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PREFACE

This is a book on practical feedback control and not on system theory in general. Feedback is
used in control systems to change the dynamics of the system (usually to make the response
stable and suf£ciently fast), and to reduce the sensitivity of the system to signal uncertainty
(disturbances) and model uncertainty. Important topics covered in the book, include
• classical frequency domain methods
• analysis of directions in multivariable systems using the singular value decomposition
• input–output controllability (inherent control limitations in the plant)
• model uncertainty and robustness
• performance requirements
• methods for controller design and model reduction
• control structure selection and decentralized control
• linear matrix inequalities, LMIs

The treatment is for linear systems. The theory is then much simpler and more well
developed, and a large amount of practical experience tells us that in many cases linear
controllers designed using linear methods provide satisfactory performance when applied
to real nonlinear plants.

We have attempted to keep the mathematics at a reasonably simple level, and we emphasize
results that enhance insight and intuition. The design methods currently available for linear
systems are well developed, and with associated software it is relatively straightforward to
design controllers for most multivariable plants. However, without insight and intuition it is
dif£cult to judge a solution, and to know how to proceed (e.g. how to change weights) in
order to improve a design.

The book is appropriate for use as a text for an introductory graduate course in
multivariable control or for an advanced undergraduate course. We also think it will be
useful for engineers who want to understand multivariable control, its limitations, and how it
can be applied in industrial practice. The analysis techniques and the material on control
structure design should prove very useful in the new emerging area of systems biology.
There are numerous worked examples, exercises and case studies which make frequent use
of MatlabTM 1.

The prerequisites for reading this book are an introductory course in classical single-
input single-output (SISO) control and some elementary knowledge of matrices and linear
algebra. Parts of the book can be studied alone, and provide an appropriate background for
a number of linear control courses at both undergraduate and graduate levels: classical loop-
shaping control, an introduction to multivariable control, advanced multivariable control,
1 Matlab is a registered trademark of The MathWorks, Inc.
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robust control, controller design, control structure design and controllability analysis. It may
be desirable to teach the material in a different order from that given in the book. For example,
in his course at ETH Zurich, Professor Manfred Morari has chosen to start with SISO systems
(Chapters 1, 2, 5 and 7) and then system theory (Chapter 4), before moving on to MIMO
systems (Chapters 3, 6, 8 and 9).

The book is partly based on a graduate multivariable control course given by the £rst
author in the Cybernetics Department at the Norwegian University of Science and Technology
in Trondheim. The course, attended by students from Electrical, Chemical and Mechanical
Engineering, has usually consisted of 3 lectures a week for 12 weeks. In addition to regular
assignments, the students have been required to complete a 50-hour design project using
Matlab. In Appendix B, a project outline is given together with a sample exam.

Examples and Internet
All of the numerical examples have been solved using Matlab. Some sample £les are included
in the text to illustrate the steps involved. All these £les use either the new Robust Control
toolbox or the Control toolbox, but the problems could have been solved easily using other
software packages.

The following are available over the Internet:

• Matlab £les for examples and £gures
• Solutions to selected exercises (those marked with a ∗)2

• Linear state-space models for plants used in the case studies
• Corrections, comments, extra exercises and exam sets
• Lecture notes for courses based on the book

This information can be accessed from the authors’ home pages, which are easily found using
a search engine like Google. The current addresses are:

• http://www.nt.ntnu.no/users/skoge
• http://www.le.ac.uk/engineering/staff/Postlethwaite

Comments and questions
Please send questions, information on any errors and any comments you may have to the
authors. Their email addresses are:

• skoge@chemeng.ntnu.no
• ixp@le.ac.uk

Acknowledgements
The contents of the book are strongly in¤uenced by the ideas and courses of Professors John
Doyle and Manfred Morari from the £rst author’s time as a graduate student at Caltech during
the period 1983–1986, and by the formative years, 1975–1981, the second author spent at
Cambridge University with Professor Alistair MacFarlane. We thank the organizers of the
2 Solutions to the remaining exercises are available to course lecturers by contacting the authors.
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and others at the BCCI-lab, and to the stimulating coffee at Brewed Awakening.
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Kjetil Havre, Ghassan Murad and Ying Zhao. The computations for Example 4.5 were
performed by Roy S. Smith who shared an of£ce with the authors at Berkeley. Helpful
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C. Christiansen, Wankyun Chung, Bjørn Glemmestad, John Morten Godhavn, Finn Are
Michelsen and Per Johan Nicklasson. A number of people have assisted in editing and typing
various versions of the manuscript, including Zi-Qin Wang, Yongjiang Yu, Greg Becker, Fen
Wu, Regina Raag and Anneli Laur. We also acknowledge the contributions from our graduate
students, notably Neale Foster, Morten Hovd, Elling W. Jacobsen, Petter Lundström, John
Morud, Raza Samar and Erik A. Wolff.

For the second edition, we are indebted to Vinay Kariwala for many technical contributions
and editorial changes. Other researchers at Trondheim have also been helpful and we are
especially grateful to Vidar Alstad and Espen Storkaas. From Leicester, Matthew Turner and
Guido Herrmann were extremely helpful with the preparation of the new chapter on LMIs.
Finally, thanks to colleagues and former colleagues at Trondheim and Caltech from the £rst
author, and at Leicester, Oxford and Cambridge from the second author.

The aero-engine model (Chapters 11 and 13) and the helicopter model (Chapter 13) are
provided with the kind permission of Rolls-Royce Military Aero Engines Ltd and the UK
Ministry of Defence, DRA (now QinetiQ) Bedford, respectively.

We have made use of material from several books. In particular, we recommend Zhou
et al. (1996) as an excellent reference on system theory and H∞ control and The Control
Handbook (Levine, 1996) as a good general reference. Of the others we would like
to acknowledge, and recommend for further reading, the following: Rosenbrock (1970),
Rosenbrock (1974), Kwakernaak and Sivan (1972), Kailath (1980), Chen (1984), Francis
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Second edition
In this second edition, we have corrected a number of minor mistakes and made numerous
changes and additions throughout the text, partly arising from the many questions and
comments we have received from interested readers and partly to re¤ect developments in
the £eld. The main additions and changes are:
Chapter 2: Material has been included on unstable plants, the feedback ampli£er, the lower

gain margin, simple IMC tuning rules for PID control, and the half rule for estimating
the effective delay.

Chapter 3: Some material on the relative gain array has been moved in from Chapter 10.

Chapter 4: Changes have been made to the tests of state controllability and observability (of
course, they are equivalent to the old ones).
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Chapters 5 and 6: New results have been included on fundamental performance limitations
introduced by RHP-poles and RHP-zeros.

Chapter 6: The section on limitations imposed by uncertainty has been rewritten

Chapter 7: The examples of parametric uncertainty have been introduced earlier and
shortened.

Chapter 9: A clear strategy is given for incorporating integral action into LQG control.

Chapter 10: The chapter has been reorganized. New material has been included on
the selection of controlled variables and self-optimizing control. The section on
decentralized control has been rewritten and several examples have been added.

Chapter 12: A complete new chapter on LMIs.

Appendix: Minor changes to positive de£nite matrices and the all-pass factorization.

In reality, the book has been expanded by more than 100 pages, but this is not re¤ected in
the number of pages in the second edition because the page size has also been increased.

All the Matlab programs have been updated for compatibility with the new Robust Control
toolbox.

Sigurd Skogestad
Ian Postlethwaite

August 2005

December 2006: Minor corrections and changes (see book home page for details).

BORGHEIM, an engineer:

Herregud, en kan da ikke gjøre noe bedre enn leke i denne
velsignede verden. Jeg synes hele livet er som en lek, jeg!
Good heavens, one can’t do anything better than play in this blessed
world. The whole of life seems like playing to me!

Act one, LITTLE EYOLF, Henrik Ibsen.
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INTRODUCTION

In this chapter, we begin with a brief outline of the design process for control systems. We then discuss
linear models and transfer functions which are the basic building blocks for the analysis and design
techniques presented in this book. The scaling of variables is critical in applications and so we provide
a simple procedure for this. An example is given to show how to derive a linear model in terms of
deviation variables for a practical application. Finally, we summarize the most important notation used
in the book.

1.1 The process of control system design
Control is the adjustment of the available degrees of freedom (manipulated variables) to assist
in achieving acceptable operation of a system (process, plant). The process of designing
(automatic) control systems usually makes many demands on the engineer or engineering
team. These demands often emerge in a step-by-step design procedure as follows:
1. Study the system (process, plant) to be controlled and obtain initial information about the

control objectives.
2. Model the system and simplify the model, if necessary.
3. Scale the variables and analyze the resulting model; determine its properties.
4. Decide which variables are to be controlled (controlled outputs).
5. Decide on the measurements and manipulated variables: what sensors and actuators will

be used and where will they be placed?
6. Select the control con£guration.
7. Decide on the type of controller to be used.
8. Decide on performance speci£cations, based on the overall control objectives.
9. Design a controller.

10. Analyze the resulting controlled system to see if the speci£cations are satis£ed; and if they
are not satis£ed modify the speci£cations or the type of controller.

11. Simulate the resulting controlled system, on either a computer or a pilot plant.
12. Repeat from step 2, if necessary.
13. Choose hardware and software and implement the controller.
14. Test and validate the control system, and tune the controller on-line, if necessary.

Control courses and textbooks usually focus on steps 9 and 10 in the above procedure; that
is, on methods for controller design and control system analysis. Interestingly, many real
control systems are designed without any consideration of these two steps. For example, even
for complex systems with many inputs and outputs, it may be possible to design workable

Multivariable Feedback Control: Analysis and Design. Second Edition
S. Skogestad and I. Postlethwaite c© 2005, 2006 John Wiley & Sons, Ltd
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control systems, often based on a hierarchy of cascaded control loops, using only on-line
tuning (involving steps 1, 4, 5, 6, 7, 13 and 14). However, even in such cases a suitable
control structure may not be known at the outset, and there is a need for systematic tools
and insights to assist the designer with steps 4, 5 and 6. A special feature of this book is the
provision of tools for input–output controllability analysis (step 3) and for control structure
design (steps 4, 5, 6 and 7).

Input–output controllability is the ability to achieve acceptable control performance. It is
affected by the locations of the sensors and actuators, but otherwise it cannot be changed by
the control engineer. Simply stated, “even the best control system cannot make a Ferrari out
of a Volkswagen”. Therefore, the process of control system design should in some cases also
include a step 0, involving the design of the process equipment itself. The idea of looking at
process equipment design and control system design as an integrated whole is not new, as is
clear from the following quote taken from a paper by Ziegler and Nichols (1943):

In the application of automatic controllers, it is important to realize that
controller and process form a unit; credit or discredit for results obtained are
attributable to one as much as the other. A poor controller is often able to
perform acceptably on a process which is easily controlled. The £nest controller
made, when applied to a miserably designed process, may not deliver the desired
performance. True, on badly designed processes, advanced controllers are able
to eke out better results than older models, but on these processes, there is a
de£nite end point which can be approached by instrumentation and it falls short
of perfection.

Ziegler and Nichols then proceed to observe that there is a factor in equipment design that is
neglected, and state that

the missing characteristic can be called the “controllability”, the ability of the
process to achieve and maintain the desired equilibrium value.

To derive simple tools with which to quantify the inherent input–output controllability of a
plant is the goal of Chapters 5 and 6.

1.2 The control problem
The objective of a control system is to make the output y behave in a desired way by
manipulating the plant input u. The regulator problem is to manipulate u to counteract the
effect of a disturbance d. The servo problem is to manipulate u to keep the output close to
a given reference input r. Thus, in both cases we want the control error e = y − r to be
small. The algorithm for adjusting u based on the available information is the controller K.
To arrive at a good design forK we need a priori information about the expected disturbances
and reference inputs, and of the plant model (G) and disturbance model (Gd). In this book,
we make use of linear models of the form

y = Gu+Gdd (1.1)

A major source of dif£culty is that the models (G, Gd) may be inaccurate or may change
with time. In particular, inaccuracy in G may cause problems because the plant will be part
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of a feedback loop. To deal with such a problem we will make use of the concept of model
uncertainty. For example, instead of a single model G we may study the behaviour of a class
of models, Gp = G+E, where the model “uncertainty” or “perturbation” E is bounded, but
otherwise unknown. In most cases weighting functions, w(s), are used to express E = w∆
in terms of normalized perturbations, ∆, where the magnitude (norm) of ∆ is less than or
equal to 1. The following terms are useful:

Nominal stability (NS). The system is stable with no model uncertainty.

Nominal performance (NP). The system satis£es the performance speci£cations with no
model uncertainty.

Robust stability (RS). The system is stable for all perturbed plants about the nominal model
up to the worst-case model uncertainty.

Robust performance (RP). The system satis£es the performance speci£cations for all
perturbed plants about the nominal model up to the worst-case model uncertainty.

1.3 Transfer functions
The book makes extensive use of transfer functions, G(s), and of the frequency domain,
which are very useful in applications for the following reasons:

• Invaluable insights are obtained from simple frequency-dependent plots.
• Important concepts for feedback such as bandwidth and peaks of closed-loop transfer

functions may be de£ned.
• G(jω) gives the response to a sinusoidal input of frequency ω.
• A series interconnection of systems corresponds in the frequency domain to the

multiplication of the individual system transfer functions, whereas in the time domain,
the evaluation of complicated convolution integrals is required.

• Poles and zeros appear explicitly in factorized scalar transfer functions.
• Uncertainty is more easily handled in the frequency domain. This is related to the fact

that two systems can be described as close (i.e. have similar behaviour) if their frequency
responses are similar. On the other hand, a small change in a parameter in a state-space
description can result in an entirely different system response.

We consider linear, time-invariant systems whose input–output responses are governed by
linear ordinary differential equations with constant coef£cients. An example of such a system
is

ẋ1(t) = −a1x1(t) + x2(t) + β1u(t)
ẋ2(t) = −a0x1(t) + β0u(t)
y(t) = x1(t)

(1.2)

where ẋ(t) ≡ dx/dt. Here u(t) represents the input signal, x1(t) and x2(t) the states, and
y(t) the output signal. The system is time-invariant since the coef£cients a1, a0, β1 and β0
are independent of time. If we apply the Laplace transform to (1.2) we obtain

sx̄1(s)− x1(t = 0) = −a1x̄1(s) + x̄2(s) + β1ū(s)
sx̄2(s)− x2(t = 0) = −a0x̄1(s) + β0ū(s)

ȳ(s) = x̄1(s)
(1.3)
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where ȳ(s) denotes the Laplace transform of y(t), and so on. To simplify our presentation we
will make the usual abuse of notation and replace ȳ(s) by y(s), etc. In addition, we will omit
the independent variables s and t when the meaning is clear.

If u(t), x1(t), x2(t) and y(t) represent deviation variables away from a nominal operating
point or trajectory, then we can assume x1(t = 0) = x2(t = 0) = 0. The elimination of
x̄1(s) and x̄2(s) from (1.3) then yields the transfer function

y(s)

u(s)
= G(s) =

β1s+ β0
s2 + a1s+ a0

(1.4)

Importantly, for linear systems, the transfer function is independent of the input signal
(forcing function). Notice that the transfer function in (1.4) may also represent the following
system:

ÿ(t) + a1ẏ(t) + a0y(t) = β1u̇(t) + β0u(t) (1.5)

with input u(t) and output y(t).
Transfer functions, such as G(s) in (1.4), will be used throughout the book to model

systems and their components. More generally, we consider rational transfer functions of
the form

G(s) =
βnzs

nz + · · ·+ β1s+ β0
sn + an−1sn−1 + · · ·+ a1s+ a0

(1.6)

For multivariable systems, G(s) is a matrix of transfer functions. In (1.6) n is the order of
the denominator (or pole polynomial) and is also called the order of the system, and nz is the
order of the numerator (or zero polynomial). Then n− nz is referred to as the pole excess or
relative order.

De£nition 1.1

• A system G(s) is strictly proper if G(jω)→ 0 as ω →∞.
• A system G(s) is semi-proper or bi-proper if G(jω)→ D 6= 0 as ω →∞.
• A system G(s) which is strictly proper or semi-proper is proper.
• A system G(s) is improper if G(jω)→∞ as ω →∞.

