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A PROCEDURE FOR SISO CONTROLLABILITY 
ANALYSIS--WITH APPLICATION TO DESIGN OF pH 

NEUTRALIZATION PROCESSES 

S. SKOGESTAD 
Chemical Engineering Department, University of Trondheim--NTH, N-7034 Trondheim, Norway 

Abstract--A procedure for analyzing the input-output controllability of single-input single-output 
(SISO) systems is presented. This procedure is applied to a pH neutralization process which must be 
redesigned to get acceptable controllability. It is found that more or less heuristic design rules given in 
the literature follow directly. The key steps in the analysis are to consider disturbances and to scale the 
variables properly. It is suggested that most of the material presented in this paper is suitable for an 
undergraduate control course. 

1. INTRODUCTION 

In process control courses the issues of controller 
design and stability analysis are often emphasized. 
However, in practice the following three issues are 
usually more important: 

I. How well can the plant be controlled? Before 
attempting to start any controller design one should 
have some idea of how easy the plant actually is to 
control. Is it a difficult control problem? Indeed, 
does there even exist a controller which meets the 
required performance objectives? 

II. What control strategy should be used? 
Another  important question is to decide on the 
control strategy: What to measure, what to manipu- 
late, how to pair? In textbooks one finds qualitative 
rules for this. For example in Seborg et al. (1989) 
one finds in a chapter called "The art of process 
control" the rules: 

1. Control outputs that are not self-regulating. 
2. Control outputs that have favorable dynamic 

and static characteristics, i.e. there should exist 
an input with a significant, direct and rapid 

effect. 
3. Select inputs that have large effects on the 

outputs. 
4. Select inputs that rapidly effect the controlled 

variables. 

These rules are reasonable, but what is "self- 
regulating", "large", "rapid" and "direct"? One 
objective of this paper is to quantify these terms. 

III. How should the process be changed to 
improve control? For example, one may want to find 
the required size of a buffer tank for damping a 
disturbance, or one may want to know how fast a 
measurement should be to get acceptable control. 

Controllability analysis. All the above three ques- 
tions are related to the inherent control characteris- 
tics of the process itself, that is, to what is denoted 
the input-output controllability of the process. We 
shall use the following definition: 

(Input-output)  Controllability is the ability to 
achieve acceptable control performance, that is, 
to keep the outputs (y) within specified bounds or 
displacements from their setpoints (r), in spite of 
unknown variations such as disturbances (d) and 
plant changes, using available inputs (u) and 
available measurements (e.g. Ym or din). 

In summary, a plant is controllable if there exists a 
controller (connecting measurements and inputs) 
that yields acceptable performance for all expected 
plant variations. Thus, controllability is independent 
of the controller, and is a property of the plant 
(process) only. It can only be affected by changing 
the plant itself, that is, by design modifications. 
These may include: 

1. Change the apparatus itself, e.g. type, size, 
etc. 

2. Relocate sensors and actuators. 
3. Add new equipment to dampen disturbances, 

e.g. buffer tanks. 
4. Add extra sensors for measurement (to be 

used in feedforward and cascade control). 
5. Add extra actuators (to be used for parallel 

control). 
6. Change the control objectives. 
7. Change the structure of the lower levels of 

control already in place. 

(It may be argued whether it is appropriate to label 
the last two items as design modifications, but at 
least they address issues which come before the 
actual controller design.) 
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Surprisingly, in spite of the fact that mathematical 
methods are used extensively for control system 
design, the methods available when it comes to 
controllability analysis are largely qualitative. In 
most cases the "simulation approach" is used. 
However, this requires a specific controller design 
and specific values of disturbances and setpoint 
changes. In the end one never really knows if a 
result is a fundamental property of the plant or if it 
depends on these specific choices. The objective of 
the paper is to present a procedure for controllabi- 
lity analysis for scalar systems and to apply this 
procedure to a few examples. Earlier work on 
input-output  controllability analysis includes that of 
Ziegler and Nichols (1943), Rosenbrock (1970) and 
Morari (1983) who made use of the concept of 
"perfect control". 

One shortcoming with the controllability analysis 
presented in this paper is that all the measures are 
linear. This may seem very restrictive, but usually it 
is not. In fact, one of the most important nonlineari- 
ties, namely that of input constraints, can be han- 
dled quite well with a linear anlysis. To deal with 
slowly varying changes one may perform a controlla- 
bility analysis at several selected operating points. 
As a last step one may perform some nonlinear 
simulations to confirm the linear controllability 
analysis. Experience from a large number of case 
studies confirms that the agreement is generally very 

good. 
Remarks on the definition o f  controllability. The 

above definition is in tune with most engineers' 
intuitive feeling about the term, and was also how 
the term was used historically in the control litera- 
ture. For example, Ziegler and Nichols (1943) 
define controllability as "the ability o f  the process to 
achieve and maintain the desired equilibrium value". 
Unfortunately, in the '60s the term "controllability" 
became synonymous with the rather narrow concept 
of "state controllability" introduced by Kalman, and 
the term is still used in this restrictive manner in the 
system theory community. "State controllability" is 
the ability to bring a system from a given initial state 
to any final state (but with no regard to the quality of 
the response between these two states). This con- 
cept is of interest for realizations and numerical 
calculations, but as long as we know that all the 
unstable modes are both controllable and observ- 
able, it has little practical significance. For example, 
Rosenbrock (1970, p. 177) notes that "most indus- 
trial plants are controlled quite satisfactorily though 
they are not [state] controllable". To avoid confu- 
sion with Kalman's state controllability, Morari 
(1983) introduced the term "dynamic resilience". 
However, this term does not capture the fact that it 

Fig. 1. Block diagram of feedback control system. 

is related to control, and instead it is proposed to use 
the term "input-output  controllability" if one expli- 
citly wants to make the distinction with "state con- 
trollability". 

