
     

A Hybrid PSO Based on Dynamic Clustering for Global Optimization  
 

Li Hongru, Hu Jinxing, Jiang Shouyong 


College of Information Science and Engineering, Northeastern University,  

Shenyang, Liaoning, 110819, PR China ( e-mail: lihongru@ise.neu.edu.cn). 

Abstract: Particle swarm optimization is a population-based global search method, and known to suffer 

from premature convergence prior to discovering the true global minimizer for global optimization 

problems. Taking balance of local intensive exploitation and global exploration into account, a novel 

algorithm is presented in the paper, called dynamic clustering hybrid particle swarm optimization (DC-

HPSO). In the method, particles are constantly and dynamically clustered into several groups (sub-swarms) 

corresponding to promising sub-regions in terms of similarity of their generalized particles. In each group, 

a dominant particle is chosen to take responsibility for local intensive exploitation, while the rest are 

responsible for exploration by maintaining diversity of the swarm. The simultaneous perturbation 

stochastic approximation (SPSA) is introduced into our work in order to guarantee the implementation of 

exploitation and the standard PSO is modified for exploration. The experimental results show the efficiency 

of the proposed algorithm in comparison with several other peer algorithms.  

Keywords: Dynamic clustering; Modified PSO; Exploitation and exploration; Dominant particle; 

Generalized particle; Simultaneous perturbation stochastic approximation (SPSA) 



1. INTRODUCTION 

The particle swarm optimizer (PSO), which is one of the 

population-based algorithms and inspired by the social 

behavior of animals such as fish schooling and bird flocking in 

nature, was invented by Kennedy and Eberhart (1995). The 

original PSO model is very simple, and just utilizes velocity 

and position as the crucial information of the particle. 

Furthermore, compared with genetic algorithm (GA), 

simulated annealing (SA), ant colony optimization (ACO) and 

some other intelligent algorithms, PSO has the advantage of 

fewer parameters to be adjusted, better robustness, faster 

convergence and so on. Therefore, PSO has been applied 

successfully to several optimization problems, such as global 

optimization problems, scheduling, and other applications in 

engineering. 

In the context of evolutionary computation, the performance 

of any global optimization algorithms heavily depends on the 

mechanism of balancing the two conflicting objectives, which 

are exploiting the best solutions found so far and at the same 

time exploring the search space for promising solutions. To 

reach this balance, many modified PSO algorithms have been 

proposed in recent years. Nevertheless, utilizing PSO to 

effectively solve the problem of multiple local minimum, 

especially for the multi-modal and multi-dimensional 

optimization, is still a challenge for researchers. Therefore, 

many researchers have subsequently proposed a lot of different 

improved strategies which can be divided into the following 

four categories: initialization (Richards and Ventura,2004), 

parameter setting (Liu et al.,2016), neighborhood topology 

(Wang et al.,2013), and hybrid strategy (Moradi and 

Gholampour,2016). Kennedy (2000) proposed a PSO that uses 

a K-means clustering algorithm to identify the centers of 

different clusters of particles in the population. Li and Yang 

(2009) proposed a clustering PSO (CPSO) by using a 

hierarchical clustering method to locate and track multiple 

peaks in dynamic environments. They also proposed a 

simplified version of CPSO in (Li and Yang, 2010). However, 

the above clustering methods used to generate sub-swarms 

only employ the position information of swarm, and neglected 

the probability that the fitness of two particles may be 

significantly different while they are close to each other in 

space, thus these two particles should belong to different levels 

of sub-swarms. Furthermore, there is no need using all 

particles within promising sub-regions to perform exploitation 

to track the potential local minimum, only a representative 

particle is enough, and the rest take responsibility for 

exploration.  

This paper introduces a novel dynamic clustering method 

called Dynamic Clustering HPSO (DC-HPSO) algorithm by 

taking advantage of position information as well fitness of 

particles. Through clustering, the entire swarm is divided into 

several sub-swarms. Simultaneous perturbation stochastic 

approximation (SPSA) (Spall,1987) as a simple yet powerful 

search technique is used to drive the dominant particles to 

approach to the potential local optimum, while the standard 

PSO is remedied to help non-dominant particles to fly away 

from the dominant particle and even out of its cluster so that 

much more potential local minimum can be found. At the end 

of given times of clustering, global optimum can be achieved 

from the set of potential local minima. 