For a proper system, with n ≥ nz , we may realize (1.6) by a state-space description,
ẋ = Ax+Bu, y = Cx+Du, similar to (1.2). The transfer function may then be written as

G(s) = C(sI −A)−1B +D (1.7)

Remark. All practical systems have zero gain at a suf£ciently high frequency, and are therefore strictly
proper. It is often convenient, however, to model high-frequency effects by a non-zero D-term, and
hence semi-proper models are frequently used. Furthermore, certain derived transfer functions, such as
S = (I +GK)−1, are semi-proper.

Usually we let G(s) represent the effect of the inputs u on the outputs y, whereas Gd(s)
represents the effect on y of the disturbances d (“process noise”). We then have the following
linear process model in terms of deviation variables

y(s) = G(s)u(s) +Gd(s)d(s) (1.8)

We have here made use of the superposition principle for linear systems, which implies that a
change in a dependent variable (here y) can simply be found by adding together the separate
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effects resulting from changes in the independent variables (here u and d) considered one at
a time.

All the signals u(s), d(s) and y(s) are deviation variables. This is sometimes shown
explicitly, for example, by use of the notation δu(s), but since we always use deviation
variables when we consider Laplace transforms, the δ is normally omitted.

1.4 Scaling
Scaling is very important in practical applications as it makes model analysis and controller
design (weight selection) much simpler. It requires the engineer to make a judgement at the
start of the design process about the required performance of the system. To do this, decisions
are made on the expected magnitudes of disturbances and reference changes, on the allowed
magnitude of each input signal, and on the allowed deviation of each output.

Let the unscaled (or originally scaled) linear model of the process in deviation variables be

ŷ = Ĝû+ Ĝdd̂; ê = ŷ − r̂ (1.9)

where a hat ( ̂ ) is used to show that the variables are in their unscaled units. A useful
approach for scaling is to make the variables less than 1 in magnitude. This is done by
dividing each variable by its maximum expected or allowed change. For disturbances and
manipulated inputs, we use the scaled variables

d = d̂/d̂max, u = û/ûmax (1.10)

where:

• d̂max – largest expected change in disturbance
• ûmax – largest allowed input change

The maximum deviation from a nominal value should be chosen by thinking of the maximum
value one can expect, or allow, as a function of time.

The variables ŷ, ê and r̂ are in the same units, so the same scaling factor should be applied
to each. Two alternatives are possible:

• êmax – largest allowed control error
• r̂max – largest expected change in reference value

Since a major objective of control is to minimize the control error ê, we here usually choose
to scale with respect to the maximum control error:

y = ŷ/êmax, r = r̂/êmax, e = ê/êmax (1.11)

To formalize the scaling procedure, we introduce the scaling factors

De = êmax, Du = ûmax, Dd = d̂max, Dr = r̂max (1.12)

For multi-input multi-output (MIMO) systems, each variable in the vectors d̂, r̂, û and ê may
have a different maximum value, in which case De,Du,Dd and Dr become diagonal scaling
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matrices. This ensures, for example, that all errors (outputs) are of about equal importance in
terms of their magnitude.

The corresponding scaled variables to use for control purposes are then

d = D−1d d̂, u = D−1u û, y = D−1e ŷ, e = D−1e ê, r = D−1e r̂ (1.13)

On substituting (1.13) into (1.9) we get

Dey = ĜDuu+ ĜdDdd; Dee = Dey −Der

and introduction of the scaled transfer functions

G = D−1e ĜDu, Gd = D−1e ĜdDd (1.14)

yields the following model in terms of scaled variables:

y = Gu+Gdd; e = y − r (1.15)

Here u and d should be less than 1 in magnitude, and it is useful in some cases to introduce a
scaled reference r̃, which is less than 1 in magnitude. This is done by dividing the reference
by the maximum expected reference change

r̃ = r̂/r̂max = D−1r r̂ (1.16)

We then have that
r = Rr̃ where R , D−1e Dr = r̂max/êmax (1.17)

Here R is the largest expected change in reference relative to the allowed control error
(typically, R ≥ 1). The block diagram for the system in terms of scaled variables may then
be written as shown in Figure 1.1, for which the following control objective is relevant:

• In terms of scaled variables we have that |d(t)| ≤ 1 and |r̃(t)| ≤ 1, and our control
objective is to manipulate u with |u(t)| ≤ 1 such that |e(t)| = |y(t) − r(t)| ≤ 1 (at least
most of the time).

- - -? ?

? ?

-u
G

Gd

d

y
r
-

+
+

+

r̃

e

R

Figure 1.1: Model in terms of scaled variables

Remark 1 A number of the interpretations used in the book depend critically on a correct scaling.
In particular, this applies to the input–output controllability analysis presented in Chapters 5 and 6.
Furthermore, for a MIMO system one cannot correctly make use of the sensitivity function S =
(I +GK)−1 unless the output errors are of comparable magnitude.



INTRODUCTION 7

Remark 2 With the above scalings, the worst-case behaviour of a system is analyzed by considering
disturbances d of magnitude 1, and references r̃ of magnitude 1.

Remark 3 The control error is

e = y − r = Gu+Gdd−Rr̃ (1.18)

and we see that a normalized reference change r̃ may be viewed as a special case of a disturbance with
Gd = −R, where R is usually a constant diagonal matrix. We will sometimes use this observation to
unify our treatment of disturbances and references.

Remark 4 The scaling of the outputs in (1.11) in terms of the control error is used when analyzing a
given plant. However, if the issue is to select which outputs to control, see Section 10.3, then one may
choose to scale the outputs with respect to their expected variation (which is usually similar to r̂max).

Remark 5 If the expected or allowed variation of a variable about its nominal value is not symmetric,
then to allow for the worst case, we should use the largest variation for the scaling d̂max and the smallest
variations for the scalings ûmax and êmax.

Speci£cally, let ˜ denote the original physical variable (before introducing any deviation or scaling),
and let ∗ denote the nominal value. Furthermore, assume that in terms of the physical variables we have
that

d̃min ≤ d̃ ≤ d̃max

ũmin ≤ ũ ≤ ũmax

−|ẽ−| ≤ ẽ ≤ ẽ+

where ẽ = ỹ − r̃. Then we have the following scalings (or “ranges” or “spans”):

d̂max = max
(
|d̃max − d̃∗|, |d̃min − d̃∗|

)
(1.19)

ûmax = min (|ũmax − ũ∗|, |ũmin − ũ∗|) (1.20)
êmax = min (|ẽ−|, |ẽ+|) (1.21)

For example, if for the unscaled physical input we have 0 ≤ ũ ≤ 10 with nominal value ũ∗ = 4, then
the input scaling is ûmax = min (|10− 4|, |0− 4|) = min(6, 4) = 4.

Note that to get the worst case, we take the “max” for disturbances and “min” for inputs and outputs.
For example, if the disturbance is −5 ≤ d̃ ≤ 10 with zero nominal value (d̃∗ = 0), then d̂max = 10,
whereas if the manipulated input is −5 ≤ ũ ≤ 10 with zero nominal value (ũ∗ = 0), then ûmax = 5.
This approach may be conservative when the variations for several variables are not symmetric. The
resulting scaled variables are

d = (d̃− d̃∗)/d̂max (1.22)
u = (ũ− ũ∗)/ûmax (1.23)
y = (ỹ − ỹ∗)/êmax (1.24)

A further discussion on scaling and performance is given in Chapter 5 on page 165.

1.5 Deriving linear models
Linear models may be obtained from physical “£rst-principle” models, from analyzing input–
output data, or from a combination of these two approaches. Although modelling and system
identi£cation are not covered in this book, it is always important for a control engineer to
have a good understanding of a model’s origin. The following steps are usually taken when
deriving a linear model for controller design based on a £rst-principle approach:
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1. Formulate a nonlinear state-space model based on physical knowledge.
2. Determine the steady-state operating point (or trajectory) about which to linearize.
3. Introduce deviation variables and linearize the model. There are essentially three parts to

this step:
(a) Linearize the equations using a Taylor expansion where second- and higher-order terms

are omitted.
(b) Introduce the deviation variables, e.g. δx(t) de£ned by

δx(t) = x(t)− x∗

where the superscript ∗ denotes the steady-state operating point or trajectory along
which we are linearizing.

(c) Subtract the steady-state (or trajectory) to eliminate the terms involving only steady-
state quantities.

These parts are usually accomplished together. For example, for a nonlinear state-space
model of the form

dx

dt
= f(x, u) (1.25)

the linearized model in deviation variables (δx, δu) is

dδx(t)

dt
=

(
∂f

∂x

)∗

︸ ︷︷ ︸
A

δx(t) +

(
∂f

∂u

)∗

︸ ︷︷ ︸
B

δu(t) (1.26)

Here x and u may be vectors, in which case the Jacobians A and B are matrices.
4. Scale the variables to obtain scaled models which are more suitable for control purposes.

In most cases steps 2 and 3 are performed numerically based on the model obtained in
step 1. Also, since (1.26) is in terms of deviation variables, its Laplace transform becomes
sδx(s) = Aδx(s) +Bδu(s), or

δx(s) = (sI −A)−1Bδu(s) (1.27)

Example 1.1 Physical model of a room heating process. The above steps for deriving a linear
model will be illustrated on the simple example depicted in Figure 1.2, where the control problem
is to adjust the heat input Q to maintain constant room temperature T (within ±1 K). The outdoor
temperature To is the main disturbance. Units are shown in square brackets.

1. Physical model. An energy balance for the room requires that the change in energy in the room
must equal the net in¤ow of energy to the room (per unit of time). This yields the following state-space
model:

d

dt
(CV T ) = Q+ α(To − T ) (1.28)

where T [K] is the room temperature,CV [J/K] is the heat capacity of the room,Q [W] is the heat input
(from some heat source), and the term α(To − T ) [W] represents the net heat loss due to exchange of
air and heat conduction through the walls.

2. Operating point. Consider a case where the heat input Q∗ is 2000 W and the difference between
indoor and outdoor temperatures T ∗ − T ∗o is 20 K. Then the steady-state energy balance yields
α∗ = 2000/20 = 100 W/K. We assume the room heat capacity is constant, CV = 100 kJ/K. (This
value corresponds approximately to the heat capacity of air in a room of about 100 m3; thus we neglect
heat accumulation in the walls.)
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K

To[K]

α[W/K]
T [K]

CV [J/K]

Q[W ]

Figure 1.2: Room heating process

3. Linear model in deviation variables. If we assume α is constant, the model in (1.28) is already
linear. Then introducing deviation variables

δT (t) = T (t)− T ∗(t), δQ(t) = Q(t)−Q∗(t), δTo(t) = To(t)− T ∗o (t)

yields
CV

d

dt
δT (t) = δQ(t) + α(δTo(t)− δT (t)) (1.29)

Remark. If α may change then one would have to include an extra term (T ∗o − T ∗)δα(t) on the right
hand side of (1.29). Depending on the physics, α(t) could be an independent variable, or it could, e.g.
for a temperature-dependent heat transfer coef£sient, depend on the state variable (in which case we
have δalpha(t) = (∂alpha/∂T )δT (t)).

On taking Laplace transforms in (1.29), assuming δT (t) = 0 at t = 0, and rearranging we get

δT (s) =
1

τs+ 1

(
1

α
δQ(s) + δTo(s)

)
; τ =

CV
α

(1.30)

The time constant for this example is τ = 100 · 103/100 = 1000 s ≈ 17 min which is reasonable. It
means that for a step increase in heat input it will take about 17 min for the temperature to reach 63%
of its steady-state increase.

4. Linear model in scaled variables. We introduce the following scaled variables:

y(s) =
δT (s)

δTmax
; u(s) =

δQ(s)

δQmax
; d(s) =

δTo(s)

δTo,max
(1.31)

In our case the acceptable variations in room temperature T are ±1 K, i.e. δTmax = δemax = 1 K.
Furthermore, the heat input can vary between 0 W and 6000 W, and since its nominal value is 2000 W
we have δQmax = 2000 W (see Remark 5 on page 7). Finally, the expected variations in outdoor
temperature are ±10 K, i.e. δTo,max = 10 K. The model in terms of scaled variables then becomes

G(s) =
1

τs+ 1

δQmax

δTmax

1

α
=

20

1000s+ 1

Gd(s) =
1

τs+ 1

δTo,max

δTmax
=

10

1000s+ 1
(1.32)
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Note that the static gain for the input is k = 20, whereas the static gain for the disturbance is kd = 10.
The fact that |kd| > 1 means that we need some control (feedback or feedforward) to keep the output
within its allowed bound (|e| ≤ 1) when there is a disturbance of magnitude |d| = 1. The fact that
|k| > |kd| means that we have enough “power” in the inputs to reject the disturbance at steady state;
that is, we can, using an input of magnitude |u| ≤ 1, have perfect disturbance rejection (e = 0) for
the maximum disturbance (|d| = 1). We will return with a detailed discussion of this in Section 5.15.2
where we analyze the input–output controllability of the room heating process.

1.6 Notation
There is no standard notation to cover all of the topics covered in this book. We have tried
to use the most familiar notation from the literature whenever possible, but an overriding
concern has been to be consistent within the book, to ensure that the reader can follow the
ideas and techniques through from one chapter to another.

The most important notation is summarized in Figure 1.3, which shows a one degree-
of-freedom control con£guration with negative feedback, a two degrees-of-freedom control
con£guration1, and a general control con£guration. The last con£guration can be used
to represent a wide class of controllers, including the one and two degrees-of-freedom
con£gurations, as well as feedforward and estimation schemes and many others; and, as we
will see, it can also be used to formulate optimization problems for controller design. The
symbols used in Figure 1.3 are de£ned in Table 1.1. Apart from the use of v to represent the
controller inputs for the general con£guration, this notation is reasonably standard.

Lower-case letters are used for vectors and signals (e.g. u, y, n), and upper-case letters for
matrices, transfer functions and systems (e.g. G, K). Matrix elements are usually denoted
by lower-case letters, so gij is the ij’th element in the matrix G. However, sometimes we
use upper-case letters Gij , e.g. if G is partitioned so that Gij is itself a matrix, or to avoid
con¤icts in notation. The Laplace variable s is often omitted for simplicity, so we often write
G when we mean G(s).

For state-space realizations we use the standard (A,B,C,D) notation. That is, a system G
with a state-space realization (A,B,C,D) has a transfer function G(s) = C(sI −A)−1B+
D. We sometimes write

G(s)
s
=

[
A B
C D

]
(1.33)

to mean that the transfer function G(s) has a state-space realization given by the quadruple
(A,B,C,D).

For closed-loop transfer functions we use S to denote sensitivity at the plant output, and
T = I−S to denote complementary sensitivity. With negative feedback, S = (I+L)−1 and
T = L(I + L)−1, where L is the transfer function around the loop as seen from the output.
In most cases L = GK, but if we also include measurement dynamics (ym = Gmy+n) then
L = GKGm. The corresponding transfer functions as seen from the input of the plant are
LI = KG (or LI = KGmG), SI = (I + LI)

−1 and TI = LI(I + LI)
−1.

To represent uncertainty we use perturbations E (not normalized) or perturbations ∆
(normalized such that their magnitude (norm) is less than or equal to 1). The nominal plant
model is G, whereas the perturbed model with uncertainty is denoted Gp (usually for a set
1 The one degree-of-freedom controller has only the control error r − ym as its input, whereas the two degrees-of-

freedom controller has two inputs, namely r and ym.
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of possible perturbed plants) or G′ (usually for a particular perturbed plant). For example,
with additive uncertainty we may have Gp = G+EA = G+ wA∆A, where wA is a weight
representing the magnitude of the uncertainty.

By the right-half plane (RHP) we mean the closed right half of the complex plane,
including the imaginary axis (jω-axis). The left-half plane (LHP) is the open left half of the
complex plane, excluding the imaginary axis. A RHP-pole (unstable pole) is a pole located
in the right-half plane, and thus includes poles on the imaginary axis. Similarly, a RHP-zero
(“unstable” zero) is a zero located in the right-half plane.

We use AT to denote the transpose of a matrix A, and AH to represent its complex
conjugate transpose.

Mathematical terminology
The symbol , is used to denote equal by de£nition, def⇔ is used to denote equivalent by
de£nition, and A ≡ B means that A is identically equal to B.

Let A and B be logic statements. Then the following expressions are equivalent:
A⇐ B

A if B, or: If B then A
A is necessary for B

B⇒ A, or: B implies A
B is suf£cient for A

B only if A
not A⇒ not B

The remaining notation, special terminology and abbreviations will be de£ned in the text.
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Table 1.1: Nomenclature

K controller, in whatever con£guration. Sometimes the controller is broken
down into its constituent parts. For example, in the two degrees-of-
freedom controller in Figure 1.3(b),K = [Kr Ky ] whereKr is a pre£lter
and Ky is the feedback controller.

