MPC Introduction

• Overview
 • Basic Concept of MPC
 • History

• Optimization Formulation
 • Models
 • Analytical Solution to Unconstrained Problem

• Summary
 • Limitations & a Look Ahead

B. Wayne Bequette

Chemical and Biological Engineering
Motivation: Complex Processes
Important Issues in Petroleum Refining

- **Multivariable, Large Scale**
 - Challenge to tune individual SISO controllers

- **Operation at Constraints**
 - Anti-reset windup and other strategies for PID

- **Economic Payout for Advanced Control**
 - Economic return justifies capital and on-going maintenance costs

- **Model Predictive Control**
 - Evolved independently in the US and France refining industry
How is MPC used?

Unit 1 - PID Structure

- Plant-Wide Optimization
- Unit 1 Local Optimization
- High/Low Select Logic
- PID
- Lead/Lag
- SUM
- Unit 1 Distributed Control System (PID)
 - FC
 - PC
 - TC
 - LC

Unit 2 - MPC Structure

- Plant-Wide Optimization
- Unit 2 Local Optimization
- Model Predictive Control (MPC)
- Unit 2 Distributed Control System (PID)
 - FC
 - PC
 - TC
 - LC

From Tom Badgwell, 2003 Spring AIChE Meeting, New Orleans
Model Predictive Control (MPC)

Find current and future manipulated inputs that best meet a desired future output trajectory. Implement first “control move”.

- Type of model for predictions?
- Information needed at step k for predictions?
- Objective function and optimization technique?
- Correction for model error?
Model Predictive Control (MPC)

Find current and future manipulated inputs that best meet a desired future output trajectory. Implement first “control move”.

At next sample time:

Correct for model mismatch, then perform new optimization.

This is a major issue – “disturbances” vs. model uncertainty
MPC History

- **Intuitive**
 - Basically arose in two different “camps”

- **Dynamic Matrix Control (DMC)**
 - 1960’s and 1970’s – Shell Oil - US
 - Related to techniques developed in France (IDCOM)
 - Large-scale MIMO
 - Formulation for constraints important

- **Generalized Predictive Control (GPC)**
 - Evolved from adaptive control
 - Focus on SISO, awkward for MIMO

Cutler, C. R., Ph.D. Thesis, University of Houston, Houston, 1983.

Cutler, C. R.; Ramaker, B. L. Proc. Am. Control Conf. San Francisco 1980, WP5-B (also presented at 83rd National AICheE Meeting, Houston, 1979).

Model Predictive Heuristic Control: Applications to Industrial Processes

J. Richalet,† A. Rault,† J. L. Testud† and J. Papon†

Automatica, Vol. 14, pp. 413–428 (1976)

Clarke, D. W., C. Mohtadi and P. S. Tuffs (1987a).

Clarke, D. W., C. Mohtadi and P. S. Tuffs (1987b).

B. Wayne Bequette
Objective Functions

Quadratic Objective Function, Prediction Horizon (P) = 3, Control Horizon (M) = 2

\[J = \left(r_{k+1} - \hat{y}_{k+1} \right)^2 + \left(r_{k+2} - \hat{y}_{k+2} \right)^2 + \left(r_{k+3} - \hat{y}_{k+3} \right)^2 \]
\[+ w \Delta u_k^2 + w \Delta u_{k+1}^2 \]

Weight

3 steps into future

2 control moves

General Representation of a Quadratic Objective Function

\[J = \sum_{i=1}^{P} \left(r_{k+i} - \hat{y}_{k+i} \right)^2 + w \sum_{i=0}^{M-1} \Delta u_{k+i}^2 \]

With linear models, results in analytical solution (w/o constraints)

B. Wayne Bequette
Alternative Objective Functions

Penalize u rather than Δu

$$J = \sum_{i=1}^{P} (r_{k+i} - \hat{y}_{k+i})^2 + w \sum_{i=0}^{M-1} u_{k+i}^2$$

Will usually result in “offset”

Sum of absolute values (results in LP)

$$J = \sum_{i=1}^{P} |r_{k+i} - \hat{y}_{k+i}| + w \sum_{i=0}^{M-1} |\Delta u_{k+i}|$$

Existing LP methods are efficient, but solutions hop from one constraint to another

B. Wayne Bequette
Models

- State Space
- ARX (auto-regressive, exogenous input)
- Step Response
- Impulse (Pulse) Response
- Nonlinear, Fundamental (First-Principles)
- ANN (Artificial Neural Networks)
- Hammerstein (static NL with linear dynamics)
- Volterra
- Multiple Model
Discrete Linear Models used in MPC

\[x_{k+1} = \Phi x_k + \Gamma u_k \]
\[y_k = C x_k \]

