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Abstract– Edge computing is essential for the Industrial IoT as 

framework for data acquisition from shop floor devices; distributed 

intelligence will shift to the edge for speed reasons in real-time 

handling of big data. This research aims at developing a generic 

architecture for information and data collection, smart processing 

and aggregation at the edge of large-scale manufacturing control 

systems; the edge is represented by the set of shop floor entities 

(things) – resources and intelligent products that are agentified and 

communicate in multi-agent systems for decentralized MES tasks. 

The IIoT architecture integrates a private cloud platform with a 

network of IoT aggregation nodes composed of IoT gateways, 

sensors and PC-type workstations hosting the resource agents. Both 

networks form the distributed MES layer of a semi-heterarchical, 

cloud-based production control system. The implementing solution 

is given; experiments report communication with the cloud. 

Keywords – Agent-based Systems, Networked Control, Internet 

of Things, Manufacturing Systems 

I. INTRODUCTION 

The digital transformation and smart integration of shop 
floor devices with control software caused an explosion in the 
data points available in large scale manufacturing systems. 
The degree at which enterprises are able to capture value from 
processing this data by extracting useful insights from it 
represents a differentiating factor on short and medium term 
development and optimization of the processes that drive the 
manufacturing operations. Data processing involves three 
important problems: i) aggregating at the right logical levels 
when data originates from multiple sources, ii) aligning the 
data streams in normalized time intervals and iii) extracting 
insights from real-time data streams. All these dimensions 
should be considered in the context of scale, which means that 
the processing of this data streams must be scalable linearly so 
that the overall processing time remains low [1], [2]. 

To generate and use knowledge, much of the value that big 
data retrieved from the shop floor and working environment 
and analytics at control (Manufacturing Execution System – 
MES) and supply chain levels can bring in manufacturing 
requires real-time access and differentiated use of data from 
multiple edge and end point sources throughout the shop-floor 
[3]. The data is constantly growing in quantity, diversity and 
complexity: its availability and significance depend on 
reaction levels (from micro-seconds to years); it is multi-
dimensional (time, location, energy, usage etc.) and multi-

spatial (inside and outside the enterprise). More, the data is 
concerned with limited reliability, limited accuracy and 
obsolescence, and also with different levels of priority (from 
on-the-fly reaction needs to time-independent and a posteriori 
analysis needs). This requires on one hand the use of extended 
digital models of manufacturing equipment, processes, sys-
tems and products, and on the other hand the distribution of 
intelligence at shop floor level This is done by defining agents 
for all shop floor entities, providing them reasoning 
capabilities and processing power while letting them 
collaborate in Multi-Agent Systems (MAS) to attain common, 
global goals at batch production level [4]. 

The integration of IT and Operational Technology (OT) in 
the Industrial Internet of Things (IIoT) enables the “smart 
factory” concept. This concept consists of new production 
control paradigms and environment monitoring techniques 
using connected devices that are able to collect, process and 
transmit data. This data is used to extract knowledge, optimize 
scenarios and generate predictions to improve efficiency, 
accuracy, and cost. One of the potentially biggest benefits is 
intelligent decision-making due to the access to relevant and 
high-quality information extracted from big data gathered both 
at shop floor and business enterprise layers [5], [6]. 

The operational level of manufacturing control is related to 
the physical world which is put in evidence by the IoT with its 
smart devices. For efficiently monitoring resources and the 
work in progress it is necessary to process and analyse real-
time data streams. The data acquired in real-time by the agents 
representing two types of shop floor entities, resources and 
products is processed in the MES with distributed intelligence 
(dMES) implemented by the agents’ delegate MAS. The scope 
of real-time processing of the shop floor data is twofold: 

 Tracking continuously the status of resources in terms of 
availability for assigned tasks and evaluation of the quality 
of services they provide for measured energy consumption; 
this processing tasks are performed by the resource agents 
and need rapid reaction for resource team reconfiguring at 
breakdown or major degradation of resource performances. 