For the conventional control con£gurations (Figure 1.3(a) and (b)):
G plant model
Gd disturbance model
r reference inputs (commands, setpoints)
d disturbances (process noise, DV)
n measurement noise
y plant outputs (controlled variables, CV)
ym measured y
u plant inputs (manipulated variables, MV, control signals)

For the general control con£guration (Figure 1.3(c)):
P generalized plant model. It will include G andGd and the interconnection

structure between the plant and the controller. In addition, if P is being
used to formulate a design problem, then it will also include weighting
functions.

w exogenous inputs: commands, disturbances and noise
z exogenous outputs; “error” signals to be minimized, e.g. y − r
v controller inputs for the general con£guration, e.g. commands, measured

plant outputs, measured disturbances, etc. For the special case of a one
degree-of-freedom controller with perfect measurements we have v =
r − y.

u control signals
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2

CLASSICAL FEEDBACK
CONTROL

In this chapter, we review the classical frequency response techniques for the analysis and design of
single-loop (single-input single-output, SISO) feedback control systems. These loop-shaping techniques
have been successfully used by industrial control engineers for decades, and have proved to be
indispensable when it comes to providing insight into the bene£ts, limitations and problems of feedback
control. During the 1980’s the classical methods were extended to a more formal method based on
shaping closed-loop transfer functions; for example, by considering the H∞ norm of the weighted
sensitivity function. We introduce this method at the end of the chapter.

The same underlying ideas and techniques will recur throughout the book as we present practical
procedures for the analysis and design of multivariable (multi-input multi-output, MIMO) control
systems.

2.1 Frequency response
On replacing s by jω in a transfer function model G(s) we get the so-called frequency
response description. Frequency responses can be used to describe:

1. A system’s response to sinusoids of varying frequency.
2. The frequency content of a deterministic signal via the Fourier transform.
3. The frequency distribution of a stochastic signal via the power spectral density function.

In this book, we use the £rst interpretation, namely that of frequency-by-frequency sinusoidal
response. This interpretation has the advantage of being directly linked to the time domain,
and at each frequency ω the complex numberG(jω) (or complex matrix for a MIMO system)
has a clear physical interpretation. It gives the response to an input sinusoid of frequency ω.
This will be explained in more detail below. For the other two interpretations we cannot assign
a clear physical meaning to G(jω) or y(jω) at a particular frequency – it is the distribution
relative to other frequencies which matters then.

One important advantage of a frequency response analysis of a system is that it provides
insight into the bene£ts and trade-offs of feedback control. Although this insight may be
obtained by viewing the frequency response in terms of its relationship between power
spectral densities, as is evident from the excellent treatment by Kwakernaak and Sivan (1972),
we believe that the frequency-by-frequency sinusoidal response interpretation is the most
transparent and useful.

Multivariable Feedback Control: Analysis and Design. Second Edition
S. Skogestad and I. Postlethwaite c© 2005, 2006 John Wiley & Sons, Ltd
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Frequency-by-frequency sinusoids
We now want to give a physical picture of frequency response in terms of a system’s
response to persistent sinusoids. It is important that the reader has this picture in mind
when reading the rest of the book. For example, it is needed to understand the response of a
multivariable system in terms of its singular value decomposition. A physical interpretation of
the frequency response for a stable linear system y = G(s)u is as follows. Apply a sinusoidal
input signal with frequency ω [rad/s] and magnitude u0, such that

u(t) = u0 sin(ωt+ α)

This input signal is persistent; that is, it has been applied since t = −∞. Then the output
signal is also a persistent sinusoid of the same frequency, namely

y(t) = y0 sin(ωt+ β)

Here u0 and y0 represent magnitudes and are therefore both non-negative. Note that the output
sinusoid has a different amplitude y0 and is also shifted in phase from the input by

φ , β − α

Importantly, it can be shown that y0/u0 and φ can be obtained directly from the Laplace
transform G(s) after inserting the imaginary number s = jω and evaluating the magnitude
and phase of the resulting complex number G(jω). We have

y0/u0 = |G(jω)|; φ = ∠G(jω) [rad] (2.1)

For example, let G(jω) = a + jb, with real part a = Re G(jω) and imaginary part
b = Im G(jω), then

|G(jω)| =
√
a2 + b2; ∠G(jω) = arctan(b/a) (2.2)

In words, (2.1) says that after sending a sinusoidal signal through a systemG(s), the signal’s
magnitude is ampli£ed by a factor |G(jω)| and its phase is shifted by ∠G(jω). In Figure 2.1,
this statement is illustrated for the following £rst-order delay system (time in seconds):

G(s) =
ke−θs

τs+ 1
; k = 5, θ = 2, τ = 10 (2.3)

At frequency ω = 0.2 rad/s, we see that the output y lags behind the input by about a
quarter of a period and that the amplitude of the output is approximately twice that of the
input. More accurately, the ampli£cation is

|G(jω)| = k/
√

(τω)2 + 1 = 5/
√

(10ω)2 + 1 = 2.24

and the phase shift is

φ = ∠G(jω) = − arctan(τω)− θω = − arctan(10ω)− 2ω = −1.51 rad = −86.5◦

G(jω) is called the frequency response of the system G(s). It describes how the system
responds to persistent sinusoidal inputs of frequency ω. The magnitude of the frequency
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Figure 2.1: Sinusoidal response for system G(s) = 5e−2s/(10s+ 1) at frequency ω = 0.2 rad/s

response, |G(jω)|, being equal to |y0(ω)|/|u0(ω)|, is also referred to as the system gain.
Sometimes the gain is given in units of dB (decibel) de£ned as

A [dB] = 20 log10A (2.4)

For example, A = 2 corresponds to A = 6.02 dB, and A =
√
2 corresponds to A = 3.01 dB,

and A = 1 corresponds to A = 0 dB.
Both |G(jω)| and ∠G(jω) depend on the frequency ω. This dependency may be plotted

explicitly in Bode plots (with ω as independent variable) or somewhat implicitly in a Nyquist
plot (phase plane plot). In Bode plots we usually employ a log-scale for frequency and gain,
and a linear scale for the phase.
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Figure 2.2: Frequency response (Bode plots) of G(s) = 5e−2s/(10s+ 1)

In Figure 2.2, the Bode plots are shown for the system in (2.3). We note that in this case
both the gain and phase fall monotonically with frequency. This is quite common for process
control applications. The delay θ only shifts the sinusoid in time, and thus affects the phase
but not the gain. The system gain |G(jω)| is equal to k at low frequencies; this is the steady-
state gain and is obtained by setting s = 0 (or ω = 0). The gain remains relatively constant
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up to the break frequency 1/τ where it starts falling sharply. Physically, the system responds
too slowly to let high-frequency (“fast”) inputs have much effect on the outputs.

The frequency response is also useful for an unstable plant G(s), which by itself has no
steady-state response. Let G(s) be stabilized by feedback control, and consider applying a
sinusoidal forcing signal to the stabilized system. In this case all signals within the system
are persistent sinusoids with the same frequency ω, andG(jω) yields as before the sinusoidal
response from the input to the output of G(s).

Phasor notation. For any sinusoidal signal

u(t) = u0 sin(ωt+ α)

we may introduce the phasor notation by de£ning the complex number

u(ω) , u0e
jα (2.5)

We then have that
u0 = |u(ω)|; α = ∠u(ω) (2.6)

We use ω as an argument to show explicitly that this notation is used for sinusoidal signals,
and also because u0 and α generally depend on ω. Note that u(ω) is not equal to u(s)
evaluated at s = ω or s = jω, nor is it equal to u(t) evaluated at t = ω. From Euler’s
formula for complex numbers, we have that ejz = cos z+ j sin z. It then follows that sin(ωt)
is equal to the imaginary part of the complex function ejωt, and we can write the time domain
sinusoidal response in complex form as follows:

u(t) = u0Im ej(ωt+α) gives, as t→∞ : y(t) = y0Im ej(ωt+β) (2.7)

where
y0 = |G(jω)|u0, β = ∠G(jω) + α (2.8)

and |G(jω)| and ∠G(jω) are de£ned in (2.2). Since G(jω) = |G(jω)| ej∠G(jω), the
sinusoidal response in (2.7) and (2.8) can be compactly written in phasor notation as follows:

y(ω)ejωt = G(jω)u(ω)ejωt (2.9)

or because the term ejωt appears on both sides

y(ω) = G(jω)u(ω) (2.10)

At each frequency, u(ω), y(ω) and G(jω) are complex numbers, and the usual rules for
multiplying complex numbers apply. We will use this phasor notation throughout the book.
Thus whenever we use notation such as u(ω) (with ω and not jω as an argument), the
reader should interpret this as a (complex) sinusoidal signal, u(ω)ejωt. The expression (2.10)
also applies to MIMO systems where u(ω) and y(ω) are complex vectors representing the
sinusoidal signals in the input and output channels, respectively, and G(jω) is a complex
matrix.

Minimum-phase systems. For stable systems which are minimum-phase (no time delays
or right-half plane (RHP) zeros) there is a unique relationship between the gain and phase of
the frequency response. This may be quanti£ed by the Bode gain–phase relationship which
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gives the phase of G (normalized1 such that G(0) > 0) at a given frequency ω0 as a function
of |G(jω)| over the entire frequency range:

∠G(jω0) =
1

π

∫ ∞

−∞

d ln |G(jω)|
d lnω︸ ︷︷ ︸
N(ω)

ln

∣∣∣∣
ω + ω0
ω − ω0

∣∣∣∣ ·
dω

ω
(2.11)

The name minimum-phase refers to the fact that such a system has the minimum possible
phase lag for the given magnitude response |G(jω)|. The term N(ω) is the slope of the
magnitude in log-variables at frequency ω. In particular, the local slope at frequency ω0 is

N(ω0) =

(
d ln |G(jω)|
d lnω

)

ω=ω0

The term ln
∣∣∣ω+ω0
ω−ω0

∣∣∣ in (2.11) is in£nite at ω = ω0, so it follows that ∠G(jω0) is primarily

determined by the local slope N(ω0). Also
∫∞
−∞ ln

∣∣∣ω+ω0
ω−ω0

∣∣∣ · dωω = π2

2 which justi£es the
commonly used approximation for stable minimum-phase systems

∠G(jω0) ≈
π

2
N(ω0) [rad] = 90◦ ·N(ω0) (2.12)

The approximation is exact for the system G(s) = 1/sn (where N(ω) = −n), and it is good
for stable minimum-phase systems except at frequencies close to those of resonant (complex)
poles or zeros.

RHP-zeros and time delays contribute additional phase lag to a system when compared
to that of a minimum-phase system with the same gain (hence the term non-minimum-phase
system). For example, the systemG(s) = −s+a

s+a with a RHP-zero at s = a has a constant gain
of 1, but its phase is −2 arctan(ω/a) [rad] (and not 0 [rad] as it would be for the minimum-
phase system G(s) = 1 of the same gain). Similarly, the time delay system e−θs has a
constant gain of 1, but its phase is −ωθ [rad].

Straight-line approximations (asymptotes). For the design methods used in this book it is
useful to be able to sketch Bode plots quickly, and in particular the magnitude (gain) diagram.
The reader is therefore advised to become familiar with asymptotic Bode plots (straight-line
approximations). For example, for a transfer function

G(s) = k
(s+ z1)(s+ z2) · · ·
(s+ p1)(s+ p2) · · ·

(2.13)

the asymptotic Bode plots of G(jω) are obtained by using for each term (s + a) the
approximation jω + a ≈ a for ω < a and by jω + a ≈ jω for ω > a. These approximations
yield straight lines on a log–log plot which meet at the so-called break point frequency
ω = a. In (2.13) therefore, the frequencies z1, z2, . . . , p1, p2, . . . are the break points where
the asymptotes meet. For complex poles or zeros, the term s2 + 2ζsω0 + ω20 (where |ζ| < 1)
is approximated by ω2

0 for ω < ω0 and by s2 = (jω)2 = −ω2 for ω > ω0. The magnitude
of a transfer function is usually close to its asymptotic value, and the only case when there is
1 The normalization of G(s) is necessary to handle systems such as 1

s+2
and −1

s+2
, which have equal gain, are stable

and minimum-phase, but their phases differ by 180◦. Systems with integrators may be treated by replacing 1
s

by
1
s+ε

where ε is a small positive number.
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. The asymptotes are given by
dotted lines. The vertical dotted lines on the upper plot indicate the break frequencies ω1, ω2 and ω3.

signi£cant deviation is around the resonance frequency ω0 for complex poles or zeros with a
damping |ζ| of about 0.3 or less. In Figure 2.3, the Bode plots are shown for

L1(s) = 30
(s+ 1)

(s+ 0.01)2(s+ 10)
(2.14)

The asymptotes (straight-line approximations) are shown by dotted lines. In this example the
asymptotic slope of |L1| is 0 up to the £rst break frequency at ω1 = 0.01 rad/s where we
have two poles and then the slope changes to N = −2. Then at ω2 = 1 rad/s there is a zero
and the slope changes to N = −1. Finally, there is a break frequency corresponding to a pole
at ω3 = 10 rad/s and so the slope is N = −2 at this and higher frequencies. We note that
the magnitude follows the asymptotes closely, whereas the phase does not. The asymptotic
phase jumps at the break frequency by −90o (LHP-pole or RHP-zero) or +90o (LHP-zero or
RHP-pole),

Remark. The phase approximation can be signi£cantly improved if, for each term jω + a, we let the
phase contribution be zero for ω ≤ 0.1a and π/2 (90◦) for ω ≥ 10a, and then connect these two lines
by a third line from (0, ω = 0.1a) to (π/2, ω = 10a), which of course passes through the correct
phase π/4 at ω = a. For the terms s2 + 2ζsω0 + ω2

0 , ζ < 1, we can better approximate the phase by
letting it be zero for ω ≤ 0.1ω0 and π for ω ≥ 10ω0, with a third line connecting (0, ω = 0.1ω0) to
(π, ω = 10ω0), which passes through the correct phase π/2 at ω = ω0.

2.2 Feedback control
2.2.1 One degree-of-freedom controller
In most of this chapter, we examine the simple one degree-of-freedom negative feedback
structure shown in Figure 2.4. The input to the controller K(s) is r− ym where ym = y + n
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Figure 2.4: Block diagram of one degree-of-freedom feedback control system

is the measured output and n is the measurement noise. Thus, the input to the plant is

u = K(s)(r − y − n) (2.15)

The objective of control is to manipulate u (design K) such that the control error e remains
small in spite of disturbances d. The control error e is de£ned as

e = y − r (2.16)

where r denotes the reference value (setpoint) for the output.

Remark. In the literature, the control error is frequently de£ned as r− ym which is often the controller
input. However, this is not a good de£nition of an error variable. First, the error is normally de£ned as
the actual value (here y) minus the desired value (here r). Second, the error should involve the actual
value (y) and not the measured value (ym). We therefore use the de£nition in (2.16).

2.2.2 Closed-loop transfer functions
The plant model is written as

y = G(s)u+Gd(s)d (2.17)

and for a one degree-of-freedom controller the substitution of (2.15) into (2.17) yields

y = GK(r − y − n) +Gdd

or
(I +GK)y = GKr +Gdd−GKn (2.18)

and hence the closed-loop response is

y = (I +GK)−1GK︸ ︷︷ ︸
T

r + (I +GK)−1︸ ︷︷ ︸
S

Gdd− (I +GK)−1GK︸ ︷︷ ︸
T

n (2.19)
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The control error is
e = y − r = −Sr + SGdd− Tn (2.20)

where we have used the fact that T − I = −S. The corresponding plant input signal is

u = KSr −KSGdd−KSn (2.21)

The following notation and terminology are used:

L = GK loop transfer function
S = (I +GK)−1 = (I + L)−1 sensitivity function

T = (I +GK)−1GK = (I + L)−1L complementary sensitivity function

We see that S is the closed-loop transfer function from the output disturbances to the outputs,
while T is the closed-loop transfer function from the reference signals to the outputs. The
term complementary sensitivity for T follows from the identity

S + T = I (2.22)

To derive (2.22), we write S+T = (I+L)−1+(I+L)−1L and factor out the term (I+L)−1.
The term sensitivity function is natural because S gives the sensitivity reduction afforded by
feedback. To see this, consider the “open-loop” case, i.e. with no control (K = 0). Then the
error is

e = y − r = −r +Gdd+ 0 · n (2.23)

and a comparison with (2.20) shows that, with the exception of noise, the response with
feedback is obtained by premultiplying the right hand side by S.

