
NTNU

Norges teknisk-naturvitenskapelige universitet

Fakultet for naturvitenskap og teknologi

Institutt for kjemisk prosessteknologi

SPECIALIZATION PROJECT 2016

TKP4580

PROJECT TITLE:

Investigation of surrogate model generation for the reaction section of an

ammonia synthesis loop

By

Kun Wang

Supervisors for the project: Sigurd Skogestad Date: 20/12/2016
 Julian Straus

Preface

This project investigated a methodology for dimension reduction of variables for surrogate mod-

elling. The problem comes from the optimization for an ammonia synthesis loop modelled in

HYSYS. Since this is a highly integrated process, it is not feasible to optimize it directly in the

HYSYS model. In order to make the optimization possible, the whole process is firstly divided

into subunits, such as the reaction section and the separation section, and then surrogate mod-

els are generated for each subunit. After the model generation, the surrogate models for the

whole process can be obtained by combining all the models of the subunits, and hence the am-

monia plant can be optimized using the new models. The objective of this project is to generate

the surrogate model for the reaction section and validate its the performance. The work of this

project is achieved in MATLAB based on the dimension reduction methodology.

The project is quite interesting since it includes some frontier concepts for modelling chemi-

cal processes. It was not easy for me to get into the topic but it has been worked out fine because

I got a lot of help during the project work. I would like to thank my supervisor, Sigurd Skogestad,

and co-supervisor, Julian Straus, for letting me work on this project and for their guidance in

this project. I am grateful to Julian for the kindly sharing of his knowledge and answering my

questions. And I appreciate the corporation of Yara International ASA for providing the HYSYS

model.

Trondheim, 2016-12

Kun Wang

i

Contents

Preface . i

1 Introduction . 2

2 Description of the process . 4

3 Surrogate model generation . 6

3.1 Sampling for both input and output variables 6

3.2 Dimension reduction for input variables . 9

3.3 Dimension reduction for output variables . 10

3.4 Using artificial neural network for surrogate model generation 11

4 Validation of the surrogate models . 14

5 Overview of the approach . 17

6 Conclusions and discussions . 18

A MATLAB scripts 19

1 Sampling . 19

2 Fitting . 24

Reference 31

1

1 Introduction

The optimization of highly integrated chemical processes using commercial steady-state simu-

lators, like Aspen HYSYS, SimSci PRO/II, or UniSim Design Suite, is generally difficult [1]. The

reasons is that these simulators use sequential-modular approach to solve the flowsheet and

each unit operation is solved sequentially [2].

In this project, an ammonia plant in HYSYS model is aimed to be optimized. However, there

are several nested loops in the process, leading to convergence issues when it is optimized in

the HYSYS model. In order to make the optimization feasible, the whole process is divided into

subunits and then surrogate models are generated for each subunit. After model generation

for the subunits, the complete model of the plant can be obtained by combining the subunit

models, and hence the whole plant can be optimized based on the new combined model. The

surrogate models are generated based on the input and output variables of the subunits. These

subunits are connected with each other by connecting variables. For instance, some variables

are inputs in one subunit while they are also outputs of another subunit. Hence based on the

connecting variables, the whole process can be represented by combining the subunit models

without consistent problems or issues of information loss. In this project, the main objective is

to generate surrogate models for the reaction section of the ammonia plant and its performance

is evaluated. The work is achieved in MATLAB.

In surrogate modelling, the objective process is considered as a black box with input data

and output data, and the surrogate models are generated based on the sample data. To obtain

the sample data, the data of input variables are imported into the HYSYS model and the cor-

responding output data are obtained. These input and output data form the sampling space

for generation of surrogate models. The number of variables corresponds to the dimension of

the sampling space. There are many different methods for surrogate model generation, such as

Kriging models, artificial neural networks, and simple table look up method [1]. In this project,

artificial neural networks is use to generate the surrogate models.

The complicity of surrogate models are related to the dimension of the sampling space,

which indicates that more variables used for model generation lead to more complicated mod-

els and take more computation expense. Since the main goal of using surrogate modelling is to

2

yield a simple model which is easy to handle and feasible for optimization with enough reliabil-

ity, the reduction of variables for surrogate modelling is implemented to reduce the dimension

of the sampling space. The methodology for reduction of variables is based on a three-step

procedure illustrated by Straus and Skogestad [1]. First, partial least square (PLS) regression of

the input sampling space is performed to obtain new independent variables. These new inde-

pendent variables, also known as components in PLS [1], are linear combinations of the initial

input variables which yield a reduced-dimension sampling space representing the whole sam-

pling space. Second, the the linear material balances are introduced to reduce the number of

output variables. Third, surrogate models are generated based on the dimension-reduced input

and output variables.

The surrogate models are evaluated after generation. A new validation sampling space of

input variables is required for validation, which is different from the sampling space used for

model generation. The input data for validation is imported to the HYSYS model to obtain the

corresponding output data as exact values. Then the same input data is feed to the surrogate

models yielding output data of the new model. The performance of the surrogate models are

evaluated by calculating the relative errors of these two set of output data.

3

2 Description of the process

The objective process is the reaction section of an ammonia synthesis loop in the HYSYS model

which is provided by Yara International ASA. For confidential issue, the exact data in the process

are not presented in this report. The flowsheet of the reaction section in the ammonia plant is

shown in Figure 1.

Figure 1: The flowsheet of the reaction section in the ammonia synthesis loop

From Figure 1, it can be observed that the process contains 2 plug flow reactors, R1 and R2, 6

heat exchangers, HE x1„HE x6, and 1 air cooler. The feed flow to the process contains 5 com-

positions which are H2, N2, NH3, CH4, and Ar, with corresponding molar flows as NH2,i n , NN2,i n ,

NN H3,i n , NC H4,i n and NAr,i n respectively. There are also 5 split ratios, Sp1„ Sp5, specified in the

process.

