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Abstract— A new control method is presented to drive the drive 
axis of a MEMS gyroscope to resonance and regulate the 
output amplitude of the axis to a fixed level. It is based on a 
unique active disturbance rejection control (ADRC) strategy, 
which actively estimates and compensates for internal dynamic 
changes of the plant and external disturbances in real time. The 
stability analysis shows that both the estimation error and the 
tracking error of the drive axis output are bounded and the 
upper bounds of the errors monotonously decrease with the 
bandwidths. The control system is simulated and tested using a 
field programmable gate array (FPGA)-based digital 
implementation on a piezoelectric vibration gyroscope. Both 
simulation and experimental results demonstrate that the 
proposed control method not only drives the drive axis to 
vibrate along the desired trajectory but also compensates for 
manufacture imperfections in a robust fashion that is 
insensitive to parameter variations and noises.  

Keywords: MEMS gyroscopes, extended state observer, 
active disturbance rejection control, FPGA. 

I. INTRODUCTION 

EMS (micro-electro-mechanical systems) gyroscope is 
a micro-scaled or millimeter-scaled inertial rate sensor. 

It has been applied to automotives (stability control and 
GPS), aerospace (GPS assisted inertial navigation), and 
consumer electronics (camera image stabilization and 3-
dimensional mouse) [1]. Compared to electro-mechanical 
gyroscopes, the MEMS gyroscope is small in size, 
inexpensive, and energy- efficient. A control system is 
generally used to excite the vibration along two vibrating 
modes (driving and sensing modes) of the MEMS gyroscope 
and to estimate the rotation rate. However, the small size of 
the MEMS gyroscope puts a big challenge on controller 
design and micro-fabrication. The imprecise micro-
fabrications and surrounding disturbances result in 
mechanical coupling terms between two axes, mechanical-
thermal noises, and parameter variations, and consequently 
degrade the performance of the MEMS gyroscope. Therefore, 
a closed-loop control system is essential for improving the 
performance of the MEMS gyroscope through effectively 
compensating for the mechanical imperfections and the 
disturbances in control efforts.  

Since the 1990s, there has been a limited amount of 
research on the feedback control system designs of the 
MEMS gyroscopes. The controllers introduced in [2-4] 
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disregard the mechanical coupling terms on the drive axis 
caused by the manufacture imperfections. The adaptive 
controllers in [5, 6] neglect the noises. The adaptive 
controller in [7] is designed for the MEMS gyroscopes 
operating in adaptive mode. However, most reported MEMS 
gyroscopes operate in conventional mode [8] where the 
movement of the mass along the drive axis is relatively large 
and the movement along the sense axis is very small. The 
controller in [8] controls the vibrating along the sensing 
mode of the MEMS gyroscope while the control of driving 
mode is disregarded.  

In this paper, a practical solution based on the active 
disturbance rejection control (ADRC) technology is applied 
to the driving mode of the conventional MEMS gyroscope 
[9-10]. The ADRC has been successfully employed in many 
mechanical systems [11-14]. The basic idea of this control 
strategy is to estimate the plant dynamics and disturbances 
using an extended state observer (ESO) and to actively 
compensate for the disturbance in control effort. With the 
accurate estimation of the plant dynamics and disturbances 
by ESO, the ADRC is very robust against parameter 
variations, disturbances, and noise. To test the effectiveness 
of the ADRC, a field programmable gate array (FPGA)-based 
digital implementation is conducted on a vibrational beam 
gyroscope. The experimental results demonstrate the 
feasibility of the controller.  

This paper is organized as follows: The dynamics of 
MEMS gyroscopes is described in Section II. The ADRC 
approach and its stability analysis are presented in Section 
III. Software simulation and hardware test results are shown 
in Section IV. The paper ends with a few concluding remarks 
in Section V.  

II. DYNAMICS OF MEMS GYROSCOPES S 

The mechanical structure of the MEMS gyroscope can be 
understood as a proof mass attached to a rigid frame by 
springs and dampers as shown in Fig. 1. As the mass is 
driven to resonance along the drive (X) axis and the rigid 
frame is rotating along the rotation axis, a Coriolis 
acceleration will be produced along the sense (Y) axis, which 
is perpendicular to both drive and rotation axes. The Coriolis 
acceleration is proportional to the amplitude of the output of 
the drive axis and the unknown rotation rate [1]. Therefore, 
we can estimate the rotation rate through sensing the 
vibration of the sense axis. In order to accurately sense the 
rotation rate, the vibration magnitude of the drive axis has to 
be regulated to a fixed level. Therefore, the controller of the 
drive axis is mainly used to drive the drive axis to resonance, 
and to regulate the output amplitude.  
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Fig. 1 Mass-spring-damper structure of MEMS 

gyroscopes. 

