Validation of the SIMC PID tuning rules
Supervisor: Sigurd Skogestad
Co-supervisor: Chriss Grimholt
My assignment:

- Validate the SIMC tuning rules

\[K_c = \frac{1}{K_p} \frac{\tau_1}{\tau_c + \theta} \quad \tau_I = \min\{\tau_1, 4(\tau_c + \theta)\} \quad \tau_D = \tau_2 \]

- 2nd order processes:

\[g_p(s) = \frac{k_p}{(\tau_1 s + 1)(\tau_2 s + 1)} e^{-\theta s} \]

- MatLab - fmincon (minimization problem)

- Cost function:

\[J = 0.5 \left[\frac{IAE_{ys}}{IAE_{ys}^c} + \frac{IAE_d}{IAE_d^c} \right] \quad IAE = \int_0^\infty |y(t) - y_s(t)| dt \]
Results (hopefully):

- PO PID and PI vs. SIMC PID and PI

Future work:
- Solve more processes
- Interpret the results

www.ntnu.no Martin Foss, Validation of the SIMC PID tuning rules