Remark 1 Actually, the above explanation is not the original reason for the name “sensitivity”. Bode
£rst called S sensitivity because it gives the relative sensitivity of the closed-loop transfer function T
to the relative plant model error. In particular, at a given frequency ω we have for a SISO plant, by
straightforward differentiation of T , that

dT/T

dG/G
= S (2.24)

Remark 2 Equations (2.15)–(2.23) are written in matrix form because they also apply to MIMO
systems. Of course, for SISO systems we may write S + T = 1, S = 1

1+L
, T = L

1+L
and so on.

Remark 3 In general, closed-loop transfer functions for SISO systems with negative feedback may be
obtained from the rule

OUTPUT =
“direct”

1 + “loop”
· INPUT (2.25)

where “direct” represents the transfer function for the direct effect of the input on the output (with the
feedback path open) and “loop” is the transfer function around the loop (denoted L(s)). In the above
case L = GK. If there is also a measurement device, Gm(s), in the loop, then L(s) = GKGm. The
rule in (2.25) is easily derived by generalizing (2.18). In Section 3.2, we present a more general form of
this rule which also applies to multivariable systems.
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2.2.3 Two degrees-of-freedom and feedforward control
The control structure in Figure 2.4 is called one degree-of-freedom because the controller
K acts on a single signal, namely the difference r − ym. In the two degrees-of-freedom
structure of Figure 2.5, we treat the two signals ym and r independently by introducing
a “feedforward” controller Kr on the reference2. In Figure 2.5 we have also introduced a
feedforward controller Kd for the measured disturbance d. The plant input in Figure 2.5 is
the sum of the contributions from the feedback controller and the two feedforward controllers,

u = K(r − y)︸ ︷︷ ︸
feedback

+Krr −Kdd︸ ︷︷ ︸
feedforward

(2.26)

where for simplicity we have assumed perfect measurements of y and d. After substituting
(2.26) into (2.17) and solving with respect to y,

y = (I +GK)−1 [G(K +Kr)r + (Gd −GKd)d] (2.27)

Using SGK − I = T − I = −S, the resulting control error is

e = y − r = S (−Srr + SdGdd) (2.28)

where the three “sensitivity” functions, giving the effect of control, are de£ned by

S = (I +GK)−1, Sr = I −GKr, Sd = I −GKdG
−1
d (2.29)

S is the classical feedback sensitivity function, whereas Sr and Sd are the “feedforward
sensitivity functions” for reference and disturbance, respectively. Without feedback control
(K = 0) we have S = I , and correspondingly without feedforward control (Kd = 0 and
Kr = 0) we have Sd = I and Sr = I . We want the sensitivities to be small to get a small
error e. More precisely,
2 There are many other ways of introducing two degrees-of-freedom control, see e.g. Figure 2.25 (page 52) for a

“pre£lter” structure. The form in Figure 2.5 is preferred here because it uni£es the treatment of references and
disturbances.
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• For reference tracking we want the product SSr to be small.
• For disturbance rejection we want the product SSd to be small.

From this we get the important insight that that the primary objective of feedforward control
is to improve performance (when required) at frequencies where feedback is not effective (i.e.
where |S| ≥ 1).

2.2.4 Why feedback?
“Perfect” control can be obtained, even without feedback (K = 0), by using the feedforward
controllers

Kr(s) = G−1(s); Kd(s) = G−1(s)Gd(s) (2.30)

To con£rm this, let u = Krr −Kdd and we get

y = G(G−1r −G−1Gdd) +Gdd = r

These controllers also give Sr = 0 and Sd = 0 in (2.28). However, note that in (2.30) we
must assume that it is possible to realize physically the plant inverse G−1 and that both the
plant G and the resulting controller containing the term G−1 are stable. These are serious
considerations, but of more general concern is the loss of performance that inevitably arises
because (1) the disturbances are never known (measured) exactly, and (2)G is never an exact
model. The fundamental reasons for using feedback control are therefore the presence of

1. Signal uncertainty – unknown disturbance (d)
2. Model uncertainty (∆)
3. An unstable plant

The third reason follows because unstable plants can only be stabilized by feedback (see
Remark 2 on internal stability, page 145). In addition, for a nonlinear plant, feedback control
provides a linearizing effect on the system’s behaviour. This is discussed in the next section.

2.2.5 High-gain feedback
The bene£ts of feedback control require the use of “high” gains. As seen from (2.30), the
perfect feedforward controller uses an explicit model of the plant inverse as part of the
controller. With feedback, on the other hand, the use of high gains inGK implicitly generates
an inverse. To see this, note that with L = GK large, we get S = (1 + GK)−1 ≈ 0 and
T = I−S ≈ I . From (2.21) the input signal generated by feedback is u = KS(r−Gdd−n),
and from the identity KS = G−1T it follows that with high-gain feedback the input signal
is u ≈ G−1(r − Gdd − n) and we get y ≈ r − n. Thus, high-gain feedback generates the
inverse without the need for an explicit model, and this also explains why feedback control is
much less sensitive to uncertainty than feedforward control.

This is one of the beauties of feedback control; the problem is that high-gain feedback
may induce instability. The solution is to use high feedback gains only over a limited
frequency range (typically, at low frequencies), and to ensure that the gains “roll off” at higher
frequencies where stability is a problem. The design is most critical around the “bandwidth”
frequency where the loop gain |L| drops below 1. The design of feedback controllers therefore
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depends primarily on a good model descriptionG around the “bandwidth” frequency. Closed-
loop stability is discussed brie¤y in the next section, and is a recurring issue throughout the
book.

As mentioned earlier, an additional bene£t of feedback control is its ability to “linearize”
a system’s behaviour. Actually, there are two different linearizing effects:

1. A “local” linearizing effect in terms of the validity model: By use of feedback we can
control the output y about an operating point and prevent the system from drifting too far
away from its desired state. In this way, the system remains in the “linear region” where
the linear models G(s) and Gd(s) are valid. This local linearizing effect justi£es the use
of linear models in feedback controller design and analysis, as presented in this book and
as used by most practising control engineers.

2. A “global” linearizing effect in terms of the tracking response from the reference r to the
output y: As just discussed, the use of high-gain feedback yields y ≈ r−n. This holds also
for cases where nonlinear effects cause the linear model G to change signi£cantly as we
change r. Thus, even though the underlying system is strongly nonlinear (and uncertain)
the input–output response from y to r is approximately linear (and certain) with a constant
gain of 1.

Example 2.1 Feedback ampli£er. The “global” linearizing effect of negative feedback is the
basis for feedback ampli£ers, £rst developed by Harold Black in 1927 for telephone communication
(Kline, 1993). In the feedback ampli£er, we want to magnify the input signal r by a factor α by sending
it through an ampli£er G with a large gain. In an open-loop (feedforward) arrangement y = Gr

and we must adjust the ampli£er such that G = α. Black’s idea was to leave the high-gain ampli£er
unchanged, and instead modify the input signal r by subtracting (1/α)y, where y is the measured
output signal. This corresponds to inserting a controller K2 = 1/α in the negative feedback path
(e.g. see Figure 4.4(d) on page 147) to get y = G(r − K2y). The closed-loop response becomes
y = G

1+GK2
r and for |GK2| À 1 (which requires |G| À α) we get y ≈ 1

K2
r = α · r, as desired.

Note that the closed-loop gain α is set by the feedback network (K2 = 1/α) and is independent
of ampli£er (G) parameter changes. Furthermore, within the system’s closed-loop bandwidth, all
signals (with any magnitude or frequency) are ampli£ed by the same amount α, and this property is
independent of the ampli£er dynamics G(s). Apparently, Black’s claimed improvements, with simple
negative feedback, over the then-standard feedforward approach, seemed so unlikely that his patent
application was initially rejected.

Remark. In Black’s design, the ampli£er gain must be much larger than the desired closed-loop
ampli£cation (i.e. |G| À α). This seems unnecessary, because with feedforward control, it is suf£cient
to require |G| = α. Indeed, the requirement |G| À α can be avoided, if we add integral action to the
loop. This may be done by use of a “two degrees-of-freedom” controller where we add a controller K1

before the plant (ampli£er) to get y = GK1(r −K2y) (see Figure 4.4 on page 147). The closed-loop
response becomes y = GK1

1+GK1K2
r, and for |GK1K2| À 1 (which requires |GK1| À α) we get

y ≈ 1
K2

r = αr. The requirement |GK1K2| À 1 only needs to hold at those frequencies for which
ampli£cation is desired, and may be obtained by choosing K1 as a simple PI (proportional–integral)
controller with a proportional gain of 1; that is, K1 = 1+ 1

τIs
where τI is the adjustable integral time.

Of course, the “global” linearizing effect of negative feedback assumes that high-gain
feedback is possible and does not result in closed-loop instability. The latter is well known
with audio ampli£ers as “singing”, “ringing”, “squalling” or “howling”. In the next section,
we consider conditions for closed-loop stability.
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2.3 Closed-loop stability
A critical issue in designing feedback controllers is to achieve stability. As noted earlier, if
the feedback gain is too large, then the controller may “overreact” and the closed-loop system
becomes unstable. This is illustrated next by a simple example.
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Figure 2.6: Effect of proportional gain Kc on the closed-loop response y(t) for the inverse response
process

Example 2.2 Inverse response process. Consider the plant (time in seconds)

G(s) =
3(−2s+ 1)

(10s+ 1)(5s+ 1)
(2.31)

This is one of two main example processes used in this chapter to illustrate the techniques of classical
control. The model has a right-half plane (RHP) zero at s = 0.5 rad/s. This imposes a fundamental
limitation on control, and high controller gains will induce closed-loop instability.

This is illustrated for a proportional (P) controller K(s) = Kc in Figure 2.6, where the response
y = Tr = GKc(1 + GKc)

−1r to a step change in the reference (r(t) = 1 for t > 0) is shown for
four different values of Kc. The system is seen to be stable for Kc < 2.5, and unstable for Kc > 2.5.
The controller gain at the limit of instability, Ku = 2.5, is sometimes called the ultimate gain and for
this value the system is seen to cycle continuously with a period Pu = 15.2 s, corresponding to the
frequency ωu , 2π/Pu = 0.42 rad/s.

Two methods are commonly used to determine closed-loop stability:

1. The poles of the closed-loop system are evaluated. That is, the roots of 1 + L(s) = 0
are found, where L is the transfer function around the loop. The system is stable if and
only if all the closed-loop poles are in the open left-half plane (LHP) (i.e. poles on the
imaginary axis are considered “unstable”). The poles are also equal to the eigenvalues of
the state-space A-matrix, and this is usually how the poles are computed numerically.

2. The frequency response (including negative frequencies) of L(jω) is plotted in the
complex plane and the number of encirclements it makes of the critical point −1 is
counted. By Nyquist’s stability criterion (for which a detailed statement is given in
Theorem 4.9) closed-loop stability is inferred by equating the number of encirclements
to the number of open-loop unstable poles (RHP-poles).

For open-loop stable systems where ∠L(jω) falls with frequency such that ∠L(jω)
crosses−180◦ only once (from above at frequency ω180), one may equivalently use Bode’s
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stability condition which says that the closed-loop system is stable if and only if the loop
gain |L| is less than 1 at this frequency; that is

Stability ⇔ |L(jω180)| < 1 (2.32)

where ω180 is the phase crossover frequency de£ned by ∠L(jω180) = −180◦.
Method 1, which involves computing the poles, is best suited for numerical calculations.
However, time delays must £rst be approximated as rational transfer functions, e.g. Padé
approximations. Method 2, which is based on the frequency response, has a nice graphical
interpretation, and may also be used for systems with time delays. Furthermore, it provides
useful measures of relative stability and forms the basis for several of the robustness tests
used later in this book.

Example 2.3 Stability of inverse response process with proportional control. Let us determine
the condition for closed-loop stability of the plant G in (2.31) with proportional control; that is, with
K(s) = Kc (a constant) and loop transfer function L(s) = KcG(s).
1. The system is stable if and only if all the closed-loop poles are in the LHP. The poles are solutions to

1 + L(s) = 0 or equivalently the roots of

(10s+ 1)(5s+ 1) +Kc3(−2s+ 1) = 0

⇔ 50s2 + (15− 6Kc)s+ (1 + 3Kc) = 0 (2.33)
But since we are only interested in the half plane location of the poles, it is not necessary to solve
(2.33). Rather, one may consider the coef£cients ai of the characteristic equation ansn+ · · ·+a1s+
a0 = 0 in (2.33), and use the Routh–Hurwitz test to check for stability. For second-order systems,
this test says that we have stability if and only if all the coef£cients have the same sign. This yields
the following stability conditions:

(15− 6Kc) > 0; (1 + 3Kc) > 0

or equivalently −1/3 < Kc < 2.5. With negative feedback (Kc ≥ 0) only the upper bound is
of practical interest, and we £nd that the maximum allowed gain (“ultimate gain”) is Ku = 2.5
which agrees with the simulation in Figure 2.6. The poles at the onset of instability may be found by
substituting Kc = Ku = 2.5 into (2.33) to get 50s2 + 8.5 = 0, i.e. s = ±j

√
8.5/50 = ±j0.412.

Thus, at the onset of instability we have two poles on the imaginary axis, and the system will be
continuously cycling with a frequency ω = 0.412 rad/s corresponding to a period Pu = 2π/ω =
15.2 s. This agrees with the simulation results in Figure 2.6.

2. Stability may also be evaluated from the frequency response of L(s). A graphical evaluation is most
enlightening. The Bode plots of the plant (i.e. L(s) with Kc = 1) are shown in Figure 2.7. From
these one £nds the frequency ω180 where ∠L is −180◦ and then reads off the corresponding gain.
This yields |L(jω180)| = Kc|G(jω180)| = 0.4Kc, and we get from (2.32) that the system is stable
if and only if |L(jω180)| < 1 ⇔ Kc < 2.5 (as found above). Alternatively, the phase crossover
frequency may be obtained analytically from

∠L(jω180) = − arctan(2ω180)− arctan(5ω180)− arctan(10ω180) = −180◦

which gives ω180 = 0.412 rad/s as found in the pole calculation above. The loop gain at this
frequency is

|L(jω180)| = Kc
3 ·
√

(2ω180)2 + 1√
(5ω180)2 + 1 ·

√
(10ω180)2 + 1

= 0.4Kc

which is the same as found from the graph in Figure 2.7. The stability condition |L(jω180)| < 1 then
yields Kc < 2.5 as expected.
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Figure 2.7: Bode plots for L(s) = Kc
3(−2s+1)

(10s+1)(5s+1)
with Kc = 1

2.4 Evaluating closed-loop performance
Although closed-loop stability is an important issue, the real objective of control is to improve
performance; that is, to make the output y(t) behave in a more desirable manner. Actually, the
possibility of inducing instability is one of the disadvantages of feedback control which has
to be traded off against performance improvement. The objective of this section is to discuss
ways of evaluating closed-loop performance.

2.4.1 Typical closed-loop responses
The following example, which considers proportional plus integral (PI) control of the stable
inverse response process in (2.31), illustrates what type of closed-loop performance one might
expect.
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Figure 2.8: Closed-loop response to a unit step change in reference for the stable inverse response
process (2.31) with PI control
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Example 2.4 PI control of the inverse response process. We have already studied the use of a
proportional controller for the process in (2.31). We found that a controller gain of Kc = 1.5 gave a
reasonably good response, except for a steady-state offset (see Figure 2.6). The reason for this offset
is the non-zero steady-state sensitivity function, S(0) = 1

1+KcG(0)
= 0.18 (where G(0) = 3 is the

steady-state gain of the plant). From e = −Sr in (2.20) it follows that for r = 1 the steady-state
control error is −0.18 (as is con£rmed by the simulation in Figure 2.6). To remove the steady-state
offset we add integral action in the form of a PI controller

K(s) = Kc

(
1 +

1

τIs

)
(2.34)

The settings for Kc and τI can be determined from the classical tuning rules of Ziegler and Nichols
(1942):

Kc = Ku/2.2, τI = Pu/1.2 (2.35)
where Ku is the maximum (ultimate) P controller gain and Pu is the corresponding period of
oscillations. In our case Ku = 2.5 and Pu = 15.2 s (as observed from the simulation in Figure 2.6),
and we get Kc = 1.14 and τI = 12.7 s. Alternatively, Ku and Pu can be obtained analytically from
the model G(s),

Ku = 1/|G(jωu)|, Pu = 2π/ωu (2.36)
where ωu is de£ned by ∠G(jωu) = −180◦.