The remaining sections of this paper are arranged as following. 

Section 2 describes the proposed DC-HPSO algorithm. And 

experimental results are evaluated on standard test functions in 

comparison with some peer algorithms taken from the 

Preprints, 10th IFAC International Symposium on
Advanced Control of Chemical Processes
Shenyang, Liaoning, China, July 25-27, 2018

Copyright © 2018 IFAC 263



 

     

 

literature in Section 3. Finally, Section 4 summarizes the 

concluding remarks and future work of this study. 

2. PROPOSED ALGORITHM 

In the traditional PSO algorithm, each particle has a position 

and a velocity. Pbest  and Gbest  are the best solution for each 

particle and the global best solution founded by all particles so 

far, respectively. However,  Gbest does not always guide other 

particles towards better places if Gbest  is a false global 

optimum. This phenomenon becomes much more obvious at 

the last stage of algorithm because of loss of swarm diversity. 

Besides, a large amount of exploration may be a time-

consuming task as well as increase of the complexity of 

algorithm. How to efficiently get all the potential local 

minimums is troublesome matter of exploration. Therefore,  

we proposed DC-HPSO algorithm to solve this problem. 

2.1  Idea of Dynamic Clustering in PSO 

The introduction of clustering algorithm into PSO can classify 

the N particles into Nd clusters. Each cluster is composed of 

particles with similar property and patterns. The information 

of different clusters is different, but different information of 

the particles should be fully utilized to promote evolution of 

the entire swarm. It is this idea that inspires us to use clustering 

algorithm to enhance the evolution ability of the entire swarm. 

Before introduction of clustering, we should explain some 

definitions here. Dominant particle, denoted by 

y
k
(k =1, 2, ⋯, Nd ), has the following features: first, dominant 

particle should have fitness as good as possible; second, 

dominant particle can find itself a better position and help 

other particles in its neighborhood to evolve at next iteration; 

third, dominant particle has the superiority of evolution. 

Generalized particle, which is the particle 𝑥i with its fitness f
i
, 

and denoted by zi , and zi=(xi
T, f

i
)

T
. This is to say, zi is a 

(n+1) − dimensional  vector by adding the fitness. Using  zi 

instead of xi  as unit pattern for clustering has the following 

advantage:  xi  only represents the spatial information of a 

particle, when particles with little differences of spatial 

distance while much difference of function values are 

clustered into the same cluster, multiple local minima may 

exist, the dominant particle may not find the best local minima, 

and exploitation of the dominant particle terminates because 

local minima of sub-region happens, thus the idea of clustering 

cannot work in this situation. While zi  can avoid the above 

problem effectively because it is composed of both spatial 

information and fitness. Here, zi is needed to be normalized 

when clustering in order to avoid a bias. 

Now, let  Z={z1,z2,⋯,zN} be a set of 𝑁generalized particles, 

each having n features. A partition clustering algorithm tries to 

find a partition  C={C1,C2,⋯,CNd
}  of  Nd classes. Since the 

given set can be partitioned by many ways. The most popular 

way to evaluate similarity between two patterns will be the use 

of distance measure. The most widely used measurement is the 

Euclidean distance, which between any two (n+1) −
dimensional patterns zi and zj is given by, 

 d(zi, zj)=√∑ (z i,r − z j,r)
2n+1

r=1 =‖zi − zj‖                                  (1) 

where d(zi, zj) denotes the distance between  zi  and zj .In the 

following, we will give a brief description of the basic K-

means algorithm. First of all, the initial centers should be given 

to  Nd clusters. Then the samples {zi}should be distributed to 

the clusters. The distribution can be conducted by the relation, 

for all j=1,2,⋯,Nd , 

zi∈Ck(t) if d(zi ,ck) < d(zi ,cj)                                                            (2) 

The quality of the clustering is determined by the following 

cost function: 

