We have a system with two possible measurements and a single input. The transfer functions for these measurements are:
\[
g_1 = \frac{1}{-5s + 1} \quad \text{and} \quad g_2 = \frac{-4.8s + 1}{5s + 1}.
\]
This system has a minimal state-space realization
\[
x = Ax + Bu
\]
with
\[
A = \begin{bmatrix} 0.2 & 0 \\ 0.5 & -0.2 \end{bmatrix}, \quad B = \begin{bmatrix} -0.2 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \\ -0.96 & 0.784 \end{bmatrix}, \quad D = 0.
\]
The system has open-loop poles at 0.2 and -0.2 (can read this off the diagonal of A because the system matrix is triagonal).

We consider three cases:
1. We can measure both states directly – excellent performance for load disturbance and process noise.
2. Observer design: because the sensor used to measure \(x_1 \) can fail, we design a Kalman filter to estimate \(x_1 \) based on measurement of \(y_2 \).
3. Sensor failure: feedback control using estimate of \(x_1 \).

The control objective is stabilization. We use an LQR controller with minimum input usage; \(Q=0, R=1 \). This gives feedback gain of
\[
K_{LQR} = [-2 \quad 0].
\]

Case 1: Full state measurement
The resulting controller is a proportional controller for \(y_1 \) with set point \(y_1 = 0 \) and controller gain \(K_c = -2 \). The closed-loop poles are now both located at -0.2 and the system is closed-loop stable. A unit step added to \(u \) at time \(t = 10 \) and a unit step is added to \(x_1 \) at time \(t = 40 \). The state responses are shown in Figure 1 and the measurements and input usage are shown in Figure 2.
Case 2: Build an estimator for y_1 based on y_2

We replace the C-matrix above with its second row-only to disallow measurement of y_1. Further, we assume no load disturbances, but significant process noise in the system. Based on this we design a Kalman filter using the `kalman` function in the Matlab control systems toolbox:

$$\text{[Kfilter,ObserverGain,Riccati Matrix]} = \text{kalman(ss(A,B,C,D),1,0.1)};$$

The resulting gain matrix is

$$\text{ObserverGain} = 10^4 \times \begin{bmatrix} 0.98 \\ 1.23 \end{bmatrix}.$$

A simulation of the system in closed-loop, but still using direct measurement of y_1 yields the following observer estimates; states are shown in Figure 3 and the measured output in Figure 4. In spite of the big error when the step disturbance in the state occurs, we will try this in closed-loop because we may not have too many good options here if the sensor for y_1 fails.

Case 3: Sensor failure

We now test closed-loop behavior when applying the estimator for y_1. The results are shown in Figure 5 (states) and Figure 6 (output, input). Note the excessive input usage, compare with Figure 2! If the input had been limited, the system would have been closed-loop unstable. To illustrate we simulate the system but with a saturation on the input signal:

$$-5 \leq u(t) \leq 5.$$

The resulting trajectories are shown in Figure 7 and Figure 8.
The lesson learned from this example is that non-minimum phase behavior can create great difficulties for stabilization. Just because a system is state-observable does not mean that estimating more well-conditioned measurements that for some reason are not available from the measurements we do have, it does not mean it is a good idea to do so, at least not if there are fundamental limitations in the input-output behavior of the available measurements.

Computer simulations

The computer simulations used to generate these plots were done using Matlab/Simulink. There are four Simulink files, corresponding to the four simulations above:

- caseA.mdl: Case 1
- caseB.mdl: Case 2
- caseC.mdl: Case 3
- CaseCb.mdl: Case 3 with input saturation

Before running these files, run the script file get_lqg.m which contains the following:

```matlab
%Define dynamics
A = [0.2 0; 0.5 -0.2];    % open-loop A-matrix has poles in 0.2 and -0.2
B = [0; 0];
C = [1 0; -0.96 0.784];
D = 0;
G=ss(A,B,C,D);

%For Case 2: Kill one measurement
C2=C(2,:);
Gred=ss(A,B,C2,D);

%Create LQR controller
Q=zeros(2); R=1;    %Q=0 gives minimum input usage
Klqr=lqr(A,B,Q,R);

%Set disturbance signal parameters (for use in Simulink)
loadD=1; stateD=1; LTime=10; STime=40;

%Create Kalman filter based on (A,B,C2):
[Kest1,L1,P1]=kalman(Gred,1,0.1);

%Simulate each case for tf=80.
%Simulation variables are stored in workspace, with naming convention
% VariableName_CASE_
%To avoid opening simulink for each case, use the syntax
% sim('caseA',80)
```

Figure 7: Saturation on u gives unstable closed-loop behavior. System blows up on the state disturbance.

Figure 8: Input and output when system blows up (blue: output, black: input).