Concept Design for Hybrid Vehicle Power Systems

Theo Hofman and Roëll van Druten
Technische Universiteit Eindhoven
Dept. of Mechanical Engineering, Control Systems Technology
NL 5600 MB Eindhoven, The Netherlands
Email: t.hofman@tue.nl

Abstract— Hybridization implies adding a Secondary power source (e.g. electric motor and battery) (S) to a Primary power source (P) in order to improve the driving functions (e.g. fuel economy, driveability (performance)) of the vehicle. The fuel economy is strongly determined by the energy management strategy, which determines the power distribution between P, S and the Vehicle wheels (V). In this paper the influence of the specifications for P and S on energy management strategy (EMS) have been investigated. The final objective is to determine the minimum required specifications in order to design new hybrid drivetrain technologies and topologies for future hybrid vehicles.

Keywords: energy management strategy, optimization, power systems, multi-objective design process

I. INTRODUCTION

A conventional drivetrain consists of a primary energy source (i.e. fossil fuel) and an energy converter, together also referred to as ‘Primary power source’ (P), which are connected to the wheels via a coupling, mechanical transmission, and differential. Hybrid technology implies adding a bi-directional energy accumulator, converter and transmission components referred to as ‘Secondary power source’, (S) in order to increase the integral driving functionality. The driving functions can comprise the fuel consumption, emissions, comfort, driveability (performance) and safety. S is able to exchange energy with P and V. The bi-directional power flows for P, S and V are represented by P_p, P_s and P_v. P can be represented as a nonlinear static map, in which the fuel rate \dot{m} [g/s] is a function of the engine crank shaft power and speed.

$$\dot{m} = f(P_p, \omega_p)$$

The objective is to optimize the power flow between the power sources over a defined drive cycle in order to
- Minimize the fuel consumption and emissions.
- Maintain state-of-charge of the accumulator within a certain range.
- Accomplish any drive power demand.

Therefore, the problem can be described as an optimization problem.

$$\min J(x) \text{ subject to } h(x) = 0, \ g(x) \leq 0$$

Fig. 1. Generic Hybrid Drivetrain Model: Primary (P), Secondary power source (S), Transmission technology (T) and Vehicle wheels (V)
with \(h(x) \) equality and \(g(x) \) inequality constraints. The cost function \(J \) is the total fuel consumption over the drive cycle as a function of the power flow of \(S \), which is the control design variable.

\[
J = \int_{0}^{t_{cycle}} \text{int}(P_s(t), P_v(t), \omega_p(t)) \, dt
\]

(3)

The influence of the power ratings of \(S \) has been investigated by changing the bounds or limitations on the operation range of \(S \), the bounds on the energy level for \(S \) are fixed.

\[
P_{s,min} \leq P_s \leq P_{s,max}
\]

(4)

\[
E_{s,min} \leq E_s \leq E_{s,max}
\]

(5)

Furthermore, the optimization problem is subjected to an integral constraint, i.e. state-of-charge balance of accumulator, which leads to

\[
\int_{0}^{t_{cycle}} P_s(t) \, dt = 0
\]

(6)

The accumulator energy level evolution may be calculated with,

\[
E_s(t) = E_s(0) + \int_{0}^{t_{cycle}} P_s(t) \, dt
\]

(7)

The optimization problem can be described as a multi-step decision problem in discrete-time format and therefore it can be solved by using the Dynamic Programming (DP) technique ([8]). The DP problem is solved by numerical discretization and interpolation of the state and control design values ([1]-[6]).