 E= ∑ ∑ |zi − cj|
2

zi∈Cj

Nd

j=1                                                                           (3)  

The new cluster centers ck(t+1) , k =1,2,⋯,Nd, at the (t+1)-th 

iterative step, should be computed such that the sum of the 

squared distances from all points in Ck(t) to the new cluster 

center is minimized. The measurement which minimizes this 

is simply the sample mean of  Ck(t). Therefore, the new cluster 

center is given by, 

ck(t+1) =
1

Nk

∑ zz∈Ck(t)
 ,     k=1,2,⋯,K                                               (4) 

where Nk  is the number of samples in Ck(t) . A high level 

description of the basic K-means is presented in Algorithm 1. 

Algorithm 1 K-means Clustering 

1: Initialize Nd cluster centers: c1,c2,⋯,cNd
, from the 

normalized set Z ; 

2: Set t=0 , and compute E(t) by using (3); 

3: do 

4:      Set  t=t+1; 

5:      for  ( i = 1 to N )  do 

6:             Assign zi to an appropriate cluster by using (2); 

7:      End  for 

8:      for  ( k=1 to Nd )  do 

9:             Update current Ck by using (4);  

10:    End for 

11:    Compute the cost function  E(t+1) by using (3); 

12: while ( E(t)!=E(t+1) )  
13: End while. 

By clustering the generalized particles, particles with 

closeness of spatial location and little difference of fitness can 

be probably clustered into the same cluster, and local 

neighborhood is obtained. We sort the fitness of all particles in 

the cluster, and choose the current best particle as the dominant 

particle. Then dominant particle is closest to local minimum 

and can be seen as a representative of the cluster. It's a wise 

choice to use the only dominant particle to move towards the 

local minimum of the cluster, while other non-dominant 

particles should try to fly away from the dominant particle, 

even jump out of this cluster to explore better positions. Based 

on this analysis, two methods are introduced into exploitation 

and exploration respectively: one is SPSA because of its 

simplicity and fast convergence, the other is a modified PSO.  

2.2  SPSA Technique for Dominant Particle 

One optimization method that has attracted considerable 

international attention is simultaneous perturbation stochastic 

approximation (SPSA) method. As motivated by not using 

direct measurements of the gradient of the objective function 

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

264



 

     

 

which are often difficult or impossible to obtain, SPSA uses 

only objective function measurements, which is quite different 

from methods such as SA or GA. Further, SPSA is especially 

efficient in high-dimensional problems in terms of providing a 

good solution at the cost of a relatively small number of 

measurements of the objective function (Spall,1987). The 

SPSA procedure is in the general recursive stochastic 

approximation form: 

 xk+1=xk − akg̅k
(xk)                                                                     (5) 

where g̅
k
(xk)is the estimate of the gradient g(xk) and ak is the 

gain sequence satisfying certain conditions at the kth 

iteration.  g̅
k
(xk) for a two-sided finite-difference 

approximation is given by, 

  g̅(xk)=
f ( yk+ck∆k )−f ( yk−ck∆k )

2ck

[
 
 
 
 ∆k1

-1

∆k2
-1

⋮

∆kn
-1 ]

 
 
 
 

                                           (6) 

where ∆k  denotes a vector independently generated from a 

zero-mean probability distribution, ∆ki is the ith component of 

∆k , and ck  denotes a small positive number that usually get 

smaller as k gets larger. The basic SPSA algorithm we 

implemented is presented in Algorithm 2. 

Algorithm 2 SPSA 

1: Initialization and coefficient selection for x1, IterNo, a, 

c, A, α, γ ; 

2: for ∀ k ∈[1, IterNo] do 

3:     Generate zero-mean, n-dimensional perturbation  

vector  ∆k; 

4:    Generate two small constants: ak= a (A+k)α⁄  and 

ck= c k
γ⁄ ; 

5:    Compute  f (xk+ck∆k) and  f (xk − ck∆k); 

6:    Compute pseudo-gradient g̅
k
(xk) by using (6); 

7:    Compute  xk+1 using (5); 

8: End For. 

