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Abstract: Due to strict legislation on greenhouse gas emission reduction, energy intensive
industries include the bakery industry are all under pressure to improve the energy efficiency
in the manufacturing processes. In this paper, an energy monitoring system developed through
the Point Energy Technology from the research group is first introduced for the data collection
in a local bakery company. The outliers in the collected data may include valuable information
about the status of machines, however, they also affect the data quality and the accuracy of the
consequent data analysis. This paper discusses two algorithms for outlier detection, connectivity-
based outlier factor (COF) and local outlier factor (LOF). For COF, the concept of connectivity-
based outlier facto is adopted to identify whether an object is an outlier. For LOF, the local
outlier factor based on a notion of local density represents the level of an object being an outlier.
Experiments are conducted on the dataset from the oven in a production line to evaluate the
effectiveness of three kernel functions, namely the Gaussian kernel, the Laplacian kernel and
polynomial kernel. The experimental results show that the Gaussian-COF and the Laplacian-
COF are more effective on valid oven data detection, which is significant for the further research
work on energy management in the bakery company.
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1. INTRODUCTION

The UK government has committed to reducing its green-
house gas emissions (GHG) by 80% by 2050 compared
to the 1990 level. Consuming 16% of total energy per
year, the manufacturing industries are putting energy con-
sumption optimization as a priority to meet the GHG
reduction target[1]. The bakery industry, which produces
fresh and frozen bread, cakes and other pastries to meed
people’s daily dietary demand, consumes a lot of energy
from gas and electricity. It is therefore of significant im-
portance to improve the energy efficiency in the baking
processes. Modern bakeries are often equipped with auto-
matic production lines [2-3]. Most bakery products have
similar core manufacturing procedure with flour, water,
and yeast. Minor ingredients such as fruits and nuts are
used to increase the diversity and abundance of bread.
Fig. 1 illustrates a generic production process for bread
manufacturing. There are several main processes: mixing,
dividing, proofing, baking, cooling, and slicing/packaging.
The first stage is to incorporate the flour, water, and other
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ingredients in a big mixer, then kneading the dough by a
motor. While the dough is prepared properly, it is then
sliced to the expected size. Then, the divided pieces are
sent to a prover, resting for a period of time before being
sent into the oven. The length of proofing varies by size
and species of dough. For baking, doughs are sent into the
oven by a conveyor belt. When the bread is baked, they
would be removed automatically from pans by depanner.
The bread needs time to cool so that the moisture and
carbon dioxide inside will dissipate. The last step is to
slice the loaves with a machine and package them for
convenience. To improve the energy efficiency, the energy
consumption of the manufacturing processes needs to be
known correctly and precisely. However, there are always
outliers in a dataset which we need to investigate and check
whether these outliers are caused by production error,
measurement error or data recording error. In addition,
the outliers may affect data quality and thus the quality
of the follow-up data analysis procedure. Therefore, valid
data detection about the outliers is an important stage in
energy management of the bakery industry.

As described in [4], an outlier is an object behaving
differently from the expected ones. There are a number of
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Fig. 1. Flow chart of bread production process

approaches for detecting outliers to acquire the embedded
information and minimize their influence on the following
statistic process for data analysis[5-6]. A distance-based
method identifies outliers when their given radius area
cannot include enough neighbors [7-8]. The drawback of
this method is that it only considers the distance to the
neighbors and ignores the information of closer objects [9].
A density-based approach provides a density measurement
to identify that if a data point is an outlier or not. This
algorithm can work well on the data set with unbalanced
density regions. A connectivity-based scheme is proposed
in [10-11], which considers an object and other connected
objects with connectivity-based outlier factor (COF). The
COF algorithm could not discern the difference between
objects in small clusters which include fewer objects. The
approaches based on density could handle the data set
with different density areas, where the local outlier factor
(LOF) is used to identify the degree of an object being an
outlier [12-13]. It could not perform well when outliers are
in the areas with various distributed densities [14]. Kernel
functions map the initial data into a high-dimensional
feature space, which could reflect the difference between
objects better [15].

This paper firstly introduces the point energy monitoring
system developed from the research team (www.pointenerg
y.org), is used in different industrial partners, including
in a local bakery company to collect the voltage, cur-
rent, power, power factor and frequency data from the
baking process, one of the core production phases. Then
we discuss data detection for the baking process with
two algorithms, kernel connectivity-based outlier factor
algorithm and kernel local outlier factor algorithm. Three
kernel functions, namely the Gaussian function, the Lapla-
cian function and Polynomial function, are used to assess
the performance of the algorithm. The rest of this paper
is organized as follows. The related work is introduced
in section 2. In section 3, the experimental setup about
the dataset and experimental procedure is described in
detail, while section 4 presents the results and discussions.
Finally, section 5 concludes this paper.