 Machine learning and deep learning schemes applied to 
shop floor data retrieved from processes, resources and 
products for process optimization, quality inspection and 
preventive maintenance which is done at supervisory level 
in the cloud [7], [8]. 
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For large-scale manufacturing systems the coordination 
level is virtualized being implemented in private cloud models 
with IaaS model executing aggregated software applications 
based on high performance computing for capacity and 
demand matching and optimized decision-making, supported 
by big data analytics (DA). 

An agent-based model with distributed intelligence for big 
data aggregation and analysis is presented in [9]. This model is 
organized on two layers of agents the capabilities of which can 
be configured. The data streaming and primary analysis is the 
responsibility of low-layer agents; they provide information 
about products, resources and production processes such as 
work-in-progress, resources’ operational state and availability 
or quality inspection results. These agents collect data from 
shop-floor devices and analyse it in real-time; they are fixed 
(resource agents) or mobile (embedded on products travelling 
in the production structure). These agents cooperate to identify 
events and decide upon job allocation or rescheduling. Agents 
placed on the higher level process time-ordered data, track the 
covariance of multiple monitored metrics, and analyse big 
amounts of historical data available from shop floor actions, 
contextual or external aggregated information. They use this 
knowledge as support to decision: optimization of global cost 
functions, reconfiguring resource teams, predicting behaviours 
and events, evaluating preventive maintenance. 

New MES designs aim at shifting in the real-time domain 
some of intensive computational tasks the result of which 
strongly influence the resource utilisation and production costs 
[10]. Such a global task at batch level is the optimization of 
product planning, scheduling and resource allocation based on 
distributing intelligence at shop floor’s edge for data retrieval, 
pre-processing and high speed connectivity with private cloud 
platform. High performance computing tasks act in this case 
as global problem solver and return results in real-time to the 
dMES controls for product routing with continuous 
optimization of batch costs and resource usage.  

The paper is organized as follows: Chapter 2 discusses the 
Edge Computing concept and issues for implementing in the 
Industrial IoT framework for shop floor data-driven 
manufacturing control systems. Chapter 3 presents the IIoT 
architecture for data acquisition and intelligent processing, 
composed from two networks of IoT gateway devices for 
fixed manufacturing resources and aggregation nodes for 
intelligent devices embedded on products carriers travelling 
between workstations. Experimental results and conclusions 
are reported in Chapter 4. 

II. EDGE COMPUTING IN THE IIOT FRAMEWORK 

Several concepts arose in the last years in order to bring 
together informational and physical objects. From a 
chronological point of view there was first the Internet which 
enabled applications interconnection facilitating efficient 
communication. Then, physical devices started to be 
connected to the Internet which made them smarter and more 
efficient by exchanging information with both cloud and peer 
systems. This second phase changed the way process control 
was conducted. The new concept is called Internet of Things 
(IoT) or Physical Internet (PI) and applies the technologies 

and methods of the digital Internet to the physical world. In 
this context, where multiple actors (both people and 
companies) interact in order to deliver products and services 
both time and cost effective while the process as a whole 
remains sustainable, requirements like real-time traceability, 
automatic collection of data from fixed and mobile objects, 
integration of this data into the cloud to analyse it, optimize 
processes and take decisions are important objectives. 

OT and IT alignment in the IIoT framework improves data 
accessibility performed by a stable and fault-tolerant IT 
infrastructure for an OT environment. With edge computing a 
greater volume of high-quality data from the OT side can be 
obtained without impacting the current Supervisory Control 
And Data Acquisition system. With cloud and virtualization 
technologies, manufacturing-floor servers can be moved to the 
cloud, helping to reduce equipment and extending the MES 
functionalities (transferring the system scheduler, machine 
learning and prediction-generating technology in the MES, 
managing unexpected events, real-time resource reconfiguring 
based on digital models of processes and assets uncontaminat-
ed by functionalities, resource operating in today′s standard IT 
security protocols, a.o.) [11], [12]. 