Assuming the natural frequencies of both axes are the 
same, the vibrational MEMS gyroscope is modeled as  
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where x and y are the outputs of the drive and sense axes, 
xΩ2  and yΩ2  are the Coriolis accelerations, Ω is the rotation 

rate, ωn is the natural frequency of the drive and sense axes, 
ωxyy and ωxyx are Quadrature errors caused by spring 
couplings between two axes, ζ is the damping coefficient, m 
is the mass of the MEMS gyroscope, k is the controller gain, 
and ud is the control input for drive axis. In (1), mechanical 
thermal noise on the sense axis is represented by the random 
force N(t). The effects of thermal noise on the drive axis are 
negligible and are ignored [15]. In the MEMS gyroscopes 
represented by (1), the Quadrature errors are unknown 
signals, the rotation rate Ω is unknown, and the damping 
coefficient typically has a large varying range. In this paper, 
we assume the sense axis is working under the open-loop 
operation. Our control objective is to force the drive axis to 
oscillate at specified amplitude and resonant frequency in the 
presence of parameter uncertainties, mechanical couplings, 
and mechanical-thermal noises. 

III. ACTIVE DISTURBANCE REJECTION CONTROL 

In this paper, ADRC is employed to control MEMS 
gyroscopes by dealing with modeling errors and structural 
uncertainties. In particular, an ESO provides an estimate of 
the internal dynamics of the MEMS gyroscope and the 
external disturbances which include the output disturbances, 
the unknown time varying rotation rate, and the unknown 
Quadrature error terms arising from mechanical 
imperfections. With the dynamic compensation of the 
estimated information, the plant is reduced to a double 
integrator. Then a PD controller is sufficient to control it. 

Both the drive and sense axes of MEMS gyroscopes can 
be taken as lightly damped second-order systems. We can 
rewrite the drive axis model in (1) as 

 ( , , ) dx f x x d bu= +                                  (2)                                      

where ud is the control signal of the drive axis, b=k/m, d is 
the external disturbance, ( , , )f x x d , or simply denoted as f, 
represents both the internal dynamics and the external 
disturbance, and 

                22 2 .n n xyf x x y yζω ω ω= − − − + Ω   (3)  

The basic idea of ADRC is to obtain the estimated f, i.e., f̂ , 
in real time by an ESO, and to actively compensate for it in 
the control law. The concept of ADRC is introduced as 
follows. 

A. Extended State Observer Design   
Let fxx === 321 ,, ξξξ  and T][ 321 ξξξξ = . 

Assuming f  is differentiable, the state space form of (2) is 
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Note that 3 fξ = is the augmented state and .h f=  A 
continuous ESO for (4) is designed as 
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where [ ]TlllL 321=  is the observer gain. The observer 
gains are chosen such that the characteristic polynomial s3 + 
l1s2 + l2s + l3 is Hurwitz. For tuning simplicity, all the 
observer poles are placed at -ωo. It results in the 
characteristic polynomial of (5) to be 

      3
32
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where ωo is the observer bandwidth of the drive axis and 

[ ]ToooL 3333 ωωω= . 

B. Control Algorithm  
Once the observer is designed and well tuned, its outputs 

will track ξ1, ξ2, and ξ3 respectively. By canceling the effect 
of f using 3̂ξ , ADRC actively compensates for f in real time. 
The ADRC control law is given by 

( ) ( )1 1 2 2 3
ˆ ˆ ˆ

d

k r k r r
u

b

ξ ξ ξ− + − − +
=                      (7)  

where r is the desired trajectory of the drive axis, 1k and 

2k are the controller gain parameters selected to make 
2

2 1s k s k+ + Hurwitz. For simplicity, let 2
1 2,  2c ck kω ω= = , 

where ωc is the controller bandwidth. The closed-loop 
system for the drive axis becomes 
                   ( ) ( ) ( )3 1 1 2 2

ˆ ˆ ˆ .x f k r k r rξ ξ ξ= − + − + − +        (8) 

Note that with a well-designed ESO, the first term in the right 
hand side (RHS) of (8) is negligible and the rest of the terms 
in the RHS of (8) constitutes a PD controller with a 
feedforward term. The convergence for the estimation error 
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of the ESO and the closed-loop tracking error of ADRC is 
shown below. 