The closed-loop response, with PI control, to a step change in reference is shown in Figure 2.8. The
output y(t) has an initial inverse response due to the RHP-zero, but it then rises quickly and y(t) = 0.9
at t = 8.0 s (the rise time). The response is quite oscillatory and it does not settle to within ±5% of
the £nal value until after t = 65 s (the settling time). The overshoot (height of peak relative to the £nal
value) is about 62% which is much larger than one would normally like for reference tracking. The
overshoot is due to controller tuning, and could have been avoided by reducing the controller gain. The
decay ratio, which is the ratio between subsequent peaks, is about 0.35 which is also a bit large.

Exercise 2.1 ∗ Use (2.36) to compute Ku and Pu for the process in (2.31).

In summary, for this example, the Ziegler–Nichols PI tunings are somewhat “aggressive” and
give a closed-loop system with smaller stability margins and a more oscillatory response than
would normally be regarded as acceptable. For disturbance rejection the controller settings
may be more reasonable, and one can add a pre£lter to improve the response for reference
tracking, resulting in a two degrees-of-freedom controller. However, this will not change the
stability robustness of the system.
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Figure 2.9: Closed-loop response to a unit step change in reference for the unstable process (2.37) with
PI control
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Example 2.5 PI control of unstable process. Consider the unstable process,

G(s) =
4

(s− 1)(0.02s+ 1)2
(2.37)

Without control (K = 0), the output in response to any input change will eventually go out of bounds.
To stabilize, we use a PI controller (2.34) with settings3

Kc = 1.25, τI = 1.5 (2.38)
The resulting stable closed-loop response to a step change in the reference is shown in Figure 2.9. The
response is not oscillatory and the selected tunings are robust with a large gain margin of 18.7 (see
Section 2.4.3). The output y(t) has some overshoot (about 30%), which is unavoidable for an unstable
process. We note with interest that the input u(t) starts out positive, but that the £nal steady-state value
is negative. That is, the input has an inverse response. This is expected for an unstable process, since
the transfer function KS (from the plant output to the plant input) must have a RHP-zero, see page 146.

2.4.2 Time domain performance
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Figure 2.10: Characteristics of closed-loop response to step in reference

Step response analysis. The above examples illustrate the approach often taken by
engineers when evaluating the performance of a control system. That is, one simulates the
response to a step in the reference input, and considers the following characteristics (see
Figure 2.10):

• Rise time (tr): the time it takes for the output to £rst reach 90% of its £nal value, which is
usually required to be small.

• Settling time (ts): the time after which the output remains within ±ε% of its £nal value
(typically ε = 5), which is usually required to be small.

• Overshoot: the peak value divided by the £nal value, which should typically be 1.2 (20%)
or less.

• Decay ratio: the ratio of the second and £rst peaks, which should typically be 0.3 or less.
• Steady-state offset: the difference between the £nal value and the desired £nal value, which

is usually required to be small.
3 The PI controller for this unstable process is almost identical to the H-in£nity (H∞) S/KS controller obtained

using the weights wu = 1 and wP = 1/M + ω∗B/s with M = 1.5 and ω∗B = 10 in (2.112) and (2.113); see
Exercise 2.5 (page 65)
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The rise time and settling time are measures of the speed of the response, whereas the
overshoot, decay ratio and steady-state offset are related to the quality of the response.
Another measure of the quality of the response is:

• Total variation (TV): the total up and down movement of the signal (input or output),
which should be as small as possible. The computation of total variation is illustrated in
Figure 2.11. In Matlab, TV = sum(abs(diff(y))).
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The above measures address the output response, y(t). In addition, one should consider the
magnitude of the manipulated input (control signal, u), which usually should be as small and
smooth as possible. One measure of “smoothness” is to have a small total variation. Note that
attempting to reduce the total variation of the input signal is equivalent to adding a penalty on
input movement, as is commonly done when using model predictive control (MPC). If there
are important disturbances, then the response to these should also be considered. Finally, one
may investigate in simulation how the controller works if the plant model parameters are
different from their nominal values.

Remark 1 Another way of quantifying time domain performance is in terms of some norm of the error
signal e(t) = y(t)−r(t). For example, one might use the integral squared error (ISE), or its square root
which is the 2-norm of the error signal, ‖e(t)‖2 =

√∫∞
0
|e(τ)|2dτ . In this way, the various objectives

related to both the speed and quality of response are combined into one number. Actually, in most cases
minimizing the 2-norm seems to give a reasonable trade-off between the various objectives listed above.
Another advantage of the 2-norm is that the resulting optimization problems (such as minimizing ISE)
are numerically easy to solve. One can also take input magnitudes into account by considering, for
example, J =

√∫∞
0

(Q|e(t)|2 +R|u(t)|2)dt where Q and R are positive constants. This is similar to
linear quadratic (LQ) optimal control, but in LQ control one normally considers an impulse rather than
a step change in r(t).

Remark 2 The step response is equal to the integral of the corresponding impulse response, e.g. set
u(τ) = 1 in (4.11). Some thought then reveals that one can compute the total variation as the integrated
absolute area (1-norm) of the corresponding impulse response (Boyd and Barratt, 1991, p. 98). That is,
let y = Tr, then the total variation in y for a step change in r is

TV =

∫ ∞

0

|gT (τ)|dτ , ‖gT (t)‖1 (2.39)

where gT (t) is the impulse response of T , i.e. y(t) resulting from an impulse change in r(t).

skoge
Note
Another interpretation is that 

TV(y) = \int |dy/dt| dt

Thus, a large value of TV occurs for a signal y with large values of |dy/dt|.

Thus , for "smooth control" TV should be small.
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2.4.3 Frequency domain performance
The frequency response of the loop transfer function, L(jω), or of various closed-loop
transfer functions, may also be used to characterize closed-loop performance. Typical Bode
plots of L, T and S are shown in Figure 2.14. One advantage of the frequency domain
compared to a step response analysis is that it considers a broader class of signals (sinusoids
of any frequency). This makes it easier to characterize feedback properties, and in particular
system behaviour in the crossover (bandwidth) region. We will now describe some of the
important frequency domain measures used to assess performance, e.g. gain and phase
margins, the maximum peaks of S and T , and the various de£nitions of crossover and
bandwidth frequencies used to characterize speed of response.

Gain and phase margins
Let L(s) denote the loop transfer function of a system which is closed-loop stable under
negative feedback. A typical Bode plot and a typical Nyquist plot of L(jω) illustrating the
gain margin (GM) and phase margin (PM) are given in Figures 2.12 and 2.13, respectively.
From Nyquist’s stability condition, the closeness of the curve L(jω) to the point −1 in the
complex plane is a good measure of how close a stable closed-loop system is to instability.
We see from Figure 2.13 that GM measures the closeness of L(jω) to −1 along the real axis,
whereas PM is a measure along the unit circle.
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Figure 2.12: Typical Bode plot of L(jω) with PM and GM indicated

More precisely, if the Nyquist plot of L crosses the negative real axis between −1 and 0,
then the (upper) gain margin is de£ned as

GM = 1/|L(jω180)| (2.40)

where the phase crossover frequency ω180 is where the Nyquist curve of L(jω) crosses the
negative real axis between −1 and 0, i.e.

∠L(jω180) = −180◦ (2.41)
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Figure 2.13: Typical Nyquist plot of L(jω) for stable plant with PM and GM indicated. Closed-loop
instability occurs if L(jω) encircles the critical point −1.

If there is more than one such crossing between −1 and 0, then we take the closest crossing
to −1, corresponding to the largest value of |L(jω180)|. For some systems, e.g. for low-
order minimum-phase plants, there is no such crossing and GM = ∞. The GM is the factor
by which the loop gain |L(jω)| may be increased before the closed-loop system becomes
unstable. The GM is thus a direct safeguard against steady-state gain uncertainty (error).
Typically, we require GM > 2. On a Bode plot with a logarithmic axis for |L|, we have that
GM is the vertical distance (in dB) from the unit magnitude line down to |L(jω180)|, see
Figure 2.12. Note that 20 log10GM is the GM in dB.

In some cases, e.g. for an unstable plant, the Nyquist plot of L crosses the negative real axis
between −∞ and −1, and a lower gain margin (or gain reduction margin) can be similarly
de£ned,

GML = 1/|L(jωL180)| (2.42)
where ωL180 is the frequency where the Nyquist curve of L(jω) crosses the negative real
axis between −∞ and −1. If there is more than one such crossing, then we take the closest
crossing to−1, corresponding to the smallest value of |L(jω180)|. For many systems, e.g. for
most stable plants, there is no such crossing and GML = 0. The value of GML is the factor
by which the loop gain |L(jω)| may be decreased before the closed-loop system becomes
unstable.

The phase margin is de£ned as

PM = ∠L(jωc) + 180◦ (2.43)

where the gain crossover frequency ωc is the frequency where |L(jω)| crosses 1, i.e.

|L(jωc)| = 1 (2.44)
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If there is more than one such crossing, then the one giving the smallest value of PM is
taken. The PM tells us how much negative phase (phase lag) we can add to L(s) at frequency
ωc before the phase at this frequency becomes −180◦ which corresponds to closed-loop
instability (see Figure 2.13). Typically, we require PM larger than 30◦ or more. The PM is
a direct safeguard against time delay uncertainty; the system becomes unstable if we add a
time delay of

θmax = PM/ωc (2.45)

Note that the units must be consistent, and so if ωc is in [rad/s] then PM must be in radians.
It is also important to note that by decreasing the value of ωc (lowering the closed-loop
bandwidth, resulting in a slower response) the system can tolerate larger time delay errors.
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Figure 2.14: Bode magnitude and phase plots of L = GK, S and T when G(s) = 3(−2s+1)
(10s+1)(5s+1)

, and
K(s) = 1.136(1 + 1

12.7s
) (a Ziegler–Nichols PI controller)

Example 2.4 (page 28) continued. For the PI-controlled inverse response process example, the
corresponding Bode plots for L, S and T are shown in Figure 2.14. From the plot of L(jω), we £nd
that the phase margin (PM) is 19.4◦ (0.34 rad), the gain margin (GM) is 1.63 and ωc is 0.236 rad/s. The
allowed time delay error is then θmax = 0.34 rad/0.236 rad/s = 1.44 s. These margins are too small
according to common rules of thumb. As de£ned later in the text, the peak value of |S| is MS = 3.92,
and the peak value of |T | is MT = 3.35, which again are high according to normal design rules.

Example 2.5 (page 30) continued. The Bode plots of L, S and T for the PI-controlled unstable
process are shown in Figure 2.15. The gain margin (GM), lower gain margin (GML), phase margin
(PM) and peak values of S (MS) and T (MT ) are

GM = 18.7, GML = 0.21, PM = 59.5o,MS = 1.19,MT = 1.38

In this case, the phase of L(jω) crosses −180◦ twice. First, ∠L crosses −180◦ at a low frequency (ω
about 0.9) where |L| is about 4.8, and we have that the lower gain margin is GML = 1/4.8 = 0.21.
Second, ∠L crosses −180◦ at a high frequency (ω about 40) where |L| is about 0.054, and we have
that the (upper) gain margin is GM= 1/0.054 = 18.7. Thus, instability is induced by decreasing the
loop gain by a factor 4.8 or increasing it by a factor 18.7.
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Figure 2.15: Bode magnitude and phase plots of L = GK, S and T for PI control of unstable process,
G(s) = 4

(s−1)(0.02s+1)2
, K(s) = 1.25(1 + 1
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)

Exercise 2.2 Prove that the maximum additional delay for which closed-loop stability is maintained
is given by (2.45).

Exercise 2.3 ∗ Derive the approximation for Ku = 1/|G(jωu)| given in (5.96) for a £rst-order delay
system.

Stability margins are measures of how close a stable closed-loop system is to instability.
From the above arguments we see that the GM and PM provide stability margins for gain
and delay uncertainty. More generally, to maintain closed-loop stability, the Nyquist stability
condition tells us that the number of encirclements of the critical point −1 by L(jω) must
not change. Thus, the closeness of the frequency response L(jω) to the critical point −1 is a
good measure of closeness to instability. The GMs represent the closeness along the negative
real axis, and the PM along the unit circle. As discussed next, the actual closest distance is
equal to 1/MS , where MS is the peak value of the sensitivity |S(jω)|. As expected, the GM
and PM are closely related to MS , and since |S| is also a measure of performance, they are
therefore also useful in terms of performance. In summary, speci£cations on the GM and
PM (e.g. GM > 2 and PM > 30◦) are used to provide the appropriate trade-off between
performance and stability robustness.

Maximum peak criteria
The maximum peaks of the sensitivity and complementary sensitivity functions are de£ned
as

MS = max
ω
|S(jω)|; MT = max

ω
|T (jω)| (2.46)

(Note that MS = ‖S‖∞ and MT = ‖T‖∞ in terms of theH∞ norm introduced later.) Since
S + T = 1, using (A.51), it follows that at any frequency

∣∣ |S| − |T |
∣∣ ≤ |S + T | = 1
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so MS and MT differ at most by 1. A large value of MS therefore occurs if and only if MT

is large. For a stable plant, the peak value for |S| is usually higher than for |T | (MS > MT )
and occurs at a higher frequency (see Figure 2.14). For unstable plants, MT is usually larger
than MS (see Figure 2.15). Note that these are not general rules.

Typically, it is required that MS is less than about 2 (6 dB) and MT is less than about
1.25 (2 dB). A large value of MS or MT (larger than about 4) indicates poor performance as
well as poor robustness. An upper bound on MT has been a common design speci£cation in
classical control and the reader may be familiar with the use of M -circles on a Nyquist plot
or a Nichols chart used to determine MT from L(jω).

We now give some justi£cation for why we may want to bound the value of MS . Without
control (u = 0), we have e = y − r = Gdd− r, and with feedback control e = S(Gdd− r).
Thus, feedback control improves performance in terms of reducing |e| at all frequencies
where |S| < 1. Usually, |S| is small at low frequencies: for example, |S(0)| = 0 for
systems with integral action. But because all real systems are strictly proper we must at high
frequencies have that L→ 0 or equivalently S → 1. At intermediate frequencies one cannot
avoid in practice a peak value,MS , larger than 1 (e.g. see the remark below). Thus, there is an
intermediate frequency range where feedback control degrades performance, and the value
of MS is a measure of the worst-case performance degradation. One may also view MS as
a robustness measure. To maintain closed-loop stability, we want L(jω) to stay away from
the critical −1 point. The smallest distance between L(jω) and −1 is M−1

S , and therefore
for robustness, the smallerMS , the better. In summary, both for stability and performance we
want MS close to 1.

There is a close relationship between these maximum peaks and the GM and PM.
Speci£cally, for a given MS we are guaranteed

GM ≥ MS

MS − 1
; PM ≥ 2 arcsin

(
1

2MS

)
≥ 1

MS
[rad] (2.47)

For example, with MS = 2 we are guaranteed GM ≥ 2 and PM ≥ 29.0◦. Similarly, for a
given value of MT we are guaranteed

GM ≥ 1 +
1

MT
; PM ≥ 2 arcsin

(
1

2MT

)
≥ 1

MT
[rad] (2.48)

and speci£cally with MT = 2 we have GM ≥ 1.5 and PM ≥ 29.0◦.

Proof of (2.47) and (2.48): To derive the GM inequalities notice that L(jω180) = −1/GM (since
GM = 1/|L(jω180)| and L is real and negative at ω180), from which we get

T (jω180) =
−1

GM− 1
; S(jω180) =

1

1− 1
GM

(2.49)

and the GM results follow. To derive the PM inequalities in (2.47) and (2.48) consider Figure 2.16
where we have |S(jωc)| = 1/|1 + L(jωc)| = 1/|−1− L(jωc)| and we obtain

|S(jωc)| = |T (jωc)| = 1

2 sin(PM/2)
(2.50)

and the inequalities follow. Alternative formulae, which are sometimes used, follow from the identity
2 sin(PM/2) =

√
2(1− cos(PM)). 2
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Figure 2.16: Nyquist plot of vector L(jω). At frequency ωc we see that |1+L(jωc)| = 2 sin(PM/2).

