Robust Tracking Control for Switched Linear Systems with Time-Varying Delays

Qing-Kui Li, Georgi M. Dimirovski and Jun Zhao

Abstract—Robust tracking control for switched linear systems with time-varying delays is investigated in this paper. Sufficient conditions for the solvability of robust tracking control problem are developed. Average dwell time approach and piecewise Lyapunov functional methods are utilized to the stability analysis and controller design, and with free weighting matrix scheme, switching control laws are obtained such that the weighted H_∞ model reference robust tracking performance is satisfied. By using linear matrix inequalities, the controller design problem can be solved efficiently. A simulation example shows the effectiveness of the proposed switching control laws.

I. INTRODUCTION

As an important class of hybrid systems, switched systems involve both a family of subsystems described by continuous or discrete time dynamics, and a rule specifying the switching among them. Due to their significance both in theory development and practical applications, switched systems have been attracting considerable attention during the last decades, see e.g., [5], [9], [13], [15] and [16]. Two key problems in the study of switched systems are the stability analysis and control synthesis. It has been shown that average dwell time approach is an effective tool for choosing certain switching laws, under which asymptotic (or exponential) stability can be obtained ([5], [6], [15]).

On the other hand, time-delays, which are common phenomenon encountered in many engineering process, are known to be great sources of instability and poor performance. Therefore, how to deal with time delays has been a hot topic in the control area, see e.g., [2], [3], [7] and [10]. For switched systems, because of the complicated behavior caused by the interaction between the continuous dynamics and discrete switching, the problem of time delays is more difficult to study. Only a few results have been reported in the literature such as the issues on stability analysis [12], [15]. As for control synthesis, it is much more difficult than stability analysis for switched uncertainty system with time-delays, to the authors’ best knowledge, up to now results on such issues are rarely found. However, due to the complexity of system modeling, uncertainty and time-delays are inevitably considered in most cases. We are interested in the issue of tracking control for switched linear systems with time-varying delays, which has been well addressed for non-switched systems without delay [11]. The importance of the study of robust tracking control for switched systems with time-varying delays also arises from the extensive applications in robot tracking control, guided missile tracking control, etc.

This paper investigates the robust tracking control problem for switched linear systems with time-varying delays. Sufficient conditions for the solvability of the robust tracking control problem are developed. Here are three features of our results compared with existing results (see e.g., [4], [12]). First of all, weighted H_∞ model reference robust tracking performance is given for the switched systems with time-varying delays, whereas most existing results are concerned with stability analysis; secondly, we use average dwell time technique to design a class of switching laws with the chatter bound $N_0 > 0$, while the existing works mostly aimed at arbitrary switching or $N_0 = 0$; thirdly, free weighting matrix scheme is used to design Lyapunov functional candidate, and the number of constraint conditions is reduced.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we use $P > 0$ $(\geq, <, \leq 0)$ to denote a positive definite (semi-definite, negative definite, semi-negative definite) matrix P, and $\lambda_{\text{max}}(P)$ and $\lambda_{\text{min}}(P)$ denote the maximum and minimum eigenvalues of P. The superscript ‘T’ stands for matrix transpose; and the symmetric terms in a matrix are denoted by \ast, \mathbb{R}^n denotes the n dimensional Euclidean space; $L_2[0, \infty)$ is the space of square integrable function on $[0, \infty)$. For given $\tau > 0$, let $\mathbb{R}_+ = [0, +\infty]$ and $C_n = C([-\tau, 0], \mathbb{R}^n)$ be the Banach Space of continuous mapping from $[-\tau, 0]$ to \mathbb{R}^n with topology of uniform convergence. Let $x_t \in C_n$ be defined by $x_t(\theta) = x(t + \theta), \theta \in [-\tau, 0]$. $\| \cdot \|$ denotes the usual 2-norm and $\| x_t \|_{\text{cl}} = \text{sup}_{-\tau \leq \theta \leq 0} \{ \| x(t + \theta) \|, \| \dot{x}(t + \theta) \| \}$.

Consider the switched linear uncertain system with time-varying delays

\[
\begin{cases}
\dot{x}(t) = (A_{\sigma(t)} + \Delta A_{\sigma(t)})x(t) + (D_{\sigma(t)} + \Delta D_{\sigma(t)})u(t - \delta_{\sigma(t)}) + (B_{\sigma(t)} + \Delta B_{\sigma(t)})\alpha(t) + \Pi_{\sigma(t)}\omega(t), \\
x(t) = \phi(t), t \in [-\tau, 0], \quad x(0) = \phi(0) = 0, \\
y(t) = C_{\sigma(t)}x(t), \quad t \in [0, \infty),
\end{cases}
\]

where $x(t) \in \mathbb{R}^n$ is the state, $u(t) \in \mathbb{R}^p$ is the control input, $\omega(t) \in \mathbb{R}^n$ is the exogenous disturbance which belong to $L_2[0, \infty)$, $y(t) \in \mathbb{R}^q$ is the output, $\phi(t)$ is the continuous
vector valued function specifying the initial state of the system, \(d_i(t) \) denote the continuous time-varying delays satisfying the assumption below.