2.3  Modified PSO for Non-dominant Particle 

As analyzed earlier, in a fixed cluster, says Ck , where y
k
  is the 

dominant particle, the non-dominant particle should fly away 

from the dominant particle as far as possible and even out of 

the real space of this cluster. Thus, non-dominant particle xi at 

time t  would possibly fly along the opposite direction of 

(y
k
− xi

t). Sketch map of iteration for non-dominant particle in 

its cluster is presented in Fig.1.  

 
Fig. 1. Sketch map of iteration for non-dominant particle. 

Taking the original velocity of xi  into comprehensive 

consideration, xi can be updated as follows: 

vi,j
t+1=wvi,j

t + c1r1 (p
i,j
t − xi,j

t ) +c2r2 (p
g
t − xi,j

t )+sk(xi,j
t − y

k
)        (7) 

 xi,j
t+1=xi,j

t +vi,j
t+1                                                                       (8) 

where  xi, j
t  and  vi, j

t  are the jth dimensional component of the 

position and velocity of particle i at time t, respectively;   p
i, j
t  

and p
g, j
t   are the jth dimensional component of  Pbest of particle 

i  and Gbest at time  t , respectively; c1 and c2 are positive 

accelerating constants. r1 and r2 are two random variables 

with a uniform distribution in the range of [0,1] . w  is the 

inertia weight. sk  is the gain sequence, which is a positive 

number that can control the diversity of swarm. A large one 

can enhance the diversity of swarm, while a small one leads to 

fast convergence. User can freely choose sk  from any 

probability distribution. The modified PSO algorithm for non-

dominant particles is described in Algorithm 3. 

Algorithm 3 Modified PSO 

1: Initialize parameters of N, ToIterNo, Vmax, sk; 

2: Calculate the fitness and generate Pbest and Gbest; 

3: for (t=1 to ToIterNo) do 

4:     for  (i=1 to N) do 

5:        for ( j=1 to n) do 

6:           Compute vi,j
t+1 by using (7); 

7:           if (vi,j
t+1 > Vmax) then do 

8:              vi,j
t+1 = Vmax ; 

9:           else if (vi,j
t+1 < −Vmax) then do 

10:             vi,j
t+1 = −Vmax; 

11:          End if 

12:          Compute xi,j
t+1by using (8); 

13:       End for 

14:       Evaluate the fitness  f (xi
t+1); 

15:       Update Pbest; 

16:     End for 

17:     Update Gbest; 

18: End for. 

19: Output Gbest . 

2.4  Framework of Dynamic Clustering HPSO Algorithm  

There are two features making the proposed algorithm 

dynamic. First, after each time of clustering, particles in each 

cluster as a sub-swarm exploit or explore according to their 

roles. Thus, SPSA and modified PSO algorithms need to be 

performed a number of iterations in each cluster until both 

satisfy the termination conditions. The next behavior of 

clustering takes place until all the clusters finish the 

exploitation and exploration of the current period of clustering. 

Second, a memory array should be established to store the 

positions and fitness of the Nd old dominant particles. At next 

time of clustering, an old dominant particle determines which 

newly produced cluster it should belong to. If the new 

dominant particle is superior to the old one, the old is replaced. 

If the swarm converges, the Nd particles will be stored in the 

same cluster. Therefore, we call it DC-HPSO algorithm. 

According to the analysis mentioned above, the complete 

description of DC-HPSO is presented in Algorithm 4. 

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

265



 

     

 

Algorithm 4 DC-HPSO 

1: Initialize parameters CluIterNo, Nd, and initialize 

particle swarm;  

2: Choose Nd particles and memory them into the array of 

M (0)
; 

3: for ( t=1 to CluIterNo ) do 

4:    Obtain Nd clusters from set {zi} by using Algorithm 1; 

5:    for (k=1 to Nd) do 

6:        Choose the dominant particle y
k
 from cluster Ck; 

7:        Execute Algorithm 2 for dominant particle y
k
; 

8:        Execute Algorithm 3 for non-dominant particles; 

9:        Update dominant particle y
k
 as well as Mk

 (t)
; 

10:       if (Mk
 (t-1)

 is superior to Mk
 (t)

) then do 

11:           Mk
 (t) = Mk

 (t-1)
; 

12:       End if 

13:    End for 

14:    Update Gbest according to M (t); 

15: End for. 

