Dynamics and PID control

Sigurd Skogestad

Process dynamics

• “Things take time”
• Step response: (response of output y to step in input u):
 – $k = \Delta y(\infty)/\Delta u$ – process gain
 – τ - process time constant (63%)
 – θ - process time delay

• Time constant τ: Often equal to residence time = $V[m^3]/q[m^3/s]$ (but not always!)

• Dynamic model: Can find τ (and k) from balance equations:

 • Rearrange to match standard form of 1st order linear differential equation:
Example dynamic model:
Concentration change in mixing tank

- Assume constant $V \text{ [m}^3\text{]}$
- Assume constant density $\rho \text{ [kg/m}^3\text{]}$
- Assume, c (in tank) = c (outflow) [mol A/m3]
- Assume no reaction

<table>
<thead>
<tr>
<th>Inflow</th>
<th>Mass balance</th>
<th>Component balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρq_F [kg/s]</td>
<td>$c_F q_F$ [mol A/s]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outflow</th>
<th>Mass balance</th>
<th>Component balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρq [kg/s]</td>
<td>$c q$ [mol A/s]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inventory</th>
<th>Mass balance</th>
<th>Component balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρV [kg]</td>
<td>$c V$ [mol A]</td>
<td></td>
</tr>
</tbody>
</table>

Balances:

- Mass
- Component

\[
\frac{d(\rho V)}{dt} = \rho q_F - \rho q \quad \text{[kg/s]}, \quad \rho V \text{ constant } \Rightarrow q = q_F
\]

\[
\frac{d(cV)}{dt} = c_F q_F - cq \quad \text{[mol A/s]} \Rightarrow \frac{V}{q} \frac{dc}{dt} = -c + \frac{1}{k} c_F
\]

Response of linear first-order system

Standard form:\n\[
\frac{dy}{dt} = -y + ku, \quad y(0) = y_0.
\]

Make step in u at $t = 0$

Solution: $y(t) = y_0 + \left(1 - e^{-t/\tau}\right) \frac{k\Delta y}{\Delta x(\infty)}$

Remember for first order response:
1. Starts increasing immediately (would reach new steady state after time τ)
2. Reaches 63% of change after time τ
3. Approaches new steady state exponentially (has for practical purposes reached new steady state after about 4 τ)
Feedback control

Control systems elements:

- **Valve**
- **Hot water**
- **Thermocouple**
- **A/D (convert analog to digital signal)**
- **D/A (convert digital to analog signal)**
- **Computer (controller algorithm)**
- **Motor/Amplifier/Relay**
- **Card in computer**
- **Setpoint, etc.**

Block diagram of negative feedback control:

- y = controlled variable (CV)
- y_m = measured CV
- y_s = setpoint (SP)
- $e = y_s - y_m = control\ error$
- $u = manipulated\ variable\ (MV)$

$C = Feedback\ Controller = ?$
Feedback controller

Controller
Algorithm: \(u = f(y_s - y_m) \)

Simplest controller algorithm: On/off controller.
Problem: cycles

Industry: Standard algorithm for SISO controllers: PID
Industry: Standard for multivariable control: MPC (model predictive control)

Mechanical thermostat = On/Off-control (cycles)
Electronic controller (thermostat) = P-control (should give small offset)
PID controller

• Proportional control (P)

\[u = u_0 + K_c (y_s - y) \]

Input change is proportional to control error \(e \).

\(K_c \) = proportional gain (tuning parameter)
\(u_0 \) = «bias»

Problems proportional control:
1. Get steady-state offset (especially if \(K_c \) is small)

\[\text{Offset (\%)} = \frac{1}{1 + K_c k} \cdot 100\% \]

\(k \): process gain
\(K_c \): controller gain

2. Oscillates if \(K_c \) is too large (can get instability)

P-control

Initially at steady-state (\(y = y_s = 0 \)). Change setpoint to \(y_s = 1 \) at \(t = 1 \).
• Fix: Add Integral action (I)
• Get PI-control:

\[u(t) = u_0 + K_c e(t) + K_c \frac{\int_0^t e(t) dt}{\tau_I} \]

\(\tau_I \) = integral time (tuning parameter)
\(e = y_s - y \) (control error)

Note 1: Integral term will keep changing until \(e = 0 \) ⇒ No steady-state offset

Note 2: Small integral time gives more effect!
(\(\text{so set } \tau_I = 99999 \) (large!) to turn off integral action)