Assumption 1. \(0 < d_i(t) \leq \tau, \ i \in \mathbb{N} \).

The right continuous function \(\sigma(t) : [0, \infty) \rightarrow \mathbb{N} \triangleq \{1, 2, \ldots, N\} \) is the switching signal, corresponding to it, the switching sequence \(\Sigma = \{x_0, (i_0, t_0), (i_1, t_1), \ldots, (i_j, t_j), \ldots \} | j \in \mathbb{N} \) means that the \(i_j \)th subsystem is active when \(t \in [t_j, t_{j+1}) \).

For simplicity, we denote \(\sigma := \sigma(t) \). \(A_i, D_i, B_i, C_i \) and \(\Pi_i \) are constant matrices of appropriate dimensions, \(i \in \mathbb{N} \). The uncertainties \(\Delta A_i, \Delta D_i \) and \(\Delta B_i, \ i \in \mathbb{N} \) are assumed to satisfy the following assumption.

Assumption 2. \(|\Delta A_i, \Delta D_i, \Delta B_i| = E_i \Gamma_i(t)|F_i, L_i, H_i|, \ i \in \mathbb{N} \), where \(E_i, F_i, L_i \) and \(H_i \) are constant matrices with appropriate dimensions, and \(\Gamma_i(t), \ i \in \mathbb{N} \) are unknown, real and possibly time-varying matrices satisfying

\[
\Gamma_i^T(t)\Gamma_i(t) \leq I, \ t \geq 0.
\]

Given the reference model and performance index as

\[
\dot{x}_r(t) = A_r x_r(t) + M r(t), \quad x_r(0) = 0,
\]

\[
\int_0^\infty e^{-\alpha t} T \eta(t) Q \eta(t) dt \leq \gamma^2 \int_0^\infty \omega^T(t) \omega(t) dt,
\]

where \(x_r(t) \in \mathbb{R}^n \) is reference state, \(A_r \) is a Hurwitz matrix and \(M \) is a constant matrix with appropriate dimensions, \(r(t) \) is reference input which belong to \(L_2[0, \infty) \); \(\epsilon_r(t) = x(t) - x_r(t) \) denotes the error between the real state of the switched system (1) and the reference state of (2); \(Q \) is a positive definite weighting matrix; \(\omega(t) = (\omega^T(t) \Pi_{\sigma}, r(t)^T M)^T \), \(\gamma > 0 \) is disturbance attenuation level.

Combining (1) with (2), we get the augmented system

\[
\begin{bmatrix}
\dot{x}(t) \\
\dot{x}_r(t)
\end{bmatrix} = \begin{bmatrix}
(A_\sigma + \Delta A_\sigma)x(t) + (D_\sigma + \Delta D_\sigma)x(t - d_\sigma(t)) + (B_\sigma + \Delta B_\sigma)u(t) \\
A_r x_r(t)
\end{bmatrix} + \Pi_{\sigma}(t) M r(t).
\]

Definition 1. The system (1) is said to be robust exponentially stabilizable under control law \(u = u(t) \) and switching signal \(\sigma = \sigma(t) \), if the solution \(x(t) \) of switched system (1) through \(t_0, \phi \in \mathbb{R}_+ \times C_u \), satisfies

\[
\|x(t)\| \leq \kappa \|x_{t_0}\| e^{-\lambda(t-t_0)}, \ \forall t \geq t_0,
\]

for some constants \(\kappa \geq 0 \) and \(\lambda > 0 \).

Definition 2. For system (4), if there exist control input \(u = u(t) \) and switching signal \(\sigma = \sigma(t) \) such that (4) is robust exponentially stabilizable when \(\omega = 0 \) and (3) is satisfied when \(\omega \neq 0 \) under the initial conditions stated in (1) and (2), then the switched system (1) is said to have weighted \(H_\infty \) model reference robust tracking performance.

Definition 3. For any \(T_2 > T_1 \geq 0 \), let \(N_\sigma(T_1, T_2) \) denote the number of switching of \(\sigma(t) \) over \((T_1, T_2) \). If \(N_\sigma(T_1, T_2) \leq N_0 + \frac{T_2 - T_1}{T_0} \) holds for \(T_0 > 0, N_0 \geq 0 \), then \(T_0 \) is called average dwell time.

Our purpose is to design robust tracking controller \(u(t) = K_\sigma(t) e_r(t) \) and a switching law such that system (1) has the weighted \(H_\infty \) model reference robust tracking performance.

To conclude this section, we recall the following lemmas which will be used in the proof of our main results.