Edge computing is essential for IIoT as framework for data 
acquisition from shop floor devices; distributed intelligence 
will shift to the edge for speed reasons in real-time handling of 
big data. Instead of transporting all data over the network and 
then processing it, for instance in the centralized cloud-based 
MES, some operations will be performed close to the IIoT 
device (endpoints: sensors and embedded devices) and 
application, hence at the edge of the network or the endpoint. 
A new perspective is brought to the industrial IoT space by 
integrating intelligence and computing capabilities directly 
into small-footprint edge devices – IoT gateways (Fig. 1 up). 
A software platform is needed to process data directly on 
distributed, small-footprint edge devices (or sensors) rather 
than sending all data to the private cloud for processing; this 
technology minimizes thus latency and simplifies the data 
exchange between the centralized part of the MES (the cloud 
IaaS) and the distributed part of the MES (the delegate MAS). 

In this context the goal of this research is to develop a 
generic architecture for information and data collection, 
processing and aggregation at the edge of large-scale 
manufacturing control systems; the edge is represented by the 
set of shop floor entities (things) that are agentified and to 
which intelligence is added: 

 resources: sets of sensors continuously generate data about: 
operating parameters (vibrations of machine tool axes, 
forces at robot grippers, electrical parameters of actuators, 
drives and processing boards, image parameters of virtual 
cameras, a.o.), tool parameters, resource status (errors at 
program execution, programs enabled / disabled, power off 
at collisions, calibration errors, a.o.), quality of operations 
performed (duration, part recognition and locating by 
vision, a.o.), and energy consumption (continuously, per 
product and operation); 

 products: human-machine interfaces with access to the 
cloud provide information and data about the product’s 
desired recipe while intelligent devices embedded on the 
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physical products (single-chip processors with WiFi 
connectivity are placed on the pallet carriers that move 
products on the conveyor belt between resources which 
successively act upon them) collect information and data 
about the products’ current execution status, quality control 
results (geometry measurements, shape finishing, alignment 
of subassemblies), and events that occurred during 
execution (power off and machining retrace at recovery;   

 orders: intelligent embedded devices on product carriers 
aggregate information and data about the way the product’s 
recipe is transposed in a dedicated batch entry for 
execution, sequence of operations with precedencies and 
resources assigned for each operation, about fulfilment of 
the product’s execution order and eventual unexpected 
events, about the product’s location in the shop floor, 
operations already performed, timeliness and delays relative 
to the current schedule, and delivery time; 

 environment: the environment is continuously monitored in 
plants where special products are manufactured (e.g. 
radiopharmaceuticals; networked sensors collect, weigh, 
and pre-process temperature, relative humidity, pressure, 
radioactivity, a.o. data) or in workstations where vision 
systems are used (sensors report lighting variations). 

Devices/resources

Sensors/actuators

IoT gateway

Edge

Cloud

Systems

 

Smart sensors/

actuators

IoT gateway

Cloud

PC/Next Unit 

of Computing 

(NUC)

Resource 

controller

Sensors/

actuators

Control 

application

Aggregation node

Systems

 
Fig. 1. IoT gateway (A) and Aggregation node (B) concepts for large-scale 

manufacturing control systems 

In the proposed IIoT framework for complex production 
control, order agentification is realized with IoT gateways 
implemented with small Overo AirStorm system boards from 
Gumstix [13] and embed intelligence on product carriers.  

In order to integrate and pre-process a higher volume of 
information generated by multiple resource sensors, energy 
measuring devices and environment monitoring sensors in a 
particular shop floor area (a workstation or a resource area), 
the concept of IoT gateway was extended to the IoT 
aggregation node one (Fig. 1 down). This type of edge system 
supports multiple communication protocols (inter-agents and 
agent-cloud), aggregates various types of data collected with 
different timings from a large number of sensors and adapts 

data processing to user requirements (evaluate resource 
behaviours and QoS, detect anomalies, predict  unexpected 
events) [17], [18]. An aggregation node is an extension of IoT 
gateways allowing multiple devices to connect to the cloud 
using a centralized point (usually a PC); these devices can be 
IoT gateways, smart sensors/actuators or industrial controllers. 
While IoT gateways have usually limited communication 
capabilities and processing power, the aggregation node, being 
PC-based, supports multiple communication protocols and is 
flexible enough to run customized software. The resources are 
agentified in the IIoT framework for manufacturing control 
with IoT aggregation nodes. 