III. POWER SPECIFICATIONS FOR \(S \)

In this section the influence of power rating specifications for \(S \) and efficiency specifications of \(P \) on the EMS will be discussed. The kinematical constraints and power losses imposed by \(T \) have been left out of consideration. The engine is only able to deliver positive torque. The vehicle is a typical midsized-passenger car equipped with a 1.6l petrol engine and the used drive cycle is the NEDC. Furthermore, the engine is assumed to be operated at operation points with the highest efficiency i.e. at the Optimal Operation Line (OOL). In figure 2, the required drive power \(P_s \) is shown. The second plot shows the energy specific fuel consumption at the OOL referred to as \(\beta_{OOL} \) [g/kWh] as a function of the engine crankshaft power \(P_p \) for the used 1.6l petrol engine. The \(\beta_{OOL} \) has been determined from the nonlinear static engine map. From these graphs it can be seen that for drive powers up to approximately 10 [kW] corresponds to \(> 80\% \) of the total required drive cycle energy (region I). At the same time the OOL of the engine shows a relative large sensitivity of the OOL to required engine power. For powers higher than 10 [kW] the fuel consumption sensitivity is much less (region II). Notice that for engine power higher than 45 [kW] mixture enrichment occurs thereby increasing the specific fuel consumption as a function of engine power. During the analysis the initial accumulator energy level is set to \(E_s(0) = 50\% \cdot \Delta E_s \) with \(\Delta E_s = (E_{s,max} - E_{s,min}) = 1 [MJ] \) is assumed. In addition, a 10th order polynomial fit function has been used in order to obtain a smoother function to calculate the fuel rate. The maximum deviation between the fitted function and the actual OOL is smaller than 3\%. The fitted function \(\beta_{OOL,fit} \) has three local minima (see figure 2). The \(S \) efficiency is assumed to be 100\%. In the figures 3 and 4, the strategies for two different power ratings of 5 [kW] and 35 [kW] are shown respectively. The power ratings are the maximum motoring and generative power of \(S \). From the strategies, it can be concluded that the optimal EMS focusses at operating the engine at power levels in which efficiency is higher (see figures 2, 3 and 4). This is accomplished by controlling the power flow in and out of the accumulator. If the power rating is sufficiently large enough, the engine is operated at 'Sweet-spot', which is the

![Fig. 2. Required drive power \(P_s \) and \(\beta_{OOL} \) as a function of required engine crankshaft power \(P_p \)](image)

![Fig. 3. EMS with max(\(P_p \)) = 5 [kW], \(\Delta E_s = 1 [MJ] \), \(\eta_s = 100\% \), BER = Brake Energy Recovery](image)
global minimum of \(\beta_{OOL,fit} \). From the sensitivity analysis of the vehicle drive power \(P_v \) and the \(\beta_{OOL} \) of the engine follows that at low required drive powers it can be preferable to shut-off the engine and driving the vehicle only by the secondary power source in order to avoid part load (see figure 2). From the results of DP in figure 3 it can be seen that the vehicle is propelled by the secondary power source for required drive powers \(P_s \) up to approximately 5 [kW] avoiding some of the part load. This is equally to the chosen maximum power rating of \(S \). In figure 5, the power flows of \(S \) is shown. The total efficiency is the product of the battery efficiency and the electric machine efficiency.

\[
\eta_s = \eta_{battery} \cdot \eta_{em}
\]

During this analysis the influence of \(\eta_s \) and the average constant efficiency of \(S \), i.e.,

\[
\bar{\eta}_s = \frac{1}{P_{s,max} - P_{s,min}} \int_{P_{s,min}}^{P_{s,max}} \eta_s \, dP_s
\]

