Optimal Control of Uncertain Nonlinear Systems using a Neural Network and RISE Feedback

K. Dupree, P. M. Patre, Z. D. Wilcox, and W. E. Dixon
Department of Mechanical and Aerospace Engineering
University of Florida, Gainesville, FL 32611

Abstract—A sufficient condition to solve an optimal control problem is to solve the Hamilton-Jacobi-Bellman (HJB) equation. However, finding a value function that satisfies the HJB equation for a nonlinear system is challenging. Previous efforts have utilized feedback linearization methods which assume exact model knowledge, or have developed neural network (NN) approximations of the HJB value function. The current effort builds on our previous efforts to illustrate how a NN can be combined with a robust feedback method to asymptotically minimize a given quadratic performance index as the generalized coordinates of a nonlinear Euler-Lagrange system asymptotically track a desired time-varying trajectory despite general uncertainty in the dynamics. A Lyapunov analysis is provided to examine the stability of the developed optimal controller.

I. INTRODUCTION

Optimal control theory involves the design of controllers that can satisfy some objective while simultaneously minimizing some performance metric. A sufficient condition to solve an optimal control problem is to solve the Hamilton-Jacobi-Bellman (HJB) equation. For the special case of linear time-invariant systems, the HJB equation reduces to an algebraic Riccati equation (ARE); however, for nonlinear systems, finding a value function that satisfies the HJB equation is challenging because it requires the solution of a partial differential equation that can not be solved explicitly. If the nonlinear dynamics are exactly known, then the problem can be reduced to solving an ARE through feedback linearization methods (cf. [1]–[5]).

Motivated by the desire to eliminate the requirement for exact knowledge of the dynamics for a direct optimal controller (i.e., where the cost function is given a priori), [6] developed a self-optimizing adaptive controller to yield global asymptotic tracking despite LP uncertainty provided the parameter estimation error could somehow converge to zero. In [7], we illustrated how a Robust Integral of the Sign of the Error (RISE) feedback controller could be modified to yield a direct optimal controller that achieves semi-global asymptotic tracking. The result in [7] exploits the implicit learning characteristic [8] of the RISE controller to asymptotically cancel LP and non-LP uncertain dynamics so that the overall control structure converges to an optimal controller.

Researchers have also investigated the use of the universal approximation property of neural networks (NNs) to approximate the LP and non-LP unknown dynamics as a means to develop direct optimal controllers. Specifically, results such as [9]–[14] find an optimal controller for a given cost function for a partially feedback linearized system, and then modify the optimal controller with a NN to approximate the unknown dynamics. Specifically, the tracking errors for the NN methods are proven to be uniformly ultimately bounded (UUB) and the resulting state space system, for which the HJB optimal controller is developed, is only approximated.

The efforts in this paper investigate the amalgam of the robust RISE feedback method with NN methods to yield a direct optimal controller. The utility of combining these feedback methods is twofold. Our previous efforts in [15] indicate that modifying the RISE feedback with a feedforward term can reduce the control effort and improve the transient and steady state response of the RISE controller. Hence, the combined results should converge to the optimal controller faster. Moreover, combining NN feedforward controllers with RISE feedback yields asymptotic results [16]. Hence, the efforts in this paper provide a modification to the results in [9]–[14] that allows for asymptotic stability and convergence to the optimal controller rather than to approximate the optimal controller.

As is typical with previous nonlinear direct optimal controllers the unknown LP and non-LP dynamics are temporarily assumed to be known so that a controller can be developed for a residual system based on the HJB optimization method for a given quadratic performance index. The original uncertain nonlinear system is then examined, where the optimal controller is augmented to include the RISE feedback and NN feedforward terms to asymptotically cancel the uncertainties. A Lyapunov-based stability analysis is included to show that the RISE and NN components asymptotically identify the unknown dynamics (yielding semi-global asymptotic tracking) provided upper bounds on the disturbances are known and the control gains are selected appropriately. Moreover, the controller converges to the optimal controller for the a priori given quadratic performance index.