State Space

Some texts/papers have different sign conventions

\[y_k = -a_1 y_{k-1} - a_2 y_{k-2} - \cdots - a_n y_{k-n} + b_0 u_k + b_1 u_{k-1} + b_2 u_{k-2} + \cdots + b_m u_{k-m} \]

Input-Output (ARX)

usually \(b_0 = 0 \)

\[y_k = \sum_{i=1}^{\infty} s_i \Delta u_{k-i} \]
\[= s_1 \Delta u_{k-1} + \cdots + s_N \Delta u_{k-N} + s_{N+1} \Delta u_{k-N-1} + \cdots + s_{N+\infty} \Delta u_{k-\infty} \]

Step Response

\[y_k = \sum_{i=1}^{\infty} h_i u_{k-i} \]
\[= h_1 u_{k-1} + \cdots + h_N u_{k-N} + h_{N+1} u_{k-N-1} + \cdots + h_{N+\infty} u_{k-\infty} \]

Impulse Response

B. Wayne Bequette
Example Step Response Model

\[
S = \begin{bmatrix}
s_1 & s_2 & s_3 & s_4 & s_5 & \cdots & s_N \\
\end{bmatrix}^T
\]

Used in DMC
Example Impulse Response Model

Impulse and step response coefficients are related

\[h_i = s_i - s_{i-1} \]

\[s_i = \sum_{j=1}^{i} h_j \]
Step & Impulse Models from State Space Models

\[x_{k+1} = \Phi x_k + \Gamma u_k \]
\[y_k = C x_k \]

\[H_i = C \Phi^{i-1} \Gamma \]

\[S_k = \sum_{i=1}^{k} C \Phi^{i-1} \Gamma = \sum_{i=1}^{k} H_i \]
MPC based on State Space Models

\[x_{k+1} = \Phi x_k + \Gamma u_k \]

\[y_k = C x_k \]

with known current state, easy to propagate estimates

\[x_{k+1} = \Phi x_k + \Gamma u_k \]

\[y_{k+1} = C x_{k+1} = C\Phi x_k + C\Gamma u_k \]

and, using control changes

\[u_k = u_{k-1} + \Delta u_k \]

\[y_{k+1} = C\Phi x_k + C\Gamma u_{k-1} + C\Gamma \Delta u_k \]
Use \(^{\wedge} \) notation for model states

\[
\hat{y}_{k+1|k} = C\Phi \hat{x}_{k|k} + C\Gamma u_{k-1} + C\Gamma \Delta u_k
\]

Now, propagate the prediction for \(P \) steps into the future
Output Predictions

\[
\begin{bmatrix}
\hat{y}_{k+1|k} \\
\hat{y}_{k+2|k} \\
\vdots \\
\hat{y}_{k+P|k}
\end{bmatrix}
= \begin{bmatrix}
C\Phi \\
C\Phi^2 \\
\vdots \\
C\Phi^P
\end{bmatrix}
\hat{x}_{k|k} + \begin{bmatrix}
C\Gamma \\
C\Phi \Gamma + C\Gamma \\
\vdots \\
\sum_{i=1}^{P} C\Phi^{i-1} \Gamma
\end{bmatrix} u_{k-1}
\]

"free" or "unforced response" (if no more control moves are made)

\[
f,
\begin{bmatrix}
0 & \cdots & 0 \\
C\Phi \Gamma + C\Gamma & C\Gamma & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{i=1}^{P} C\Phi^{i-1} \Gamma & \sum_{i=1}^{P-1} C\Phi^{i-1} \Gamma & \cdots
\end{bmatrix}
\begin{bmatrix}
\Delta u_k \\
\Delta u_{k+1} \\
\vdots \\
\Delta u_{k+M-1}
\end{bmatrix}
\]

"forced" response

B. Wayne Bequette
Output Predictions

\[
\begin{bmatrix}
\hat{y}_{k+1|k} \\
\hat{y}_{k+2|k} \\
\vdots \\
\hat{y}_{k+P|k}
\end{bmatrix}
=
\begin{bmatrix}
C\Phi \\
C\Phi^2 \\
\vdots \\
C\Phi^P
\end{bmatrix}
\hat{x}_{k|k} +
\begin{bmatrix}
S_1 \\
S_2 \\
\vdots \\
S_P
\end{bmatrix}
\begin{bmatrix}
\Delta u_k \\
\Delta u_{k+1} \\
\vdots \\
\Delta u_{k+M-1}
\end{bmatrix}
\]