3. EXPERIMENTS 

3.1  Test Functions and Algorithms Compared 

The proposed algorithm was applied to the 8 well-known 

boundary constrained benchmarks (Sun et al., 2004) and other 

four functions (Bergh, 2002) to evaluate the performance. All 

test functions were presented in Table 1. The 12 test functions 

are divided into three groups in terms of their properties: uni-

modal and multi-dimensional problem( f
1
−  f

4
), multi-modal 

and multi-dimensional problems ( f
5
−  f

8
), traditional multi-

modal and low-dimensional problems  ( f
9
−  f

12
) . For 

function f
11

,  a(i)=16(i mod 5 − 2),  b(i)=16([i 5⁄ ] − 2).  

Simulations were carried out to achieve a comparative 

performance analysis of the proposed DC-HPSO algorithm 

with respect to: 

(i). the standard PSO (SPSO) (Richards and Ventura,2004) 

(ii). ARPSO (Riget and Vesterstrøm, 2002 ) 

(iii). Quantum-behaved PSO (QPSO) (Sun et al., 2004)  

(iv). Multi-start PSO (MPSO) (Bergh, 2002)  

(v). GCPSO (Bergh, 2002) 

(vi). RePSO (Evers and Ben, 2009). 

 3.2  Numerical Results and Comparisons 

The comparative study presented on the 12 test functions, 

focuses on the following performance metrics: (a) the quality 

of the final solution; (b) the frequency of striking the optima; 

(c) the convergence of HPSO with different parameter settings. 

In all algorithms, for a particular trial, the same initial positions 

and velocities were set for all particles, so as to minimize the 

effect of randomness during comparison. In the simulation, all 

algorithms used the global version of PSO. Statistics results 

from 100 trials per benchmark per algorithm over 60,000 

function evaluations per trial using swarm size 40, ω=0.72894, 

 c1=c2=1.49618 , which were obtained using Clerc’s 

constriction models (Clerc and Kennedy, 2002), as for DC-

HPSO, ToIterNo=50 in Algorithm 3,  A=1 , a=1 , 

α=0.602 ,   r=0.101 according to literature (Spall,2005) and 

IterNo=50 in Algorithm 2, ClusterNo =30 in Algorithm 4.  

The relative statistics results of DC-HPSO where sk was set as 

0.5, and the number of clusters, Nd was set as 5. Comparisons 

in terms of quality of the final solutions among functions f
1
−

f
12

were given in Table 2, where “Mean” indicated the mean 

best solutions found in the last generation and “Std. Dev” 

denoted the standard deviation. “Best” and “Worst” were the 

best and worst fitness value throughout 100 trials, respectively. 

From the results, DC-HPSO outperforms all the other peer 

PSO algorithms on functions f
1
− f

10
. While for functions 

f
11

− f
12

, GCPSO and MPSO outperform the DC-HPSO 

algorithm by a narrow margin. This means DC-HPSO 

improves the quality of the average optima in most cases.

Table 1 Numerical test functions 

Test function D Range f
min

 

 f
1
= ∑ ( xi − 1.24)2D

i=1   30 [−100,100]D 0 

 f
2
= ∑ [100(xi+1 − xi

2)
2
+(xi − 1)2]D-1

i=1   30 [−30,30]D 0 

 f
3
= ∑ |xi|

D
i=1 + ∏ |xi|

D
i=1   30 [−10,10]D 0 

 f
4
= − 20exp (−0.2√

1

D
∑ xi

2D
i=1 ) − exp ( 

1

D
∑ cos(2πxi)

D
i=1 ) +20+e  30 [−32,32]D 0 

 f
5
= ∑ [xi

2 − 10cos(2πxi)+10]D
i=1   30 [−5.12,5.12]D 0 

 f
6
=

1

4000
∑ xi

2D
i=1 − ∏ cos (

xi

√i
) +1D

i=1   30 [−600,600]D 0 

 f
7
= ∑ (∑ xj

i
j=1 )