II. DYNAMIC MODEL AND PROPERTIES

The class of nonlinear dynamic systems considered in this paper is assumed to be modeled by the following Euler-
Lagrange [17] formulation:

\[M(q)\ddot{q} + V_m(q, \dot{q}) + G(q) + F(\dot{q}) + \tau_d(t) = \tau(t). \] (1)

In (1), \(M(q) \in \mathbb{R}^{n \times n} \) denotes the inertia matrix, \(V_m(q, \dot{q}) \in \mathbb{R}^{n \times n} \) denotes the centripetal-Coriolis matrix, \(G(q) \in \mathbb{R}^n \) denotes the gravity vector, \(F(\dot{q}) \in \mathbb{R}^n \) denotes friction, \(\tau_d(t) \in \mathbb{R}^n \) denotes a general nonlinear disturbance (e.g., unmodeled effects), \(\tau(t) \in \mathbb{R}^n \) represents the input, and \(q(t), \dot{q}(t), \ddot{q}(t) \in \mathbb{R}^n \) denote the position, velocity, and acceleration vectors, respectively. The subsequent development is based on the assumption that \(q(t) \) and \(\dot{q}(t) \) are measurable and that \(M(q), V_m(q, \dot{q}), G(q), F(\dot{q}) \) and \(\tau_d(t) \) are unknown. Moreover, the following properties and assumptions will be exploited in the subsequent development.

Property 1: The inertia matrix \(M(q) \) is symmetric, positive definite, and satisfies the following inequality \(\forall y(t) \in \mathbb{R}^n \):

\[m_1 \|y\|^2 \leq y^T M(q)y \leq m_2 \|y\|^2, \] (2)

where \(m_1 \in \mathbb{R} \) is a known positive constant, \(m_2(q) \in \mathbb{R} \) is a known positive function, and \(\|\cdot\| \) denotes the standard Euclidean norm.

Property 2: The following skew-symmetric relationship is satisfied:

\[\xi^T \left(M(q) - 2V_m(q, \dot{q}) \right) \xi = 0 \quad \forall \xi \in \mathbb{R}^n. \] (3)

Property 3: If \(q(t), \dot{q}(t) \in \mathcal{L}_\infty \), then \(V_m(q, \dot{q}), F(\dot{q}) \) and \(G(q) \) are bounded. Moreover, if \(q(t), \dot{q}(t) \in \mathcal{L}_\infty \), then the first and second partial derivatives of the elements of \(M(q), V_m(q, \dot{q}), G(q) \) with respect to \(q(t) \) exist and are bounded, and the first and second partial derivatives of the elements of \(V_m(q, \dot{q}), F(\dot{q}) \) with respect to \(\dot{q}(t) \) exist and are bounded.

Property 4: The nonlinear disturbance term and its first two time derivatives, i.e., \(\tau_d(t), \dot{\tau}_d(t), \ddot{\tau}_d(t) \) are bounded by known constants.

Property 5: The desired trajectory is assumed to be designed such that \(q_d(t), \dot{q}_d(t), \ddot{q}_d(t), \dddot{q}_d(t) \in \mathbb{R}^n \) exist, and are bounded.

III. CONTROL OBJECTIVE

The control objective is to ensure that the system tracks a desired time-varying trajectory, denoted by \(q_d(t) \in \mathbb{R}^n \), despite uncertainties in the dynamic model. To quantify this objective, a position tracking error, denoted by \(e_1(t) \in \mathbb{R}^n \), is defined as

\[e_1 \triangleq q_d - q. \] (4)

To facilitate the subsequent analysis, filtered tracking errors, denoted by \(e_2(t), r(t) \in \mathbb{R}^n \), are also defined as

\[e_2 \triangleq \dot{e}_1 + \alpha_1 \dot{e}_1 \] (5)

\[r \triangleq \dot{e}_2 + \alpha_2 e_2, \] (6)

where \(\alpha_1 \in \mathbb{R}^{n \times n} \), denotes a positive, constant, gain matrix, and \(\alpha_2 \in \mathbb{R} \) is a positive constant. The filtered tracking error \(r(t) \) is not measurable since the expression in (6) depends on \(\dot{q}(t) \).

IV. OPTIMAL COMPUTED CONTROLLER DESIGN

In this section, a state-space model is developed based on the tracking errors in (4) and (5). Based on this model, a controller is developed that minimizes a quadratic performance index under the (temporary) assumption that the dynamics in (1), including the additive disturbance, are known. This development motivates the control design in Section V, where a NN and a robust controller are developed to identify the unknown dynamics and additive disturbance.