Lemma 1. Let \(M, N \) be real matrices of appropriate dimensions. For any matrix \(Q > 0 \) of appropriate dimension and any scalar \(\gamma > 0 \), the following inequality holds

\[
MN + N^T M \leq \gamma^{-1} M Q^{-1} M^T + \gamma N^T Q N.
\]

Lemma 2. Given matrices \(Q = Q^T, H, E \) and \(R = R^T > 0 \) of appropriate dimensions, \(Q + H F E + E^T F^T H T < 0 \) holds for all \(F \) satisfying \(F^T F \leq R \), if and only if there exists scalar \(\beta > 0 \) such that

\[
Q + \beta H H^T + \beta^{-1} E^T R E < 0.
\]

III. PERFORMANCE ANALYSIS AND CONTROLLER DESIGN

In this section, we will show how to design state feedback gain \(K_i \) and switching law \(\sigma = i, (i \in \mathbb{N}) \) for switched time-varying delays system (1), such that the weighted \(H_\infty \) model reference robust tracking performance is satisfied. We first consider the nominal system of switched system (1),

\[
\dot{x}(t) = A_r x(t) + D_\sigma x(t - d_\sigma(t)) + B_\sigma u(t) + \Pi_{\sigma}(t) \omega(t),
\]

where \(x(t) = \phi(t), \ t \in [-\tau, 0], x(0) = \phi(0) = 0 \), \(y(t) = C_r x(t), \ t \in [0, \infty) \).

In this case, the augmented system (4) can be reduced to

\[
\begin{bmatrix}
\dot{x}(t) \\
\dot{x}_r(t)
\end{bmatrix} = \begin{bmatrix}
A_\sigma x(t) + D_\sigma x(t - d_\sigma(t)) + B_\sigma u(t) + \Pi_{\sigma}(t) \omega(t) \\
A_r x_r(t)
\end{bmatrix} + \Pi_{\sigma}(t) M r(t).
\]

Consider the \(i \)th subsystem with the state feedback controller \(u(t) = K_i e_r(t) \). The augmented system (6) can be rewritten as

\[
\dot{x}(t) = \tilde{A}_i \tilde{x}(t) + \tilde{D}_i \tilde{x}(t - d_\sigma(t)) + \tilde{w}(t),
\]

where

\[
\tilde{x}(t) = \begin{bmatrix}
x(t) \\
x_r(t)
\end{bmatrix}, \quad \tilde{A}_i = \begin{bmatrix}
A_i + B_i K_i - B_i K_i & 0 \\
0 & A_r
\end{bmatrix},
\]

\[
\tilde{D}_i = \begin{bmatrix}
D_{0i} & 0 \\
0 & 0
\end{bmatrix}, \quad \tilde{w}(t) = \begin{bmatrix}
\Pi_{\sigma}(t) \omega(t) \\
M r(t)
\end{bmatrix}, \quad \tilde{Q} = \begin{bmatrix}
Q & -Q \\
-Q & Q
\end{bmatrix}.
\]

Consider the following closed-loop switched linear system with time-varying delays,

\[
\dot{x}(t) = \tilde{A}_i \tilde{x}(t) + \tilde{D}_i \tilde{x}(t - d_\sigma(t)) + \tilde{w}(t).
\]

We have the following result.

Theorem 1. Suppose that the augmented system (9) satisfies Assumption 1. For given positive constants \(\alpha, \gamma \), if there exist positive definite matrices \(P_i, S_i \), matrices \(K_i \), and any matrices \(Y, T_i \) with appropriate dimensions, such that

\[
\Theta_i := \begin{bmatrix}
\varphi_{11} & \tilde{Q} & \varphi_{12} & -Y_i & A_i^T S_i & P_i \\
* & \varphi_{22} & -T_i & D_i & S_i & 0 \\
* & * & -T_i & 0 & 0 & 0 \\
* & * & * & -S_i & 0 & 0 \\
* & * & * & * & -\gamma^2 I
\end{bmatrix} < 0,
\]

\(i \in \mathbb{N} \)
hold, then under the feedback controller \(u(t) = K_t e_r(t) \) for system (6), the weighted \(H_{\infty} \) model reference robust tracking performance in (1) is guaranteed for any switching signal with average dwell time satisfying
\[
T_{\alpha} > T_{\alpha}^* = \frac{\ln \mu}{\alpha},
\]
where \(\mu \geq 1 \) satisfies
\[
P_i \leq \mu P_j, \quad S_i \leq \mu S_j, \quad \forall i, j \in \mathbb{N},
\]
\[
\varphi'_{11} = A_i^T P_i + P_i A_i + \alpha P_i + Y_i T + Y_i,
\]
\[
\varphi'_{12} = P_i D_i + T_i^T - Y_i,
\]
\[
\varphi'_{22} = -T_i^T - T_i.
\]

Proof. By Schur complement lemma, the conditions (10) are equivalent to the following inequalities when \(i \in \mathbb{N} \)
\[
\begin{bmatrix}
\Omega_{11} + \gamma^{-2} P_i P_i + \bar{Q} \Omega_{12}
& -Y_i
& -T_i