The input variables are the ones which can be modified in the process. In this case, these

4

input variables are identified as molar flows of 5 compositions in the feed flow, NH2,i n , NN2,i n ,

NN H3,i n , NC H4,i n and NAr,i n , 2 split ratios, Sp4 and Sp5, the temperature of the feed flow, Ti n , the

pressure of the feed flow, pi n , the flow of the boiler feed water (BFW), NBFW and the rotational

speed of the fan inside the air cooler, n f an . Hence, there are 11 input variables for this process,

the number of which is defined as nu .

The output variables in this process are the ones which can effect the downstream processes

or/and provide important information to identify the process. Therefore, the output variables

are identified as the pressure of product flow, pout , the temperature of the product flow, Tout ,

molar flows of 5 compositions in the product flow, NH2,out , NN2,out , NN H3,out , NC H4,out and

NAr,out , and the temperature in the outlet of the BFW, TBFW,out . The total number of output

variables is 8 and it is defined as ny .

Hence for surrogate modelling ,the reaction section can be regarded as a black box with nu “

11 input variables and ny “ 8 output variables. The output variables are connecting variables

which are input variables for the downstream processes.

5

3 Surrogate model generation

The surrogate models are generated based on the variables defined in the previous section. In

this case, there are 11 input variables and 8 output variables in the process. These many vari-

ables may lead to complicated surrogate models, thus the surrogate models would be difficult

to handle and may cause complexity for optimization after it is combined with other subunit

models. Hence, before the surrogate model generation, dimension reduction is performed pre-

liminarily for both input and output variables to reduce the number of variables.

For dimension reduction, sampling spaces are firstly created for both input and output vari-

ables using Latin hyper cube sampling [3], based on the exact data stored in the HYSYS model.

Next, the PLS regression [4] is applied to the input sample data for dimension reduction, and

output variables are reduced by mass balance. Then the surrogate models are generated based

on the dimension-reduced data using artificial neural networks (ANNs) [5]. The work is achieved

in MATLAB and the MATLAB scripts are shown in Appendix A.

3.1 Sampling for both input and output variables

For dimension reduction, a sampling space must be created beforehand. A sampling space con-

tains a subset of the data which can represent the whole data space. The data space is defined

based on the real initial data stored in the HYSYS model. The exact values of the initial data in

the HYSYS model are not included in this report due to confidential issue.

A data space is firstly designed for the input variables. Based on the initial data stored in the

HYSYS model, different variation ranges are set to the corresponding input variables, which are

specified by considering the possible maximum and minimum values for each input variable.

The defined variation ranges for the input variables are shown in Table 1.

Table 1: Variation ranges for input variables

Input variables Ti n [°C] pi n [barg] Sp4 [%] Sp5 [%]
Variation range +-10°C +-5 barg +-2% +-5%

Input variables NBFW [kmole/h] n f an [rpm] NH2,i n [kmole/h] NN2,i n [kmole/h]
Variation range +-10% +-20% +-12.5% +-15%

Input variables NN H3,i n [kmole/h] NC H4,i n [kmole/h] NAr,i n [kmole/h]
Variation range +100%/-50% +50%/-40% +50%/-40%

6

With the variation ranges, corner points in the data space can be identified by all the possible

combinations of the maximum and minimum values, which can represent the extreme condi-

tions for the input variables. The number of all the possible combinations of the maximum and

minimum values is calculated as 211 “ 2048. Each corner point contains 11 (nu) values cor-

responding to one possible combination of the maximum and minimum values of the input

variables, hence the number of corner points is nC P “ 2048. In MATLAB, the data of corner

points is stored in a 2048-by-11 matrix, ACP.

Corner points only contain the extreme conditions for the input variables, and hence they

can not represent all the data space. To solve this problem, additional sample points are defined

besides the corner points. The additional sample points are generated using Latin Hypercube

Sampling (LHS) method within the variation range. LHS is a statistical method for generating a

near-random sample space of parameter values from a multidimensional distribution [6], which

can be viewed as a multidimensional extension of Latin square sampling [3].

A Latin square is a square grid containing sample positions where there is only one sample in

each row and each column [6]. For example, there is a data space with two dimensions defined

as the temperature, T , and the pressure, p, and one wants to creat a sample space with 4 sample

points to represent the whole data space. Then a Latin square can be designed as in Figure 2,

where each dimension is divided into 4 equal intervals and the sample points are placed to sat-

isfy the Latin square requirements. The symbols,ˆ, in the cells represent the sample points

which are distributed in different rows and columns in the square, so that they contain different

values for T and p. Hence they can represent and explain the whole data space in an effective

way. A Latin hypercube is the generalisation of this Latin square sampling concept to an arbi-

trary number of dimensions, where each sample is the only one in each axis-aligned hyperplane

containing it.

7

Figure 2: An example of a Latin square sample space with 4 sample points, where the rows are

defined as temperatures, T , and columns are defined as pressures, p. The symbols,ˆ, repre-
sent sample positions.

In this project, the LHS is achieved by using the MATLAB function X = lhsdesign(n,p),

which returns a n-by-p matrix, X, containing a Latin hypercube sample of n values on each of p

variables. For each column of X, the n values are distributed with one from each interval p0, 1
n q,

p 1
n , 2

n q, ..., p1´ 1
n ,1q, and in this case they are placed at the midpoints of the above intervals:

0.5
n , 1.5

n , ..., 1´ 0.5
n . Hence, the result matrix X returned by X = lhsdesign(n,p) defines the

sample points positions in the Latin hypercube space with a range from 0 to 1. Rescaling the

LHS matrix, X, using the variation ranges for input variables yields the desired input sample

data, defined as ALHS in MATLAB. Since the input variables have a dimension of nu “ 11 and

5000 sample points are desired in this case, n is specified as 5000 while p is specified as 11 in the

function, X = lhsdesign(n,p), and hence ALHS is a 5000-by-11 matrix. Combining ALHS with

the matrix of corner points samples, ACP, a 7048-by-11 matrix, Agrid, is obtained, which contains

all the required sample data for input variables.