2D
i=1   30 [−100,100]D 0 

 f
8
=

1

D
∑ xisin√|xi|+418.983D

i=1   30 [−500,500]D 0 

 f
9
=1 − exp (−2log(2)× (

x-0.08

0.854
)) ×sin6 (5π(x3 4⁄ − 0.05))  1 [0,1] 0 

 f
10

=0.5+
sin2(√x2+y2)−0.5

1+0.001(x2+y2)
  2 [−10,10]D 0 

 f
11

=500 −
1

0.002+ ∑
1

1+(x−a(i))
6

+(y−b(i))
6

24
i=0

  2 [−65.535,65.535]D 0 

 f
12

={∑ icos[(i+1)x+i]5
i=1 }∙{∑ icos[(i+1)y+i]5

i=1 }+(x+1.42513)2+( y+0.80032)2+186.7  2 [−10,10]D 0 

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

266



 

     

 

 
      (a)                                                           (b)                                                           (c)                              

       
(d)                                                           (e)                                                  (f) 

Fig. 2. Performance of DC-HPSO for functions  f
1
− f

6
 using different values of Nd : (a) the performance of DC-HPSO for f

1
, (b) 

the performance of DC-HPSO for f
2
 ,(c) the performance of DC-HPSO for f

3
 , (d) the performance of DC-HPSO for f

4
, (e) the 

performance of DC-HPSO for f
5
 , (f) the performance of DC-HPSO for f

6
  .