Note 3: Integral action is also called «reset action» since it «resets» the bias.
«Update bias \(u_0 \) at every \(\Delta t \):»

\[u(t) = u_0(t) + K_c e(t) \]
where \(u_0(t) = u_0(t - \Delta t) + K_c \frac{\Delta t}{\tau_I} e(t) \)

Add also derivative action (D):
Get PID controller

\[u(t) = u_0 + K_c [e(t) + \frac{1}{\tau_I} \int_0^t e(t) dt + \tau_I \frac{de(t)}{dt}] \]

• P-part: MV (\(\Delta u \)) proportional to error
 • This is usually the main part of the controller!

• I-part: Add contribution proportional to integrated error.
 • Integral keeps changing as long as \(e \neq 0 \)
 • \(\Rightarrow \) Will eventually make \(e = 0 \) (no steady-state offset!)

• Possible D-part: Add contribution proportional to change in (derivative of) error
 • Can improve control for high-order (S-shaped response) and unstable processes, but
 sensitive to measurement noise
Many alternative PID parameterizations

This course:
\[u(t) = u_0 + K_c[e(t) + \frac{1}{\tau_I} \int_0^t e(t) \, dt + \tau_D \frac{de(t)}{dt}] \]

Alternative form:
\[u(t) = u_0 + P e(t) + I \int_0^t e(t) \, dt + D \frac{de(t)}{dt} \]

Also other:
Proportional band = \(\frac{100}{K_c} \)
Reset rate = \(\frac{1}{\tau_I} \)
Etc…

NOTE: Always check the manual for your controller!

Digital implementation (practical in computer) of PID controller

Continuous (not possible in computer):
\[u(t) = u_0 + K_c \left[\int_0^t e(t) \, dt + K_I \frac{\int_0^t e(t) \, dt}{\tau_I} + K_D \frac{de(t)}{dt} \right] \]

where \(\tilde{u}(t) \) — bias term with integral action included

Introduce:
\[\Delta t = \text{sampling time} \]
\[k = \text{current value (at time } t \text{)} \]
\[k - 1 = \text{previous value (at time } t - \Delta t \text{)} \]

Discrete (digital) approximations:
\[\frac{de(t)}{dt} \approx \frac{e_k - e_{k-1}}{\Delta t} \]
\[\tilde{u}_k = \tilde{u}(t) \approx \tilde{u}_{k-1} + \frac{K_I e_k}{\tau_I} \Delta t \]

Conclusion: Digital PID implementation
\[u_k = \tilde{u}_k + K_c e_k + K_D \frac{e_k - e_{k-1}}{\Delta t} \]
PID controller tuning

\[u(t) = u_0 + K_c e(t) + \frac{1}{\tau_I} \int_0^t e(t) dt + \tau_D \frac{de(t)}{dt} \]

3 tuning parameters:
1. (Proportional) Controller Gain: \(K_c \)
2. Integral time: \(\tau_I \) [s]
3. Derivative time: \(\tau_D \) [s]

Want the system to be (TRADE-OFF!)
1. Fast initially (\(K_c \) large, \(\tau_D \) large)
2. Fast approach to steady state (\(\tau_I \) small)
3. Robust / stable (OPPOSITE: \(K_c \) small, \(\tau_I \) large)
4. Smooth use of inputs (OPPOSITE: \(K_c \) small, \(\tau_D \) small)

Tuning of your PID controller

I. “Trial & error” approach (online)

(a) P-part: Increase controller gain (\(K_c \)) until the process starts oscillating or the input saturates
(b) Decrease the gain (~ factor 2)
(c) I-part: Reduce the integral time (\(\tau_I \)) until the process starts oscillating
(d) Increase a bit (~ factor 2)
(e) Possible D-part: Increase \(\tau_D \) and see if there is any improvement

Very common approach,
BUT: Time consuming and does not give good tunings: NOT recommended
II. Model-based tuning (SIMC rule)

- From step response obtain
 - $k = \Delta y(\infty) / \Delta u$ – process gain
 - τ - process time constant (63%)
 - θ - process time delay

- Proposed SIMC controller tunings

$$K_c = \frac{1}{\tau_c + \theta}$$
$$\tau_f = \min(\tau, 4(\tau_c + \theta))$$

- Choose $\tau_c = \theta$ (delay) for "tight" control
- Choose $\tau_c > \theta$ for smoother control (but $K_c = \frac{\Delta y(\infty)}{\Delta u}$)