Next, the sample data of input variables, Agrid, are imported into the HYSYS model to obtain

the corresponding output sample data. The data transformation between the MATLAB and the

HYSYS model is achieved by a library, Hysyslib toolbox, developed in MATLAB by Olaf T.

Berglihn, which is an acti ve X {COM controller for HYSYS [7]. The data of output variables

8

obtained from the HYSYS model is stored in a matrix, Xgrid, in MATLAB. With the number of

output variables, ny “ 8, Xgrid is therefore a 7048-by-8 matrix.

The data of input and output variables in matrices, Agrid and Xgrid are used for dimension

reduction and the subsequent generation of surrogate models. The surrogate models should

also be validated after generation, thus a validation space for both input and output variables

are also yielded using the same approach as described above. In MATLAB, the sample data

of input variables for validation are stored in the matrix, Aval and the corresponding output

data obtained from the HYSYS model is stored in the matrix Xval. With a validation space with

1000 points designed in this project, Aval is a 1000-by-11 matrix and Xval is a 1000-by-8 matrix.

And these matrices containing the validation samples are used for validation of the surrogate

models.

3.2 Dimension reduction for input variables

For dimension reduction of the input variables, partial least square (PLS) regression is applied

to the input sample data. PLS is used to find the fundamental relations between two matrices (X

and Y) by finding a linear regression model by projecting the predicted variables (also known as

predictors) ,X, and the observable variables (also known as response or observers),Y, to a new

space. A PLS model will try to find the multidimensional direction in the X space that explains

the maximum multidimensional variance direction in the Y space [4]. The dimension of the new

space can be defined by different values depending on the the number of components required.

In this case, the predicted variables are the input variables, Agrid, and the observable vari-

ables are the output variables, Xgrid. The PLS regression in MATLAB is achieved by the function

[XL,YL] = plsregress(X,Y,ncomp), which computes a partial least-squares (PLS) regression

of Y on X, using ncomp PLS components, and returns the predictor and response loadings in XL

and YL, respectively. X is an n-by-p matrix of predictor variables, with rows corresponding to ob-

servations and columns to variables. Y is an n-by-m response matrix. XL is a p-by-ncomp ma-

trix of predictor loadings, where each row contains coefficients that define a linear combination

of PLS components that approximate the original predictor variables. YL is an m-by-ncomp

matrix of response loadings, where each row contains coefficients that define a linear combina-

tion of PLS components that approximate the original response variables. In this case, for the

9

function, [XL,YL] = plsregress(X,Y,ncomp), X corresponds to Agrid and Y corresponds to

Xgrid. The number of components, ncomp, is defined as equal to the dimension of the input

variables, nu “ 11. By multiplying Agrid with the loading XL, we can get the new sample space

for the input data, defined as APLS in MATLAB. The loadings for input variables, XL, is also uti-

lized for the later dimension reduction of validation sample data. For the subsequent surrogate

model generation, we use the first main k (1 ď k ď 11) components defined in the loadings,

XL, for fitting the model and evaluate the performance with different numbers of components.

Usually, better performance can be achieved with larger k, because more components can keep

more information of the initial data.

In summary, the dimension reduction for input variables is achieved by obtaining new sam-

ple data, APLS, with the first main k components yielded by PLS regression to represent all the

input variable samples, Agrid. The APLS is used as input data to generate the surrogate models

and the models are also evaluated with different k components.

3.3 Dimension reduction for output variables

Instead of PLS regression, mass balance is used to reduce the dimension of the output variables.

The advantage of using mass balance is that all the information of initial data can be kept in

the new dimension-reduced data by this approach. As mentioned in Section 2, there are ny “ 8

output variables in the process, which are the pressure of product flow, pout , the temperature

of the product flow, Tout , molar flows of 5 compositions in the product flow, NH2,out , NN2,out ,

NN H3,out , NC H4,out and NAr,out and the temperature in the outlet of the BFW, TBFW,out . The

variables, pout , Tout and TBFW,out , can not be reduced using mass balance and they are kept as

the new variables. Since CH4 and Ar have no reactions in the process, the molar flows of them

in the product stream are the same as the feed stream based on mass conservation, meaning

that NC H4,out “ NC H4,i n and NAr,out “ NAr,i n . Therefore they can be removed from the output

variables. As for compositions of H2, N2 and NH3, they are included in the same reaction as

3H2+N2 ÝÑ 2NH3

The extent of reaction can be calculated in order to describe the relations of the molar flows

of these compositions. The extent of reaction is a quantity that measures the extent in which the

10

reaction proceeds, denoted as ξ. The extent of reaction is defined as [8]

ξ“
∆Ni

νi
(1)

where ∆Ni denotes the changes of amount for the i-th reactant which are ∆NH2 , ∆NN2 and

∆NN H3 in this case, and νi is the stoichiometric number of the i-th reactant identified as νH2 “

´3, νN2 “´1, and νN H3 “ 2.

In this process, ∆Ni is the difference of amounts of composition molar flows in product

stream and feed stream, hence the extent of reaction can be rewritten as

ξ“
Ni ,out ´Ni ,i n

νi
(2)

The values of NH2,i n , NN2,i n and NN H3,i n are known as input data, hence the variables NH2,out ,

NN2,out and NN H3,out can be calculated with the same extent of reaction, ξ, using the equation

above. Therefore, the three variables, NH2,out , NN2,out and NN H3,out , can be reduced to one vari-

able, ξ.