\Omega_{12}^T
& -T_i
& \Omega_{22}

& -T_i
& \Omega_{22}

& -T_i
& \Omega_{22}

& -\tau^{-1} e^{-\alpha T \tau} S_i

\end{bmatrix}< 0.
\]

where
\[
\Omega_{11} = \varphi'_{11} + \alpha A_i^T S_i A_i,
\]
\[
\Omega_{12} = \varphi'_{12} + \alpha A_i^T S_i D_i,
\]
\[
\Omega_{22} = \varphi'_{22} + \alpha D_i^T S_i D_i.
\]

Multiplying both sides of (13) by symmetric matrix \(\text{diag}(I, I, d_i(t) I) \), and noticing \(0 < d_i(t) \leq \tau \), we have
\[
\begin{bmatrix}
\Omega_{11} + \gamma^{-2} P_i P_i + \bar{Q} \Omega_{12}
& -d_i(t) Y_i
& -d_i(t) T_i

\Omega_{12}^T
& -d_i(t) T_i
& \Omega_{22}

& -d_i(t) T_i
& \Omega_{22}

& -d_i(t) T_i
& \Omega_{22}

& -d_i(t) e^{-\alpha T \tau} S_i

\end{bmatrix}< 0.
\]

Define the piecewise Lyapunov functional candidate
\[
V(\bar{x}(t)) = V_{\sigma(t)}(\bar{x}_i) = \bar{x}^T(t) P_{\sigma(t)} \bar{x}(t)
+ \int_{t_0}^{t} \int_{t+\theta}^{t} \bar{x}^T(s) e^{-\alpha(t-s)} S_i \bar{x}(s) ds d\theta,
\]
which is positive definite since \(P_i \) and \(S_i \) \((i \in \mathbb{N}) \) are positive definite matrices.

First, we will prove that system (9) is exponentially stable while \(\omega \equiv 0 \).

When \(t \in [t_k, t_{k+1}) \), for the simplicity of notations, suppose that the \(i \)th subsystem is active, i.e., \(\sigma(t) = i \).

Differentiating (15) along the trajectory of (9) and noticing \(d_i(t) \leq \tau \), we obtain
\[
\dot{V}_i(\bar{x}_i) \leq 2 \bar{x}^T(t) P_i \bar{A}_i \bar{x}(t) + \bar{D}_i \bar{x}(t - d_i(t))
+ \tau \bar{x}^T(t) S_i \bar{x}(t)
- \int_{t-d_i(t)}^{t} \bar{x}^T(s) e^{-\alpha T \tau} S_i \bar{x}(s) ds
- \alpha \int_{-\tau}^{0} \int_{t+\theta}^{t} \bar{x}^T(s) e^{-\alpha(t-s)} S_i \bar{x}(s) ds d\theta.
\]

Note that
\[
\tau \bar{x}^T(t) S_i \bar{x}(t) = \bar{x}^T(t) \tau A_i^T S_i A_i \bar{x}(t)
+ 2 \bar{x}^T(t) \tau A_i^T S_i D_i \bar{x}(t - d_i(t))
+ \bar{x}^T(t - d_i(t)) \tau D_i^T S_i D_i \bar{x}(t - d_i(t)).
\]

From the Leibniz-Newton formula, we obtain
\[
2[\bar{x}^T(t), \bar{x}^T(t - d_i(t))] \begin{bmatrix}
Y_i

T_i
\end{bmatrix}
	imes [\bar{x}(t) - \bar{x}(t - d_i(t)) - \int_{t-d_i(t)}^{t} \dot{x}(s) ds] = 0.
\]

Substituting (17) and (18) into (16) yields
\[
\begin{align*}
\dot{V}_i(\bar{x}_i) + \alpha V_i(\bar{x}_i)
& \leq \bar{x}^T(t) \begin{bmatrix}
\Omega_{11} & \Omega_{12}^T
\end{bmatrix} \begin{bmatrix}
\bar{x}(t)

\bar{x}(t - d_i(t))
\end{bmatrix}
- 2 \bar{x}^T(t) Y_i + \bar{x}^T(t - d_i(t)) T_i \int_{t-d_i(t)}^{t} \dot{x}(s) ds
- \int_{t-d_i(t)}^{t} \bar{x}^T(s) e^{-\alpha T \tau} S_i \bar{x}(s) ds.
\end{align*}
\]

Let \(\xi(t, s) = [\bar{x}^T(t) \bar{x}^T(t - d_i(t)) \bar{x}^T(s)]^T \). We have
\[
\dot{V}_i(\bar{x}_i) + \alpha V_i(\bar{x}_i) \leq \frac{1}{d_i(t)} \times
\int_{t-d_i(t)}^{t} \xi^T(t, s) \text{diag}(-\bar{Q} - \gamma^{-2} P_i P_i, 0, 0) \xi(t, s) ds.
\]