2. CONTROLLABILITY ANALYSIS 

Controllability may be analyzed by formulating 
mathematically the control objectives, and then syn- 
thezing a controller to see whether the objectives 
can be met. However, in practice such an approach 
is difficult and time consuming. The objective of this 
section is to present simple rules which do not 
require that a detailed controller design is per- 
formed. Consider a linear process model in terms of 
deviation variables: 

y = g(s)u + gd(S)d. (1) 

Here y denotes the output, u the manipulated input 
and d a disturbance (may include a disturbance 
entering at the input which are frequently referred 
to as a "load change"), g(s) and gd(S) are transfer 
function models which describe the effect on the 
output of the input and disturbance, and all control- 
lability results in this paper are based on this infor- 
mation. The Laplace variable s is often omitted to 
simplify notation. The control error e is defined as: 

e = y - r ,  (2) 

where r denotes the reference value (setpoint) for 
the output. In this paper we mostly consider feed- 
back control as illustrated in Fig. 1 where: 

u = c(s) ( r -  y) (3) 

and c(s) is the controller. Eliminating u from equa- 
tions (1) and (3) yields the closed-loop response: 

y =  Tr+Sgdd; e=- -Sr+Sgdd .  (4) 

Here the sensitivity is S = (1 + gc)-~ and the comple- 
mentary sensitivity is T= gc(1 + gc) - ~ = 1 - S. The 
transfer function around the feedback loop is 
denoted L. In this case L = gc. 

In this paper bandwidth is defined as the frequency 
cob where the loop gain is one in magnitude, i.e. 
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[L( jco , ) [= l  (or more precisely where the low- 

frequency asymptote of ILl first crosses 1 from 
above). This frequency is also called the "gain cross- 

over frequency". Other definitions of bandwidth are 
used, but the difference is small. At frequencies 
lower than the bandwidth (CO<COB) feedback is 
effective and will affect the frequency response. 
However, for sinusoidal input signals (for example, 
a disturbance) with frequencies higher than OJB the 
response will not be affected much by the feedback. 

The simplest interpretation of the frequency do- 
main is that it represents the steady-state sinusoidal 
response. For example, if we send an input u(t)= 
u0 sin(cot) through a stable system with transfer func- 

tion g(s), then the output as t - - - ~  is y( t )=  
y0(sin cot + ~) where Y0 = Ig(jco) luo and q~ =/_g(jco). 
Here g(j~o) represents at each frequency co a com- 
plex number obtained from g(s) by setting s =jco. A 
common shorthand notation used in this paper to 
express the sinusoidal response is (phasor notation): 

y(co) = g(jo))u(e,), (5) 

where y(co) and u(w) are complex numbers (vectors) 
representing at each frequency the size and phase of 
a sinusoidal signal. For example, u(co)=5 means 
that u(t) = 5 sin(cot). Thus u(~o) is not equal to u(s) 
evaluated at s = co, nor is it equal to u(t) evaluated at 
t = c o .  

2.1. Scaling. The interpretation of most measures 
presented in this paper assumes that the transfer 
functions g and gd are in terms of scaled variables. 
The first step in a controllability analysis is therefore 
to scale (normalize) all variables (input, distur- 
bance, output) to be less than 1 in magnitude (i.e. 
within the interval - 1  to 1) by normalizing each 
variable by its maximum value, for example, u =  
u ' /u ' , ,  where u' denotes the unscaled and u the 
scaled variable, and U',x is the largest allowed input 
change (in unscaled variables). For the other vari- 
ables we have d = d' / d',,~, e = e' / e',~, y = y' / e'~,~ and 
r = r'/e~ax, where d~nax is the largest expected distur- 
bance and e' ,~ the largest allowed control error. In 
most cases the maximum values (u . . . .  em,,~; d,,,~) are 
assumed independent of frequency. 

Thus, in the following we assume that the signals 
are persistent sinusoids, and that g and gj have been 
scaled, such that at each frequency the allowed input 
lu(co)]<l ,  the expected disturbance [d(co)l<l, the 
expected reference signal Ir(co) l < rmax(co). The per- 
formance requirement is that the control error 
[e(co)[<l ,  Note that e and r are measured in the 
same units so r~,~ = r 'Se 'm~ is the magnitude of the 
largest expected setpoint change relative to the 
allowed control error. We will assume that rma x (O1) is 
frequency dependent such that Irma~(w) I = R .... up to 

the frequency (o, and is 0 above this frequency. In 
other words, for a setpoint change r(t)= 
Rma~sin(cot), the tracking error e ( t )=y( t ) - r ( t )  
should be less than one in magnitude up to the 
frequency COt, and above this frequency there are no 
specifications on tracking. Throughout the paper we 
assume Rma x > l .  

Remark 1. It could be argued that the magnitude 
of the sinusoidal disturbances should approach zero 
at high frequency, that is dmax should be made 
frequency dependent. While this may be true, we 
really only care about frequencies up to the band- 
width coB, and in most cases it is reasonable to 
assume that we do indeed have sinusoidal distur- 
bances of about the same magnitude up to this 
frequency. 

Remark 2. It could also be argued that emax should 
be frequency dependent. For example, we may 
require no steady-state offset, i.e. emax should 
approach zero at low frequencies. Again, including 
frequency variations is not recommended when 
doing a preliminary controllability analysis (how- 
ever, one may take such considerations into account 
when interpreting the results of the controllability 
analysis). Of course, if we were using e'ax to derive 
weighting functions to use for controller synthesis, 
then it should be made frequency dependent. 

Remark 3. If more detailed information is given 
about the desired setpoint changes one may want to 
use another form for the frequency dependency of 

?'max • 

2.2. Summary of  controllability rules for feedback 
control 

Scale the variables d, u, y and r as outlined above 
to obtain the scaled transfer functions g(s) and g~(s). 
Let gin(S) denote the measurement transfer function 
and assume gin(0) = 1 (perfect steady-state measure- 
ment). Let o~B denote the bandwith of the system, 
defined as the highest frequency where I L(jco~)[ = 1 
(see above). Let ~0 denote the frequency at which 
Igo(j~oo)] first crosses 1 from above. The following 
rules apply: 

Rule 1. Speed of response to reject disturbances. 
Must at least require coB>tad. More specifically, 
we must with feedback control require I L l =  
Igc(jco) l > I gd(Jco) I at frequencies where 
Igd(jco) I > 1. 

Justification: Without control y =gdd. Scaling 
has been applied such that the largest disturbance 
at a given frequency is d(t)=l .s in(mt)  [i.e. 
Ld(co)l = 1]. Thus, at frequencies co<co0 the out- 
put y will be unacceptable (lYl > 1) for a distur- 
bance L dl = 1, so control is needed at these fre- 
quencies, and we must require COB/> COd. 
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With feedback control y=Sgad where S =  
(1/(1 + L ) ) ~ ( 1 / L )  at frequencies where ILl > 1. 
Thus to have l y l < l  for [ d [ = l  we must require 

ILl > Igd I at these frequencies. 
Rule 2. Speed of response to follow setpoints. 
Must at least require cu~>wr where cu r is the 
frequency up to which tracking is required. More 
specifically, we must require I L(jcu)l> Rmax up to 
frequency cur. 