After dimension reduction, the 8 output variables are reduced to 4 variables which are the

pressure of product flow, pout , the temperature of the product flow, Tout , the temperature in the

outlet of the BFW, TBFW,out , and the extent of reaction, ξ. The data of the dimension-reduced

output variables is stored in the matrix XPLS.

3.4 Using artificial neural network for surrogate model generation

Based on the input data and output data obtained previously, the approach of artificial neural

networks (ANNs) [5] is implemented to generate surrogate models. The advantage of ANNs is

their ability to be used as an arbitrary function approximation mechanism that "learns" from

observed data [9], therefore they are applicable to this project for surrogate model generation.

The artificial neural networks are essentially mathematical models defining a function f : XÑ

Y to describe the relations between two data space, X and Y. A neuron’s network function f

is defined as a class of functions gi , which can further be defined as a composition of other

functions.

The artificial neural networks typically consist of multiple layers. For instance, Figure 3

11

shows an example of cascade-forward networks which contain 3 layers including 1 input layer,

1 output layer and 1 hidden layer. The layers consist of multiple neurons and each neural unit

is connected with many others. The first layer has input neurons which send data via synapses

to the second hidden layer of neurons, and then via more synapses to the third layer of output

neurons. The synapses store parameters called "weights" that manipulate the data in the cal-

culations [10]. The "weights" in Figure 3 are notated as W and b. Each individual neural unit

may have a summation function, gi , which combines the values of all its inputs together. More

complex systems will have more layers of neurons, some having increased layers of input neu-

rons and output neurons [10]. In summary, a neuron’s network function f is a class of functions,

gi , where members of the class, gi , are obtained by varying parameters, connection weights, or

specifics of the architecture such as the number of neurons or their connectivity [5].

Figure 3: An example of cascade-forward networks with 1 input layer, 1 output layer and 1 hid-
den layer containing 10 neurons

In this project, the function, f , which defines the artificial neural networks are obtained

by the function cascadeforwardnet(hiddenSizes,trainFcn) in MATLAB, which returns a

cascade-forward neural network. The variable hi ddenSi zes defines the row vector of hidden

layer sizes which in this case is specified as 3 hidden layers with 2, 5 and 5 hidden neurons

in each layer respectively. The function cascadeforwardnet develops a cascade-forward net-

works with a similar structure as shown in Figure 3 with corresponding hi ddenSi zes specifica-

tion. This structure consist of a series of layers. The first layer has a connection from the network

input and each subsequent layer has a connection from the previous layer. The final layer pro-

duces the network’s output. Moreover, all the layers include a connection from the input and

every previous layer to following layers, which is a main difference from common feedforward

12

networks.

The cascade-forward neural network obtained by the function cascadeforwardnet is stored

in a variable named net in MATLAB, which essentially represents the desired surrogate models.

The net can be used as a function, Y = net(X), where X is the input data. The function Y =

net(X) returns Y as the output data.

13

4 Validation of the surrogate models

After surrogate model generation, the models are evaluated with different k components ob-

tained from the PLS regression. The sampling space for validation is created using the approach

mentioned in Section 3.1. The sample data for input variables are stored in the matrix, Aval.

Importing Aval into the HYSYS model yields the output data stored in the matrix, Xval, which is

considered as the exact values to evaluate the surrogate models.

To get the validation data of output exported by the surrogate models, the input data for val-

idation, Aval, is multiplied with the loadings, XL, obtained by the PLS regression as described in

Section 3.2. The multiplication results in the dimension-reduced input data to generate output

data for validation using surrogate models. This action ensures the dimension-reduced valida-

tion data of input contains the same components as the input data used for model generation,

making the comparison of the two sets of output data meaningful. The input data is stored in

the matrix, AvalPLS. Using the function of ANNs, net , the output data exported by the surrogate

models can be obtained by net(AvalPLS), which is stored in the matrix, XvalPLS. Hence the per-

formance of the surrogate models can be evaluated by calculating the relative errors of XvalPLS

and Xval.

The maximum and mean relative errors for the dimension-reduced output variables, Tout ,

pout , TBFW,out and ξ, are shown in Figure 4 and Figure 5.

14

Mean

9.23

0.54
0.33

0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.01

1 2 3 4 5 6 7 8 9 10 11

Number of components (k)

0

1

2

3

4

5

6

7

8

9

10

M
e

a
n

 r
e

la
ti
v
e

 e
rr

o
rs

 o
f

T
 i
n

 p
ro

d
u

c
t

fl
o

w
 [

%
]

(a) The mean relative errors of Tout

Max

23.92

2.28
1.55

0.17 0.17 0.16 0.15 0.16 0.13 0.11 0.05

1 2 3 4 5 6 7 8 9 10 11

Number of components (k)

0

5

10

15

20

25

M
a

x
im

u
m

 r
e

la
ti
v
e

 e
rr

o
rs

 o
f

T
 i
n

 p
ro

d
u

c
t

fl
o

w
 [

%
]

(b) The maximum relative errors of Tout

Mean

0.19 0.19

0.10

0.06 0.06 0.06 0.06 0.05

0.04

0.02

0.00

1 2 3 4 5 6 7 8 9 10 11

Number of components (k)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
e

a
n

 r
e

la
ti
v
e

 e
rr

o
rs

 o
f

P
 i
n

 p
ro

d
u

c
t

fl
o

w
 [

%
]

(c) The mean relative errors of pout

Max
0.78

0.71

0.42

0.20

0.29
0.26

0.24
0.26 0.25

0.10

0.01

1 2 3 4 5 6 7 8 9 10 11

Number of components (k)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
a

x
im

u
m

 r
e

la
ti
v
e

 e
rr

o
rs

 o
f

P
 i
n

 p
ro

d
u

c
t

fl
o

w
 [

%
]

(d) The maximum relative errors of pout

Figure 4: Mean and maximum relative errors for the output variables, Tout and pout

From the Figure 4, it can be seen that as components (k) yielded by PLS regression increases,

both maximum and mean relative errors for Tout and pout decrease. The reason is that the

dimension-reduced input variables with more components can keep more information from

the initial data. Hence the surrogate models generated by the input data with more compo-

nents can describe the HYSYS model more accurately. For Tout , input data with more than 4

components can generate surrogate models with the mean relative error less than 0.03% and

the maximum relative error less than 0.17%, which can be considered as acceptable deviations.