To develop a state-space model for the tracking errors in (4) and (5), the time derivative of (5) is premultiplied by the inertia matrix, and substitutions are made from (1) and (4) to obtain

\[M(q) \dot{e}_2 = -V_m e_2 - \tau + \dot{\tau} + \tau_d, \] (7)

where the nonlinear function \(h(q, \dot{q}, \dot{q}_d, \ddot{q}_d) \in \mathbb{R}^n \) is defined as

\[h \triangleq M(q \dot{q}_d + \alpha_1 \dot{e}_1) + V_m \dot{e}_2 + \alpha_1 e_1 + G + F. \] (8)

Under the (temporary) assumption that the dynamics in (1) are known, the control input can be designed as [7]

\[\tau \triangleq \dot{h} + \tau_d - u, \] (9)

to yield the state-space model

\[\dot{z} = A(q, \dot{q}) z + B(q) u, \] (10)

where \(u(t) \in \mathbb{R}^n \) is an auxiliary control input that will be designed to minimize a subsequent performance index, and \(A(q, \dot{q}) \in \mathbb{R}^{2n \times 2n}, B(q) \in \mathbb{R}^{2n \times n}, \) and \(z(t) \in \mathbb{R}^{2n} \) are defined as

\[A(q, \dot{q}) \triangleq \begin{bmatrix} -\alpha_1 & I_{n \times n} \\ 0_{n \times n} & -M^{-1} V_m \end{bmatrix}, \]

\[B(q) \triangleq \begin{bmatrix} 0_{n \times n} \\ M^{-1} \end{bmatrix}^T, \]

\[z(t) \triangleq \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}^T, \]

where \(I_{n \times n} \) and \(0_{n \times n} \) denote a \(n \times n \) identity matrix and matrix of zeros, respectively. The quadratic performance index \(J(u) \in \mathbb{R} \) to be minimized subject to the constraints in (10) is

\[J(u) \triangleq \int_0^\infty \frac{1}{2} z^T Q z + \frac{1}{2} u^T R u \ dt. \] (11)

In (11), \(Q \in \mathbb{R}^{2n \times 2n} \) and \(R \in \mathbb{R}^{n \times n} \) are positive definite symmetric matrices to weight the influence of the states and (partial) control effort, respectively. As stated in [9], [10], the fact that the performance index is only penalized for the auxiliary control \(u(t) \) is practical since the gravity, Coriolis, and friction compensation terms in (8) can not be modified by the optimal design phase.

To facilitate the subsequent development, let \(\Omega(q) \in \mathbb{R}^{2n \times 2n} \) be defined as

\[\Omega(q) = \begin{bmatrix} K & 0_{n \times n} \\ 0_{n \times n} & M \end{bmatrix} \] (12)
where \(K \in \mathbb{R}^{n \times n} \) denotes a gain matrix. If \(\alpha_1, R, \) and \(K, \) introduced in (5), (11), and (12), satisfy the algebraic relationships

\[
K = K^T = -\frac{1}{2} \left(Q_{12} + Q_{12}^T \right) > 0 \quad (13)
\]

\[
Q_{11} = \alpha_1^T K + K \alpha_1, \quad (14)
\]

\[
R^{-1} = Q_{22}, \quad (15)
\]

where \(Q_{ij} \in \mathbb{R}^{n \times n} \) denotes a block of \(Q, \) then Theorem 1 of [9] and [10] can be invoked to prove that \(\Omega(q) \) satisfies the Riccati differential equation, and the value function \(V_a(z, t) \in \mathbb{R} \)

\[
V_a = \frac{1}{2} z^T \Omega z
\]

satisfies the HJB equation. Lemma 1 of [9] and [10] can be used to conclude that the optimal control \(u(t) \) that minimizes (11) subject to (10) is

\[
u(t) = -R^{-1} B^T \left(\frac{\partial V_a(z, t)}{\partial z} \right)^T = -R^{-1} e_2. \quad (16)
\]

V. Control Development

In general, the bounded disturbance, so the controller given in (9) can not be implemented. However, if the control input contains some method to identify and cancel these effects, then \(z(t) \) will converge to the state space model in (10) so that \(u(t) \) minimizes the respective performance index. In this section, a controller is developed that exploits the universal approximation property of NNs and the implicit learning characteristics of the RISE feedback to identify the nonlinear effects and bounded disturbances to enable \(z(t) \) to asymptotically converge to the state space model.