III. DISTRIBUTING INTELLIGENCE AT THE EDGE IN CLOUD 

MANUFACTURING  

The proposed semi-heterarchical manufacturing control 
architecture performs the following tasks:  

1. Configuration of the resource set; planning products in the 
batch, scheduling operations for products and assigning 
resources to operations; prediction resource behaviours and 
energy consumption, detecting anomalies based on machine 
learning; cell and production monitoring. These tasks will 
be done for batch orders received and accepted on the upper 
MES level implemented in a private cloud platform.  

2. Automatic control of product routing and execution of 
batch orders; on line rescheduling at disturbance occurrence 
through collaborative decisions taken by order agents at de-
centralized dMES level. The information flow from the 
lower dMES control level to the System Scheduler in the 
cloud concerns: i) the resources’ status, behaviour, energy 
consumption and QoS performed at termination of any 
operation on products in current execution; ii) occurrence of 
predicted (operation / product termination) and unexpected 
(resource breakdown, rush order, storage depletion) events.  

The overall control of the batch production is semi-
heterarchical, with hierarchical, centralized optimization of 
mixed batch planning and product scheduling coexisting with 
heterarchical, decentralized control of product execution. The 
initially computed optimal schedule is taken as a recommend-
dation, being applied as long as the resources’ capabilities are 
not altered. This dual control topology with on line switching 
modes and real-time rescheduling is feasible by running in the 
cloud optimization programs on differentiated time horizons 
up to the farthest (batch) one. A proper timing must be 
selected to: i) check continuously the resources’ behaviour and 
evolution of their capabilities, to identify the degradation of 
these performances, to predict unexpected events and energy 
consumptions, and ii) to update optimal schedules [16]. No 
significant event should be lost (not detected), while the global 
control system should not become too nervous. A suitable 
timing scheme would be to (eventually) update the optimal 
production schedule each time a product’s execution is finish-
ed, while updating the resources’ status, KPIs and energy 
consumption each time an operation on a product is finished. 
In this timing, the cloud System Scheduler updates the optimal 
sequence for the remaining products to be executed, and the 
dMES order agents reschedule in cooperation the products in 
current execution. This rule diminishes the system’s myopia. 

A 

B 
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Fig. 2 shows how is distributed the intelligence at the edge 
of the shop floor in the heterarchical agent-based dMES.  

 

Fig. 2. The holonic model for a large-scale manufacturing control system 

The model uses the three types of basic agents to which 
their physical counterparts are related: equipment, goods and 
actions; three basic holon classes interact in real-time to put in 
practice and update optimized execution schedules: resource 
holons, product holons and order holons. A supervisor class – 
the staff holon – optimizes production schedules at batch 
horizon in real-time. This model uses the principles defined in 
the PROSA holonic reference architecture [17]. 

By collecting in real-time the resources’ status, the QoS 
performed and the energy consumed, an optimization model 
initially computed in the cloud can be updated and re-run with 
certain timing in order to maintain the best global batch cost 
functions (e.g., execution time, energy consumption, balanced 
resource usage, a.o.). In this research, the cost is composed of 
the total production time (makespan) and the energy 
consumed; energy is influenced by the makespan (energy = 
power × time). Tests were carried out in the experimenting 
stage for the update processes of instantaneous power and 
energy. The events that can alter the computed best schedule 
fall into two categories: hard change of the resource’s state 
(e.g., resource/operation failure), and soft change of the state 
(degraded resource parameters causing increase of utilisation 
costs, e.g.: increased execution time or energy consumed). 