For pout , the models generated by more than 4 components also achieves a good performance,

with mean relative error less than 0.06% and maximum relative error less than 0.3%. Therefore,

the surrogate models generated with 4 components can yield the output data for Tout and pout

15

with acceptable deviations.

Mean
1.46

1.42

0.59

0.41 0.40

0.32
0.37

0.30 0.29

0.18

0.01

1 2 3 4 5 6 7 8 9 10 11

Number of components (k)

0

0.5

1

1.5

M
e

a
n

 r
e

la
ti
v
e

 e
rr

o
rs

 o
f

T
 i
n

 B
F

W
 o

u
tl
e

t
[%

]

(a) The mean relative errors of TBFW,out

Max

4.75

5.17

2.25

1.87 1.87
1.66 1.71

2.32

1.71
1.57

0.03

1 2 3 4 5 6 7 8 9 10 11

Number of components (k)

0

1

2

3

4

5

6

M
a

x
im

u
m

 r
e

la
ti
v
e

 e
rr

o
rs

 o
f

T
 i
n

 B
F

W
 o

u
tl
e

t
[%

]

(b) The mean relative errors of TBFW,out

Mean

1.81
1.75 1.74

0.70 0.70 0.67
0.63

0.49 0.47

0.27

0.05

1 2 3 4 5 6 7 8 9 10 11

Number of components (k)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
e

a
n

 r
e

la
ti
v
e

 e
rr

o
rs

 o
f

th
e

 e
x
te

n
t

o
f

re
a

c
ti
o

n
 [

%
]

(c) The mean relative errors of ξ

Max

5.49
5.69

6.15

2.84

2.30

3.32

2.91 2.83
2.97

4.72

0.47

1 2 3 4 5 6 7 8 9 10 11

Number of components (k)

0

1

2

3

4

5

6

7

M
a

x
im

u
m

 r
e

la
ti
v
e

 e
rr

o
rs

 o
f

th
e

 e
x
te

n
t

o
f

re
a

c
ti
o

n
 [

%
]

(d) The maximum relative errors of ξ

Figure 5: Mean and maximum relative errors for the output variables, TBFW,out and ξ

In comparison to Tout and pout , TBFW,out and ξ can not result in a similar good performance

as shown in Figure 5. The tendency of decreasing for both mean relative errors can be observed

from the plots but the maximum relative errors no longer decrease with more than 2 or 3 com-

ponents. Although the mean relative errors with 4 components for TBFW,out and ξ are 0.41%

and 0.70% respectively, the maximum errors are more than 2% for both variables which is not

acceptable. Actually, we care more about the maximum relative errors because we want the

surrogate models to have a good performance in any possible conditions. To reduce the errors,

the further investigation could be conducted to generate better surrogate models by using other

regression methods and improving the structure of the ANNs.

16

5 Overview of the approach

An overview of the approach used in this project is shown in Figure 6. The black boxes repre-

sent the data without dimension reduction and the blue boxes represent the dimension-reduced

data. The red boxes represent the two models. Meanwhile, The boxes with solid frames and the

solid arrows represent the section for surrogate model generation; whereas the boxes with dash

frames and dash arrows represent the section for model validation. The approach starts with

the initial data provided in the HYSYS model. By the defined variation ranges for input variables

and implementation of Latin hypercube sampling, the input sampling space for model gener-

ation, Agrid and the input samples for model validation, Aval are obtained. Importing the input

data yields the corresponding output data, Xgrid and Xval, via HYSYS model. Applying PLS re-

gression to Agrid yields the dimension-reduced input data, APLS, for the model generation. The

loadings of components, XL is also obtained and applied to Aval to get the dimension-reduced

input data, AvalPLS with the same K components for model validation. The dimension of Xgrid is

reduced by mass balance, yielding XPLS for model generation. Then the surrogate model, net ,

is generated based on APLS and XPLS. Using the model, net , with input data, AvalPLS, yields the

output data, XvalPLS, exported by the surrogate models. Calculating the relative errors of Xval and

XvalPLS with different k components, the performance of the surrogate models can be evaluated

for the output variables.

Figure 6: Overview of the approach for surrogate model generation and validation

17

6 Conclusions and discussions

This project generated surrogate models for the reaction section of an ammonia plant in the

HYSYS model, and evaluated the performance of the new models. The approach is based on

the dimension reduction methodology illustrated by Straus and Skogestad [1]. Latin hypercube

sampling is used to design the sample space. For dimension reduction of the variables, PLS re-

gression is applied to input variables and mass balanced is implemented to get the dimension-

reduced output variables. The surrogate models are generated based on the dimension-reduced

variables using artificial neural networks. The performance of the surrogate models are evalu-

ated by calculating the relative errors.