Taking (16) into account, we get
\[
\dot{V}_i(\bar{x}_i) + \alpha V_i(\bar{x}_i) < \frac{1}{d_i(t)} \times
\int_{t-d_i(t)}^{t} \xi^T(t, s) \text{diag}(-\bar{Q} - \gamma^{-2} P_i P_i, 0, 0) \xi(t, s) ds.
\]

Noticing that \(\bar{Q} \geq 0 \) and \(\gamma^{-2} P_i P_i > 0 \), we can obtain
\[
\dot{V}_i(\bar{x}_i) + \alpha V_i(\bar{x}_i) < 0, \quad i \in \mathbb{N}.
\]

When \(t \in [t_k, t_{k+1}) \), integrating (19) from \(t_k \) to \(t \) gives
\[
V(\bar{x}_i) = V_{\sigma(t)}(\bar{x}_i) = e^{-\alpha(t-t_k)} V_{\sigma(t_k)}(\bar{x}_{t_k}).
\]

Using (12) and (15), at the switching instant \(t_k \), we have
\[
V_{\sigma(t_k)}(\bar{x}_{t_k}) = \mu V_{\sigma(t_k)}(\bar{x}_{t_k})^i, \quad i = 1, 2, \cdots.
\]

Therefore, it follows from (20), (21) and the relation \(k = N_{\sigma}(t_0, t) \leq N_0 + \frac{t-t_0}{\alpha} \), noticing \(N_0 > 0 \), that
\[
\begin{align*}
V(\bar{x}_i)
& \leq e^{-\alpha(t-t_k)} \mu V_{\sigma(t_k)}(\bar{x}_{t_k})
\leq e^{-\alpha(t-t_k) - \alpha(t-t_{k-1})} \mu V_{\sigma(t_{k-1})}(\bar{x}_{t_{k-1}})
\leq \cdots
\leq e^{-\alpha(t-t_0)} \mu^k V_{\sigma(t_0)}(\bar{x}_{t_0})
\leq \mu^{N_0} e^{-(\alpha + \frac{\ln \mu}{\alpha})(t-t_0)} ||\bar{x}_{t_0}||^2.
\end{align*}
\]

In view of (15) again, it holds that
\[
\alpha ||\bar{x}(t)||^2 \leq V(\bar{x}_i), \quad V_{\sigma(t_0)}(\bar{x}_{t_0}) \leq b ||\bar{x}_{t_0}||^2,
\]
where \(a = \min_{i \in \mathbb{N}} \lambda_{\min}(P_i), \quad b = \max_{i \in \mathbb{N}} \lambda_{\max}(P_i) + \alpha \tau^2 \max_{i \in \mathbb{N}} \lambda_{\max}(S_i). \)

Let \(\lambda = \frac{\alpha - \frac{\ln \mu}{\alpha}}{\alpha} \). Combining (22) and (23) gives rise to
\[
||\bar{x}(t)||^2 \leq \frac{1}{a} V(\bar{x}_i) \leq \frac{b}{a} \mu^{N_0} e^{-(\alpha + \frac{\ln \mu}{\alpha})(t-t_0)} ||\bar{x}_{t_0}||^2.
\]
Therefore, \(\|\bar{x}(t)\| \leq \sqrt{\frac{2}{3}} \mu N_0 \cdot e^{-\lambda(t-t_0)} \|\bar{x}_{t_0}\|_d\), which means that system (9) is exponentially stable with \(\bar{\omega} \equiv 0\).

Next, we will show under the zero initial condition with \(\bar{\omega} \neq 0\) that \(\int_0^\infty e^{-\alpha t} e^T(t) Q e(t) dt \leq \gamma^2 \int_0^\infty \bar{\omega}^T(t) \bar{\omega}(t) dt\).

Suppose that \(t \in [t_k, t_{k+1})\), and the \(i\)th subsystem is active. Differentiating the Lyapunov functional candidate along the trajectory \(\bar{x}(t)\) of system (9), we can easily get

\[
\dot{V}_i(\bar{x}_i) + \alpha V_i(\bar{x}_i) \leq \frac{1}{d_i(t)} \int_{t-d_i(t)}^t \xi^T(t, s) \left[\begin{array}{cc} \Omega_{11}^i & -d_i(t) Y_i \\ -d_i(t) T_i & -d_i(t) e^{-\alpha S_i} \\ 0 & 0 \\ 0 & 0 \end{array} \right] \xi(t, s) ds + 2 \gamma^2 \bar{\omega}^T(t) P \bar{\omega}(t).
\]

Applying Lemma 1 gives

\[
2 \gamma^2 \bar{\omega}^T(t) P \bar{\omega}(t) \leq \gamma^2 \bar{x}^T(t) P \bar{x}(t) + \gamma^2 \bar{\omega}^T(t) \bar{\omega}(t).
\]