The events are configured initially in the cloud based on 
experiments and history; they are identified during production 
by the resource holons that communicate with the order 
holons. Hard changes may be detected anytime and cause: i) 
automated reconfiguring of the resource team and operations 
rescheduling in the cloud for the not yet executed products in 
the batch, and ii) operations rescheduling in the dMES by 
collaborative decisions of the MAS of order agents. Soft 
changes are evaluated whenever an operation is finished for 
any of the products (order holons) in simultaneous execution, 
and may cause centralized operations rescheduling in the 
cloud for the products not yet executed whenever a product is 
finished and the increase in the soft change parameter chosen 

(execution time or energy consumption) exceeds a predefined 

threshold thr (experimentally computed). 
The proposed IIoT architecture for data acquisition and 

intelligent processing integrates in the distributed MES layer 
two networks of devices: 

 A network of IoT gateway devices in which data is handled 
by the mobile order agents residing on intelligent devices) 
embedded on product carriers. The lifecycle of an order 
agent corresponds to the execution time of the product it 
represents; when a product is finished and exits the shop 
floor, the IoT gateway device located on the pallet carrier 
will receive from the PLC supervising product routing the 
data to be used by the order agent of the next product which 
will be progressively created on the available pallet carrier. 
The number of IoT gateway devices (n) corresponds to the 
number of products simultaneously executed; the residing 
order agents communicate with the resource agents at 
operations rescheduling for the n products in current 
execution imposed by a hard change in the status of one 
resource (breakdown or strong performance degradation). 
This rescheduling is made in collaboration by all order 
agents that are integrated in a MAS framework with WiFi 
communication; order agents send data to the cloud 
concerning the work-in-progress (Fig. 3). 

 A network of aggregation nodes composed of Arduino ETH 
boards (IoT gateways), sensors and PC-type workstations 
host the resource agents. Data is collected directly from 
resources, and processed in real-time by the computer, for 
the tasks defined at point 1 above (Fig. 4). 
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Fig. 3. Order agents running on IoT gateway devices embed intelligence on 

products, negotiate resources and take collective decision on “next 
operation assignment” at shop floor disturbances (e.g., resource 

breakdown, high power consumption, low QoS) 

For example, if resource allocation for product operations is 
based on energy consumption, real-time data is collected and 
locally processed to obtain the instantaneous power which is 
fed to the cloud database in order to update the power record 
(instantaneous power in time) and to the respective resource 
agent residing on the PC to calculate the energy consumed for 
a performed operation. 
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Fig. 4. Architecture of an IoT aggregation node and integration with the Cloud scheduler for a) continuous and b) operation-based data tasks 

In case a) the instantaneous power Pl = IRMS X URMS  is 
sent directly to the cloud using a HTTP POST request to a 
PHP / MySQL application located on the cloud. In the second 
case b) the sequence of messages is: the resource agent 
receives from an order agent (in charge of product routing and 
control of job execution) an operation execution request; the 
current consumed energy is read from the Arduino board and a 
start operation signal is issued to the resource; the resource 
executes the operation and at the end signals its completion to 
the resource agent; the agent reads again the current consumed 
energy and by subtracting the first energy value from the 
second one calculates the energy consumed for that operation 
(Fig. 5). The resource agent can monitor resource parameters 
like temperature, torque, power supply of drives and CPU 
boards, positioning error, success of object recognition, a.o. 
This information is written to the cloud database using ODBC. 
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Fig. 5. Sequence of messages in the operation-based monitoring process of 

the resource agent executing on an IoT aggregation node 

Both IoT device networks communicate between them and 
with the Cloud IaaS to update process execution knowledge 
and apply decisions taken at hierarchical (Cloud) and 
heterarchical (delegate MAS) levels in production. 

IV. EXPERIMENTAL RESULTS AND CONCLUSIONS  

The types of IoT device networks have been designed and 
implemented for a 6-workstation (4 robotized material 
assembly workstations from which 2 include CNC machines 
for material processing, 1 robotized pallet for product I/O 
workstation, and 1 robotized part storage workstation) shop 
floor. The robots work with 2D vision systems.  