Unless Rma x is close to 1, the requirement cub > 
cur is not tight, and a higher bandwidth is required 
in practice. The exact value depends on how 
sharply IL(j¢o) l drops off in the frequency range 

from wr (where I L l >  Rm~ 0 to wB (where ILl = 1). 
For example, with L(s)=cuB/s (first-order res- 
ponse) the required bandwidth is CUB>CUrR ..... 

CUB~S- (not considering stability) while for L(s)= 2 , 
the required bandwidth is cub > Wr~/~m~x • 

Justification: With feedback control e = - S r  
where S ~ 1/L at frequencies where ILl> 1. Thus 
to have ]e 1< 1 for Jr] = ]Rm,x ] (up to frequency cu~) 
we must require ILl > I Rm~ [. 
Rule 3. Input constraints for disturbances. Must 
require Ig(jcu)l>lgo(Jcu)l at frequencies where 

Ig~(jcu) I > 1. 
Justification: This is needed to avoid input con- 

straints when perfectly rejecting a disturbance 
d(t)=l.sin(cut) [i.e. d(cu)=l] :  From y = g u +  
g J = O  we get u = - ( g J g ) d  and with d= 1 we 
need ] u [ = ]ga [/[ g ] < 1 to avoid input constraints. 

Strictly speaking, perfect control is not 
required, and the minimum input needed for 
"acceptable" control (namely ] y ] < l )  is ]ul = 
({go[- 1)/Igl. (Consider y=gu+gad with d =  1, 
then the smallest required input to get ]y] = 1 is 
found whep u is such that the complex vectors gu 
and gd are in opposite directions, i.e. ] y ] = l =  
[gd]- [gu].) The difference is clearly small at low 
frequencies where ]gd] is larger than 1. (However, 
for multivariable systems the difference may be 
large for ill-conditioned plants even at low fre- 

quencies.) 
Rule 4. Input constraints for setpoints. Must 
require [g(jto){>Rma x up to frequency cur where 
tracking is required. 

Justification: This is needed to avoid input con- 
straints for perfect tracking of Ir(cu)]= Rmax: from 
y = gu and y = r (perfect control) we get u = r/g, 
and with r =  Rmax (up to frequency cur) we need 
[u I= Rm,x/Igt< 1 to avoid input constraints. 
Rule 5. Time delay 0 in g(S)gm(S). Must require 
wB < 1/0 to have acceptable control performance. 

Justification: It is impossible to remove the 
effect of the delay and L(s) must contain a term 
e -°~. For example, the ideal controller which 

minimizes J = f(7 l e(t) - r(t) ]2 dt when r(t) is a step 
and there is no penalty on the inputs has comple- 
mentary sensitivity T=e  -°s. The corresponding 
loop gain L = T/(1 - T) crosses 1 in magnitude at 
about the frequency 1/0. In practice, the ideal 
controller cannot be realized so this value 
provides an upper bound on the bandwidth. 
Rule 6. Real RHP-zero z in g(S)gm(S). Must 
require cuB<z~2 to have acceptable control per- 
formance at low frequencies. 

Justification: Again, it is impossible to remove 
the effect of a RHP-zero. The ideal controller 
which minimizes J = f~ [e(t) - r(t)] 2 dt when r(t) is 
a step and there is no penalty on the inputs has 
complementary sensitivity T= ( -  s + z)/(s + z). 
The corresponding loop gain L = T / ( 1 - T )  
crosses 1 in magnitude at about the frequency z/2. 
In practice, the ideal controller cannot be realized 
so this value provides an upper bound on the 
bandwidth. 

Remark: Strictly speaking, a RHP-zero only 
makes it impossible to have tight control in the 
frequency range close to the location of 
RHP-zero. If we do not need tight control at low 
frequencies, then we may reverse the sign of the 
controller gain, and instead achieve tight control 
at frequencies higher than z. One special example 
is for plants with a zero at the origin [g(s) contains 
an isolated term s in the numerator] where one 
can achieve good transient control, but control 
has no effect at steady-state. 
Rule 7. Phase lag constraint. Must require in most 
practical cases: wB < cuu. Here the "ultimate" fre- 
quency, cuu is where the phase of g(jcu)gm(]CU) is 
- 180 °. 

This rule is given by Balchen and Mumme 
(1988), but without any theoretical justification. 
In fact, the condition is not a fundamental limi- 
tation, since for minimum phase plants (no delays 
or RHP-zeros), any phase lag may in theory be 
counteracted (disregarding input constraints) by 
placing zeros in the controller (use of "derivative 
action"). However, in practice this is not possible, 
because the controller structure may be limited 
and because of model uncertainty. 

Justification for P1D-controller: With a 
PID-controller the maximum phase lead is 54.9 ° 
for a controller with derivative action over one 
decade (the maximum phase lead for the term 
(ras + l)/(0.1r~' + ) is 54.9 ° at frequency V/~/ra) .  
Thus, if we require a phase margin larger than 
54.9 ° we must require IL I~  < 1 at frequency w. and 
the rule follows. 
Rule 8. Real open-loop unstable pole in g(s) at 
s=p.  Need high feedback gains to stabilize the 
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system and must require for acceptable perfor- 

mance ~B > 2p. 
Justification: For example, to stabilize a plant 

g(s )=l / ( s -p )  with a constant gain controller 
c(s)=K~ we need K,.>p, and we find that the 
asymptote of ILl crosses 1 at frequency Kc, so we 
have O~B> Kc=p. This is a minimum requirement 
for stability. For performance the gain must be 
larger and the value K~ = 2p places the closed-loop 
pole at the mirror image of s = p  and yields the 
minimum value of the input [in tems of 

LTlu(t)l:dt] required for stabilization (Kwaker- 
naak and Sivan, 1972, p. 289). 

Another justification follows from the fact that 
a strictly proper plant with a RHP-zero and a 
single unstable real pole, e.g. g(s) = 
( s - z ) / ( ( s -p ) (c s+l ) ) ,  can be stabilized by a 
stable controller if and only if p < z (Youla et al., 
1974). (Combining Rules 6 and 8 yields p <0.25z 
because the "gap" must be larger to achieve 
reasonable performance.) 

In addition, for unstable plants we need ]gl > 
]gdl up to the frequency p (which may be larger 
than SOd). Otherwise, the input may saturate when 

there are disturbances, and the plant cannot be 
stabilized. 