C. Stability 

1) Convergence of the ESO 

Let ( ) ( ) ( )ˆ ,  1, 2,3i i it t t iξ ξ ξ= − = . From (4) and (5), 
the observer estimation error dynamics can be shown as 
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Now let us scale the observer estimation error ( )i tξ  by 
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Theorem 1: Assuming ( ),h dξ  is bounded, then there exist a 
constant 0iσ > and a finite time 1 0T >  such that 
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Proof:  Solving (10), we can obtain 
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Since ( )( ),h dξ τ is bounded, that is, ( )( ),h dξ τ δ≤ , 
where δ  is a positive constant, it follows that 
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Since Aε  is Hurwitz, there exists a finite time 1 0T >  such 
that  
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for all 1.t T≥  From (13), (14) and (17), we obtain 
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for all 1,  1, 2,3.t T i≥ =   Q.E.D. 
         It has been proven above that in the absence of the 
plant model, the estimation error of the ESO (5) is bounded 
and its upper bound monotonously decreases with the 
observer bandwidth. The convergence of ADRC, where ESO 
is employed, is analyzed next. 

2) Convergence of the ADRC 

Let [ ] [ ]1 2 3, , ,  , T Tr r r r r r=  and ( ) ( ) ( ) ,i i ie t r t tξ= −  
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Theorem 2: Assuming that h  is bounded, there exist a 
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Proof:  From (7), one has 
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Q.E.D. 
        It has been shown above that, with plant dynamics 
largely unknown, the tracking error and its derivative of 
ADRC are bounded and their upper bounds monotonously 
decrease with the controller bandwidth. With the 
convergence of ESO and ADRC established, we now present 
the simulation and hardware test results. 
 

       IV. SIMULATION AND HARDWARE TESTS  

An FPGA-based digital implementation of the ADRC is 
designed and conducted on an experimentally used 
vibrational beam gyroscope. The control algorithm is 
implemented in custom logic using VHDL. 

A. Hardware Setup 
The block diagram of the FPGA-based digital 

implementation is shown in Fig. 2. The hardware setup 
includes a core hardware board developed earlier as 
reconfigurable control and communication module (RCCM) 
[14]. It mainly consists of two analog to digital converters 
(ADC), each proceeded by an analog programmable filter, 
Flash memory and an FPGA chip. The RCCM also supports 
the Ethernet and controller area network (CAN) 
communication. In this implementation, the sinusoidal 
reference signal, the Nios core processor, and first input first 
output (FIFO) buffer are programmed into the FPGA circuit. 
The control algorithm, ADRC, is also programmed into 
FPGA using the VHDL language. One external 12-bit digital 
to analog converter (DAC) is employed to convert the digital 
control signal from FPGA to analog form before it enters the 
gyroscope circuitry. To close the loop, the output of the 
gyroscope is first amplified and then fed to the field 
programmable analog array (FPAA) chip on RCCM. In the 
control system design, ADRC employs very large controller 
and observer gains, which is beyond the limited range of 
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integer numbers represented by 32-bit binary. For this reason, 
the single precision floating-point from IEEE standard 754 is 
used for the FPGA-based ADRC design. 

In terms of development tools, Quartus II, version 3.2, 
for FPGA design, SOPC builder for Nios embedded 
processor design, and GNUPro compiler for building both 
software and libraries, are employed. 

 

 
  

Fig. 2 The control system for the MEMS gyroscope. 