τ_0: normally 0 (may try $\tau_0 = \tau_2$ 2nd order time constant (e.g. response time measurement), but should then get new τ_1 and θ based on 2nd order response)
Example SIMC rule

• From step response
 – $k = \Delta y(\infty) / \Delta u = 10 \text{C} / 1 \text{kW} = 10$
 – $\tau = 0.4 \text{ min} \text{ (time constant)}$
 – $\theta = 0.3 \text{ min} \text{ (delay)}$

• Proposed controller tunings

 Select $\tau_c = \theta = 0.3 \text{ min} \text{ ("tight" control)}$:

 \[
 K_c = \frac{1}{k \tau_c + \theta} = \frac{1}{10 \cdot \frac{0.4}{0.3+0.3}} = 0.067
 \]

 \[
 \tau_I = \min \left(\frac{\tau}{0.4}, 4 \left(\frac{\tau_c + \theta}{0.3+0.3} \right) \right) = \min(0.4, 2.4) = 0.4 \text{ min}
 \]

Simulation PID control

• Setpoint change at $t=0$ and disturbance at $t=5 \text{ min}$
 1. Well tuned (SIMC): $K_c=0.07, \tau_{ai}=0.4 \text{ min}$
 2. Too long integral time ($K_c=0.07, \tau_{ai}=1 \text{ min}$): settles slowly
 3. Too large gain ($K_c=0.15, \tau_{ai}=0.4 \text{ min}$) – oscillates
 4. Too small integral time ($K_c=0.07, \tau_{ai}=0.2 \text{ min}$) – oscillates
 5. Even more aggressive ($K_c=0.12, \tau_{ai}=0.2 \text{ min}$) – unstable (not shown on figure)
1. **Delay** (θ) is feedback control’s worst enemy!
 - Try to reduce it, if possible. Rule: “Pair close”!

2. **Common mistake:** Wrong sign of controller!
 - Controller gain (K_c) should be such that controller counteracts changes in output
 - Need negative sign around the loop ("negative feedback")
 - Two ways of achieving this:
 - (Most control courses:) Use a negative sign in the feedback loop. Then controller gain (K_c) should always have same sign as process gain (k)
 - (Many real control systems:) Always use K_c, positive and select between
 - “Reverse acting” when process gain (k) is positive
 - because MV (u) should go down when CV (y) goes up
 - “Direct acting” when k is negative
 - WARNING: Be careful and read manual! Some reverse these definitions (wikipedia used to do it, but I corrected it)

3. **Integrating («slow») process:** If the response is not settling after approximately 10 times the delay (so τ/θ is large), then you can stop the experiment and approximate the response as an integrating process (with only two parameters, k' and θ):

 ![Integrating process diagram]

 Slope, $k' = \frac{\Delta y}{\Delta t \cdot \Delta u}$

 SIMC-settings (using $k' = k/\tau$):

 \[
 K_c = \frac{1}{k'} \frac{1}{\tau_c + \theta} \\
 \tau_I = 4 (\tau_c + \theta)
 \]
Example: Similar to shower process

\[u = Q \]
\[y = T \]
\[d = T_F \]

Disturbance response with no control

\[u = Q \]
\[y = T \]
\[d = T_F \]
P-control

\[u = Q \]
\[y = T \]
\[d = T_F \]

And we find it to be \(K_c = 1.13 \)

\[P \text{-control} \]

\[K_c = 0.5; \quad \tau_{ai} = 9999; \]

Start simulation (press green button)

\[\text{plot}(\text{time}, \text{u}, \text{time}, \text{T}, \text{time}, \text{T_f}), \quad \text{axis}([0 \ 800 \ -1.5 \ 1.5]) \]

SIMC PI control

\[u = Q \]
\[y = T \]
\[d = T_F \]

No offset

\[\text{SIMC PI control} \]

\[K_c = 0.1; \quad \tau_{ai} = 20; \]

Start simulation (press green button)

\[\text{plot}(\text{time}, \text{u}, \text{time}, \text{T}, \text{time}, \text{T_f}), \quad \text{axis}([0 \ 800 \ -1.5 \ 1.5]) \]
Recommend: $\tau_c =$ delay $\neq 100s$ because it is more robust and gives no overshoot in u

Measure also T_d: Cascade control is much better