Experiments have been carried out to test several solutions 
for collecting parameters and internal variables from 
manufacturing resources – the Omron industrial robot Adept 
eCobra [18]: a) using the proprietary programming software 
Adept ACE; b) using a library offered by Adept to read 
variables from external programs; and c) using a set of 
application programs running both on the robot and on the 
aggregation PC node which communicate over TCP. This last 
solution is part of the aggregation node: an application running 
on the PC that is able to connect to the industrial equipment to 
read data, and that can also connect to the database located on 
the centralized cloud MES to write data. Using these methods 
the data collected from robot resources (Fig.6 i, ii) includes: 

 

Fig. 6. Data gathering from resources and aggregation at dMES level 

a) Information gathered from the robot: input voltages; 
temperatures of processing board, encoders, and 
amplifiers; joint motor torques; and positioning errors; 

b) Information obtained from belts the encoders of which are 
connected to the robot system: belt velocity, instance count, 
instances per minute or faults; 

c) Information about the process: processing time, idle time, 
parts per minute, parts processed or not processed; 

d) Information about the monitored variables which represent 
the Cartesian locations and joint, status of digital inputs and 
outputs, robot parameters (e.g.: speed) and state of 
programs. 

Additionally, information from the robot environment 
sensors is collected using the Arduino IoT gateway and sent 
for aggregation at the PC-based aggregation node (Fig.6, iii). 
All the data gathered from the robot through the previous 
sources (ACE application/library and TCP/IP protocol) is sent 
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as clear text to the aggregation application in charge of 
connecting and writing records to the database.  

The gathered data consisting of production parameters is 
forwarded for storage to a private IBM CloudBurst cloud 
platform. The validating scenario consists in experiments with 
different methods of gathering information from an embedded 
device using low and high-level communication protocols. 
The chosen communication protocols range from transport 
layer (UDP and TCP) to application layer (HTTP requests]) 
and publish / subscribe messaging protocols on top of the 
TCP/IP stack like MQTT. To evaluate the database update 
frequency, communication latency and loss of information a 
scenario consisting of 100 messages containing one single 
timestamp written at source based on the information gathered 
from a time server (time.nist.gov) was performed, see Table 1. 

TABLE 1. COMPARATIVE ANALYSIS OF FOR IOT GATEWAY DEVICES - CLOUD 

COMMUNICATION PROTOCOLS  

Communication 

type 

Sent 

messages  

Received 

messages 

Average 

delay [sec] 

Average 

frequency 
Observations 

UDP 100 100 0.68 18msg/sec point-to-point 

TCP 100 100 0.65 13 msg/sec point-to-point 

HTTP 100 100 1.2   8 msg/sec point-to-point 

MTTQ 100 100 0.54 18 msg/sec many-to-many  

The order agents residing on the aggregate nodes run JADE 
agents. The communication is achieved at two levels: 
hardware and software interoperability.  For the first level the 
devices on which the order JADE agents execute must access 
the local network (agents from different classes must have 
direct IP visibility to join the same platform and communicate 
directly) and must be mobile (wireless communication). The 
embedded system Overo AirStorm selected in this case offers 
wireless connectivity and uses an operating system able to run 
the virtual machine from Oracle needed for JADE. For 
software interoperability, JADE implements FIPA 
specifications (www.fipa.org) to assure compatibility at inter-
platform level: Message Transport System (MTS) responsible 
with message delivery between agents, Agent Management 
System and Directory Facilitator. JADE implements the 
standard FIPA MTP (a set of transport protocols and MTS 
associated encoding schemas), in order to sustain 
interoperability with other platforms, the default ones the IoT 
gateway network runs at start-up being a standardized HTTP-
based MTP used for inter-platform communication and a 
proprietary MTP (JADE Internal MTP - IMTP) used for 
communication between agents running on the same platform. 

The edge computing solution for data collection, smart 
processing and aggregation from shop floor resources and 
products with embedded intelligence was successfully tested 
with two IoT device networks. The key element of the solution 
is the aggregation node which concentrates information from 
different sources and writes records on a database located on a 
private cloud. From the experiments performed, it resulted that 
the MQTT protocol is the best choice for sending data from 
embedded systems to cloud. This is due to the following 
characteristics: it is a publish/subscribe solution allowing the 
realization of infrastructures which can communicate in the 
many-to-many case. 

As a conclusion the paper presents a solution for shop-
floor device interoperability for resources and intelligent 
products within a production control system. This solution is 
based on aggregation nodes which collect data from multiple 
directly connected devices and forward this data to the cloud 
control platform hosting the high level MES control system in 
charge of operation optimization, execution and monitoring. 
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