Most of the rules are summarized graphically in 
Fig. 2. The above rules are necessary conditions 
("minimum requirements") in order to achieve 
acceptable control performance. One reason they 
are not sufficient is that they are based on consider- 
ing only "one effect at a time". 

The rules quantify the qualitative rules from 
Seborg et al. (1989) given in the introduction. For 
example, the rule "Control outputs that are not self- 
regulating" may be quantified as: "'Control outputs y 
for which Igd(jm)l> 1 at some frequency" (Rule 1). 
The rule "Select inputs that have a large effect on 
the outputs" may be quantified as: "*In terms of 
scaled variables we must have Igl > Ig,~l at frequen- 
cies where Igd]>l (Rule 3), and we must have 
Igl>R ..... at frequencies where setpoint tracking is 
desired (Rule 4)". 

Another important insight from the above rules is 
that a larger disturbance or a smaller allowed 
control error requires faster response (higher band- 
width). 

LI 
MARGIN TO STAY WITHIN CONSTRAINTS 

( lu l<l )  

MARGIN FOR PERFORMANCE 

( l y l < l )  

CONTROL NEEDED 
TO REJECT DISTURBANCES 

I I I I 

2p rod 0)B Z/2 (qu I/0 

MARGINS FOR STABILITY AND PERFORMANCE ' 

Fig. 2. Summary of controllability requirements. 
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In summary Rules 1, 2 and 8 tell us that we need 
high feedback gain ("fast control") in order to reject 
disturbances, to track setpoints and to stabilize the 
plant. On the other hand, Rules 5-7 tell us that we 
must use low feedback gains in the fequency range 
where there are RHP-zeros or delays or where the 
plant has a lot of phase lag. We have formulated 
these requiremnts for high and low gain as band- 
width requirements. If they somehow are in conflict 
then the plant is not controllable and the only 
remedy is to introduce design modifications. Often 
the problem is that the distrubances are too large 
such that we hit input constraints, or such that the 
required bandwidth is not achievable. To avoid the 
latter problem, we must at least require that the 
effect of the disturbance is less than 1 (in terms of 
scaled variables) at frequencies beyond the band- 

width, that is: 

Igj(y~o)l< 1; Wo ~>oJB, (6) 

where as found above we must require (approxima- 
tely) 0~8< 1/0 and ~oa<z/2 and ~on<~o,,. Condition 
(6) may be used, as in the pH neutralization exam- 
ple below, to determine the size of buffer tanks. 

2.3. Feedforward control 

Consider a feedforward controller u=cf(s)dm 
where dr, = gmd(S)d is the measured disturbance. The 
disturbance response becomes: 

y = gu + gdd = (gCtgmd + gd)d, 
(7) 

~d 

where ~d(S) denotes the effect of the disturbance 
with the feedforward controller in place. We want to 
consider controllability (achievable performance) 
with feedforward control. 

Rules 3 and 4 on input constraints apply directly 
to feedforward control, while Rule 8 does not apply 
since unstable plants can only be stabilized by feed- 
back control. The remaining rules make use of the 
term "bandwidth" which we above defined as the 
frequency up to which the feedback loop gain I L{ is 
larger than one. However, if the term "bandwidth" 
(oJB) is interpreted as "the frequency up to which 
control is effective" then the rules partly apply also 
to feedforward control. Rules 5 and 6 on time delay 
and RHB-zero must be modified by replacing ggm by 
gg'ggmd. This follows by considering the ideal feed- 
forward controller which yields ~d = 0 in (7). We get: 

cl ~"' = - gag- ' gm] , (8) 

which should be stable and causal (contain no pre- 
diction) to be realizable. Note that a delay in gd(s) is 
an advantage for feedforward control ("it gives the 
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feedforward controller more time to make the right 
action"). 

Model uncertainty is a more serious problem for 
feedforward than for feedback control because there 
is no correction from the output measurement. Let 
the actual plant models be denoted as g", g,~ and g~d. 
Then the actual disturbance response with the ideal 
feedforward controller in (8) is (assuming that this 
controller is realizable(: 

y =g"u +gdd =g'~ (1 
\ 

gd g" 'g"d] d. 
g~ g gmd/ 

(9) 
~J 

Here gg is the actual disturbance response without 
feedback control and g~ with feedforward control. 
The effectiveness of feedforward control is deter- 
mined by the ratio [gg[/[g~'[, (which takes the place of 
the sensitivity function for feedback control). 
Ideally it is zero, but this requires accurate models 
of g and gd as well as of the measurement grad. For 
example, a 10% error in each of these three may 
yield [~ '{l[g~'[=[1-1.1.1.1.1.1[=0.33,  that is, 
because of uncertainty even the ideal feedforward 
controller removes only 67% of the disturbance 
effect. If the ratio is larger than 1 at some frequency 
(which may easily happen) then feedforward control 
makes control worse. 

Because of the sensitivity to model uncertainty 
and because of the presence of unmeasured distur- 
bances, feedforward control is usually combined 
with feedback control. Assume that the feedforward 
controller has already been designed. Then the con- 
trollability of the remaining feedback problem can 
be analyzed using the above rules ifgd(s) is replaced 

by gd(S). 

3. SIMPLE EXAMPLES 

3.1. First-order process with delay 

Consider disturbance rejection for the following 
process: 

e-O~ e-O ds 
= - - .  (10) g(s) = k-1 + rs' gd(s) kd 1 + rdS 

In addition there is a measurement delay 0m for the 
output and Omd for the disturbance. All parameters 
have been appropriately scaled such that at each 
frequency l u{< l ,  ]d{<l  and we want ] y ] < l .  One 
interesting question is: for each of the eight para- 
meters k, r, 0, kd, rd, 0d, 0m and Omd, what value is 
preferred to for good controllability? 

Qualitative results are given in Table 1. 
Essentially, the effect of the manipulated input 
should be as large and quick as possible, whereas the 
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Table 1. Desired value of parameters to have good controllability 

Feedback control Fecdforward control 

k Large Large 
r Small Small 
0 Small Small 
k d Small Small 
r d Large Large 
Od No effect Large 
Om Small No effect 
O~d No effect Small 

opposite is true for the disturbance. The main differ- 
ence between feedback and feedforward control is 
that a delay in the disturbance has no effect for 
feedback control, while it is an advantage for feed- 

forward control as it leaves more time to take the 

appropriate control action. 
We now want to quantify the statements in Table 

1. Assume kd > 1 such that control is needed. From 

Rule 1 we need for acceptable performance (lyl < 1) 
with disturbances: 

COd ~ kdrd < WB. (11) 

On the other hand from Rule 5 we must for stability 
(and performance) require: 

cob < 1/0 .... (12) 

where 0to, is the total delay around the loop. 