on the EMS following from DP will be investigated. The same engine and vehicle type as described in the previous section has been used. The temperature effects and transients (due to high internal capacitance) of the battery have been ignored. In figure 7, the generative/motoring power transfer curves of \(S \) are shown for different SoC levels \(\in \{10\%, 90\%\} \). These curves are obtained from the nonlinear static maps for \(S \) as shown in figures 8 and 9. It can be seen that the generative efficiency is higher than the motoring efficiency. The constraints for \(S \) (e.g. maximum battery charge power, electric machine output power) described as in the optimization problem can be expressed as a nonlinear look-up table function of \(P_s \). The optimal operation line for \(S \) (for the electric motor and battery combination) has been determined and used in the optimization problem, with the assumption that the influence of the SoC within the range of 40%-60% can be neglected. In figure 10, the power dependent efficiency for \(S \) and the histograms for
for S is used, the strategy tends to charge the battery slightly more over the drive cycle (referred to (1) in fig. 10). The difference between \(\bar{\eta}_s \) and the generator efficiency \(\eta_s \) is smaller than the difference between \(\bar{\eta}_p \) and the motor efficiency \(\eta_p \). The SoC level (see figure 11) is kept for both simulations within range of 40%-50%. In figure 12, the power distribution for the engine is shown. It can be seen that the resulting strategy focusses on operating the engine at higher efficiency levels (local maxima) as much as possible depending on the required drive power and the maximum power ratings of S. For required vehicle drive powers between the local maxima of \(\eta_p \), the vehicle is generatively driven by S, forcing the engine to be operated at a higher efficiency level. However, for required vehicle drive powers up to approximately 4 [kW], the vehicle is almost fully electrically driven. The difference in influence on the fuel economy and EMS between the actual power dependent component efficiency and the average constant efficiency for S is small. The total fuel consumption with \(\bar{\eta}_s \) is approximately 0.3% higher. The maximum difference in the SoC level, which occurs at the minimum SoC level, is

\[\eta_s \text{ and } \bar{\eta}_s \text{ are shown. If the power independent efficiency for } S \text{ is used, the strategy tends to charge the battery} \]

\[\text{Fig. 7. Power flow } P_s \text{ as a function of } P_{\text{storage}} \text{ for different SoC } \in \{10\%, 90\%\} \]

\[\text{Fig. 8. Motor drive efficiency } \eta_s \text{ as a function of } P_s > 0 \text{ and SoC, maximum efficiency at } \approx 50\% \text{ SoC} \]

\[\text{Fig. 9. Generator efficiency } \eta_s \text{ as a function of } P_s < 0 \text{ and SoC, maximum efficiency at } \approx 50\% \text{ SoC} \]

\[\text{Fig. 10. } \eta_s(P_p), \text{ Histograms for } \eta_s, \bar{\eta}_s \]

\[\text{Fig. 11. SoC evolution with average constant efficiency } \bar{\eta}_s \text{ and power dependent efficiency } \eta_s \text{ for } S \]
approximately 43% - 42% ≈ 1%. The required combination of an average constant efficiency and other specifications (accumulator size and power ratings) for S fulfilling the required driving function improvement may be used in order to select and design new technologies for S.

V. Conclusions

The influence of the power rating specifications for S and the efficiency specifications for P and S on the EMS have been investigated. The influence of the power ratings of S has been investigated by changing the bounds or limitations on the operation range of S, the bounds on the energy level for S were fixed. It can be concluded that the EMS is strongly determined by the power rating specification of S and the efficiency of the engine. The optimal EMS focusses at operating the engine at power levels in which efficiency is higher depending on the required drive power and the maximum power ratings of S. This is accomplished by controlling the power flow in and out of the accumulator. The difference in influence on the fuel economy and EMS between the actual power dependent component efficiency and the average constant efficiency $\bar{\eta}_s$ for S is small. The total fuel consumption with $\bar{\eta}_s$ is approximately 0.3% higher. The maximum difference in the SoC level, which occurs at the minimum SoC level, is approximately 1%. The required combination of an average constant efficiency and other specifications (accumulator size and power ratings) for S fulfilling the required driving function improvement may be used in order to select and design new technologies for S.

ACKNOWLEDGMENT

This study is part of “Impulse Drive” which is a research project at the Technische Universiteit Eindhoven in The Netherlands within the section Control Systems Technology of the Department of Mechanical Engineering. The project is financially supported by the NWO Technology Foundation within the Innovational Research Incentives Scheme 2000/2001.