Substituting (25) into (24) yields

\[
\dot{V}_i(\bar{x}_i) + \alpha V_i(\bar{x}_i) \leq \frac{1}{d_i(t)} \int_{t-d_i(t)}^t \xi^T(t, s) \left[\begin{array}{cc} \Omega_{11}^i & -d_i(t) Y_i \\ -d_i(t) T_i & -d_i(t) e^{-\alpha S_i} \end{array} \right] \xi(t, s) ds + \gamma^2 \bar{\omega}^T(t) \bar{\omega}(t).
\]

Taking (14) into account again, and noticing the structure of \(Q\), we obtain

\[
\dot{V}_i(\bar{x}_i) + \alpha V_i(\bar{x}_i) \leq \frac{1}{d_i(t)} \int_{t-d_i(t)}^t \xi^T(t, s) \left[\begin{array}{cc} -\bar{Q}00 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right] \xi(t, s) ds + \gamma^2 \bar{\omega}^T(t) \bar{\omega}(t)
\]

\[= e^{\gamma^2 \bar{\omega}^T(t) \bar{\omega}(t)} e^{\gamma^2 \bar{\omega}^T(t) \bar{\omega}(t)}
\]

Let \(\Gamma(t) = e^{\gamma^2 \bar{\omega}^T(t) \bar{\omega}(t)} e^{\gamma^2 \bar{\omega}^T(t) \bar{\omega}(t)}\). According to the theory of the first order linear nonhomogeneous differential inequality, for any \(t \in \{t_k, t_{k+1}\}\), we have

\[
V(\bar{x}_i) \leq e^{-\gamma(t-t_k)} V_{\sigma(t_k)}(\bar{x}_{t_k}) - \int_{t_k}^t e^{-\gamma(t-s)} \Gamma(s) ds.
\]

It follows from (12) that

\[
\dot{V}(\bar{x}_i) \leq \mu V_{\sigma(t_k)}(\bar{x}_{t_k}), \quad i = 1, 2, \ldots.
\]

Let \(t_0 = 0\), combining (28) and (29) gives rise to

\[
\dot{V}(\bar{x}_i) \leq \mu V_{\sigma(t_k)}(\bar{x}_{t_k}) - \int_{t_k}^t e^{-\gamma(t-s)} \Gamma(s) ds \leq \mu^k V_{\sigma(t_k)}(\bar{x}_{t_k}) - \mu^{k-1} \int_{t_k}^t e^{-\gamma(t-s)} \Gamma(s) ds
\]

\[
- \mu^k \int_{t_k}^t e^{-\gamma(t-s)} \Gamma(s) ds.
\]

Suppose that \(t \in [t_k, t_{k+1})\), and the \(i\)th subsystem is active. Differentiating the Lyapunov functional candidate along the trajectory \(\bar{x}(t)\) of system (9), we can easily get

Under the zero initial condition, (30) becomes

\[
0 \leq -\int_0^t e^{-\gamma(t-s)} N_\sigma(s) \ln \mu \Gamma(s) ds.
\]

Multiplying both sides of (31) by \(e^{-N_\sigma(0,t) \ln \mu}\) yields

\[
\int_0^t e^{-\gamma(t-s)} N_\sigma(s) \ln \mu e^{T} Q e(s) ds \leq \int_0^t e^{-\gamma(t-s)} N_\sigma(s) \ln \mu y^2 \bar{\omega}^T(s) \bar{\omega}(s) ds
\]

Note that \(N_\sigma(0, s) \leq N_0 + \frac{\gamma^2}{\Delta_0}, \quad N_0 > 0\) and \(T_\sigma > \frac{\ln \mu}{\gamma}\), we have

\[
N_\sigma(0, s) \ln \mu \leq N_0 \ln \mu + \gamma s.
\]

Therefore, it follows from (32) and (33) that

\[
\int_0^t e^{-\gamma(t-s)} e^T(s) Q e(s) ds \leq \int_0^t e^{-\gamma(t-s)} y^2 \bar{\omega}^T(s) \bar{\omega}(s) ds.
\]

Integrating both sides of (34) from 0 to \(\infty\) results in

\[
\int_0^\infty e^{-\gamma s} e^T(s) Q e(s) ds \leq \int_0^\infty y^2 \bar{\omega}^T(s) \bar{\omega}(s) ds.
\]

This completes the proof.

Remark 1. When \(\mu = 1\), we have \(T_\sigma^* = 0\), which implies that the switching signal can be arbitrary. Note that \(N_0 = 0\) corresponds to the case of no switching on any interval of length smaller than \(T_\sigma\), this case degenerates into dwell time case, that is, if we discard the first \(N_0\) switches, then the average time between consecutive switches is at least \(T_\sigma\) (cf. [5], [8]). Therefore, our adopting \(N_0 > 0\) in this paper is more general and natural.

Now, we will design robust tracking controllers.