The universal approximation property indicates that weights and thresholds exist such that some continuous function \(f(x) \in \mathbb{R}^{N_1+1} \) can be represented by a three-layer NN as [18], [19]

\[
f(x) = W^T \sigma (V^T x) + \varepsilon(x). \quad (17)
\]

In (17), \(V \in \mathbb{R}^{(N_1+1) \times N_2} \) and \(W \in \mathbb{R}^{(N_2+1) \times n} \) are bounded constant ideal weight matrices for the first-to-second and second-to-third layers respectively, where \(N_1 \) is the number of neurons in the input layer, \(N_2 \) is the number of neurons in the hidden layer, and \(n \) is the number of neurons in the third layer. The activation function

\[
f(x) = W^T \sigma (V^T x) + \varepsilon(x), \quad (18)
\]

where \(W(t) \in \mathbb{R}^{(N_1+1) \times N_2} \) and \(W(t) \in \mathbb{R}^{(N_2+1) \times n} \) are subsequently designed estimates of the ideal weight matrices. The estimate mismatches for the ideal weight matrices, denoted by \(\hat{V}(t) \in \mathbb{R}^{(N_1+1) \times N_2} \) and \(\hat{W}(t) \in \mathbb{R}^{(N_2+1) \times n} \), are defined as

\[
\hat{V} \triangleq V - \hat{V}, \quad \hat{W} \triangleq W - \hat{W},
\]

A variety of activation functions (e.g., sigmoid, hyperbolic tangent or radial basis) could be used for the control development.
where \(k_s, \beta_1 \in \mathbb{R} \) are positive constant control gains. The feedforward NN component in (28), denoted by \(\hat{f}_d(t) \in \mathbb{R}^n \), is generated as
\[
\hat{f}_d = W^T \alpha (\dot{V}^T \dot{x}_d) .
\] (30)
The estimates for the NN weights in (30) are generated on-line (there is no off-line learning phase) as
\[
\dot{W} = \text{proj}(\Gamma_1 \dot{\sigma}^T \dot{V}^T \dot{x}_d \dot{e}_2^T) \tag{31}
\]
where \(\hat{\sigma} (\dot{V}^T x) \equiv d \sigma (\dot{V}^T x) / d (\dot{V}^T x) \) \(|_{\dot{V}^T x=\dot{V}^T x_d} \), and \(\Gamma_1 \in \mathbb{R}^{(N_2+1) \times (N_2+1)} \), \(\Gamma_2 \in \mathbb{R}^{(3n+1) \times (3n+1)} \), are constant, positive definite, symmetric matrices. In (31), \(\text{proj}(\cdot) \) denotes a smooth convex projection algorithm that ensures \(\dot{W} (t) \) and \(\dot{V} (t) \) remain bounded inside known bounded convex regions. See Section 4.3 in [21] for further details.

The closed-loop tracking error system is obtained by substituting (28) into (22) as
\[
Mr = -V_m \dot{e}_2 + \alpha_2 M \dot{e}_2 + f_d - \hat{f}_d + \dot{h} + \tau_d + u - \mu . \tag{32}
\]
To facilitate the subsequent stability analysis, the time derivative of (32) is determined as
\[
\dot{M}r = -Mr - V_m \dot{e}_2 - V_m \dot{e}_2 + \alpha_2 M \dot{e}_2 \tag{33}
\]
+ \(\alpha_2 \dot{M} e_2 + \dot{f}_d - \hat{f}_d + \dot{\hat{h}} + \hat{\tau}_d + \dot{u} - \dot{\mu} . \)

Using (17) and (30), the closed-loop error system in (33) can be expressed as
\[
\dot{M}r = -Mr - V_m \dot{e}_2 - V_m \dot{e}_2 + \alpha_2 M \dot{e}_2 \tag{34}
\]
+ \(\alpha_2 \dot{M} e_2 + W^T \hat{\sigma}^T \dot{V}^T \dot{x}_d - \dot{W}^T \hat{\sigma} \\
- \dot{W}^T \hat{\sigma}^T \dot{V}^T x_d + W^T \hat{\sigma}^T \dot{V}^T \dot{x}_d + \dot{\hat{\tau}}_d + \dot{u} - \dot{\mu} . \)