2. RELATED WORK

2.1 Point energy technology for energy monitoring

By working with a local bakery company which is eager
to know how much energy they used daily and more
specifically, how much the energy is consumed by each

production line or even for each manufacturing process.
Thus, an energy monitoring system, shown in Fig. 2,
has been developed through the Point Energy Technology
initiated from the research group (www.pointenergy.org).
The system mainly contains two parts, energy data ac-
quisition part and energy data analysis part. The energy
data acquisition part is designed to install on site for
obtaining the energy usage details along the whole produc-
tion line at a component level. For energy consumed from
the electricity, current transformers and intelligent power
meters are deployed to measure the current, voltage of the
production process. The active and the reactive power are
also calculated from the acquired signals. The power factor
is regarded as the indicator of the energy efficiency in the
industry which is directly related to the electricity tariff,
and low power factor not only leads to higher electricity
tariff but also a potential large penalty. All these energy
data are directly sent to a cloud server using raspberry
pi boards which are single-board computers. The cloud
server bridges the on-site data acquisition and remote data
analysis, remote servers could gain access to the energy
data stored to the cloud server by the MQTT protocol.
Further, a WEB server is developed to display the real-
time energy consumption and a data server is built to store
the energy data locally for the preparation of more detailed
data analysis.

2.2 Kernel connectivity-based outlier factor algorithm

In this section, the kernel connectivity-based outlier factor
(COF) algorithm will be proposed. The core idea of this
algorithm is to record each object the degree of being
an outlier, which is called the connectivity-based outlier
factor. The kernel COF algorithm can be formulated by
the following steps:

(1) Map the initial data into a new feature using a kernel
function, and the following steps are conducted in the new
feature space.

(2) For each object x, find its k nearest neighbours. The
set with point x and those neighbours is named as Nk(x).

(3) Define a data set based on the nearest trail (SBN)
from data point x, such that for all 1 ≤ i ≤ k − 1, xi+1

is the nearest neighbour point of set {x1, · · · , xi} in set
{xi+1, · · · , xk}.
(4) Let e = {e1, · · · ek}, which is a sequence of edge points
relating to the SBN path, that constitutes the consecutive
nearest neighbours from point x in set Nk(x). Each ei is an
edge point and dist(ei) means the distance between sets
comprising an edge.

(5) Calculate the average chaining distance from x to
Nk(x)− {x}, denoted by distNk(x) and defined as:

dist(x) =

k∑
i=1

2(k + 1− i)

k(k + 1)
dist(ei) (1)

distNk(x) can be viewed as the weighted distance in the
cost description for the SBN path from point x.

(6) Compute the connectivity-based outlier factor (COF)
at the data point x by its k−th neighbour using the
following equation:
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Fig. 2. Energy monitoring system

COF (x) =
dist(x)

1
k

∑
o∈Nk(x)

dist(o)
(2)

The COF of object x is the ratio of the average distance
from x to Nk(x) and the average distance of its neighbour
records. It is easily inferred that the chance of an object
being an outlier increases with the COF increases.

2.3 Kernel local outlier factor algorithm

In this section, the kernel local outlier factor (LOF)
algorithm is provided. For this algorithm, the LOF of an
object p is the average of the ratio of local reach-ability of
p and those of p’s k-neasrest neighbours. The kernel LOF
algorithm could be described as folloes:

(1) Map the data into a feature space of higher dimensions.

(2) For each object, calculate all the distances between the
point p and its k-th nearesrt neighbor distk(p).

(3) Search all the objects in k-distance neighborhood of
the object p, Nk(p):

Nk(p) = {p′|dist(p, p′)distk(p)} (3)

(4) Calculate the local reach-ability density of the object
p:

 Irdk(p) =
||Nk(p)||∑

p′∈Nk(p)
reachdistk(p′ ← p)

reachdistk(p
′ ← p) = max{distk(p)), dist(p, p′)}

(4)

where ||Nk(p)|| means the number of the objects in Nk(p).

(5) For every object, calculate the local outlier factor
(LOF) of object p.

LOF (p) =

∑
p′∈Nk(p)

Irdk(p′)
Irdk(p)

||Nk(p)||
(5)

(6) Sort the LOF (p) for all objects, and the level of the
object being an outlier becomes bigger as the value of LOF
becomes bigger.