Consider the \(i\)th subsystem with state feedback controller of the form \(u(t) = K e_i(t)\). Augmenting system (4) we have

\[
\dot{x}(t) = (\bar{A}_i + \Delta \bar{A}_i) x(t) + (\bar{D}_i + \Delta \bar{D}_i) x(t - d_i(t)) + \omega(t),
\]

where \(\bar{x}(t), \bar{A}_i, \bar{D}_i, \bar{D}_i, \omega(t)\) are defined in (8), and

\[
\triangle \bar{A}_i = \begin{bmatrix} \triangle A_i + \triangle D_i K_i - \triangle D_i K_i \\ 0 \\ 0 \end{bmatrix}, \quad \triangle \bar{D}_i = \begin{bmatrix} \triangle D_i(0) \\ 0 \\ 0 \end{bmatrix}.
\]

We adopt the following notations

\[
\bar{E}_i = \begin{bmatrix} E_i(0) \\ 0 \\ 0 \end{bmatrix}, \quad \bar{F}_i = \begin{bmatrix} F_i + H_i K_i - H_i K_i \\ 0 \\ 0 \end{bmatrix}, \quad \bar{L}_i = \begin{bmatrix} L_i(0) \\ 0 \\ 0 \end{bmatrix}, \quad \bar{H}_i = \begin{bmatrix} H_i \\ 0 \\ 0 \end{bmatrix}.
\]

A simple calculation shows

\[
[\triangle \bar{A}_i, \triangle \bar{D}_i, \triangle \bar{D}_i] = \bar{E}_i \bar{L}_i(t) [\bar{F}_i, \bar{L}_i, \bar{H}_i], \quad i \in \mathbb{N}
\]

and

\[
\bar{E}^T_i(t) \bar{L}_i(t) \leq I,
\]

which means Assumption 2 is satisfied.

Consider the closed loop switched linear uncertain system with time-varying delays,

\[
\dot{x}(t) = (\bar{A}_{\sigma} + \triangle \bar{A}_{\sigma}) x(t) + (\bar{D}_{\sigma} + \triangle \bar{D}_{\sigma}) x(t - d_{\sigma}(t)) + \omega(t).
\]
We have the following result.

Theorem 2. Suppose that the augmented system (35) satisfies Assumption 1-2. For given positive constants \(\alpha, \gamma \), if there exist scalar \(\beta > 0 \), positive definite matrices \(P_i, S_i \), matrices \(K_i \), and any matrices \(Y_i, T_i \) with appropriate dimensions, such that (38) hold, then under the feedback controller \(u(t) = K_i x_i(t) \) for system (4), the weighted \(H_\infty \) model reference robust tracking performance in (1) is guaranteed for any switching signal with average dwell time satisfying

\[
T_\alpha > T_\alpha^* = \frac{\ln \mu}{\alpha},
\]

where \(\mu \geq 1 \) satisfies

\[
P_i \leq \mu P_j, \quad S_i \leq \mu S_j, \quad \forall i, j \in \mathbb{N},
\]

\[
\varphi_{11} = \tilde{A}_i^T P_i + P_i \tilde{A}_i + \alpha P_i + Y_i^T + Y_i,
\]

\[
\varphi_{12} = P_i \tilde{D}_i + T_i^T - Y_i,
\]

\[
\varphi_{22} = -T_i^T - T_i.
\]

Proof. Define the piecewise Lyapunov functional candidate

\[
V(\dot{x}(t)) = V_{\sigma(t)}(\dot{x}(t)) = \dot{x}^T(t) P_{\sigma(t)} \dot{x}(t) + \int_{-\theta}^{0} \int_{t+\theta}^{t} \dot{x}(s) e^{-\alpha(s-\theta)} \dot{x}(s) ds d\theta,
\]

and let \(\tilde{A}_i = \tilde{A}_i + \Delta \tilde{A}_i, \tilde{D}_i = \tilde{D}_i + \Delta \tilde{D}_i \). The result follows from Theorem 1 if it holds that

\[
[\varphi_{11} + \tilde{Q} \varphi_{12} - Y_i \quad \tilde{A}_T S_i \quad P_i]
\]

\[
* \quad * \quad * \quad -\gamma^{-1} \quad * \quad 0 \quad 0
\]

where

\[
\varphi_{11} = \tilde{A}_i^T P_i + P_i \tilde{A}_i + \alpha P_i + Y_i^T + Y_i,
\]

\[
\varphi_{12} = P_i \tilde{D}_i + T_i^T - Y_i,
\]

\[
\varphi_{22} = -T_i^T - T_i.
\]

Now, we show that (40) hold. We rewrite (40) as follows

\[
\Theta_i +
\]

\[
\begin{bmatrix}
\Delta \tilde{A}_i^T P_i + P_i \Delta \tilde{A}_i P_i \Delta \tilde{D}_i 0 \Delta \tilde{A}_i^T 0 \\
* 0 0 \Delta \tilde{D}_i^T 0 \\
* 0 0 0 \\
* 0 0 0 \\
* 0 0 0 \\
* 0 0 0 \\
* 0 0 0 \\
\end{bmatrix} < 0, \quad i \in \mathbb{N}
\]

(42) is equivalent to (38), consequently, (40) hold and the proof is end.