"free" or "unforced response" (if no more control moves are made)

\[
\begin{bmatrix}
S_1 & 0 & \cdots & 0 \\
S_2 & S_1 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
S_P & S_{P-1} & \cdots & S_{P-M+1}
\end{bmatrix}
\]

"forced"response

\[\Delta u_f\]
Optimization Problem

\[
\min_{\Delta u_f} \quad J = \sum_{i=1}^{P} (r_{k+i|k} - \hat{y}_{k+i|k})^T W^y (r_{k+i|k} - \hat{y}_{k+i|k}) + \sum_{i=0}^{M-1} \Delta u_{k+i}^T W^u \Delta u_{k+i} \\
\quad \Delta u_f^T W^U \Delta u_f
\]

Where

\[
W^y = \begin{bmatrix}
W^y & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & W^y
\end{bmatrix}
\quad W^U = \begin{bmatrix}
W^u & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & W^u
\end{bmatrix}
\]

future setpoints

and

\[
\widehat{E} = r - \hat{Y} = r - f - S_f \Delta u_f
\]

“unforced” (free response) error

so

\[
\widehat{E} = E - S_f \Delta u_f
\]

B. Wayne Bequette
Optimization Problem

\[
\hat{E}^T W^Y \hat{E} = (E - S_f \Delta u_f)^T W^Y (E - S_f \Delta u_f)
\]

\[
= E^T W^Y E - 2\Delta u_f^T S_f^T W^Y E + \Delta u_f^T S_f^T W^Y S_f \Delta u_f
\]

so

\[
\min_{\Delta u_f} \quad J = \hat{E}^T W^Y \hat{E} + \Delta u_f^T W^U \Delta u_f
\]

can be written

\[
\min_{\Delta u_f} \quad J = \Delta u_f^T \left(S_f^T W^Y S_f + W^U\right) \Delta u_f - 2\Delta u_f^T S_f^T W^Y E
\]

and the unconstrained solution is found from

\[
\frac{\partial J}{\partial \Delta u_f} = 0
\]
Unconstrained Solution

Analytical Solution for Unconstrained System

\[\Delta u_f = \left(S_f^T W^Y S_f + W^U \right)^{-1} S_f^T W^Y E \]

“unforced” error

In practice, do not actually invert a matrix. Solve as set of simultaneous equations (or use \ in MATLAB)

\[\Delta u_f = \left(S_f^T W^Y S_f + W^U \right) \backslash S_f^T W^Y E \]
Vector of Control Moves

\[\Delta u_f = \begin{bmatrix} \Delta u_k \\ \Delta u_{k+1} \\ \vdots \\ \Delta u_{k+M-1} \end{bmatrix} \]

current and future moves

Although a set of control moves is computed, only the first move \(\Delta u_k \) is implemented

The next output at \(k+1 \) is obtained, then a new optimization problem is solved
MPC Tuning Parameters

- Prediction Horizon, P
- Control Horizon, M
- Manipulated Input Weighting, W^u

Usually, $P >> M$ for robustness (less aggressive action). Sometimes $M = 1$, with P varied for desired performance.

Sometimes larger input weights for robustness.
Pre-Summary

- Concise overview of MPC
- State space model, unconstrained solution
- Have not discussed
 - State estimation and “corrected outputs”
 - The additive disturbance assumption of DMC is covered in the slides that follow (this is identical to the plant-model mismatch term in IMC)
 - Disturbances
 - Constraints
 - Other model forms
Original DMC Approach to Plant-Model Mismatch

\[
\hat{x}_{k|k-1} = \Phi \hat{x}_{k-1|k-1} + \Gamma u_{k-1}
\]
\[
\hat{y}_{k|k-1} = C \hat{x}_{k|k-1}
\]

Prediction at step k, based on information at k-1

\[\hat{p}_{k|k} = y_k - \hat{y}_{k|k-1}\]
\[\hat{y}_{k|k} = \hat{y}_{k|k-1} + \hat{p}_{k|k}\]

Measured output

Model output predicted from k-1

“additive output” disturbance assumption (previously \(d_k\))

Forces the model “corrected output” equal to measured output

Notice that Model States are Not “Corrected”

\[\hat{x}_{k|k} = \hat{x}_{k|k-1}\]