Table 2 Comparison of algorithms for test functions 

Function  SPSO GCPSO MPSO QPSO ARPSO RePSO DC-HPSO 

1f
 

Mean 

Std. Dev 

Best 

Worst 

5.89 

1.815 

2.155 

9.745 

1.75e-027 

1.32e-027 

7.67e-028 

4.93e-027 

3.95e-024 

1.84e-021 

7.73e-024 

2.55e-018 

1.35e-022 

4.52e-022 

1.18e-029 

2.17e-021 

43.201 

2.84e-014 

43.201 

43.201 

1.75e-004 

0 

1.75e-004 

1.75e-004 

4.44e-032 

3.45e-032 

0 

9.86e-032 

2f
 

Mean 

Std. Dev 

Best 

Worst 

61.625 

13.522 

35.301 

96.976 

21.380 

2.442 

15.354 

27.528 

9.242 

1.799 

2.337 

12.683 

36.359 

32.500 

20.042 

180.119 

29 

0 

29 

29 

27.353 

7.430 

19.885 

32.349 

0.118 

0.321 

9.27e-007 

1.761 

3f
 

Mean 

Std. Dev 

Best 

Worst 

0.380 

0.240 

0.043 

1.060 

2.30e-004 

2.25e-002 

1.26e-004 

5.93e-004 

3.49e-007 

1.24e-006 

9.87e-008 

7.47e-007 

7.21e-024 

2.38e-023 

2.18e-028 

1.10e-022 

0 

0 

0 

0 

5.085 

0.236 

6.212 

4.554 

0 

0 

0 

0 

4f
 

Mean 

Std. Dev 

Best 

Worst 

1.122 

0.342 

0.597 

1.881 

1.778 

0 

1.778 

1.778 

2.408 

0.992 

4.587 

3.488 

3.22e-012 

5.89e-012 

1.47e-013 

2.89e-011 

8.88e-016 

0 

8.88e-016 

8.88e-016 

0.101 

0.745 

0.073 

1.324 

8.88e-016 

0 

8.88e-016 

8.88e-016 

5f
 

Mean 

Std. Dev 

Best 

Worst 

66.659 

13.316 

36.586 

87.967 

46.763 

4.877 

12.656 

53.768 

52.733 

3.466 

17.748 

65.546 

20.118 

5.196 

10.964 

32.837 

0 

0 

0 

0 

53.452 

0.846 

51.738 

55.154 

0 

0 

0 

0 

6f
 

Mean 

Std. Dev 

Best 

Worst 

0.095 

0.042 

0.038 

0.228 

0 

0 

0 

0 

0.007 

0.712 

3.75e-003 

0.355 

0.014 

0.013 

0.002 

0.051 

2 

0 

2 

2 

0.015 

0.047 

4.49e-004 

0.825 

0 

0 

0 

0 

7f
 

Mean 

Std. Dev 

Best 

Worst 

6.57e-031 

3.54e-030 

0 

1.97e-029 

1.414 

0.023 

0.572 

2.019 

0.485 

0.354 

0.271 

0.759 

0.234 

0.673 

0.082 

1.343 

0 

0 

0 

0 

1.83e+003 

26.458 

1.57e+003 

2.43e+003 

0 

0 

0 

0 

8f
 

Mean 

Std. Dev 

Best 

Worst 

3.87e+002 

59.535 

2.27e+002 

4.16e+002 

36.465 

5.424 

9.536 

145.197 

138.715 

11.411 

100.423 

256.764 

1.21e+002 

38.052 

71.314 

2.18e+002 

2.052 

0 

2.052 

2.052 

87.244 

32.451 

12.932 

130.178 

5.70e-004 

1.94e-003 

1.29e-009 

0.01076 

9f
 

Mean 

Std. Dev 

Best 

Worst 

2.96e-004 

0 

2.96e-004 

2.96e-004 

3.73e-003 

0.056 

1.44e-004 

0.133 

0.899 

0.464 

0.052 

1.774 

9.34e-004 

0 

9.34e-004 

9.34e-004 

0.029 

0 

0.029 

0.029 

1.271 

0.438 

0.899 

2.467 

1.97e-015 

0 

1.97e-015 

1.97e-015 

10f
 

Mean 

Std. Dev 

Best 

Worst 

4.69e-004 

7.17e-004 

0 

1.57e-003 

5.80e-128 

0 

5.80e-128 

5.80e-128 

4.04e-123 

0 

4.04e-123 

4.04e-123 

5.31e-004 

7.32e-004 

8.48e-008 

1.56e-003 

0 

0 

0 

0 

4.45e-008 

5.84e-006 

1.23e-014 

5.41e-005 

0 

0 

0 

0 

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

267



 

     

 

11f
 

Mean 

Std. Dev 

Best 

Worst 

5.831 

4.436 

9.85e-004 

9.207 

0 

0 

0 

0 

0 

0 

0 

0 

9.85e-004 

0 

9.85e-004 

9.85e-004 

9.85e-004 

0 

9.85e-004 

9.85e-004 

0 

0 

0 

0 

9.85e-004 

0 

9.85e-004 

9.85e-004 

12f
 

Mean 

Std. Dev 

Best 

Worst 

0.311 

0.382 

9.08e-004 

0.780 

7.06e-002 

0.012 

9.09e-004 

0.143 

2.13e-003 

3.57e-003 

9.09e-004 

3.09e-002 

0.103 

0.265 

9.09e-004 

0.780 

1.91e+002 

9.114 

1.53e+002 

1.94e+002 

0.779 

0.043 

0.067 

0.981 

0.163 

0.279 

9.08e-004 

0.780 

Figure 2 depict the performance of DC-PSO with different 

number of clusters for 6 selected functions over the evolution 

process on 100 trial runs, where sk was set as 0.5. Nd =1 means 

dynamic clustering is not used for the tests. The experimental 

results on 6 functions show that our dynamic clustering 

technique can make the convergence of DC-HPSO faster 

(especially when Nd  was set as 5), as well as achieve better 

results compared with no use of this technique in most cases. 

The results showed that in most cases, the proposed algorithm 

could achieve good performance. The advantage of our 

proposed algorithm may be owing to its local search ability as 

well as global search ability, since for the optimization 

problem, trading off between exploration and exploitation 

during the search is critical to the performance. 