In this paper, three kernel functions are used in kernel
COF and kernel LOF algorithms, the Gaussian kernel,
polynomial kernel and Laplacian kernel.

The Gaussian function is a radial basis kernel, where α
represents the width parameter.

K(x, y) = exp(−||x− y||2/α2), α > 0 (6)

The polynomial function is a nonstationary kernel, where
d is the order of polynomial.

K(x, y) = (x · y + 1)d, d > 0 (7)

The Laplacian function is a radial basis kernel as well, with
β being the width parameter.

K(x, y) = exp(−β||x− y||), β > 0 (8)

2.4 Evaluation criteria

In order to assess the performance of the two kernel
algorithms, the precision, the recall and the rank power are
used [16-17]. It is assumed that a data set D = D0 +Dn,
where D0 denotes the set of all outliers and Dn represents
the set of non-outliers.Dm is a dataset with outliers among
the objects ranked in the top m positions returned by data
detection algorithm, wherem ≥ 1. Let |Dm| be the number
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Table 1. Class distribution of oven data

Case Class label Percentage of objects

Oven
Common good 96.85
Rare bad 3.15

of data objects in |Dm|, and |D0| be the number of data
objects in set |D0|.
Precision is to represent the percentage of outliers among
the top m ranked samples returned by the algorithm and
defined as:

Precision =
|Om|
m

(9)

Recall is the ratio between detected outliers and all outliers
in the data set, which can be defined as:

Recall =
|Om|
|D0|

(10)

To calculate the position of the detected outlier, a rank
power is introduced. It is assumed that m samples with
position 1 to position m are returned by the data detection
method, and there are Nr outliers in these m objects. For
1 < i < Nr, let Pi denote the position of i−th outlier, then
rank power being defined as:

RankPower =
Nr(Nr + 1)

2
Nr∑
i=1

Pi

(11)

It can be easily inferred that the rank power value is
between 0 and 1, with 1 representing the best and 0
being the worst performance. Therefore, the efficiency of
data detection algorithm can be judged by the above
three variables. The performance could be better as the
values of precision and recall become larger. For the same
precision and recall, rank power should be used to judge
the efficiency, and a larger value means a better efficiency.

3. EXPERIMENTAL SETUP

3.1 Data set

Since a large portion of electricity, about 30-35%, is used
for the oven to bake the bread in the bakery company. In
this section, we select the initial energy usage of the baking
process from 00:00 to 24:00 on 02/02/2017. The following
features are monitored at a 5-minute interval across all
three phases: voltage, current, power, power factor, and
frequency. The experiments are performed on oven data
set, which has 286 samples with 11 attributes, two classes
of good and bad. According to the methods used in [18],
bad data samples are randomly generated to acquire an
unbalanced distribution. As shown in table 1, the oven
data set has 277 objects labeled as good and 9 objects
labeled as bad.

3.2 Experimental procedure

To compare the effectiveness of COF and LOF algorithms,
The experiment is conducted for the oven data set. Follow-
ing the same value in the reference [19], k equals to 5% of
the number of all objects in the data set. Let Nr be the

number of rare objects detected. Moreover, m represents
the number of top-ranked objects returned by the method.
For these two algorithms, the parameters of the Gaussian,
polynomial, and Laplacian kernel functions are denoted
by α,d, and β respectively. For Gaussian function, the
parameter is selected in the range of [0.1, 3] with a interval
of 0.1; for Polynomial function, the scope of d is [1,30];
and β is defined from 0.01 to 0.05 with a interval of 0.005
for Laplacian function. The experiments are implemented
by MATLAB 2017, and the computing environment is
Windows 10 education, version 1703 for ×64-based system.

4. RESULTS AND DISCUSSION

As shown in Figures 3, the experiments are conducted
for selecting the kernel parameters for kernel COF and
kernel LOF. Precision and recall are considered first, then
with the maximum values for the precision and recall, the
kernel parameters with the most optimal rank power are
determined. For the parameter selection of the kernel COF
algorithm, α is selected as 0.3, d as 29, and β as 0.16. While
for the parameter selection of the kernel LOF algorithm,
α is selected as 0.4, d as 25, and β as 0.04.