where the notations \(\hat{\sigma} \) and \(\hat{\sigma} \) are introduced in (19). Adding and subtracting the terms \(W^T \hat{\sigma}^T \dot{V}^T \dot{x}_d + \dot{W}^T \hat{\sigma}^T \dot{V}^T \dot{x}_d \) to (34), yields
\[
\dot{M}r = -Mr - V_m \dot{e}_2 - V_m \dot{e}_2 + \alpha_2 M \dot{e}_2 \tag{35}
\]
+ \(\alpha_2 \dot{M} e_2 + W^T \hat{\sigma}^T \dot{V}^T \dot{x}_d + \dot{W}^T \hat{\sigma}^T \dot{V}^T \dot{x}_d - \dot{W}^T \hat{\sigma} \\
- \dot{W}^T \hat{\sigma}^T \dot{V}^T x_d + W^T \hat{\sigma}^T \dot{V}^T \dot{x}_d + \dot{\hat{\tau}}_d + \dot{u} - \dot{\mu} . \)

Using (16) and the NN weight tuning laws in (31), the expression in (35) can be rewritten as
\[
\dot{M}r = -\frac{1}{2} \dot{M}(u) r + \tilde{N} + N - e_2 - \dot{e}_2 \tag{36}
\]
- \((k_s + 1) r - \beta_1 \text{sgn}(e_2) \),

where the fact that the time derivative of (29) is given as
\[
\dot{\mu} = (k_s + 1) r + \beta_1 \text{sgn}(e_2) \tag{37}
\]
was utilized, and where the unmeasurable auxiliary terms \(\tilde{N}(e_1, e_2, r, t) \), \(N \left(\hat{W}, \dot{V}, x_d, t \right) \) are defined as
\[
\tilde{N} \equiv -\frac{1}{2} \dot{M}(u) r + \tilde{N} + N(e_2) - e_2 - R^{-1} e_2 \tag{38}
\]
- \(\dot{V}_m e_2 - V_m \dot{e}_2 + \alpha_2 M \dot{e}_2 + \alpha_2 \dot{M} e_2 \tag{39}
\]
and the bounding function \(\sigma(\dot{y}) \in \mathbb{R} \) is a positive globally invertible nondecreasing function. The following inequalities can be developed based on Property 4, (20), (21), (27), (31) and (41)-(43):
\[
\|N_D\| \leq \zeta_1 \quad \|N_B\| \leq \zeta_2 \quad \|\tilde{N}_{D}\| \leq \zeta_3 \tag{46}
\]
\[
\|N_B\| \leq \zeta_4 + \zeta_5 \|e_2\|. \tag{47}
\]

In (46) and (47), \(\zeta_i \in \mathbb{R} \) are known positive constants.

3 Details of the bound in (44) are available on request.
VI. STABILITY ANALYSIS

Theorem: The nonlinear optimal controller given in (28)-(31) ensures that all system signals are bounded under closed-loop operation and that the position tracking error is regulated in the sense that

$$\|e_1(t)\| \to 0 \quad as \quad t \to \infty. \quad (48)$$

The result in (48) can be achieved provided the control gain k_i introduced in (29) is selected sufficiently large, and α_1, α_2 are selected according to the following sufficient conditions:

$$\lambda_{\text{min}}(\alpha_1) > \frac{1}{2} \quad \alpha_2 > \beta_2 + 1, \quad (49)$$

where $\lambda_{\text{min}}(\cdot) \in \mathbb{R}$ denotes the minimum eigenvalue, and β_i ($i = 1, 2$) are selected according to the following sufficient conditions:

$$\beta_1 > \zeta_1 + \zeta_2 + \frac{1}{\alpha_2} \zeta_3 + \frac{1}{\alpha_2} \zeta_4 \quad \beta_2 > \zeta_5, \quad (50)$$

where $\zeta_i \in \mathbb{R}$, $i = 1, 2, \ldots, 5$ are introduced in (46)-(47), β_1 was introduced in (29), and β_2 is introduced in (53). Furthermore, $u(t)$ converges to an optimal controller that minimizes (11) subject to (10) provided the gain conditions given in (13)-(15) are satisfied.

Remark 1: The control gain α_1 can not be arbitrarily selected, rather it is calculated using a Lyapunov equation solver. Its value is determined based on the value of Q and R. Therefore Q and R must be chosen such that (49) is satisfied.