It is concluded that the surrogate models have good performance with 4 components for the

temperature of the product flow, Tout and the pressure in the product flow, pout . However, the

relative errors for the temperature in the BFW outlet, TBFW,out and the extent of reaction, ξ, are

not acceptable. The reason could probably be the difficulty of finding the linear combinations of

input variables using PLS regression or the non-optimal structure of ANNs. To improve the per-

formance of the surrogate models, different regression methods could be implemented and the

structure of the ANNs could be optimized in the further investigation. Different approaches, like

Kriging models, for surrogate model generation could also be investigated in the future work.

18

Appendix A

MATLAB scripts

In this project, the work is achieved in MATLAB. All the MATLAB scripts are attached below,

except the library for data transformation between HYSYS and MATLAB which can be found

in the author’s homepage [7]. The MATLAB scripts contain two parts. In the Sampling part,

the Latin hypercube sampling is implemented to obtain the sample space. And the Fitting part

realizes the surrogate model generation and validation.

1 Sampling

1 % Clearing of the workspace and the memory, closing of all open

2 % windows/figures

3 clc, clear variables

4 close all

5 format long

6

7 % Definition of global variables

8 global hy hycase

9

10 hy = actxserver('Hysys.Application');

11 hycase = hy.Activedocument;

12

13 % Definition of the initial values

19

14 A.init = % Tin(C),Pin(barg)

15 % H2 NH3 Ar N2 CH4(Nm3/h)

16 % Sp1(-) Sp2(-) Tref(rpm) BFW(Nm3/h)

17

18 % Time lhs

19 time.lhs.on = tic;

20

21 % Indices for input variables

22 indVar = 1:11;

23

24 % Number of input variables

25 nVar = length(indVar);

26

27 % Variation ranges for the input values

28 % T+-10(C),P+-5(barg),

29 % H2+-12.5%,NH3-50%+100%,Ar-40%+50%,N2+-15%,CH4-40%+50%,

30 % Sp1+-0.02,Sp2+-0.05,Fan+-20%,BFW+-10%

31

32 lbmub(1,:) = A.init.*[1 1 0.875 0.5 0.6 0.85 0.6 1 1 0.8 ...

0.9]...

33 +[-10 -5 0 0 0 0 0 -0.02 -0.05 0 0];

34 lbmub(2,:) = A.init;

35 lbmub(3,:) = A.init.*[1 1 1.125 2 1.5 1.15 1.5 1 1 1.2 ...

1.1]...

36 +[+10 +5 0 0 0 0 0 +0.02 +0.05 0 0];

37

38 %nvar = length(indin);

39 nVar = size(lbmub,2);

40

41 % Number of corner points

42 nCP = 2^nVar;

43

44 time.total.on = tic;

45

46 %% Corner points sampling

47 % Sampling type: Corner Points

20

48 opt.type = 'CP';

49

50 % Call GridDef function for sampling

51 [grid.CP] = GridDef(lbmub,indVar,opt);

52 A.CP.HYSYS = grid.CP;

53 nSamp.CP = size(A.CP.HYSYS(:,1),1);

54

55 % HYSYS sampling

56 [x.CP.HYSYS] = HYSYS(nSamp.CP,A.CP.HYSYS);

57 x.CP.SI = x.CP.HYSYS*[1 0 0 0;0 1000 0 0;

58 0 0 1/1000 0;0 0 0 1];

59

60 %% Input sapce sampling except corner points

61 % Sampling type: LHS

62 opt.type = 'LHS';

63 % Number of samples

64 opt.Np = 5000;

65

66 % Call GridDef function for sampling

67 [grid.LHS] = GridDef(lbmub,indVar,opt);

68 A.LHS.HYSYS = grid.LHS;

69 nSamp.LHS = opt.Np;

70

71 % HYSYS sampling

72 [x.LHS.HYSYS] = HYSYS(nSamp.LHS,A.LHS.HYSYS);

73 x.LHS.SI = x.LHS.HYSYS*[1 0 0 0;0 1000 0 0;

74 0 0 1/1000 0;0 0 0 1];

75

76 %% Validation space sampling

77 % Sampling type: LHS

78 opt.type = 'LHS';

79 % Number of samples

80 opt.Np = 1000;

81

82 % Call GridDef function for sampling

83 [grid.val] = GridDef(lbmub,indVar,opt);

21

84

85 A.val.HYSYS = grid.val;

86

87 nSamp.val = opt.Np;

88

89 % HYSYS sampling

90 [x.val.HYSYS] = HYSYS(nSamp.val,A.val.HYSYS);

91

92 x.val.SI = x.val.HYSYS*[1 0 0 0;0 1000 0 0;

93 0 0 1/1000 0;0 0 0 1];

94

95 %% HYSYS simulation for corner points

96

97 function [output] = HYSYS(nsamp,input)

98

99 % Grabbing of the Hysys object

100 hy = actxserver('Hysys.Application');

101 hycase = hy.Activedocument;

102

103 % Definition of the spreadsheet

104 spread.Input = hyspread(hy,'Input');

105 spread.Output = hyspread(hy,'Output');

106

107 % Stop the Solver of AspenHysys

108 hycase.solver.CanSolve = 0;

109

110 % Calculation in HYSYS

111 output = zeros(nsamp,4); %size(cell.Output,2));

112

113 for i = 1:nsamp

114 % Definition of the cells in the spreadsheets

115 cell.Input = ...

hycell(spread.Input,{'B1','B2','B3','B4','B5','B6','B7','B8','B9','B10','B11'});

116 cell.Output = hycell(spread.Output,{'B1','B2','B3','B4'});

117

118 % Set inputs

22

119 hyset(cell.Input,input(i,:)); % Sp1 Sp2 Tref BFW

120

121 % Start the Solver of AspenHysys

122 hycase.solver.CanSolve = 1;

123

124 % Solve for the new input

125 while hycase.Solver.issolving ‰ 0

126 % Wait and see

127 end

128

129 % Stop the solver

130 hycase.solver.CanSolve = 0;