Remark. Since GM > 1, we note with interest that (2.49) requires |S| to be larger than 1 at frequency
ω180. This means that provided ω180 exists, i.e. L(jω) has more than −180◦ phase lag at some
frequency (which is the case for any real system), then the peak of |S(jω)| must exceed 1.

In conclusion, we see that speci£cations on the peaks of |S(jω)| or |T (jω)| (MS or MT ) can
make speci£cations on the GM and PM unnecessary. For instance, requiring MS < 2 implies
the common rules of thumb GM > 2 and PM > 30◦.

2.4.4 Relationship between time and frequency domain peaks
For a change in reference r, the output is y(s) = T (s)r(s). Is there any relationship between
the frequency domain peak of T (jω), MT , and any characteristic of the time domain step
response, e.g. the overshoot or the total variation? To answer this consider a prototype second-
order system with complementary sensitivity function

T (s) =
1

τ2s2 + 2τζs+ 1
(2.51)

For underdamped systems with ζ < 1 the poles are complex and yield oscillatory step
responses. With r(t) = 1 (a unit step change) the values of the overshoot and total variation
for y(t) are given, together withMT andMS , as a function of ζ in Table 2.1. From Table 2.1,
we see that the total variation TV correlates quite well with MT . This is further con£rmed by
(A.137) and (2.39) which together yield the following general bounds:

MT ≤ TV ≤ (2n+ 1)MT (2.52)

Here n is the order of T (s), which is 2 for our prototype system in (2.51). Given that
the response of many systems can be crudely approximated by fairly low-order systems,
the bound in (2.52) suggests that MT may provide a reasonable approximation to the total
variation. This provides some justi£cation for the use of MT in classical control to evaluate
the quality of the response.
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Table 2.1: Step response characteristics and frequency peaks of prototype second-order system (2.51),
see also Table 2.2

Time domain, y(t) Frequency domain
ζ Overshoot Total variation MT MS

2.0 1 1 1 1.05
1.5 1 1 1 1.08
1.0 1 1 1 1.15
0.8 1.02 1.03 1 1.22
0.6 1.09 1.21 1.04 1.35
0.4 1.25 1.68 1.36 1.66
0.2 1.53 3.22 2.55 2.73
0.1 1.73 6.39 5.03 5.12

0.01 1.97 63.7 50.0 50.0

Table 2.2: Matlab program to generate Table 2.1
% Uses the Control toolbox
tau=1;zeta=0.1;t=0:0.01:100;
T = tf(1,[tau*tau 2*tau*zeta 1]); S = 1-T;
[A,B,C,D]=ssdata(T); y = step(A,B,C,D,1,t);
overshoot=max(y),tv=sum(abs(diff(y)))
Mt=norm(T,inf,1e-4),Ms=norm(S,inf,1e-4)

2.4.5 Bandwidth and crossover frequency
The concept of bandwidth is very important in understanding the bene£ts and trade-offs
involved when applying feedback control. Above we considered peaks of closed-loop transfer
functions, MS and MT , which are related to the quality of the response. However, for
performance we must also consider the speed of the response, and this leads to considering
the bandwidth frequency of the system. In general, a large bandwidth corresponds to a smaller
rise time, since high-frequency signals are more easily passed on to the outputs. A high
bandwidth also indicates a system which is sensitive to noise. Conversely, if the bandwidth is
small, the time response will generally be slow, and the system will usually be more robust.

Loosely speaking, bandwidth may be de£ned as the frequency range [ω1, ω2] over which
control is effective. In most cases we require tight control at steady-state so ω1 = 0, and we
then simply call ω2 = ωB the bandwidth.

The word “effective” may be interpreted in different ways, and this may give rise to
different de£nitions of bandwidth. The interpretation we use is that control is effective if
we obtain some bene£t in terms of performance. For tracking performance the error is
e = y − r = −Sr and we get that feedback is effective (in terms of improving performance)
as long as the relative error |e|/|r| = |S| is reasonably small, which we may de£ne to be
|S| ≤ 0.707.4 We then get the following de£nition:

De£nition 2.1 The (closed-loop) bandwidth, ωB , is the frequency where |S(jω)| £rst crosses
1/
√
2 = 0.707 (≈ −3 dB) from below.

Remark. Another interpretation is to say that control is effective if it signi£cantly changes the output
4 The reason for choosing the value 0.707 when de£ning the bandwidth ωB is that, for the simple case of a £rst-

order closed-loop response with S = s/(s + a), the low-frequency asymptote s/a of S crosses magnitude 1 at
frequency ω = a, and at this frequency |S(jω)| = 1/

√
2 = 0.707.
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response. For tracking performance, the output is y = Tr and since without control T = 0, we may say
that control is effective as long as T is reasonably large, which we may de£ne to be larger than 0.707.
This leads to an alternative de£nition which has been traditionally used to de£ne the bandwidth of a
control system: The bandwidth in terms of T , ωBT , is the highest frequency at which |T (jω)| crosses
1/
√
2 = 0.707 (≈ −3 dB) from above. However, we would argue that this alternative de£nition,

although being closer to how the term is used in some other £elds, is less useful for feedback control.

The gain crossover frequency, ωc, de£ned as the frequency where |L(jωc)| £rst crosses 1
from above, is also sometimes used to de£ne closed-loop bandwidth. It has the advantage of
being simple to compute and usually gives a value between ωB and ωBT . Speci£cally, for
systems with PM < 90◦ (most practical systems) we have

ωB < ωc < ωBT (2.53)

Proof of (2.53): Note that |L(jωc)| = 1 so |S(jωc)| = |T (jωc)|. Thus, when PM = 90◦ we get
|S(jωc)| = |T (jωc)| = 0.707 (see (2.50)), and we have ωB = ωc = ωBT . For PM < 90◦ we
get |S(jωc)| = |T (jωc)| > 0.707, and since ωB is the frequency where |S(jω)| crosses 0.707 from
below we must have ωB < ωc. Similarly, since ωBT is the frequency where |T (jω)| crosses 0.707
from above, we must have ωBT > ωc. 2

From this we have that the situation is generally as follows: Up to the frequency ωB , |S|
is less than 0.7 and control is effective in terms of improving performance. In the frequency
range [ωB , ωBT ] control still affects the response, but does not improve performance – in
most cases we £nd that in this frequency range |S| is larger than 1 and control degrades
performance. Finally, at frequencies higher than ωBT we have S ≈ 1 and control has no
signi£cant effect on the response. The situation just described is illustrated in Example 2.7
below (see Figure 2.18).

Example 2.4 (pages 28 and 34) continued. The plant G(s) = 3(−2s+1)
(10s+1)(5s+1)

has a RHP-zero
and the Ziegler–Nichols PI tunings (Kc = 1.14, τI = 12.7) are quite aggressive with GM = 1.63 and
PM = 19.4o. The bandwidth and crossover frequencies are ωB = 0.14, ωc = 0.24 and ωBT = 0.44,
which is in agreement with (2.53).

Example 2.6 Consider the simple case of a £rst-order closed-loop system,

L(s) =
k

s
, S(s) =

s

s+ k
; T (s) =

k

s+ k

In this ideal case, all bandwidth and crossover frequencies are identical: ωc = ωB = ωBT = k.
Furthermore, the phase of L remains constant at −90o, so PM = 90o, ω180 =∞ (or really unde£ned)
and GM =∞.

Example 2.7 Comparison of ωB and ωBT as indicators of performance. An example where ωBT
is a poor indicator of performance is the following (we are not suggesting this as a good controller
design!):

L =
−s+ z

s(τs+ τz + 2)
; T =

−s+ z

s+ z

1

τs+ 1
; z = 0.1, τ = 1 (2.54)

For this system, both L and T have a RHP-zero at z = 0.1, and we have GM = 2.1, PM = 60.1◦,
MS = 1.93 and MT = 1. We £nd that ωB = 0.036 and ωc = 0.054 are both less than z = 0.1
(as one should expect because speed of response is limited by the presence of RHP-zeros), whereas
ωBT = 1/τ = 1.0 is ten times larger than z. The closed-loop response to a unit step change in the
reference is shown in Figure 2.17. The rise time is 31.0 s, which is close to 1/ωB = 28.0 s, but very
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different from 1/ωBT = 1.0 s, illustrating that ωB is a better indicator of closed-loop performance
than ωBT .

The magnitude Bode plots of S and T are shown in Figure 2.18. We see that |T | ≈ 1 up to about
ωBT . However, in the frequency range from ωB to ωBT the phase of T (not shown) drops from about
−40◦ to about −220◦, so in practice tracking is out of phase and control is poor in this frequency
range.

In conclusion, ωB (which is de£ned in terms of |S|) and ωc (in terms of |L|) are good
indicators of closed-loop performance, while ωBT (in terms of |T |) may be misleading in
some cases. The reason is that we want T ≈ 1 in order to have good performance, and it
is not suf£cient that |T | ≈ 1; we must also consider its phase. On the other hand, for good
performance we want S close to 0, and this will be the case if |S| ≈ 0 irrespective of the
phase of S.

2.5 Controller design
Many methods exist for controller design and some of these will be discussed in Chapter 9.
In addition to heuristic rules and on-line tuning we can distinguish between three main
approaches to controller design:
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1. Shaping of transfer functions. In this approach the designer speci£es the magnitude of
some transfer function(s) as a function of frequency, and then £nds a controller which
gives the desired shape(s).

(a) Loop shaping. This is the classical approach in which the magnitude of the open-
loop transfer function, L(jω), is shaped. Usually no optimization is involved and the
designer aims to obtain |L(jω)| with desired bandwidth, slopes, etc. We will look at
this approach in detail later in Section 2.6. However, classical loop shaping is dif£cult
to apply for complicated systems, and one may then instead use the Glover–McFarlane
H∞ loop-shaping design presented in Chapter 9. The method consists of a second step
where optimization is used to make an initial loop-shaping design more robust.

(b) Shaping of closed-loop transfer functions, such as S, T and KS. One analytical
approach is the internal model control (IMC) design procedure, where one aims
to specify directly T (s). This works well for simple systems and is discussed in
Section 2.7. However, optimization is more generally used, resulting in various H∞
optimal control problems such as mixed weighted sensitivity; see Section 2.8 and later
chapters.

2. The signal-based approach. This involves time domain problem formulations resulting
in the minimization of a norm of a transfer function. Here one considers a particular
disturbance or reference change and then one tries to optimize the closed-loop response.
The “modern” state-space methods from the 1960’s, such as linear quadratic Gaussian
(LQG) control, are based on this signal-oriented approach. In LQG the input signals are
assumed to be stochastic (or alternatively impulses in a deterministic setting) and the
expected value of the output variance (or the 2-norm) is minimized. These methods may
be generalized to include frequency-dependent weights on the signals leading to what is
called the Wiener–Hopf (orH2 norm) design method.

By considering sinusoidal signals, frequency by frequency, a signal-based H∞ optimal
control methodology can be derived in which the H∞ norm of a combination of closed-
loop transfer functions is minimized. This approach has attracted signi£cant interest, and
may be combined with model uncertainty representations to yield quite complex robust
performance problems requiring µ-synthesis, an important topic which will be addressed
in later chapters.

In approaches 1 and 2, the overall design process is iterative between controller design
and performance (or cost) evaluation. If performance is not satisfactory then one must
either adjust the controller parameters directly (e.g. by reducing Kc from the value
obtained by the Ziegler–Nichols rules) or adjust some weighting factor in the objective
function used to synthesize the controller.

3. Numerical optimization. This often involves attempts to optimize directly the true
objectives, such as minimizing the rise time subject to satisfying given values for the
stability margins, etc. Computationally, such optimization problems may be dif£cult
to solve, especially if one does not have convexity in the controller parameters. Also,
by effectively including performance evaluation and controller design in a single-
step procedure, the problem formulation is far more critical than in iterative two-step
approaches.

The above off-line methods are used to precompute a feedback controller which is later
implemented on the plant. This is the main focus of this book. In addition, there exist
computational methods where the optimization problem is solved on-line. These methods
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are well suited for certain nonlinear problems where an explicit feedback controller does not
exist or is dif£cult to obtain. For example, in the process industry, model predictive control
is used to handle problems with constraints on the inputs and outputs. On-line optimization
approaches are expected to become more popular in the future as faster computers and more
ef£cient and reliable computational algorithms are developed.

2.6 Loop shaping
In the classical loop-shaping approach to feedback controller design, “loop shape” refers
to the magnitude of the loop transfer function L = GK as a function of frequency. An
understanding of how K can be selected to shape this loop gain provides invaluable insight
into the multivariable techniques and concepts which will be presented later in the book, and
so we will discuss loop shaping in some detail in this section.

2.6.1 Trade-offs in terms of L
Recall (2.20), which yields the closed-loop response in terms of the control error e = y − r:

e = − (I + L)−1︸ ︷︷ ︸
S

r + (I + L)−1︸ ︷︷ ︸
S

Gdd− (I + L)−1L︸ ︷︷ ︸
T

n (2.55)

For “perfect control” we want e = y − r = 0; that is, we would like

e ≈ 0 · d+ 0 · r + 0 · n

The £rst two requirements in this equation, namely disturbance rejection and command
tracking, are obtained with S ≈ 0, or equivalently, T ≈ I . Since S = (I + L)−1, this
implies that the loop transfer function L must be large in magnitude. On the other hand, the
requirement for zero noise transmission implies that T ≈ 0, or equivalently, S ≈ I , which is
obtained withL ≈ 0. This illustrates the fundamental nature of feedback design which always
involves a trade-off between con¤icting objectives; in this case between large loop gains for
disturbance rejection and tracking, and small loop gains to reduce the effect of noise.

It is also important to consider the magnitude of the control action u (which is the input to
the plant). We want u small because this causes less wear and saves input energy, and also
because u is often a disturbance to other parts of the system (e.g. consider opening a window
in your of£ce to adjust your comfort and the undesirable disturbance this will impose on the
air conditioning system for the building). In particular, we usually want to avoid fast changes
in u. The control action is given by u = K(r − ym) and we £nd as expected that a small u
corresponds to small controller gains and a small L = GK.

The most important design objectives which necessitate trade-offs in feedback control are
summarized below:

1. Performance, good disturbance rejection: needs large controller gains, i.e. L large.
2. Performance, good command following: L large.
3. Stabilization of unstable plant: L large.
4. Mitigation of measurement noise on plant outputs: L small.
5. Small magnitude of input signals: K small and L small.
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6. Physical system must be strictly proper: L has to approach 0 at high frequencies.
7. Stability (stable plant): L small.
Fortunately, the con¤icting design objectives mentioned above are generally in different
frequency ranges, and we can meet most of the objectives by using a large loop gain (|L| > 1)
at low frequencies below crossover, and a small gain (|L| < 1) at high frequencies above
crossover.

2.6.2 Fundamentals of loop-shaping design
By loop shaping we mean a design procedure that involves explicitly shaping the magnitude
of the loop transfer function, |L(jω)|. Here L(s) = G(s)K(s) where K(s) is the feedback
controller to be designed and G(s) is the product of all other transfer functions around the
loop, including the plant, the actuator and the measurement device. Essentially, to get the
bene£ts of feedback control we want the loop gain, |L(jω)|, to be as large as possible within
the bandwidth region. However, due to time delays, RHP-zeros, unmodelled high-frequency
dynamics and limitations on the allowed manipulated inputs, the loop gain has to drop below
1 at and above some frequency which we call the crossover frequency ωc. Thus, disregarding
stability for the moment, it is desirable that |L(jω)| falls sharply with frequency. To measure
how |L| falls with frequency we consider the logarithmic slope N = d ln |L|/d lnω. For
example, a slope N = −1 implies that |L| drops by a factor of 10 when ω increases by a
factor of 10. If the gain is measured in decibels (dB) then a slope of N = −1 corresponds to
−20 dB/ decade. The value of −N at high frequencies is often called the roll-off rate.

The design of L(s) is most crucial and dif£cult in the crossover region between ωc (where
|L| = 1) and ω180 (where ∠L = −180◦). For stability, we at least need the loop gain to
be less than 1 at frequency ω180, i.e. |L(jω180)| < 1. Thus, to get a high bandwidth (fast
response) we want ωc and therefore ω180 large; that is, we want the phase lag in L to be
small. Unfortunately, this is not consistent with the desire that |L(jω)| should fall sharply.
For example, the loop transfer function L = 1/sn (which has a slope N = −n on a log–log
plot) has a phase ∠L = −n · 90◦. Thus, to have a PM of 45◦ we need ∠L > −135◦, and the
slope of |L| cannot exceed N = −1.5.