Remark 2. Due to the Lyapunov functional candidate we designed does not include the time-varying delays terms \(\tilde{d}_i(t)(i \in \mathbb{N}) \), the number of constraint conditions is reduced compared to existing results (e.g., [4, [12]), which in turn reduces the difficulties of designing switching control laws.

IV. NUMERICAL EXAMPLE

Consider the switched linear uncertain system (1) with time varying delays and the reference system (2) with

\[
A_1 = \begin{bmatrix} -4 & -2.5 \\ 1.2 & -1.5 \end{bmatrix}, \quad D_1 = \begin{bmatrix} 0.2 & 0.1 \\ 0.1 & 0 \end{bmatrix}, \quad B_1 = \begin{bmatrix} -0.1 \\ -0.3 \end{bmatrix};
\]

\[
A_2 = \begin{bmatrix} -2 & 0.5 \\ -3.2 & -3.5 \end{bmatrix}, \quad D_2 = \begin{bmatrix} 0.1 & 1 \\ 0.2 & 0 \end{bmatrix}, \quad B_2 = \begin{bmatrix} -0.1 \\ 0.7 \end{bmatrix};
\]

\[
A_r = \begin{bmatrix} -4.5 & -1.5 \\ 1.2 & -1.5 \end{bmatrix}, \quad F_1 = \begin{bmatrix} 0.4 & 0 \\ 0 & 0 \end{bmatrix}, \quad F_2 = \begin{bmatrix} 0.6 & 0 \\ 0 & -0.1 \end{bmatrix};
\]

\[
E_1 = \begin{bmatrix} 0.1 & 0 \\ 0 & -0.5 \end{bmatrix}, \quad L_1 = \begin{bmatrix} 0.1 & 0 \\ 0 & 0 \end{bmatrix}, \quad H_1 = \begin{bmatrix} 0.8 \\ 0.1 \end{bmatrix};
\]

\[
E_2 = \begin{bmatrix} 0.3 & 0 \\ 0 & -0.1 \end{bmatrix}, \quad L_2 = \begin{bmatrix} 0.1 & 0 \\ 0 & -0.4 \end{bmatrix}, \quad H_2 = \begin{bmatrix} 0.3 \\ 0.1 \end{bmatrix};
\]

\[
\Pi_1 = \Pi_2 = M = \text{diag}\{1, 1\};
\]
and \(d_{sr}(t) = 0.6 + 0.6 \sin t \). For \(\alpha = 0.6, \tau = 1.2 \), solving (38) gives piecewise Lyapunov functional (39) with

\[
P_1 = \begin{bmatrix} \hat{P}_1^{-1} & 0 \\ 0 & \hat{P}_1^{-1} \end{bmatrix}, \quad P_2 = \begin{bmatrix} \hat{P}_2^{-1} & 0 \\ 0 & \hat{P}_2^{-1} \end{bmatrix},
\]

\[
S_1 = \begin{bmatrix} \hat{S}_1 & 0 \\ 0 & \hat{S}_1 \end{bmatrix}, \quad S_2 = \begin{bmatrix} \hat{S}_2 & 0 \\ 0 & \hat{S}_2 \end{bmatrix},
\]

where

\[
\hat{P}_1 = \begin{bmatrix} 0.1542 & -0.0153 \\ -0.0153 & 0.1494 \end{bmatrix}, \quad \hat{P}_2 = \begin{bmatrix} 0.0897 & -0.0378 \\ -0.0378 & 0.0815 \end{bmatrix},
\]

\[
\hat{S}_1 = \begin{bmatrix} 2.68160 & 0.00727 \\ 0.00727 & 2.7367 \end{bmatrix}, \quad \hat{S}_2 = \begin{bmatrix} 2.7482 & -0.0531 \\ -0.0531 & 2.7368 \end{bmatrix}.
\]

Consequently, the controller gains are given as \(K_1 = [0.52951, 0.0927] \) and \(K_2 = [4.02921, 0.861] \). Solving (38) gives \(\mu = 2.8645 \), and according (37), we have \(\tau_\alpha^* = \frac{\ln \mu}{\alpha} = 1.7540 \). By using average dwell time method provided by Theorem 1 and 2, we obtained that system (1) is with the weighted \(H_{\infty} \) model reference robust tracking performance, the simulation results are depicted in Fig.1-Fig.3.

V. CONCLUSIONS

In this paper, we have investigated the robust tracking control problem for switched linear uncertain systems with time-varying delays. Sufficient conditions for the solvability of the robust tracking control problems are developed. Weighted \(H_{\infty} \) model reference robust tracking performance is given for the switched systems with time-varying delays; with average dwell time technique, satisfactory tracking control results are obtained. Meanwhile, by using free weighting matrix scheme, the conservativeness of designing switching control laws is reduced. Consequently, the difficulties of the stability analysis and control synthesis of switched system with time-varying delays are substantially reduced by relaxing some constrain conditions compared with the existing results.

REFERENCES