Modelling & Optimization of a Distillation Train

Vegard Skogstad

December 12, 2013
Table of contents

1. Process overview
2. Optimisation
3. Steam distribution
4. Potential savings
5. Realistic savings
6. Conclusions
Goal
Find steam savings
Modelling & Optimization of a Distillation Train

Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

The Process

Feed → ISOM 1 → ISOM 2 → PRAL → IBAL Heavy ends → PRAL product

Feed → ISOM 1 → ISOM 2 → NBAL → NBAL product → NBAL heavy ends
Over-purification

Assumption:
Excess steam usage gives over-purification of products
Over-purification

Feed

ISOM 1

IBAL Heavy ends

ISOM 2

PRAL

IBAL product

PRAL product

NBAL

NBAL heavy ends

NBAL product

Spec Base case

[Specifications and Run data table]

<table>
<thead>
<tr>
<th>Spec</th>
<th>Base case</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0.996</td>
</tr>
<tr>
<td>I</td>
<td>0.002</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
</tr>
<tr>
<td>P</td>
<td>0.001</td>
</tr>
<tr>
<td>I</td>
<td>0.996</td>
</tr>
<tr>
<td>N</td>
<td>0.002</td>
</tr>
<tr>
<td>P</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>0.0012</td>
</tr>
<tr>
<td>N</td>
<td>0.996</td>
</tr>
</tbody>
</table>
Over-purification

Feed

PRAL
IBAL Heavy ends

ISOM 1

ISOM 2

PRAL product

IBAL product

NBAL

Spec Base case
P 0.996 0.9995
I 0.002 0.0002
N 0 0

P 0.001 0.0002
I 0.996 0.9983
N 0.002 0.0006

P 0 0
I 0.0012 0.0004
N 0.996 0.9974

NBAL Heavy ends

NBAL product

Realistic savings

Conclusions
Modelling & Optimization of a Distillation Train

Vegard Skogstad

Process overview
Optimisation
Steam distribution
Potential savings
Realistic savings
Conclusions

Over-purification

<table>
<thead>
<tr>
<th>Spec</th>
<th>Base case</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0.996</td>
</tr>
<tr>
<td>I</td>
<td>0.002</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spec</th>
<th>Base case</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0.001</td>
</tr>
<tr>
<td>I</td>
<td>0.996</td>
</tr>
<tr>
<td>N</td>
<td>0.002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spec</th>
<th>Base case</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>0.0012</td>
</tr>
<tr>
<td>N</td>
<td>0.996</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spec</th>
<th>Base case</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>0.0012</td>
</tr>
<tr>
<td>N</td>
<td>0.996</td>
</tr>
</tbody>
</table>
Modelling & Optimization of a Distillation Train

Vegard Skogstad

Process overview

Optimisation

Steam distribution

Potential savings

Realistic savings

Conclusions

Over-purification

We do have over-purification!
The optimisation problem

\[
\max_M Z = M_{PRAL} p_{PRAL} + M_{IBAL} p_{IBAL} + M_{NBAL} p_{NBAL} - E_{tot} H_{vap} p_{steam}
\]

\[
c_{\text{Ibal in PRAL}} \leq 0.002
\]

\[
c_{\text{Pral in IBAL}} \leq 0.001
\]

\[
c_{\text{Nbal in IBAL}} \leq 0.002
\]

\[
c_{\text{Ibal in NBAL}} \leq 0.0012
\]
Results

- Pral price needs to be 8 times as large as other products before constraint non-active
Results

- Pral price needs to be 8 times as large as other products before constraint non-active
- Ib3al price needs to be 7 times as large as other products
Results

- Pral price needs to be 8 times as large as other products before constraint non-active
- Ibal price needs to be 7 times as large as other products
- Nbal price needs to be 8 times as large as other products
• Pral price needs to be 8 times as large as other products before constraint non-active
• Ibal price needs to be 7 times as large as other products
• Nbal price needs to be 8 times as large as other products
• For common price estimates, the optimal solution is always to minimise steam usage!
Steam distribution in Isomer columns

Assumption:
Uneven separation in Isomer columns gives steam losses
Steam distribution in Isomer columns

Assumption:
Uneven separation in Isomer columns gives steam losses

- What is optimal steam distribution?
 - As much separation as possible in ISOM 1
 - As much separation as possible in ISOM 2
 - Equal separation in both columns
Steam distribution in Isomer columns