Combining (11) and (12) yields Wd< 1/0tot or: 

0,o t = 0 + Om < rd/kd. (13) 

For feedforward control any delay for the distur- 
bance itself yields a smaller "net delay", and to have 

l y l<  1 we require: 

0 q- 0md < zdlk d + 0 d. (14) 

To stay within the constraints (lul < 1) we must from 

Rule 4 require Ig(j~)l>lgd(jco)l for frequencies 
W<OJd. Specifically, for both feedback and feed- 
forward control: 

k>kd;  k / r > k J r d .  (15) 

3.2. Step response controllability analysis 

The controllability analysis presented in this 
paper is based in the frequency domain. However, 

many engineers feel more comfortable with the time 
domain and step responses. Consider a unit step 
disturbance, d = 1, to the first-order with delay plant 
in equation (10). Without control the output res- 
ponse for t>Oa is: 

y(t) = kd(1 -- e-(t-Od)/~d). (16) 

The response is shown graphically in Fig. 3. Since 
kd> 1 the output y(t) will exceed 1 after some time. 
Disregarding for a moment the delay, the time 
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where y(t) = 1 is at t = - rd In(1 - (l/kd)) "~ rd/kd (the 

approximation holds for kd>> 1 and corresponds to 

the point where the initial tangent of the time 

response crosses 1, see Fig. 3). Assuming that we 
measure the disturbance (feedforward control), the 
"minimum reaction time" to achieve lyl < 1 is then 

(see Fig. 3) (rd/kd) + 0d. 
This is then an upper bound on the allowed delay 

in the process (Walsh, 1993). This is the same value 

as was obtained in equation (14) using the frequency 
domain in the case of feedforward control. 

From this example we see that a step response 

controllability analysis yields results similar to the 
frequency domain, at least for a first-order process 

and feedforward control. For feedback control a 
step response controllability analysis is generally less 

suitable. For example, one cannot simply measure 
the time it takes from when the disturbance enters to 

when the output exceeds its maximum value (which 
is 1 in terms of the scaled variables used in this 

paper) and use this as the minimum response time 
for disturbance rejection. As shown by Fig. 3 this 

time depends on the delay in the disturbance model, 
whereas we know that 0d should not matter for 
rejecting distrubances with feedback control. In 
conclusion, the frequency domain should generally 
be used for controllability analysis, and the purpose 
of this example was not to suggest using step res- 

ponses, but to provide another justification for the 
usefulness of the frequency domain. 

4. NEUTRALIZATION PROCESS 

4.1. One tank 

Consider the process in Fig. 4 where a strong acid 
(pH = - 1) is neutralized by a strong base (pH = 15) 
in one mixing tank with volume V= 10 m 3 to pro- 
duce q = 0.01 m3/s = 10 l/s of "salt water". The prob- 

lem is to use feedback control to keep the pH in the 
product stream in the range 7 ___ 1 ("salt water") by 

// 

k, .S ................................. ,~'. ...................................... 
///' ! 

i .................... ~ Q . . U N D  .... 

O& ~dl/kld i ~ 
-1 .......................................... 7-.~ >--.:.p-~.;.-"EOWER" B'O UKTi~ . . . .  

kg e - °d3 
Fig. 3. Response for step distrubance, go (1 --rdS ) " 
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do not pose a problem since Jgl=2lgal at all fre- 
quencies. The main control problem is the high 
disturbance sensitivity, and from (11) (Rule 1) we 
find the frequency up to which feedback is needed: 

~oo ~- k j / r  = 2500 rad/s. (21) 

This requires a response time of 1/2500=0.004s 
• which is clearly impossible. 

The small value of the response time may be 
explained from a step response analysis as follows: 
the pH in the tank should remain within 7 + 1. At 
p H = 7  the concentration of H*-ions is cH= 
10-7mol/I. Since the tank volume is V= 1041, the 
amount of H*-ions in the tank is cHV= 10 -3 mol. 
Similarly, at the lower bound at pH = 6 the amount 
of H*-ions in the tank is 10-6×104=10-2mol.  
Thus, adding about 10 -2 mol of H*-ions to the tank 
changes the pH from 7 to 6. Now, the concentration 
of H+-ions in the acid stream is 10 mol/l (corres- 
ponding to pH = - 1), so we only need to add 10 -31 
of acid (about 20 droplets) to change pH from 7 to 6. 
The largest expected disturbance ( d = l )  corre- 
sponds to an increase in the acid inflow from 5 to 
7.5 l/s. Thus, with a step increase in acid inflow it 
will only take 10 -3 I/(2.5 l/s) =0.004 s to change the 
pH from 7 to 6, which agrees with the result from 
the controllability analysis. 

4.2. Design change: multiple tanks 

The only way to improve controllability is by 
design changes. The most useful change in this case 
is to do the neutralization in several steps. With n 
equal mixing tanks in series the transfer function for 
the effect of the disturbance becomes: 

1 

where ka = 2.5 x 10 6 is the gain for the mixing pro- 
cess, hn(s) is the transfer function of the mixing 
tanks and rh is the total residence time Vtot/q. The 
magnitude of h~(s) as a function of frequency is 
shown in Fig. 6 for one to four equal tanks in series. 

From controllability Rule 5 we get that the best 
achievable closed-loop bandwidth o)B is about 

~o0~fl/0. To be able to reject disturbances, we must 
then require from equation (6) that: 

tgd(jtoo)] << - 1. (23) 

Thus, the purpose of the mixing tanks is to reduce 
the effect of the disturbance by a factor kd = 2.5 × 
106 at the frequency to0=0.1 (rad/s). Combining 
(22) and (23) yields the following minimum value for 
the total residence time for n equal tanks in series: 

Fig. 4. Neutralization process with one mixing tank. 

manipulating the amount of base qB. The delay for 

the measurement of pH is 0 = 10 s. 
To achieve the desired product with pH = 7 one 

must exactly balance the inflow of acid (the distur- 
bance) by addition of base (the manipulated input). 
Intuitively, one might expect that the main control 
problem is to adjust the base accurately, and there- 
fore that a very accurate valve is needed. However, 
as we shall see this "feedforward" way of thinking is 
misleading, and the main hurdle to good control is 
that very fast response times are needed. 