In addition, if the slope is made steeper at lower or higher frequencies, then this will add
unwanted phase lag at intermediate frequencies. As an example, consider L1(s) given in
(2.14) with the Bode plot shown in Figure 2.3 on page 20. Here the slope of the asymptote of
|L| is −1 at the gain crossover frequency (where |L1(jωc)| = 1), which by itself gives −90◦
phase lag. However, due to the in¤uence of the steeper slopes of −2 at lower and higher
frequencies, there is a “penalty” of about −35◦ at crossover, so the actual phase of L1 at ωc

is approximately −125◦.
The situation becomes even worse for cases with delays or RHP-zeros in L(s) which add

undesirable phase lag to L without contributing to a desirable negative slope in L. At the gain
crossover frequency ωc, the additional phase lag from delays and RHP-zeros may in practice
be −30◦ or more.

In summary, a desired loop shape for |L(jω)| typically has a slope of about −1 in the
crossover region, and a slope of −2 or higher beyond this frequency; that is, the roll-off is
2 or larger. Also, with a proper controller, which is required for any real system, we must
have that L = GK rolls off at least as fast as G. At low frequencies, the desired shape of |L|
depends on what disturbances and references we are designing for. For example, if we are
considering step changes in the references or disturbances which affect the outputs as steps,
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then a slope for |L| of −1 at low frequencies is acceptable. If the references or disturbances
require the outputs to change in a ramp-like fashion then a slope of−2 is required. In practice,
integrators are included in the controller to get the desired low-frequency performance, and
for offset-free reference tracking the rule is that

• L(s) must contain at least one integrator for each integrator in r(s).

Proof: Let L(s) = L̂(s)/snI where L̂(0) is non-zero and £nite and nI is the number of integrators in
L(s) – sometimes nI is called the system type. Consider a reference signal of the form r(s) = 1/snr .
For example, if r(t) is a unit step, then r(s) = 1/s (nr = 1), and if r(t) is a ramp then r(s) = 1/s2

(nr = 2). The £nal value theorem for Laplace transforms is

lim
t→∞

e(t) = lim
s→0

se(s) (2.56)

In our case, the control error is

e(s) = − 1

1 + L(s)
r(s) = − snI−nr

snI + L̂(s)
(2.57)

and to get zero offset (i.e. e(t → ∞) = 0) we must from (2.56) require that nI ≥ nr , and the rule
follows. 2

In conclusion, one can de£ne the desired loop transfer function in terms of the following
speci£cations:

1. The gain crossover frequency, ωc, where |L(jωc)| = 1.
2. The shape of L(jω), e.g. in terms of the slope of |L(jω)| in certain frequency ranges.

Typically, we desire a slope of about N = −1 around crossover, and a larger roll-off at
higher frequencies. The desired slope at lower frequencies depends on the nature of the
disturbance or reference signal.

3. The system type, de£ned as the number of pure integrators in L(s).

In Section 2.6.4, we discuss how to specify the loop shape when disturbance rejection is the
primary objective of control. Loop-shaping design is typically an iterative procedure where
the designer shapes and reshapes |L(jω)| after computing the PM and GM, the peaks of
closed-loop frequency responses (MT and MS), selected closed-loop time responses, the
magnitude of the input signal, etc. The procedure is illustrated next by an example.

Example 2.8 Loop-shaping design for the inverse response process. We will now design a loop-
shaping controller for the example process in (2.31) which has a RHP-zero at s = 0.5. The RHP-zero
cannot be cancelled by the controller, because otherwise the system is internally unstable. Thus L
must contain the RHP-zeros of G. In addition, the RHP-zero limits the achievable bandwidth and so
the crossover region (de£ned as the frequencies between ωc and ω180) will be at about 0.5 rad/s. We
require the system to have one integrator (type 1 system), and therefore a reasonable approach is to let
the loop transfer function have a slope of−1 at low frequencies, and then to roll off with a higher slope
at frequencies beyond 0.5 rad/s. The plant and our choice for the loop shape is

G(s) =
3(−2s+ 1)

(10s+ 1)(5s+ 1)
; L(s) = 3Kc

(−2s+ 1)

s(2s+ 1)(0.33s+ 1)
(2.58)

The frequency response (Bode plots) of L is shown in Figure 2.19 for Kc = 0.05. The controller gain
Kc was selected to get reasonable stability margins (PM and GM). The asymptotic slope of |L| is −1
up to 3 rad/s where it changes to −2. The controller corresponding to the loop shape in (2.58) is

K(s) = Kc
(10s+ 1)(5s+ 1)

s(2s+ 1)(0.33s+ 1)
, Kc = 0.05 (2.59)
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Figure 2.19: Frequency response of L(s) in (2.58) for loop-shaping design with Kc = 0.05 (GM =
2.92, PM = 54◦, ωc = 0.15, ω180 = 0.43, MS = 1.75, MT = 1.11)
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Figure 2.20: Response to step in reference for loop-shaping design (2.59)

The controller has zeros at the locations of the plant poles. This is desired in this case because we do not
want the slope of the loop shape to drop at the break frequencies 1/10 = 0.1 rad/s and 1/5 = 0.2 rad/s
just before crossover. The phase of L is −90◦ at low frequency, and at ω = 0.5 rad/s the additional
contribution from the term −2s+1

2s+1
in (2.58) is−90◦, so for stability we need ωc < 0.5 rad/s. The choice

Kc = 0.05 yields ωc = 0.15 rad/s corresponding to GM = 2.92 and PM = 54◦. The corresponding
time response is shown in Figure 2.20. It is seen to be much better than the responses with either the
simple PI controller in Figure 2.8 (page 28) or with the P controller in Figure 2.6 (page 26). Figure 2.20
also shows that the magnitude of the input signal remains less than 1 in magnitude most of the time.
This means that the controller gain is not too large at high frequencies. The magnitude Bode plot for
the controller (2.59) is shown in Figure 2.21. It is interesting to note that in the crossover region around
ω = 0.5 rad/s the controller gain is quite constant, around 1 in magnitude, which is similar to the
“best” gain found using a P controller (see Figure 2.6).

Limitations imposed by RHP-zeros and time delays
Based on the above loop-shaping arguments we can now examine how the presence of delays
and RHP-zeros limits the achievable control performance. We have already argued that if
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Figure 2.21: Magnitude Bode plot of controller (2.59) for loop-shaping design

we want the loop shape to have a slope of −1 around crossover (ωc), with preferably a
steeper slope before and after crossover, then the phase lag of L at ωc will necessarily be
at least −90◦, even when there are no RHP-zeros or delays. Therefore, if we assume that for
performance and robustness we want a PM of about 35◦ or more, then the additional phase
contribution from any delays and RHP-zeros at frequency ωc cannot exceed about −55◦.

First consider a time delay θ. It yields an additional phase contribution of −θω, which
at frequency ω = 1/θ is −1 rad = −57◦ (which is slightly more than −55◦). Thus, for
acceptable control performance we need ωc < 1/θ, approximately.

Next consider a real RHP-zero at s = z. To avoid an increase in slope caused by this
zero we place a pole at s = −z such that the loop transfer function contains the term −s+z

s+z ,
the form of which is referred to as all-pass since its magnitude equals 1 at all frequencies.
The phase contribution from the all-pass term at ω = z/2 is −2 arctan(0.5) = −53◦
(which is very close to −55◦), so for acceptable control performance we need ωc < z/2,
approximately.

2.6.3 Inverse-based controller design
In Example 2.8, we made sure that L(s) contained the RHP-zero of G(s), but otherwise the
speci£ed L(s) was independent of G(s). This suggests the following possible approach for
a minimum-phase plant (i.e. one with no RHP-zeros or time delays). We select a loop shape
which has a slope of −1 throughout the frequency range, namely

L(s) =
ωc
s

(2.60)

where ωc is the desired gain crossover frequency. This loop shape yields a PM of 90◦ and an
in£nite GM since the phase of L(jω) never reaches −180◦. The controller corresponding to
(2.60) is

K(s) =
ωc
s
G−1(s) (2.61)

That is, the controller inverts the plant and adds an integrator (1/s). This is an old idea, and
is also the essential part of the internal model control (IMC) design procedure (Morari and
Za£riou, 1989) (page 55), which has proved successful in many applications. However, there
are at least three good reasons why this inverse-based controller may not be a good choice:
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1. RHP-zeros or a time delay in G(s) cannot be inverted.
2. The controller will not be realizable if G(s) has a pole excess of two or larger, and may

in any case yield large input signals. These problems may be partly £xed by adding high-
frequency dynamics to the controller.

3. The loop shape resulting from (2.60) and (2.61) is not generally desirable, unless the
references and disturbances affect the outputs as steps. This is illustrated by the following
example.

Example 2.9 Disturbance process. We now introduce our second SISO example control problem in
which disturbance rejection is an important objective in addition to command tracking. We assume that
the plant has been appropriately scaled as outlined in Section 1.4.

Problem formulation. Consider the disturbance process described by

G(s) =
200

10s+ 1

1

(0.05s+ 1)2
, Gd(s) =

100

10s+ 1
(2.62)

with time in seconds (a block diagram is shown in Figure 2.23 below). The control objectives are:
1. Command tracking: The rise time (to reach 90% of the £nal value) should be less than 0.3 s and the

overshoot should be less than 5%.
2. Disturbance rejection: The output in response to a unit step disturbance should remain within the

range [−1, 1] at all times, and it should return to 0 as quickly as possible (|y(t)| should at least be
less than 0.1 after 3 s).

3. Input constraints: u(t) should remain within the range [−1, 1] at all times to avoid input saturation
(this is easily satis£ed for most designs).
Analysis. Since Gd(0) = 100 we have that without control the output response to a unit disturbance

(d = 1) will be 100 times larger than what is deemed to be acceptable. The magnitude |Gd(jω)| is
lower at higher frequencies, but it remains larger than 1 up to ωd ≈ 10 rad/s (where |Gd(jωd)| = 1).
Thus, feedback control is needed up to frequency ωd, so we need ωc to be approximately equal to
10 rad/s for disturbance rejection. On the other hand, we do not want ωc to be larger than necessary
because of sensitivity to noise and stability problems associated with high-gain feedback. We will thus
aim at a design with ωc ≈ 10 rad/s.

Inverse-based controller design. We will consider the inverse-based design as given by (2.60) and
(2.61) with ωc = 10. Since G(s) has a pole excess of three this yields an unrealizable controller, and
therefore we choose to approximate the plant term (0.05s+1)2 by (0.1s+1) and then in the controller
we let this term be effective over one decade, i.e. we use (0.1s+ 1)/(0.01s+ 1) to give the realizable
design

K0(s) =
ωc
s

10s+ 1

200

0.1s+ 1

0.01s+ 1
, L0(s) =

ωc
s

0.1s+ 1

(0.05s+ 1)2(0.01s+ 1)
, ωc = 10 (2.63)

The response to a step reference is excellent as shown in Figure 2.22(a). The rise time is about 0.16 s
and there is no overshoot so the speci£cations are more than satis£ed. However, the response to a step
disturbance (Figure 2.22(b)) is much too sluggish. Although the output stays within the range [−1, 1],
it is still 0.75 at t = 3 s (whereas it should be less than 0.1). Because of the integral action the output
does eventually return to zero, but it does not drop below 0.1 until after 23 s.

The above example illustrates that the simple inverse-based design method, where L has a
slope of about N = −1 at all frequencies, does not always yield satisfactory designs. In the
example, reference tracking was excellent, but disturbance rejection was poor. The objective
of the next section is to understand why the disturbance response was so poor, and to propose
a more desirable loop shape for disturbance rejection.
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Figure 2.22: Responses with “inverse-based” controller K0(s) for the disturbance process

2.6.4 Loop shaping for disturbance rejection
At the outset we assume that the disturbance has been scaled such that at each frequency
|d(ω)| ≤ 1, and the main control objective is to achieve |e(ω)| < 1. With feedback control
we have e = y = SGdd, so to achieve |e(ω)| < 1 for |d(ω)| = 1 (the worst-case disturbance)
we require |SGd(jω)| < 1,∀ω, or equivalently,

|1 + L| > |Gd| ∀ω (2.64)

At frequencies where |Gd| > 1, this is approximately the same as requiring |L| > |Gd|.
However, in order to minimize the input signals, thereby reducing the sensitivity to noise and
avoiding stability problems, we do not want to use larger loop gains than necessary (at least
at frequencies around crossover). A reasonable initial loop shape Lmin(s) is then one that just
satis£es the condition

|Lmin| ≈ |Gd| (2.65)

where the subscript min signi£es that Lmin is the smallest loop gain to satisfy |e(ω)| < 1.
Since L = GK, the controller must satisfy

|K| > |Kmin| ≈ |G−1Gd| (2.66)

Note that this bound assumes that the models G and Gd are scaled such that the worst-
case disturbance d is of unit magnitude and the desired control error e is less than 1. The
implications of the bound are as follows:

• For disturbance rejection a good choice for the controller is one which contains the
dynamics (Gd) of the disturbance and inverts the dynamics (G) of the inputs (at least at
frequencies just before crossover).

• For disturbances entering directly at the plant output, Gd = 1, we get |Kmin| = |G−1|,
so an inverse-based design provides the best trade-off between performance (disturbance
rejection) and minimum use of feedback.

• For disturbances entering directly at the plant input (which is a common situation in
practice – often referred to as a load disturbance), we haveGd = G and we get |Kmin| = 1,
so a simple proportional controller with unit gain yields a good trade-off between output
performance and input usage.
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• Notice that a reference change may be viewed as a disturbance directly affecting the output.
This follows from (1.18), from which we get that a maximum reference change r = R may
be viewed as a disturbance d = 1 with Gd(s) = −R where R is usually a constant.
This explains why selecting K to be like G−1 (an inverse-based controller) yields good
responses to step changes in the reference.

In addition to satisfying |L| ≈ |Gd| (see (2.65)) at frequencies around crossover, the desired
loop shape L(s) may be modi£ed as follows:

1. Increase the loop gain at low frequencies to improve the performance. For example, we
could use

|K| = k ·
∣∣∣∣
s+ ωI

s

∣∣∣∣ ·
∣∣G−1Gd

∣∣ (2.67)

where k > 1 is used to speed up the response, and the integrator term is added to get zero
steady-state offset to a step disturbance.

2. Around crossover make the slopeN of |L| to be about−1. This is to achieve good transient
behaviour with acceptable GM and PM.

3. Let L(s) roll off faster at higher frequencies (beyond the bandwidth) in order to reduce
the use of manipulated inputs, to make the controller realizable and to reduce the effects
of noise.

The above requirements are concerned with the magnitude, |L(jω)|. In addition, the
dynamics (phase) of L(s) must be selected such that the closed-loop system is stable.
When selecting L(s) to satisfy |L| ≈ |Gd| one should replace Gd(s) by the corresponding
minimum-phase transfer function with the same magnitude; that is, time delays and RHP-
zeros in Gd(s) should not be included in L(s) as this will impose undesirable limitations
on feedback. On the other hand, any time delays or RHP-zeros in G(s) must be included
in L = GK because RHP pole–zero cancellations between G(s) and K(s) yield internal
instability; see Chapter 4. The £nal feedback controller has the form

K(s) = kw(s)G(s)−1Gd(s) (2.68)

where w(s) incorporates the various shaping and stabilizing ideas introduced above. Usually,
w(s) is also selected with the aim of getting a simple £nal controller K(s).

Remark. The idea of including a disturbance model in the controller is well known and is more
rigorously presented in, for example, research on the internal model principle (Wonham, 1974), or the
internal model control design for disturbances (Morari and Za£riou, 1989). However, our development
is simple and suf£cient for gaining the insight needed for later chapters.

Example 2.10 Loop-shaping design for the disturbance process. Consider again the plant
described by (2.62). The plant can be represented by the block diagram in Figure 2.23, and we see
that the disturbance enters at the plant input in the sense that G and Gd share the same dominating
dynamics as represented by the term 200/(10s+ 1).