B. FPGA Implementation of the ADRC  
For digital implementation, discretizing the state space 

model (4) using zero-order hold (ZOH) by ignoring h, we 
have 
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 and Ts is the sampling period.  
A discrete ESO is designed as [16] 
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where Lc is the estimator gain, )(ˆ kξ  provides a current 
estimate of )(kξ  based on the current measurement x(k), and 

)(kξ  is the predicted estimate based on a prediction from 
the previous time estimate, that is 
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The discrete implementation of the control law (7) is 
2

1 2 3
ˆ ˆ ˆ[ ( )] 2 [ ( )] ( )

( ) .c c
d

r k r k r k
u k

b
ω ξ ω ξ ξ− + − + −

=          (42) 

C. Simulation Results 
The key parameters of the vibrational MEMS gyroscope 

are ωn=63881.1rad/sec, ζ =0.0005, and ωxy = 6000 
rad2/sec2. The actual rotation rate is assumed to be 0.1rad/s, 
and frate=50Hz. The reference signal for the drive axis is 
r=Acos(ωt), where ω=63428 rad/sec. Typically the ideal 
output amplitude of the drive axis is A=215mV for the 
piezoelectric vibration gyroscope. This voltage output is 
linearly related to the displacement output in micrometers. 
We use A=215 in “simulation units” to represent the 
magnitude of the drive axis output in the simulation. The 
output of the control signal is limited to ±100. In the 
simulation, the mechanical-thermal noise is applied and the 
PSD of mechanical-thermal noise is 4.22×10-2 N2sec. The 
design parameter is b=k/m=2.7178×108. The controller 
bandwidth is ωc=5×105 rad/sec and the observer bandwidth 
is ωo=2.5×106 rad/sec. The sampling period is Ts=1×10-8s.  

The output of the drive axis under the control of the 
discrete ADRC is shown in Fig. 3. After approximate 2.2ms, 
the frequency of the drive axis is driven to the resonant 
frequency ω as expected. Fig. 3 demonstrates the high 
tracking performance of the ADRC. 
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Fig. 3 The output of the drive axis with the ADRC. 

 
To further investigate the robustness of the ADRC 

against parameter variations, the system parameters are 
changed as follows: the magnitude of the Quadrature error 
term, the damping coefficient, and the frequency of the 
rotation rate are increased by 10 times, i.e., ωxy = 60000 
rad2/sec2 , 0.005ζ = , and frate=500Hz. With these plant 
parameter variations, the tracking error of the drive axis is 
shown in Fig. 4. Note that the tuning parameters in the 
ADRC keep the same as used in Fig.3. It can be seen that the 
frequency of the drive axis is driven to the resonant 

4429



frequency ω after approximate 1.8ms and the steady state 
peak error between the reference and the drive axis output is 
around 0.17% of the desired amplitude. With the large scale 
plant parameter variations, the performance of the ADRC 
keeps almost the same. This shows the strong robustness of 
the ADRC. 
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Fig. 4 The tracking error of the drive axis with parameter 

variations. 

D. Hardware Test Results 
The sampling period Ts=1×10-8s used in the simulation, 

however, is too fast to implement into the FPGA board, 
since the FPGA board clock speed is 50 MHz, and the digital 
ADRC requires several clock cycles to process. For this 
reason, the tuning parameters are adjusted as the controller 
bandwidth is ωc = 2.5 × 106 rad/sec, the observer bandwidth 
is ωo = 2.5 × 106 rad/sec, and the sampling period is Ts = 1 × 
10-6 s. The output of the drive axis is shown in Fig. 5. From 
Fig. 5, it can be seen that the frequency of the drive axis is 
driven to the resonant frequency ω after approximate 18ms. 
At the steady state, the output matches the reference very 
well. The steady state peak error between the reference and 
the drive axis output is around 0.93% of the desired 
amplitude. These show the good performance of the ADRC 
in the FPGA implementation. 

 
V. CONCLUSION 

In this paper, a novel concept, active disturbance 
rejection, is successfully applied to solve the problems in 
MEMS gyroscopes that stem from manufacturing 
imperfections. Such imperfections manifest themselves as 
uncertain dynamics and unknown disturbances that are 
difficult to deal with using the existing design methods that 
are largely dependent on a good mathematical model. The 
proposed ADRC design proves to be a good fit for three 
reasons: 1) it requires minimal a priori information of the 
plant (just the order of the plant and its high frequency gain), 
2) it actively estimates and compensates for the unknown 
dynamics and disturbances, 3) the controller is easy to 
implement and to tune, compared to other methods.  The 
initial results in simulation and hardware tests are quite 
encouraging.  
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Fig. 5 The drive axis output of the FPGA implementation. 
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