4.  CONCLUSIONS 

This paper presented a novel dynamic clustering HPSO 

algorithm which firstly clusters the similar particles into the 

same sub-region and then uses the SPSA and modified PSO 

algorithms to perform the jobs of exploitation and exploration, 

respectively. Here, we have achieved this goal by defining 

dominant particle which can take responsibility for 

exploitation so that solutions can be refined. Together with the 

non-dominant particles, which are responsible for exploration, 

thus the diversity can be maintained effectively. Our approach 

shows a good performance and outperforms several peer PSO 

algorithms for most of the studied problems. Hence, we can 

conclude that our proposed algorithm could achieve a suitable 

balance between enhancing population diversity and refining 

solutions. Our experiments are based on specific functions. In 

the future, experiments in real-world applications will be 

indispensable for verifying the efficiency of our algorithm.  

ACKNOWLEDGMENTS 

This work was supported by the National Nature Science 

Foundation of China [Grant number 61533007]. 

REFERENCES 

J. Kennedy and R. Eberhart. (1995). Particle swarm 

optimization. Proceeding IEEE International Conference 

on Neural Networks, 4, pp.1942–1948. 

M. Richards and D. Ventura. (2004). Choosing a starting 

configuration for particle swarm optimization. 2004 IEEE 

International Joint Conference on Neural Networks, 3, 

pp.2309–2312. 

J. Liu, Y. Mei and X. Li. (2016). An analysis of the inertia 

weight parameter for binary particle swarm optimization. 

IEEE Transactions on Evolutionary Computation, 20, pp. 

666–681. 

H. Wang, H. Sun and C. Li. (2013). Diversity enhanced 

particle swarm optimization with neighborhood search. 

Information Sciences, 223, pp. 119–135. 

P. Moradi and M. Gholampour. (2016). A hybrid particle 

swarm optimization for feature subset selection by 

integrating a novel local search strategy. Applied Soft 

Computing, 43, pp. 117–130. 

J. Kennedy. (2000). Stereotyping: improving particle swarm 

performance with cluster analysis. Proceedings of the 

2000 Congress on Evolutionary Computation, 2, 

pp.1507–1512. 

C. H. Li and S. X. Yang. (2009). A clustering particle swarm 

optimizer for dynamic optimization. IEEE Congress on 

Evolutionary Computation, pp.439–446. 

S. X. Yang and C. H. Li. (2010). A clustering particle swarm 

optimizer for locating and tracking multiple optima in 

dynamic environments. IEEE Transactions on 

Evolutionary Computation, 14, pp. 959–974. 

Spall J.C. (1987). A stochastic approximation technique for 

generating maximum likelihood parameter estimates. 

American Control Conference, pp.1161–1167. 

Blum C. and Roli A. (2003). Metaheuristics in combinatorial 

optimization: Overview and conceptual comparison. ACM 

Computing Surveys, 35, pp.268–308. 

J. Riget and J. S. Vesterstrøm. (2002). A diversity-guided 

particle swarm optimizer-the ARPSO. EVALife Technical 

Report, pp. 1570–1575. 

J. Sun, B. Feng and W.B. Xu. (2004). Particle swarm 

optimization with particles having quantum behaviour.  
IEEE Congress on Evolutionary Computation, 1, pp. 325–

331. 

Van den Bergh, F. (2002). An analysis of particle swarm 

optimizers. Ph.D. Thesis, Department of Computer 

Science, University of Pretoria, Pretoria, South Africa. 

Van den Bergh, F and Engelbrecht A P. (2002). A new locally 

convergent particle swarm optimise. IEEE Conference on 

Systems, Man and Cybernetics, 3, pp. 96–101. 

Evers G.I. and Ben Ghalia M. (2009). Regrouping particle 

swarm optimization: a new global optimization algorithm 

with improved performance consistency across 

benchmarks. IEEE International Conference on Systems, 

Man and Cybernetics, pp.3901–3908. 

M. Clerc and J. Kennedy. (2002). The particle swarm-

explosion, stability, and convergence in multidimensional 

complex space. IEEE Transactions on Evolutionary 

Computation, 6, pp. 58–73. 

Spall J.C. (2005). Adaptive stochastic approximation by the 

simultaneous perturbation method. IEEE Transactions on 

Automatic Control, 45, pp. 1839–1853.

 

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

268


