

Exam paper for TKP4140 – Process Control

Academic contact during exam: Sigurd Skogestad Phone: 91371669

Examination date: 09 December 2022 Examination time (from-to): 09:00 – 13:00 Permitted examination support material: One (1) A4 double-sided piece of paper with your handwritten notes. Standard calculator.

Other information: State clearly all assumptions you make. You may answer in Norwegian or English

Language: English Number of pages (front page excluded): 6 (including Bode paper which may be handed in)

Checked by:

Date Signature

Problem 1 (15%). Approximation of transfer function and tuning

Consider the following process

$$
G_0 = \frac{(3s+1)e^{-0.5s}}{(7s+1)(2s+1)(0.8s+1)}
$$

We want to design a PI-controller with $\tau_c=1$.

- a) (9%) Approximate the process as a first-order plus delay process.
	- Start by approximating the zero using the rules given below. Select τ_0 so that the ratio T₀/ τ_0 is closest to 1.
- b) (4%) Derive PI-settings using the SIMC rules.
- c) (3%) Would you propose using PID control for this process?

$$
\frac{T_0 s + 1}{\tau_0 s + 1} \approx \begin{cases}\n\frac{T_0 / \tau_0}{T_0 / \theta} \tau_c & \text{for } T_0 \ge \theta \ge \theta \\
\frac{T_0 / \theta}{T_0 / \theta} \tau_c & \text{(Rule T1a)} \\
\frac{T_0}{\tau_0 s + 1} & \text{for } \theta \ge T_0 \ge \tau_0 \\
\frac{T_0 / \tau_0}{T_0 / \tau_0} & \text{for } \tau_0 \ge T_0 \ge 5\theta \tau_c \\
\frac{(\tilde{\tau}_0 / \tau_0)}{(\tilde{\tau}_0 - T_0) s + 1} & \text{for } \tilde{\tau}_0 \stackrel{\text{def}}{=} \min(\tau_0, 5\theta) \ge T_0 & \text{(Rule T2)} \\
\end{cases}
$$

Problem 2 (20%). Sinusoidal disturbance

Consider the following process (in deviation Laplace variables)

$$
y = G u + G_d d
$$

$$
G(s) = \frac{1.5}{2s + 1}, G_d(s) = \frac{3e^{-2s}}{12s + 1}
$$

The disturbance d is a sinusoid (of any frequency) with amplitude $d_{\text{max}}=2$, the maximum largest input change is $u_{max}=10$, and the largest allowed output change is $y_{max}=0.5$. Thus, in the following consider a persistent disturbance $d(t)=2\sin(\omega t)$ (where ω may vary).

- (a) $(7%)$ Consider first no control (u=0). What is the magnitude of the output y as function of ω (give both the analytical expression and make a plot (sketch)).
- (b) (7%) Consider next feedback control. What PI-tunings do you suggest if we want to use "smooth control" (that is, we want to select the largest possible τ_c that keeps the amplitude $|y| \le |y_{max}|$ for any frequency ω).
- (c) $(6%)$ Consider finally feedforward control (without feedback). Propose a design for c_{FF} . What is $y(t)$ in this case?

Problem 3 (20%). Block diagram

Consider the system represented by the following block diagram:

- a) (10%) Find the transfer function $C(s)$ from e to u, such that $u = C e + C_{ff} d$. What do the three time constants in C represent?
- b) (7%) Using $u = C(s) e + C_{ff}(s) d$, find the transfer functions $T(s)$ and $T_d(s)$ such that:

$$
y = T(s) r + T_d(s) d
$$

c) (3%) (You may answer this without solving part b). In the context of control systems, r represents the reference signal (setpoint), d is a disturbance and y in the controlled variable. If steady-state offset is desired to be zero, what property should we require from $T(s)$ and $T_d(s)$?

Problem 4 (20%). Transfer function responses

Consider the transfer functions:

$$
G_1(s) = \frac{0.2 s + 1}{0.04 s^2 + 0.12 s + 1}
$$

\n
$$
G_2(s) = \frac{1.6 s + 1}{0.24 s^2 + s + 1}
$$

\n
$$
G_3(s) = \frac{1}{0.6 s^2 + 1.6 s + 1}
$$

\n
$$
G_4(s) = \frac{-0.2 s + 1.6}{0.04 s^2 + 0.12 s + 1}
$$

\n
$$
G_5(s) = \frac{-0.2 s + 1}{0.24 s^2 + s + 1}
$$

\n
$$
G_6(s) = \frac{1.6 s + 3.2}{1.2 s^2 + 3.2 s + 2}
$$

Fill in the missing values in the table below. As conclusion, identify the corresponding responses to a unitary step at $t_0 = 0.5$ provided in the following figure.

Step Response

Problem 5 (25%). Modelling and control of flow and pressure

Consider a gas pipeline with two valves. We have measurements of the inflow F_1 and the intermediate pressure p and these should be controlled. The volume of the pipeline can be represented as a tank with volume V as shown in the figure above.

Steady-state data: F₁=1 kg/s, z₁=z₂=0.5, p₁=2 bar, p=1.88 bar, p₂=1.8 bar, V=130 m³, T=300 K, Parameters: $R=8.31$ J/K.mol, $M_W=18e-3$ kg/mol (so the gas is steam).

The following model equations are suggested to describe the system.

(1) dm/dt = F₁-F₂
(2) m = k_p p where k_p=VM_w/(RT)
(3) F₁ = C₁z₁
$$
\sqrt{p_1 - p}
$$

(4) F₂ = C₂z₂ $\sqrt{p - p_2}$

- (a) (3%) Explain what the variables and equations represent. What assumptions have been made?
- (b) (3%) Determine the parameters in the model (C_1, C_2, k_p) . What is the steady-state value of m? What is the residence time of the gas, m/F_1 ?
- (c) (12%) Linearize the model and find the 2x2 transfer function model from z_1 and z_2 (inputs) to F_1 and p (controlled variables). (Note: To simplify, you can assume p_1 and p_2 are constant)
- (d) (4%) What pairings do you suggest for single-loop control (with $u = [z_1 \, z_2]$, $y = [F_1 \, p]$)? How could control be improved?
- (e) (3%) (This can be answered without solving parts a-d). What control structure would you propose if we instead of p want to control the downstream pressure p_2 ? Thus, we have $u=[z_1, z_2]$ z_2 and $y = [F_1 p_2]$.

Bode paper: $% \left(\beta \right)$