Proof: Let $D \subset \mathbb{R}^{3n+2}$ be a domain containing $\Phi(t) = 0$, where $\Phi(t) \in \mathbb{R}^{3n+2}$ is defined as

$$\Phi(t) \triangleq \|y^T(t)\| \sqrt{P(t)} \sqrt{G(t)}^T. \quad (51)$$

In (51), the auxiliary function $P(t) \in \mathbb{R}$ is defined as

$$P(t) \triangleq \alpha_1 \sum_{i=1}^{3n} |e_{2i}(0)| - e_{20}(0)^T N_0(t) - \int_0^t L(r)dr, \quad (52)$$

where $e_{2i}(0)$ is equal to the i’th element of $e_2(0)$ and the auxiliary function $L(t) \in \mathbb{R}$ is defined as

$$L(t) \triangleq r^T(N_{B_i}(t) + N_D(t) - \beta_1 sgn(e_2)) + e_{2i}^2(t) N_{B_i}(t) - \beta_2 \|e_{2}(t)\|^2, \quad (53)$$

where $\beta_i \in \mathbb{R}$ ($i = 1, 2$) are positive constants chosen according to the sufficient conditions in (50). Provided the sufficient conditions introduced in (50) are satisfied

$$\int_0^t L(r)dr \leq \alpha_1 \sum_{i=1}^{3n} |e_{2i}(0)| - e_{20}(0)^T N_{B}(0). \quad (54)$$

Hence, (54) can be used to conclude that $P(t) \geq 0$. The auxiliary function $G(t) \in \mathbb{R}$ in (51) is defined as

$$G(t) = \frac{\alpha_1}{2} tr \left(\hat{W}^T \Gamma_1^{-1} \hat{W} \right) + \frac{\alpha_2}{2} tr \left(\hat{V}^T \Gamma_2^{-1} \hat{V} \right) \quad (55)$$

Since Γ_1 and Γ_2 are constant, symmetric, and positive definite matrices and $\alpha_2 > 0$, it is straightforward that $G(t) \geq 0$.

Let $V_L(\Phi, t) : D \times [0, \infty) \to \mathbb{R}$ be a continuously differentiable positive definite function defined as

$$V_L(\Phi, t) \triangleq e_1^T e_1 + \frac{1}{2} e_2^T e_2 + \frac{1}{r^2} r^T M(g)r + P + G, \quad (56)$$

which satisfies the following inequalities:

$$U_1(\Phi) \leq V_L(\Phi, t) \leq U_2(\Phi) \quad (57)$$

provided the sufficient conditions introduced in (50) are satisfied. In (57), the continuous positive definite functions $U_1(\Phi)$, and $U_2(\Phi) \in \mathbb{R}$ are defined as $\lambda_1 \|\Phi\|^2$, and $U_2(\Phi) \triangleq \lambda_2(q) \|\Phi\|^2$, where $\lambda_1, \lambda_2(q) \in \mathbb{R}$ are defined as

$$\lambda_1 \triangleq \frac{1}{2} \min \{m_1, m_1 \} \quad \lambda_2(q) \triangleq \max \left\{ \frac{1}{2} \bar{m}(q), 1 \right\},$$

where $m_1, \bar{m}(q)$ are introduced in (2). After taking the time derivative of (56), $\dot{V}_L(\Phi, t)$ can be expressed as

$$\dot{V}_L(\Phi, t) = 2e_1^T e_1 + e_2^T e_2 + \frac{1}{2} r^T M(g)r + r^T M(q) \dot{r} + \dot{P} + \dot{G}. \quad (58)$$

By utilizing (5), (6), (36), and substituting in for the time derivative of $P(t)$ and $G(t)$, $\dot{V}(\Phi, t)$ can be simplified as

$$\dot{V}_L(\Phi, t) = -2e_1^T \alpha_1 e_1 - (k_s + 1) \|e_1\|^2 - r^T R^{-1} r \quad (59)$$

where $\lambda_3 \triangleq \min \{2 \lambda_{\text{min}}(\alpha_1) - 1 \} \|e_1\|^2 - (\alpha_2 - 1 - \beta_2) \|e_2\|^2.$