B. Wayne Bequette
Model Prediction to $k+1$

\[
\begin{align*}
\hat{x}_{k+1|k} &= \Phi \hat{x}_{k|k} + \Gamma u_k \\
\hat{p}_{k+1|k} &= \hat{p}_{k|k} \\
\hat{y}_{k+1|k} &= C \hat{x}_{k+1|k} + \hat{p}_{k+1|k} = \\
&= C \Phi \hat{x}_{k|k} + CT u_k + \hat{p}_{k+1|k} \\
&= C \Phi \hat{x}_{k|k} + CT u_{k-1} + CT \Delta u_k + \hat{p}_{k+1|k}
\end{align*}
\]

Assumes future corrections equal to current correction
Continue Output Predictions

\[
\begin{bmatrix}
\hat{y}_{k+1|k} \\
\hat{y}_{k+2|k} \\
\vdots \\
\hat{y}_{k+P|k}
\end{bmatrix} = \begin{bmatrix}
C\Phi \\
C\Phi^2 \\
\vdots \\
C\Phi^P
\end{bmatrix} \hat{x}_{k|k} + \begin{bmatrix}
I \\
I \\
\vdots \\
I
\end{bmatrix} \hat{p}_{k|k} + \begin{bmatrix}
C\Gamma \\
C\Phi\Gamma + C\Gamma \\
\vdots \\
\sum_{i=1}^{P} C\Phi^{i-1}\Gamma
\end{bmatrix} u_{k-1}
\]

"free" or "unforced response" (if no more control moves are made)

\[
f = \begin{bmatrix}
C\Gamma & 0 & \cdots & 0 \\
C\Phi\Gamma + C\Gamma & C\Gamma & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{i=1}^{P} C\Phi^{i-1}\Gamma & \sum_{i=1}^{P-1} C\Phi^{i-1}\Gamma & \cdots & \Delta u_{k+M-1}
\end{bmatrix}
\]

"forced" response

B. Wayne Bequette
Output Predictions

\[
\begin{bmatrix}
\hat{y}_{k+1|k} \\
\hat{y}_{k+2|k} \\
\vdots \\
\hat{y}_{k+P|k}
\end{bmatrix}
= \underbrace{egin{bmatrix}
C\Phi \\
C\Phi^2 \\
\vdots \\
C\Phi^P
\end{bmatrix}}_{\hat{Y}}
\begin{bmatrix}
x_{k|k} \\
I \\
I \\
S_1
\end{bmatrix} + \hat{P}_{k|k} + \begin{bmatrix}
S_1 \\
S_2 \\
\vdots \\
S_P
\end{bmatrix} u_{k-1}
\]

"free" or "unforced response" (if no more control moves are made)

\[
\begin{bmatrix}
S_1 & 0 & \cdots & 0 \\
S_2 & S_1 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
S_P & S_{P-1} & \cdots & S_{P-M+1}
\end{bmatrix}
\begin{bmatrix}
\Delta u_k \\
\Delta u_{k+1} \\
\vdots \\
\Delta u_{k+M-1}
\end{bmatrix}
\]

"forced" response

\[\Delta u_f\]

B. Wayne Bequette
Example Inverse Response Process: Van de Vusse

\[
\frac{dCa}{dt} = -k_1 Ca - k_3 Ca^2 + (Cain - Ca)u
\]

\[
\frac{dCb}{dt} = k_1 Ca - k_2 Cb - Cbu \quad \text{where} \quad u = F/V
\]

B. Wayne Bequette
Example: Inverse Response Process

The graph shows the step response coefficients as a function of the discrete time index, \(i \).

- The first four coefficients are negative.
- The sum of the first eight coefficients is positive.

B. Wayne Bequette
Closed-Loop: Compare $P=10$, $M=1$ with $P=25$, $M=1$

Short prediction horizons & long control horizons lead to more aggressive action

B. Wayne Bequette
Results

Control Horizon: $M = 1$, Weighting: $W = 0$

$P = 8$

$P = 7$

P=7: Unstable

B. Wayne Bequette
Stability of Inverse Response Systems with DMC

- For a control horizon, $M = 1$, closed-loop MPC will be stable for a prediction horizon where the sum of the impulse response coefficients has the same sign as the process gain.

$$\sum_{i=1}^{P_{\text{min}}} S_i > 0$$

Paul R. Maurath,† Duncan A. Mellichamp, and Dale E. Seborg*

Department of Chemical and Nuclear Engineering, University of California, Santa Barbara, California 93106

For the example, $P_{\text{min}} = 8$, so $P = 7 = \text{unstable}$
Summary

- Concise overview of MPC
- State space model, unconstrained solution
- The additive disturbance assumption of DMC is used for plant-model mismatch

Upcoming topics
- Disturbances and state estimation (Kalman filtering framework)
- Constraints
- Other model forms