The experiment results of kernel COF and kernel LOF
are listed in table 2 and table 3 respectively. As is shown
in table 2, The Gaussian-COF and the Laplacian-COF
could detect more rare objects than the polynomial-COF
for m being from 10 to 40, and the rank powers are
also stronger. For all the kernel COF algorithms, with
the increase of m from 10 to 30, the numbers of rare
objects which are detected increase. For example, when
the top 30 ranked objects are returned by the algorithms,
the Gaussian-COF identified five records in the rare class,
the Laplacian-COF detect six bad objects, while only four
objects in the bad class are identified by the polynomial-
COF. According to precision and recall, the Gaussian-
COF and the Laplacian-COF have the same efficiency
when the top 35 ranked records are returned. However,
the rank power of the Gaussian-COF is 0.28, 17.6% lower
than that of the Laplacian-COF. While for the polynomial-
COF, the precision is the largest when the number of
the ranked objects returned is 25, with four bad records
detected, and the recall value is 0.44, much lower than
those of the other two algorithms. When m varies from
25 to 40, the number of bad objects detected is keeping
unvarying. For the kernel LOF algorithms, when m is
10 and 15, the number of rare objects detected by the
Laplacian-LOF is 4, larger than that of Gaussian-LOF and
polynomial-LOF. While the Gaussian-LOF could detect
more bad objects than the other two algorithms when the
top 20 ranked objects are returned. When m increase from
25 to 40, there are same numbers of rare objects detected
for all kernel LOF algorithms. For Gaussian-LOF, the rank
power is larger than that of Polynomial-LOF, but smaller
than that of Laplacian-LOF. Therefore, the effectiveness
of LOFs with different kernels would change along with
the number of m changes. However, the maximum number
of bad objects detected by kernel LOFs is 5, smaller
than that of kernel COFs (Gaussian-COF and Laplacian-
COF). Consequently, the experimental result shows that
the Gaussian and Laplacian COFs perform much better
on the oven data set.
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Table 2. Kernel COF detect rare class

Gaussian-COF Polynomial-COF Laplacian-COF

m {Nr} precision recall Rank power {Nr} precision recall Rank power {Nr} precision recall Rank power
10 3 0.30 0.33 0.55 1 0.10 0.11 1.00 4 0.40 0.44 0.77
15 4 0.27 0.44 0.45 3 0.20 0.33 0.23 4 0.27 0.44 0.77
20 5 0.25 0.56 0.36 3 0.15 0.33 0.23 4 0.20 0.44 0.77
25 5 0.20 0.56 0.36 4 0.16 0.44 0.20 5 0.20 0.56 0.42
30 5 0.17 0.56 0.36 4 0.13 0.44 0.20 6 0.20 0.67 0.34
35 6 0.17 0.67 0.28 4 0.11 0.44 0.20 6 0.17 0.67 0.34
40 6 0.15 0.67 0.28 4 0.10 0.44 0.20 6 0.15 0.67 0.34

Table 3. Kernel LOF detect rare class

Gaussian-LOF Polynomial-LOF Laplacian-LOF

m {Nr} precision recall Rank power {Nr} precision recall Rank power {Nr} precision recall Rank power
10 3 0.30 0.33 0.50 2 0.20 0.22 0.75 4 0.40 0.44 0.83
15 3 0.20 0.33 0.50 3 0.20 0.33 0.32 4 0.27 0.44 0.83
20 5 0.25 0.56 0.31 4 0.20 0.44 0.26 4 0.20 0.44 0.83
25 5 0.20 0.56 0.31 5 0.20 0.56 0.23 5 0.20 0.56 0.45
30 5 0.17 0.56 0.31 5 0.17 0.56 0.23 5 0.17 0.56 0.45
35 5 0.14 0.56 0.31 5 0.14 0.56 0.23 5 0.14 0.56 0.45
40 5 0.13 0.56 0.31 5 0.13 0.56 0.23 5 0.13 0.56 0.45

5. CONCLUSION

To improve the energy efficiency in the baking industry, an
energy monitoring system developed by the Point Energy
Technology from the research group is first introduced to
collect data from the production line. After data acquisi-
tion, the kernel connectivity-based outlier factor algorithm
and kernel local outlier factor algorithm are proposed
to detect rare objects. In experiments, an oven data set
is used to verify the performance of kernel COFs and
kernel LOFs, and the experimental results show that the
Gaussian-COF and Laplacian-COF algorithms are effec-
tive for oven data detection. Once outliers are identified in
the data set, we could check if a production error or data
collection error had occurred by prior experience, which
would guide the energy management in bread manufactur-
ing processes. The outliers data detection is also useful in

improving the data quality and the follow-up analysis ac-
curacy. As a future work, incremental approaches (such as
clustering, modelling, and optimisation) will be researched
to improve the energy management in the bakery company.
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