131

132 % Get output values

133 output(i,:) = hyvalue(cell.Output);

134

135 end

136 end

137

138

139 %% Define the function GridDef for sampling

140 % Including cornerpoints sampling and LHS sampling

141

142 function [grid] = GridDef(lbmub,indice,opt)

143

144 nvar = length(indice);

145 ntot = size(lbmub,2);

146

147 switch opt.type

148

149 case 'CP'

150 % Predefinition of the cell vector for the varied values

151 vec = cell(1,ntot);

152

153 for k = indice

154 vec{k} = linspace(lbmub(1,k), lbmub(3,k),2);

23

155 end

156

157 grid_comb = cell(1,ntot);

158 [grid_comb{indice}] = ndgrid(vec{indice});

159

160 for k = indice

161 grid_comb{k} = grid_comb{k}(:);

162 end

163

164 grid = cell2mat(grid_comb(indice));

165

166 case 'LHS'

167

168 % Definition of the number of samples

169 nsamp = opt.Np;

170

171 % Performing the LHS

172 lhs = lhsdesign(nsamp,nvar,'criterion','correlation');

173

174 % Rescaling of the problem

175 grid = [lhs.*(ones(nsamp,1)*diff(lbmub([1 ...

3],indice)))+ones(nsamp,1)*lbmub(1,indice)];

176

177 otherwise

178

179 end

180 end

2 Fitting

1 %% PLS Regression

2 clear all

3 load sampling.mat;

24

4

5 % Combine the corner points and LHS samples as a complete sampling space

6 A.grid.HYSYS = [A.CP.HYSYS;A.LHS.HYSYS];

7 x.grid.HYSYS = [x.CP.HYSYS;x.LHS.HYSYS];

8

9 nVar = 11;

10 nCP = 2^11;

11

12 % Define the value, PLS should be fitted to (as row vector)

13 % 1 = Outlet p

14 % 2 = Outlet T

15 % 3 = Extent of reaction

16 % 4 = BFW outlet T

17 nFit = 4;

18

19 % Column vector for sacling use

20 nSamp.val = 1000;

21 OnN1.val = ones(nSamp.val,1);

22

23 % The number of fitting networks

24 for nfit = 1:nFit

25

26 % The number of principle components defined by PLS regeression

27 for ncomp = 1:nVar

28

29 % Scaling the input and output data

30 [A.grid.zscore,Var.muA,Var.stdA] = zscore(A.grid.HYSYS);

31 % Same scaling for the validation points

32 A.val.zscore = ...

(A.val.HYSYS-OnN1.val*Var.muA)./(OnN1.val*Var.stdA);

33

34 [x.grid.zscore,Var.mux,Var.stdx] = zscore(x.grid.HYSYS);

35 % Same scaling for the validation points

36 x.val.zscore = ...

(x.val.HYSYS-OnN1.val*Var.mux)./(OnN1.val*Var.stdx);

37

25

38 % Calculation of the Partial least square regression

39 [Aload,xload,Ascores,xscores,...

40 par.PLS,pctvar, ,stats] = ...

plsregress(A.grid.zscore,x.grid.zscore,ncomp);

41

42 % The cumulated sums

43 expvar = cumsum(pctvar,2);

44

45 %% Create a Fitting Network

46

47 display('FItting ANN');

48

49 % time.ANN =tic;

50 % Calculation of the new components

51 switch ncomp

52 case {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

53 mult = Aload;

54 case 11

55 mult = 1;

56 end

57

58 % Main component of scaled input samples

59 A.grid.PLS = A.grid.zscore*mult;

60

61 % Number of validation points

62 nsamp_val = size(A.val.HYSYS,1);

63 A.val.PLS = A.val.zscore*mult;

64

65 % Definition of network parameter

66 hiddenLayerSize = [2 ones(1,2)*5];

67 net = cascadeforwardnet(hiddenLayerSize,'trainbr');

68 net.trainParam.max_fail = 200;

69 net.trainParam.epochs = 1e5;

70 net.trainParam.min_grad = 1e-9;

71

72 % Calculation of the indices for training, validation and testing

26

73 trainR = 70/100;

74 valR = 15/100;

75 testR = 15/100;

76 [trainInd,valInd,testInd] = dividerand(nSamp.val,trainR,valR,testR);

77

78 % Set up Division of Data for Training, Validation, Testing

79 net.divideFcn = 'divideind';

80 net.divideParam.trainInd = [1:nCP trainInd+nCP];

81 net.divideParam.valInd = valInd+nCP;

82 net.divideParam.testInd = testInd+nCP;

83 % net.trainFcn = 'trainbr'; 'trainlm'; 'trainscg'

84

85 % Dimension of the output remains the same

86 x.grid.PLS = x.grid.zscore;

87

88 % Train the Network

89 [net,tr] = ...

train(net,A.grid.PLS',x.grid.PLS(:,nfit)','UseParallel','yes'); ...

%);% ,'UseGPU','yes');%

90

91 % Inverse zscore, get the unsaled output values

92 x.val.PLS = net(A.val.PLS')';

93 x.val.ANN(:,nfit) = ...

x.val.PLS.*(OnN1.val*Var.stdx(nfit))+OnN1.val*Var.mux(nfit);

94

95 % Calculation relative error[%] for validation points

96 err.val{nfit,ncomp} = ...