By using (44), the expression in (59) can be rewritten as

$$\dot{V}_L(\Phi, t) \leq -\lambda_3 \|y\|^2 - \|k_s \|y\|^2 - \rho(\|y\|) \|y\| \|y\|, \quad (60)$$

where $\lambda_3 \triangleq \min \{2 \lambda_{\text{min}}(\alpha_1) - 1 \}, \alpha_2 - 1 - \beta_2; 1 + \lambda_{\text{min}}(R^{-1})$; hence, α_1, and α_2 must be chosen according to the sufficient condition in (49). After completing the squares for the terms inside the brackets in (60), the following expression can be obtained:

$$\dot{V}_L(\Phi, t) \leq -\lambda_3 \|y\|^2 + \frac{\rho^2(\|y\|) \|y\|^2}{4k_s} \leq -U(\Phi), \quad (61)$$

where $U(\Phi) = c \|y\|^2$, for some positive constant c, is a continuous, positive semi-definite function that is defined on the following domain:

$$D \triangleq \{ \Phi \in \mathbb{R}^{3n+2} | \|\Phi\| \leq \rho^{-1} \left(2\sqrt{\lambda_3 k_s} \right) \}. \quad (61)$$
The inequalities in (57) and (61) can be used to show that \(V_L(\Phi, t) \in L^\infty \) in \(D \); hence, \(e_1(t), e_2(t), \ldots, e_n(t) \in L^\infty \) in \(D \). Property 3 can be used to conclude that \(q(t), \dot{q}(t) \in L^\infty \) in \(D \). From (1) and Property 4, we can show that \(\tau(t) \in L^\infty \) in \(D \). Hence, \(q(t), \dot{q}(t) \in L^\infty \) in \(D \), Property 3 can be used to show that \(V_m(q, \dot{q}), G(q), \dot{F}(q) \in L^\infty \) in \(D \); hence, (36) can be used to show that \(\ddot{r}(t) \in L^\infty \) in \(D \). Since \(\dot{e}_1(t), \dot{e}_2(t), r(t) \in L^\infty \) in \(D \), the definitions for \(U(y) \) and \(z(t) \) can be used to prove that \(U(y) \) is uniformly continuous in \(D \).

Let \(S \subset D \) denote a set defined as follows:

\[
S = \left\{ \Phi(t) \in D \mid U_2(\Phi(t)) < \lambda_1 \left(\rho^{-1} (2\sqrt{3}k_n) \right)^2 \right\}.
\]

(62)

The region of attraction in (62) can be made arbitrarily large to include any initial conditions by increasing the control gain \(k_n \) (i.e., a semi-global type of stability result) [20]. Theorem 8.4 of [22] can now be invoked to state that

\[
e \| y(t) \|^2 \to 0 \quad \text{as} \quad t \to \infty \quad \forall y(0) \in S.
\]

(63)

Based on the definition of \(y(t) \), (63) can be used to show that

\[
\| e_1(t) \| \to 0 \quad \text{as} \quad t \to \infty \quad \forall y(0) \in S.
\]

(64)

The result in (63) indicates that as \(t \to \infty \), (32) reduces to

\[
f_d + \mu = h + \tau_d.
\]

(65)

Therefore, dynamics in (7) converge to the state-space system in (10). Hence, \(u(t) \) converges to an optimal controller that minimizes (11) subject to (10) provided the gain conditions given in (13)-(15), (49), and (50) are satisfied.

VII. CONCLUSION

A control scheme is developed for a class of nonlinear Euler-Lagrange systems that enables the generalized coordinates to asymptotically track a desired time-varying trajectory despite general uncertainty in the dynamics such as additive bounded disturbances and parametric uncertainty that do not have to satisfy a LP assumption. The main contribution of this work is that a feedforward NN and RISE feedback method is augmented with an auxiliary control term that minimizes a quadratic performance index based on a HJB optimization scheme. Like the influential work in [9]-[14], [23], [24] the result in this effort initially develops an optimal controller based on a partially feedback linearized state-space model assuming exact knowledge of the dynamics. The optimal controller is then combined with a feedforward NN and RISE feedback. A Lyapunov stability analysis is included to show that the NN and RISE identify the uncertainties, therefore the dynamics asymptotically converge to the state-space system that the HJB optimization scheme is based on. A preliminary numerical simulation is included to support these results.

REFERENCES

