreover, it can be executed before starting the tree search algorithm.

Following the discussion above, let o be the atomic objective which is to be assigned to a UAV u at stage $L + 1$. Let S_L be the schedule in the previous stage. Then, the execution time of t_i is chosen such that $t_i := \max(t_{\alpha_i}, t_{\gamma_{Pred_p(o)}})$, where t_{α_i} is the completion time of α_i in S_L and $t_{\gamma_{Pred_p(o)}}$ is maximum of the completion times of atomic objectives which are predecessors of o and are assigned in S_L, i.e., $t_{\gamma_{Pred_p(o)}} = \max\{t | o \in Pred_p(o), \exists \alpha \in S_u, \alpha \notin S_L \}$. Notice that, the execution time t_i of o_i is chosen to be the earliest possible in the sense that, if $t_i < t_{\gamma_{\alpha_i}}$ then u would not be able to execute o, and if
\[t_i < \tau^c_{\text{Prod}(0)} \] then there would be an observation of \(S_{L+1}. \) which is not a prefix of any trace of \(p. \)

The schedules constructed in this manner are feasible in the sense that any observation of such schedules are prefixes of some trace of \(p. \) Moreover, the tree search algorithm eventually terminates with the optimal solution. The proofs of these statements will not be discussed here for the sake of brevity.

For effectiveness, a best-first search heuristic enhanced with a branch-and-bound scheme is used for the simulation, which will be presented in the next section. The best-first search heuristic returns a feasible solution to the problem in time polynomial with respect to the size of the specification. Using branch-and-bound, the tree structure is explored effectively leading to the optimal solution.

V. SIMULATIONS

Let us consider a simple scenario where two UAVs are required to first attack six targets and then search for possible new targets in the same area. Let \(o_d \) and \(o_s \) denote objectives for the engagement of six targets and the search mission respectively. Then, the specification of the mission is \(p = o_d \cdot o_s. \) The objective \(o_d \) is equal to \(o_{d1} || o_{d2} || o_{d3} || o_{d4} || o_{d5} || o_{d6}, \) where \(o_d \) denotes the atomic objective of attacking the target \(i \) for \(i = 1, 2, \ldots, 6. \) The objective \(o_s, \) on the other hand, requires searching the three regions in parallel, i.e., \(o_s = o_{s1} || o_{s2} || o_{s3} || o_{s4} || o_{s5}, \) where \(o_{s1}, o_{s2}, o_{s3} \) denote the atomic objectives for searching the regions \(s1, s2 \) and \(s3, \) respectively. To make the matters more complicated, let it be the case that searching either area \(s4 \) or \(s5 \) is adequate for accomplishing \(s3, \) but not both, i.e., \(o_{s45} = o_{s4} + o_{s5}, \) where \(o_{s4} \) and \(o_{s5} \) are the atomic objectives corresponding to searching the regions \(s4 \) and \(s5, \) respectively. A solution of this problem instance is presented in Figure 4, which was generated in less than a second of computation time, after exploring 1000 nodes of the tree.

![Fig. 4. Scheduling that satisfies \(p = o_d \cdot o_s. \)](image)

VI. CONCLUSIONS

This paper proposed and studied Process Algebra as a formal language to state mission specifications for multiple-UAV systems. The task assignment problem with PA specifications was proposed and some problem instances of interest were pointed out. The problem was solved using a computationally effective algorithm, which returns a best-first feasible solution to the problem in polynomial time and terminates with the optimal solution in finite time.

Future research directions include addressing similar problems with a timed process algebra using which quantitative properties of time can be expressed.

VII. ACKNOWLEDGMENTS

The authors would like to acknowledge Corey Schumacher for several inspiring discussions. This work was supported in part by the Michigan/AFRL Collaborative Center on Control Sciences, AFOSR Grant #FA9550-07-1-0528. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the supporting organizations.

References