(x.val.HYSYS(:,nfit)-x.val.ANN(:,nfit))./x.val.HYSYS(:,nfit)*100;

97

98 end

99 end

100

101 % Plot and compare the errors for different output variables with different

102 % number of main components

103 for nfit = 1:nFit

104 for ncomp = 1:nVar

27

105

106 err.max(nfit,ncomp) = max(abs(err.val{nfit,ncomp}));

107 err.mean(nfit,ncomp) = mean(abs(err.val{nfit,ncomp}));

108 err.median(nfit,ncomp) = median(abs(err.val{nfit,ncomp}));

109

110 end

111 end

112

113 %% Plot

114

115 figure(1)

116 bar(ncomp,err.max(1,:));

117 title('Max');

118 ylabel('Relative errors of T in product flow [%]');

119 xlabel('Number of components (k)');

120 for n = 1:11

121 text(ncomp(n), err.max(1,n), num2str(err.max(1,n), '%0.2f'), ...

122 'HorizontalAlignment', 'center', ...

123 'VerticalAlignment', 'bottom')

124 end

125

126 figure(2)

127 bar(ncomp,err.max(2,:));

128 title('Max');

129 ylabel('Relative errors of P in product flow [%]');

130 xlabel('Number of components (k)');

131 for n = 1:11

132 text(ncomp(n), err.max(2,n), num2str(err.max(2,n), '%0.2f'), ...

133 'HorizontalAlignment', 'center', ...

134 'VerticalAlignment', 'bottom')

135 end

136

137 figure(3)

138 bar(ncomp,err.max(3,:));

139 title('Max');

140 ylabel('Relative errors of the extent of reaction [%]');

28

141 xlabel('Number of components (k)');

142 for n = 1:11

143 text(ncomp(n), err.max(3,n), num2str(err.max(3,n), '%0.2f'), ...

144 'HorizontalAlignment', 'center', ...

145 'VerticalAlignment', 'bottom')

146 end

147

148 figure(4)

149 bar(ncomp,err.max(4,:));

150 title('Max');

151 ylabel('Relative errors of T in BFW outlet [%]');

152 xlabel('Number of components (k)');

153 for n = 1:11

154 text(ncomp(n), err.max(4,n), num2str(err.max(4,n), '%0.2f'), ...

155 'HorizontalAlignment', 'center', ...

156 'VerticalAlignment', 'bottom')

157 end

158

159 figure(5)

160 bar(ncomp,err.mean(1,:));

161 title('Mean');

162 ylabel('Relative errors of T in product flow [%]');

163 xlabel('Number of components (k)');

164 for n = 1:11

165 text(ncomp(n), err.mean(1,n), num2str(err.mean(1,n), '%0.2f'), ...

166 'HorizontalAlignment', 'center', ...

167 'VerticalAlignment', 'bottom')

168 end

169

170 figure(6)

171 bar(ncomp,err.mean(2,:));

172 title('Mean');

173 ylabel('Relative errors of P in product flow [%]');

174 xlabel('Number of components (k)');

175 for n = 1:11

176 text(ncomp(n), err.mean(2,n), num2str(err.mean(2,n), '%0.2f'), ...

29

177 'HorizontalAlignment', 'center', ...

178 'VerticalAlignment', 'bottom')

179 end

180

181 figure(7)

182 bar(ncomp,err.mean(3,:));

183 title('Mean');

184 ylabel('Relative errors of the extent of reaction [%]');

185 xlabel('Number of components (k)');

186 for n = 1:11

187 text(ncomp(n), err.mean(3,n), num2str(err.mean(3,n), '%0.2f'), ...

188 'HorizontalAlignment', 'center', ...

189 'VerticalAlignment', 'bottom')

190 end

191

192 figure(8)

193 bar(ncomp,err.mean(4,:));

194 title('Mean');

195 ylabel('Relative errors of T in BFW outlet [%]');

196 xlabel('Number of components (k)');

197

198 for n = 1:11

199 text(ncomp(n), err.mean(4,n), num2str(err.mean(4,n), '%0.2f'), ...

200 'HorizontalAlignment', 'center', ...

201 'VerticalAlignment', 'bottom')

202 end

30

Reference

[1] J. Straus and S. Skogestad. Minimizing the complexity of surrogate models for optimiza-

tion. Computer Aided Chemical Engineering, 38(1):289–294, 2016.

[2] Lorenz T Biegler, Ignacio E Grossmann, and Arthur W Westerberg. Systematic methods for

chemical process design. 1997.

[3] Michael D McKay, Richard J Beckman, and William J Conover. A comparison of three meth-

ods for selecting values of input variables in the analysis of output from a computer code.

Technometrics, 42(1):55–61, 2000.

[4] Herman Wold. Partial least squares. Encyclopedia of statistical sciences, 1985.

[5] IA Basheer and M Hajmeer. Artificial neural networks: fundamentals, computing, design,

and application. Journal of microbiological methods, 43(1):3–31, 2000.

[6] Latin hypercube sampling. https://en.wikipedia.org/wiki/Latin_hypercube_

sampling. Accessed: 2016-12.

[7] Hysyslib toolbox. http://www.pvv.org/~olafb/software/hysyslib/. Accessed: 2016-

12.

[8] Peter Atkins and Julio De Paula. Atkins’ physical chemistry. Oxford University Press, Oxford,

2006.

[9] Sparsh Mittal. A survey of techniques for approximate computing. ACM Computing Surveys

(CSUR), 48(4):62, 2016.

31

https://en.wikipedia.org/wiki/Latin_hypercube_sampling
https://en.wikipedia.org/wiki/Latin_hypercube_sampling
http://www.pvv.org/~olafb/software/hysyslib/

[10] Artificial neural network. https://en.wikipedia.org/wiki/Artificial_neural_

network. Accessed: 2016-12.

32

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network

	Preface
	Introduction
	Description of the process
	Surrogate model generation
	Sampling for both input and output variables
	Dimension reduction for input variables
	Dimension reduction for output variables
	Using artificial neural network for surrogate model generation

	Validation of the surrogate models
	Overview of the approach
	Conclusions and discussions
	MATLAB scripts
	Sampling
	Fitting

	Reference