<table>
<thead>
<tr>
<th>Units</th>
<th>Duty ISOM 1 (kJ/h)</th>
<th>Duty ISOM 2 (kJ/h)</th>
<th>Total duty (kJ/h)</th>
<th>Savings (kr/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td>3.57E+07</td>
<td>3.17E+07</td>
<td>9.60E+07</td>
<td></td>
</tr>
<tr>
<td>Same concentration</td>
<td>3.76E+07</td>
<td>2.86E+07</td>
<td>9.47E+07</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>-1.91E+06</td>
<td>3.18E+06</td>
<td>1.27E+06</td>
<td>127</td>
</tr>
</tbody>
</table>

- Product streams identical
- Yearly savings of ≈ 1 million
- Increased steam usage in ISOM 1
- Decreased steam usage in ISOM 2
Steam distribution in Isomer columns

<table>
<thead>
<tr>
<th>Units</th>
<th>Duty ISOM 1 (kJ/h)</th>
<th>Duty ISOM 2 (kJ/h)</th>
<th>Total duty (kJ/h)</th>
<th>Savings (kr/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td>3,57E+07</td>
<td>3,17E+07</td>
<td>9,60E+07</td>
<td></td>
</tr>
<tr>
<td>Same concentration</td>
<td>3,76E+07</td>
<td>2,86E+07</td>
<td>9,47E+07</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>-1,91E+06</td>
<td>3,18E+06</td>
<td>1,27E+06</td>
<td>127</td>
</tr>
</tbody>
</table>

- Product streams identical
- Yearly savings of ≈ 1 million
- Increased steam usage in ISOM 1
- Decreased steam usage in ISOM 2
Potential savings

We would like to reduce over-purification
Potential savings

We would like to reduce over-purification

Where would it be most profitable to improve control?
Potential savings

Table: Changing concentrations from base case values to maximum allowable values

<table>
<thead>
<tr>
<th></th>
<th>Ibal in PRAL</th>
<th>Pral in IBAL</th>
<th>Nbal in IBAL</th>
<th>Ibal in NBAL</th>
<th>Total duty</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,00028</td>
<td>0,00023</td>
<td>0,002</td>
<td>0,00042</td>
<td>9,03E+07</td>
<td>582</td>
</tr>
<tr>
<td></td>
<td>0,002</td>
<td>0,00023</td>
<td>0,00062</td>
<td>0,00042</td>
<td>9,42E+07</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>0,00028</td>
<td>0,001</td>
<td>0,00062</td>
<td>0,00042</td>
<td>9,53E+07</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>0,00028</td>
<td>0,00023</td>
<td>0,00062</td>
<td>0,0012</td>
<td>9,27E+07</td>
<td>347</td>
</tr>
</tbody>
</table>

- The largest potential savings are from the Isomer columns
Realistic savings

- At the set point we will violate the constraint 50% of the time
- need back-off
- How much can we decrease back-off without violating the constraints?
Probability distributions

![Graph showing probability distributions for concentration of NBAL in IBAL product and concentration of IBAL in NBAL product.](image-url)
Savings with new set points

Table: Changing the concentrations out of the ISOM 2 column to meet new specified set points for the product streams

<table>
<thead>
<tr>
<th></th>
<th>Nbal in IBAL</th>
<th>Ibal in NBAL</th>
<th>Total duty</th>
<th>Steam savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured data base case</td>
<td>0.062</td>
<td>0.042</td>
<td>9.60E+07</td>
<td></td>
</tr>
<tr>
<td>Isomer set points 1% failure</td>
<td>0.091</td>
<td>0.058</td>
<td>9.18E+07</td>
<td>421.58</td>
</tr>
<tr>
<td>Isomer set points 2.27% (Norm distr.)</td>
<td>0.143</td>
<td>0.078</td>
<td>9.05E+07</td>
<td>543.29</td>
</tr>
</tbody>
</table>
Results

• For common price estimates, the optimal solution is always to minimise steam usage
• The largest potential savings are from the Isomer columns
• Identical separation in Isomer columns leads to steam savings without changing product streams
• To achieve this: Decrease steam usage in ISOM 2, increase steam usage in ISOM 1