A dynamic model is given in the Appendix. For 
the controlled output we introduce the excess of acid 
c (mol/l) defined as: 

c = CH -- COH. (17) 

Somewhat surprisingly, we find that in terms of c the 
dynamic model, which is usually believed to be 
strongly nonlinear, is given by that of a simple 
mixing process: 

d 
dt (Vc) = qACA + qBCB -- qc. (18) 

Introduce the following scaled variables 

c qB qA 
y = 10_6; u = q-~a; d = 0.5q~'  (19) 

where superscript * denotes the steady-state value. 
The appropriately scaled linear model with one tank 
then becomes (see Appendix): 

ko 
go(s) = 1 + rs '  g(s) = - 2g0(s); kd = 2.5 × 106, 

(20) 

where r =  V / q =  1000 s. Note that the steady-state 
gain in terms of scaled variables is more than a 
million so that the output is extremely sensitive to 
both u and d. 

We now proceed with the controllability analysis. 
The frequency responses of g~(s) and g(s) are shown 
grahically in Fig. 5. From Rule 2 input constraints 
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rh = On ~ / ( k d )  2/n - -  1. (24) 

The corresponding total volume is V,o, = qrh where 
q=0.01  m3/s. With 0 = 1 0 s  we then find that the 
following designs have the same controllability with 
respect to disturbance rejection: 

No. Total Volume 
of volume each 

tanks Vto, tank 
n (m 3) (m 3) 

1 250,000 250,000 
2 316 158 
3 40.7 13.6 
4 15.9 3.98 
5 9.51 1.90 
6 6.96 1.16 
7 5.70 0.81 

For example, with one tank we get 

Vtot = qO (k~/(k~Sd)2-1 -~ qOkd 

= 0 . 0 1  m3/s × 10 s x 2.5 x 106 = 2.5 × 105 m 3. 

That is, we need a volume corresponding to that of 
the world's largest ship to get acceptable controllabi- 
lity. The minimum total volume is obtained with 18 
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tanks of about 2031 each--giving a total volume of 
3.662m 3. However, taking into the account the 

additional cost for extra equipment such as piping, 

mixing and level control we would probably select a 
design with 3 or 4 neutralization tanks for this 
example. 

4.3. Control system design 

This condition tgd(j~Oo)l<l in equation (23), 
which formed the basis for our controllability analy- 
sis, may be optimistic because it does not take into 
account that we must also reject the disturbance at 
lower frequencies. The problem is that the distur- 

bance transfer function gd(s) = kdh(s) is of high order 
when n is large. More specifically, {gd(./W) l has a 
roll-off slope of - n  (on a log-log Bode plot) at 
frequencies higher than the inverse of the residence 
time. It is then difficult to achieve sufficiently high 
roll-off in the loop transfer function L(s) to get 
IL(]w)l>lgd(](o)l at frequencies lower than the 
bandwidth (as required from Rule 1), although we 
are able to achieve {L(jwa){= l>~{gd(jWB)[ a t  the 
bandwidth, WB = too. The reason is that a high roll- 
off in L(s) yields a large phase lag, and we get 
stability problems (the Bode stability criterion 
requires the loop gain to be below 1 at the frequency 
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Fig. 5. Frequency responses for neutralization process with one mixing tank. 
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Fig. 6. Frequency responses for n tanks in series with same 
h,,(s) = l/((rh/n)s+ 1)", n = 1, 2, 3, 4. 

total residence time rh; 

where the phase is - 180°). For  example,  a roll-off 

of - 2  will even in the best case (minimum phase 

system) yield a phase lag of - 1 8 0  °. Around the 

bandwidth the delay also contributes to the phase, 

so in practice the roll-off of ILl at the bandwidth 

cannot exceed about - 1. 
In conclusion, if we have two buffer tanks or more 

and use a control system with a single controller as 

shown in Fig. 7, then the above controllability analy- 

sis is optimistic. Of  course, the roll-off for L may be 

steeper than - 1  at lower frequencies,  so we may 

achieve some benefit of using additional tanks. For  

: . . . . . . . . . . .  :' pHC'~" . . . . . . . . . . . . .  
ACID - -  1 ~ ( ~  BASE 

Fig. 7. Neutralization process with two tanks and one 
controller. 

example,  consider the case with two buffer tanks 

and assume I L l ~  Igd I at low frequencies,  i.e. ]LI has 

a roll-off of - 2 at low frequencies. For  stability, we 

need ILl to have a roll-off of - 1 around the band- 

width. To this effect, we assume that I L I has a break 

frequency (a zero) at about coB/5 (the phase contri- 

bution from the - 2 slope will then be about - 90 ° + 

arctan 5 = - 1 1  °) at coB. Then ILl will cross 1 at 

about frequency X/5 wd (using asymptotic values) 

where coo is the frequency where Igdl crosses 1. In 

other  words coj~-coB/2.2, so we must require 

Ig j (coo/2 .2) l<l ,  and it follows that with a single 

controller as in Fig. 7 we must increase the total 

volume of the two tanks by a factor 2.2 compared 

with the value found previously. With three or more 

tanks, the required increase in volume to maintain 

controllability is even larger. (In this analysis we 

have assumed that the only limitation on the band- 

width is given by the pH measurement  delay 0, and 

the situation would become even worse if we were to 

take into account the high order  of g(s) and the 

additional delay caused by incomplete mixing in the 

tanks.) 

The solution is to install a pH control system on 

each tank and add base gradually. Consider a case 
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with n tanks in series. The overall closed-loop res- 
ponse from a disturbance into the first tank to the 
pH in the last tank then becomes: 

y= gd I- [ d~-~ d, 
i=1  

where 

n 

L = H L ,  
i=1  

and L~ denotes the loop transfer function for tank i. 
In this case we can design each loop L~(s) with a 
slope of - 1 and bandwidth coB = coO, such that the 
overall loop transfer functin L has slope - n  and 
achieves ]L]>gd] at all frequencies. Thus, our 
analysis confirms the usual recommendaton of 
adding base gradually and having one pH-controller 
for each tank (McMillan, 1984, p. 208). It does not 
seem like any other control strategy can achieve a 
sufficiently high roll-off for ILI. 

4.4. Remarks 
1. Walsh (1993, p. 31) uses the following data for 

the capital cost of large mixing tanks (in 1000£s 
Sterling): c(kGBP) = 20 + 2V °'7 where V is the tank 
volume in m 3. With these data 3 tanks are best for 
the above example (capital cost is 97 vs 101 kGBP 
for 4 tanks). We have not taken into account the 
cost of pH control systems which according to Walsh 
each cost about 40 kGBP in capital and 40 kGBP/yr  
in maintenance. This would further favor the use of 
three tanks. 

2. The results given above compare well with 
those of other authors. A simple shortcut method 
given by McMillan (1984, p. 204) is to use one 
mixing tank for each 2 units change in pH. For 
example, with a pH change of 8, as in our example 
(from pH 15 to 7), four tanks are recommended. 

3. McMillan (1984, p. 205) also give a more rigor- 
ous method based on estimating the peak error 
when using a PID controller tuned using the 
Ziegler-Nichols rules. This peak error is compared 
with the allowed error and the number of tanks is 
increased until acceptable control is possible. A 
closer inspection of this method reveals that it yields 
the same results as obtained with our frequency 
domain analysis, and is in fact identical to the 
contollability condition (23). 

4. Traditionally, a "'feedforward" approach has 
been taken when considering controllability of such 
processes, and one key argument has been that 
control is difficult because one needs to adjust the 
amount of base extremely accurately to counteract 
the disturbance in the acid. This is a valid argument 
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for feedforward control, but not for feedback 

control as the feedback control action will be able to 
adjust the input accurately. As demonstrated above 
the key problem for feedback control is that the 
output is extremely sensitive to disturbances (kd and 
cod are large), which demands an extremely high 
bandwidth. 

5. Of course, feedforward control based on mea- 
suring qA and cA can be used in addition to feedback 
to improve performance. According to McMillan 
(1984, p. 204) one can typically save one mixing tank 
using a well designed feedforward controller. 
Actually, we can use a controllability analysis to 
estimate more accurately the effectiveness of apply- 
ing feedforward control to the first tank. For exam- 
ple, consider the case with three tanks where the 
total required volume with feedback alone was 
found to be 40.7 m 3. Assume that the feedforward 
controller is able to remove 80% of the disturbance 
effect, that is, assume f%=O.2kd=kd/5. This is 
rather optimistic [recall equation (9)] and requires 
accurate measurements as well as being able to add 
the base at the right time. From equation (24) we 

then find that by adding feedforward control the 
required volume for the 3 buffer tanks may be 
reduced by about a factor 51/3= 1.71 to 23.8 m 3. 

6. In terms of minimizing the total volume it is 
almost always optimal to have mixing tanks ot equal 
size. (The only possible exception is for disturbances 
at frequencies lower than about n/rh, see Fig. 6, 
where it is slightly better to use fewer tanks, but in 
this frequency range the tanks may not have much 
effect.) Still, there are some suggestions in the 
literature regarding using tanks of different sizes. 
One argument is that with different sizes and with 
independent control of each tank it is less likely that 
the resonance peaks of the individual tanks are at 
the same frequency (McMillan, 1984, p. 208). This 
may have some merit, although one would expect 
that retuning the controllers would be simpler. 
There are also recommendations about having the 
small tank towards the end (McMillan, 1984, 
p. 208), but at least from a linear point of view the 
order makes no difference. 

7. This example was motivated by the thesis of 
Walsh (1993), who analyzed controllability of waste 
water systems using an open-loop step response 
analysis. Walsh compared numrically (p. 150) esti- 
mates of the achievable control using an open-loop 
step response analysis, with the actual closed-loop 
step responses using PI control on each tank. The 
discrepancy was quite large, especially for large n. 
However, it turns out that the results compare very 
well with the values obtained from our frequency- 
domain analysis. 
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8. It is instructive to study in more detail the 
difference between a step response and frequency 
domain controllability analysis for the case with n 
tanks in series. Let us follow Walsh (1993) and use 
the "disturbance attenuation" as a basis of compari- 
son. Let d denote the concentration disturbance 
entering the first tank (after mixing the two feed 
streams), and let y denote the concentration in the 
last tank. Then disturbance attenuation is defined 
as:  

8~ = ly(t)[max/[dl (25) 

where Idl is the magnitude of the concentration 
disturbance and [y(t)[max iS the largest effect this 
disturbance has on the product concentration. 

Let us first consider a frequency domain analysis 
where we assume d(t)= sin tot. The disturbance at- 
tenuation depends on the frequency to, and we want 
to find the "worst" disturbance attenuation. For n 
tanks with feedback control the attenuation is given 
by S(s)hn(s) where S(s) is the sensitivity function 
and hn (s) is given in (22). It is possible to make the 
sensitivity function small at low frequencies and thus 
achieve good disturbance attenuation here. 
However, with a delay 0 in the feedback loop we 
will have I S(jtoo)l ~ 1. Thus, the disturbance attenu- 
ation at frequency too=l /0  is approximately 
Ih(jtoo) 1, and taking this as the worst value we get: 

(0; 
6a=lhn(jtoo)l~ ~ , (26) 

where the approximation applies for rh'>0, that is, 
for (~a small. This value compares very well with 
numerical results from closed-loop step responses 
with PI-control on each tank given by Walsh (1993, 
p. 150). 

Let us now consider an open-loop step response 
analysis. For n identical tanks in series the time 
response to a step disturbance d(t)= 1 is given by 
[e.g. Walsh (1993) p. 94]: 

n--| 

y(t)= 1 - e  -t/r" X ( - -~t  'Yi! (27) 
i=0 \rh/nl 

In the ideal case with a perfect (and unrealizable) 
controller which immediately detects the distur- 
bance and takes the proper action, y(t) will reach its 
maximum value at time t=  0 (at the delay), and we 
have (Walsh, 1993, p. 94): 

1 ( 0 ;  
ba =y(0)  ~ .  t • (28) 

Recall that the expression for dia in (26) compares 
very well with the numerical closed-loop step res- 
ponses using PI control (Walsh, 1993). Thus, by 

comparing 6a in (26) and (28) we see that the 
open-loop step response analysis is optimistic by a 
factor n!. For n = 1 the results of the open-loop step 
response analysis and the frequency domain analysis 
are the same, but the step response analysis is 
optimistic for higher order systems. The main rea- 
son for the discrepancy is that the ideal controller 
needed to perfectly reject the step disturbance can- 
not be realized by a PI controller (in fact, it is not 
realizable with any real controller). On the other 
hand, a real feedback control system will have a 
resonance frequncy around too, and a frequency 
analysis based on considering the behavior at this 
frequency will yield good predictions of the closed- 
loop step response. In conclusion, our frequency- 
domain controllability analysis compares favorably 
with the results of a closed-loop step response and 
yields results superior to that of an open-loop step 
response cotrollability analysis. 

5. DISCUSSION 

The controllability analysis in this paper is based 
on a frequency-domain definition of performance, 
and one may question how applicable it is. Although 
we have already in the example made comparisons 
between the frequency domain and step responses, a 
discussion on the usefulness of the frequency do- 
main seems in order. 

First, it should be noted that the interpretation of 
the frequency domain analysis employed in this 
paper is in fact in the time domain: At each fre- 
quency g(jto) yields information about the response 
to a sinusoidal input. One may also argue that 
sinusoidal disturbances are quite common in prac- 
tice, for example, there may be slow sinusoids with 
period 24 h due to outdoor temperature changes, or 
there may be fast sinusoids caused by poorly tuned 
controllers at other places in the system. 

Another justification for the frequency domain is 
that any piecewise smooth periodic function can be 
written as a sum of sinusoids in a Fourier series. 
Also non-periodic functions can be included by use 
of the Fourier integral transformation. This illus- 
trates that sinusoidal signals form a broad class of 
signals, but one should probably be careful about 
mixing this "frequency-contents" interpretation with 
the "frequency-by-frequency sinusoidal response" 
interpretation used in this paper. 

Another justification for using the frequency do- 
main for performance follows from the fact that the 
H®-norm in the frequency domain is equal to the 
induced 2-norm in the time domain. To be more 
specific consider the closed-loop disturbance res- 
ponse y = Sgdd, and assume that the d and y have 
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been scaled such that for a sinusoidal disturbance, 
d = s i n t o t ,  the performance requirement  is that 

resulting sinusoidal output  should be less than one in 

magnitude, [y(t)l< 1. This is equivalent to requir- 

ing: 

ISg~(j~o) l < 1, Vo). (29) 

Since the H=-norm is defined as the peak value as a 
function of frequency, condit ion (29) is equvalent  to 

[ISg~ll=<l. As stated above, it is a fact from func- 
tional analysis that the H®-norm is also equal to the 

induced 2-norm in the time domain.  Thus, if (29) is 

satisfied then it follows for any disturbance d(t) with 

finite energy that: 

I[Y(/)I[2 
II d(t)112 < 1, (30) 

where the 2-norm of a signal u(t)  is defined as: 

[lu(t)l[2= x/f o [u(t)12dt. (31) 

That  is, the "energy" of the output  signal is always 

less than that of the disturbance. 
In summary,  our frequency domain performance 

requirement  has strong implications for the time 

domain,  both in terms of the magnitude of sinusoids 
as well as for the energy (2-norm) of arbitrary time 

signals. 

6. CONCLUSION 

The paper has presented a controllability analysis 
for scalar systems using the frequency domain 
applicable to both feedback and feedforward 
control. The analysis may be used to answer 
whether or not a given plant is controllable, and thus 
extends beyond the traditional use of "controllabi- 
lity indicators". The method has been applied to a 

pH neutralization process, and it is found that more 
or less heuristic design rules given in the literature 
follow directly. The key steps in the analysis are to 

consider disturbances and to scale the variables 

properly. 
The tools presente in this paper may also be used 

to study the effectiveness of adding extra manipu- 

lated inputs or extra measurements  (cascade 
control). It may also be generalized to multivariable 

plants where directionality becomes a further crucial 
consideration. Some results are given in Wolff et al. 

(1992) and Skogestad and Wolff (1992). A direct 
generalization to decentralized control of multivari- 
able plants is given by Hovd and Skogestad (1992). 

Acknowledgement--Manfred Morari (1983) was the first 
to consider a rigorous approach to controllability analysis 
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APPENDIX 

Neutralization Model 

Derivation of model: consider Fig. 4. Let ca (mol/I) and 
COIl (mol/I) denote the concentration of H ÷ and OH --ions, 
respectively. Material balances for these two species yield: 

d 
( Vc . )  -= q A CH. A + qaCH, a -- qCH + r V , 

d 
~'~ (VCoH) = qACOH, a + q a c . ,  B - qCoH + r V ,  

where r(mol/s,m 3) is the rate for the reaction H20= 
H ÷ + O H -  which for completely dissociated ("strong") 
acids and bases is the only reaction in which H + and OH- 
participate. We may eliminate r from the equations by 
taking the difference to get a differential equation in terms 
of the excess of acid, c = CH -- COn: 

d 
"dl (Vc) = qACA + qBCB -- qc. 

This is the material balance for mixing tank without reac- 
tion. The reason is that the quantity c = c n -  Co, is not 
affected (invariant) by the reaction. Note that c will take 
on negative values when pH is above 7. 
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We are not interested in variations in the feed concentra- 
tions, CA and ca, so they are assumed constant.  
Linearization and Laplace transformation yields: 

[c*~-c* c~-c* ] 
1 [ ' - ' ~  qA(S) + - - 7 - -  qa(s)  , c ( s )  = 

where r =  V / q *  is the residence time and * is used to 
denote steady-state values.To derive this we have made 
use of the total material balance d V / d t  = qA + q B - - q  (alter- 
natively one may assume V is constant  but this is not 
strictly necessary) and the corresponding steady-state 
balance c ~ + c ~ = q * .  We now introduce the following 
scaled variables: 

y(s)=C(S); d(s)= qA(s) , u(s)= qB(s) 
Cmax qAmax qBmax 

and get 

1 
y t s )  = rs + 1 

C *A - -  C* 

Cm~ " ~----~q, d ( s ) ÷  - 

kd 

c *a - c____._.~* qB..__~m,x u( s ) l 
Cmax q* ] " 

We use the following numbers:  V=  10m 3, q*A=q*a= 
0.005 m3/s, q* = 0.01 m3/s ,  C~t A = 10 mol/l (corresponding 
to pH = - 1 and CA = 10--10 1 ~  10 mol/I c~n B = 10 mol/I 
(corresponding to pH = 15 and c~ = 10 ~s-10 ~ - 10 mol/i),  
c* = 0 mol/l (corresponding to pH = 7), Cmax = 10-6-10-8 
10-6 mol/l (i.e. pH = 7 + 1), and qAmax = q'A~2 = 
0.0025 m3/s,  qamax = q~ = 0.005 m3/s.  Note from the latter 
that the largest disturbance is + 5 0 %  of q~,, while the 
largest input is _+ 100% of q~. With these values we get 
r = 1000 s, kd = 2.5 × 106 and k = - 5 x 10 6. 