Step 1. Initial design. From (2.65) we know that a good initial loop shape looks like |Lmin| =
|Gd| =

∣∣∣ 100
10s+1

∣∣∣ at frequencies up to crossover. The corresponding controller is K(s) = G−1Lmin =

0.5(0.05s + 1)2. This controller is not proper (i.e. it has more zeros than poles), but since the term
(0.05s + 1)2 only comes into effect at 1/0.05 = 20 rad/s, which is beyond the desired gain crossover
frequency ωc = 10 rad/s, we may replace it by a constant gain of 1 resulting in a proportional controller

K1(s) = 0.5 (2.69)
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Figure 2.23: Block diagram representation of the disturbance process in (2.62)

The magnitude of the corresponding loop transfer function, |L1(jω)|, and the response (y1(t)) to a step
change in the disturbance are shown in Figure 2.24. This simple controller works surprisingly well, and
for t < 3 s the response to a step change in the disturbance is not much different from that with the
more complicated inverse-based controller K0(s) of (2.63) as shown earlier in Figure 2.22. However,
there is no integral action and y1(t)→ 1 as t→∞.
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Figure 2.24: Loop shapes and disturbance responses for controllers K1, K2 and K3 for the disturbance
process

Step 2. More gain at low frequency. To get integral action we multiply the controller by the term
s+ωI
s

, see (2.67), where ωI is the frequency up to which the term is effective (the asymptotic value of
the term is 1 for ω > ωI ). For performance we want large gains at low frequencies, so we want ωI to
be large, but in order to maintain an acceptable PM (which is 44.7◦ for controller K1) the term should
not add too much negative phase at frequency ωc, so ωI should not be too large. A reasonable value is
ωI = 0.2ωc for which the phase contribution from s+ωI

s
is arctan(1/0.2) − 90◦ = −11◦ at ωc. In

our case ωc ≈ 10 rad/s, so we select the following controller:

K2(s) = 0.5
s+ 2

s
(2.70)

The resulting disturbance response (y2) shown in Figure 2.24(b) satis£es the requirement that |y(t)| <
0.1 at time t = 3 s, but y(t) exceeds 1 for a short time. Also, the response is slightly oscillatory as
might be expected since the PM is only 31◦ and the peak values for |S| and |T | are MS = 2.28 and
MT = 1.89.
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Step 3. High-frequency correction. To increase the PM and improve the transient response we
supplement the controller with “derivative action” by multiplying K2(s) by a lead–lag term which is
effective over one decade starting at 20 rad/s:

K3(s) = 0.5
s+ 2

s

0.05s+ 1

0.005s+ 1
(2.71)

This gives a PM of 51◦, and peak values MS = 1.43 and MT = 1.23. From Figure 2.24(b), it is seen
that the controller K3(s) reacts quicker than K2(s) and the disturbance response y3(t) stays below 1.

Table 2.3: Alternative loop-shaping designs for the disturbance process
Reference Disturbance

GM PM ωc MS MT tr ymax ymax y(t = 3)

Spec.→ ≈ 10 ≤ 0.3 ≤ 1.05 ≤ 1 ≤ 0.1

K0 9.95 72.9◦ 11.4 1.34 1 0.16 1.00 0.95 0.75
K1 4.04 44.7◦ 8.48 1.83 1.33 0.21 1.24 1.35 0.99
K2 3.24 30.9◦ 8.65 2.28 1.89 0.19 1.51 1.27 0.001
K3 19.7 50.9◦ 9.27 1.43 1.23 0.16 1.24 0.99 0.001

Table 2.3 summarizes the results for the four loop-shaping designs; the inverse-based design K0 for
reference tracking and the three designs K1,K2 and K3 for disturbance rejection. Although controller
K3 satis£es the requirements for disturbance rejection, it is not satisfactory for reference tracking; the
overshoot is 24% which is signi£cantly higher than the maximum value of 5%. On the other hand, the
inverse-based controller K0 inverts the term 1/(10s + 1) which is also in the disturbance model, and
therefore yields a very sluggish response to disturbances (the output is still 0.75 at t = 3 s whereas it
should be less than 0.1).

In summary, for this process none of the controller designs meet all the objectives for both
reference tracking and disturbance rejection. The solution is to use a two degrees-of-freedom
controller as discussed next.

2.6.5 Two degrees-of-freedom design
For reference tracking we typically want the controller to look like 1

sG
−1, see (2.61), whereas

for disturbance rejection we want the controller to look like 1
sG

−1Gd, see (2.67). We cannot
generally achieve both of these simultaneously with a single (feedback) controller.

The solution is to use a two degrees-of-freedom controller where the reference signal r and
output measurement ym are treated independently by the controller, rather than operating on
their difference r−ym as in a one degree-of-freedom controller. There exist several alternative
implementations of a two degrees-of-freedom controller. The most general form is shown in
Figure 1.3(b) on page 12 where the controller has two inputs (r and ym) and one output
(u). However, the controller is often split into two separate blocks. One form was shown in
Figure 2.5, but here we will use the form in Figure 2.25 where Ky denotes the feedback
part of the controller and Kr the reference pre£lter. The feedback controller Ky is used
to reduce the effect of uncertainty (disturbances and model error) whereas the pre£lter Kr

shapes the commands r to improve tracking performance. In general, it is optimal to design
the combined two degrees-of-freedom controller K in one step. However, in practice Ky is
often designed £rst for disturbance rejection, and then Kr is designed to improve reference
tracking. This is the approach taken here.
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Figure 2.25: Two degrees-of-freedom controller

Let T = L(1 + L)−1 (with L = GKy) denote the complementary sensitivity function
for the feedback system. Then for a one degree-of-freedom controller y = Tr, whereas for a
two degrees-of-freedom controller y = TKrr. If the desired transfer function for reference
tracking (often denoted the reference model) is Tref , then the corresponding ideal reference
pre£lter Kr satis£es TKr = Tref , or

Kr(s) = T−1(s)Tref(s) (2.72)

Thus, in theory we may design Kr(s) to get any desired tracking response Tref(s). However,
in practice it is not so simple because the resulting Kr(s) may be unstable (if G(s) has RHP-
zeros) or unrealizable, and also TKr 6= Tref if G(s) and thus T (s) is not known exactly.

Remark. A convenient practical choice of pre£lter is the lead–lag network

Kr(s) =
τleads+ 1

τlags+ 1
(2.73)

Here we select τlead > τlag if we want to speed up the response, and τlead < τlag if we want to slow
down the response. If one does not require fast reference tracking, which is the case in many process
control applications, a simple lag is often used (with τlead = 0).

Example 2.11 Two degrees-of-freedom design for the disturbance process. In Example 2.10 we
designed a loop-shaping controller K3(s) for the plant in (2.62) which gave good performance with
respect to disturbances. However, the command tracking performance was not quite acceptable as is
shown by y3 in Figure 2.26. The rise time is 0.16 s which is better than the required value of 0.3 s, but
the overshoot is 24% which is signi£cantly higher than the maximum value of 5%. To improve upon
this we can use a two degrees-of-freedom controller with Ky = K3, and we design Kr(s) based on
(2.72) with reference model Tref = 1/(0.1s + 1) (a £rst-order response with no overshoot). To get a
low-order Kr(s), we either may use the actual T (s) and then use a low-order approximation of Kr(s),
or we may start with a low-order approximation of T (s). We will do the latter. From the step response
y3 in Figure 2.26 we approximate the response by two parts: a fast response with time constant 0.1 s
and gain 1.5, and a slower response with time constant 0.5 s and gain −0.5 (the sum of the gains is 1).
Thus we use T (s) ≈ 1.5

0.1s+1
− 0.5

0.5s+1
= (0.7s+1)

(0.1s+1)(0.5s+1)
, from which (2.72) yields Kr(s) =

0.5s+1
0.7s+1

.
Following closed-loop simulations we modi£ed this slightly to arrive at the design

Kr3(s) =
0.5s+ 1

0.65s+ 1
· 1

0.03s+ 1
(2.74)
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Figure 2.26: Tracking responses with the one degree-of-freedom controller (K3) and the two degrees-
of-freedom controller (K3,Kr3) for the disturbance process

where the term 1/(0.03s + 1) was included to avoid the initial peaking of the input signal u(t) above
1. The tracking response with this two degrees-of-freedom controller is shown in Figure 2.26. The rise
time is 0.25 s which is better than the requirement of 0.3 s, and the overshoot is only 2.3% which is
better than the requirement of 5%. The disturbance response is the same as curve y3 in Figure 2.24. In
conclusion, we are able to satisfy all speci£cations using a low-order two degrees-of-freedom controller.

Loop shaping applied to a ¤exible structure
The following example shows how the loop-shaping procedure for disturbance rejection can
be used to design a one degree-of-freedom controller for a very different kind of plant.
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Figure 2.27: Flexible structure in (2.75)

Example 2.12 Loop shaping for a ¤exible structure. Consider the following model of a ¤exible
structure with a disturbance occurring at the plant input:

G(s) = Gd(s) =
2.5s(s2 + 1)

(s2 + 0.52)(s2 + 22)
(2.75)

From the Bode magnitude plot in Figure 2.27(a) we see that |Gd(jω)| À 1 around the resonance
frequencies of 0.5 and 2 rad/s, so control is needed at these frequencies. The dashed line in
Figure 2.27(b) shows the open-loop response to a unit step disturbance. The output is seen to cycle
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between −2 and 2 (outside the allowed range −1 to 1), which con£rms that control is needed.
From (2.66) a controller which meets the speci£cation |y(ω)| ≤ 1 for |d(ω)| = 1 is given by
|Kmin(jω)| = |G−1Gd| = 1. Indeed the controller

K(s) = 1 (2.76)

turns out to be a good choice as is veri£ed by the closed-loop disturbance response (solid line) in
Figure 2.27(b); the output goes up to about 0.5 and then returns to zero. The fact that the choice
L(s) = G(s) gives closed-loop stability is not immediately obvious since |G| has four gain crossover
frequencies. However, instability cannot occur because the plant is “passive” with ∠G > −180◦ at all
frequencies.

2.6.6 Conclusions on loop shaping
The loop-shaping procedure outlined and illustrated by the examples above is well suited for
relatively simple problems, as might arise for stable plants where L(s) crosses the negative
real axis only once. Although the procedure may be extended to more complicated systems
the effort required by the engineer is considerably greater. In particular, it may be very
dif£cult to achieve stability.

Fortunately, there exist alternative methods where the burden on the engineer is much less.
One such approach is the Glover–McFarlaneH∞ loop-shaping procedure which is discussed
in detail in Chapter 9. It is essentially a two-step procedure, where in the £rst step the
engineer, as outlined in this section, decides on a loop shape, |L| (denoted the “shaped plant”
Gs), and in the second step an optimization provides the necessary phase corrections to get a
stable and robust design. The method is applied to the disturbance process in Example 9.3 on
page 368.

An alternative to shaping the open-loop transfer function L(s) is to shape closed-loop
transfer functions. This is discussed next in Sections 2.7 and 2.8.

2.7 IMC design procedure and PID control for stable
plants

Speci£cations directly on the open-loop transfer function L = GK, as in the loop-shaping
design procedures of the previous section, make the design process transparent as it is clear
how changes in L(s) affect the controller K(s) and vice versa. An apparent problem with
this approach, however, is that it does not consider directly the closed-loop transfer functions,
such as S and T , which determine the £nal response. The following approximations apply:

|L(jω)| À 1 ⇒ S ≈ L−1; T ≈ 1
|L(jω)| ¿ 1 ⇒ S ≈ 1; T ≈ L

but in the important crossover region where |L(jω)| is close to 1, one cannot infer anything
about S and T from the magnitude of the loop shape, |L(jω)|.

An alternative design strategy is to shape directly the relevant closed-loop transfer
functions. In this section, we present such a strategy in the form of internal model control
(IMC), with a focus on the design of PID controllers. The more general approach of shaping
closed-loop transfer functions usingH∞ optimal control is discussed in the next section.
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The IMC design method (e.g. Morari and Za£riou, 1989) is simple and has proven to be
successful in applications. The idea is to specify the desired closed-loop response and solve
for the resulting controller. This simple idea, also known as “direct synthesis”, results in an
“inverse-based” controller design. The key step is to specify a good closed-loop response. To
do so, one needs to understand what closed-loop responses are achievable and desirable.

The £rst step in the IMC procedure for a stable plant is to factorize the plant model into
an invertible minimum-phase part (Gm) and a non-invertible all-pass part (Ga). A time delay
θ and non-minimum-phase (RHP) zeros zi cannot be inverted, because the inverse would be
non-causal and unstable, respectively. We therefore have

G(s) = GmGa (2.77)

Ga(s) = e−θs
∏

i

−s+ zi
s+ zi

, Re(zi) > 0; θ > 0 (2.78)

The second step is to specify the desired closed-loop transfer function T from references to
outputs, y = Tr. There is no way we can prevent T from including the non-minimum-phase
elements of Ga, so we specify

T (s) = f(s)Ga(s) (2.79)
where f(s) is a low-pass £lter selected by the designer, typically of the form f(s) =
1/(τcs+ 1)n. The rest is algebra. We have from (2.19) that

T = GK(1 +GK)−1 (2.80)

so combining (2.77), (2.79) and (2.80), and solving for the controller, yields

K = G−1
T

1− T = G−1m

1

f−1 −Ga
(2.81)

We note that the controller inverts the minimum-phase part Gm of the plant.
Example 2.13 We apply the IMC design method to a stable second-order plus time delay process

G(s) = k
e−θs

τ20 s
2 + 2τ0ζs+ 1

(2.82)

where ζ is the damping factor. |ζ| < 1 gives an underdamped process with oscillations. We consider
a stable process where τ0 and ζ are non-negative. Factorization yields Ga(s) = e−θs, Gm(s) =

k
τ20 s

2+2τ0ζs+1
. We select a £rst-order £lter f(s) = 1/(τcs + 1). From (2.79) this speci£es that we

desire, following the unavoidable time delay, a simple £rst-order tracking response with time constant
τc:

T (s) =
1

τcs+ 1
e−θs (2.83)

From (2.81), the resulting controller becomes

K(s) = G−1m
1

f−1 −Ga
=
τ20 s

2 + 2τ0ζs+ 1

k

1

τcs+ 1− e−θs
(2.84)

where τc is a tuning parameter. This controller is not rational and cannot be written in standard state-
space form. However, it can be easily realized in discrete form as a “Smith predictor”. Alternatively, we
can approximate the time delay and derive a rational controller. For example, we may use a £rst-order
Taylor approximation e−θs ≈ 1− θs. This gives

K(s) =
τ20 s

2 + 2τ0ζs+ 1

k

1

(τc + θ)s
(2.85)

which can be implemented as a PID controller.
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PID control. The PID controller, with three adjustable parameters, is the most widely used
control algorithm in industry. There are many variations, but the most common is probably
the “ideal” (or parallel) form

KPID(s) = Kc

(
1 +

1

τIs
+ τDs

)
(2.86)

where the parameters are the gain Kc, integral time τI and derivative time τD. Another
common implementation is the cascade form

KPID,cascade(s) = K̃c
τ̃Is+ 1

τ̃Is
(τ̃Ds+ 1) (2.87)

The cascade form is somewhat less general than (2.86) as it does not allow for complex zeros.
To translate the cascade PID settings in (2.87) to the ideal form in (2.86), we introduce the
factor α = 1 + τ̃D/τ̃I , and we have

Kc = K̃c · α, τI = τ̃I · α, τD = τ̃D/α (2.88)

As indicated, the reverse translation is not always possible.
With derivative action, the practical implementation is not as given in (2.86) and (2.87).

First, with τD non-zero, the controllers in (2.86) and (2.87) are improper. In practice, one
needs to add a £lter to the controller itself or to the controller input (measurement). The
£lter is typically of the form 1

ετDs+1 with ε about 0.1. In most cases, the addition of this
£lter will not noticeably change the closed-loop response. Second, to avoid “derivative
kick” the reference signal is usually not differentiated, which in effect corresponds to a two
degrees-of-freedom implementation. In summary, a typical practical implementation of the
PID controller (2.86) is

u = Kc

[(
1 +

1

τIs

)
(r − ym)− τDs

ετDs+ 1
ym

]
(2.89)

where u is the plant input, ym the plant measurement and r the reference.
Example 2.13 continued. The IMC controller (2.85) for the second-order process (2.82) can be
realized as an ideal PID controller (2.86) with

Kc =
1

k

2τ0ζ

τc + θ
, τI = 2τ0ζ, τD = 0.5τ0/ζ (2.90)

For ζ < 1 we have complex zeros in the controller and it cannot be realized in the cascade PID form
(2.87). However, for overdamped plants with ζ > 1, we can write the model (2.82) in the form

G(s) = k
e−θs

(τ1s+ 1)(τ2s+ 1)
(2.91)

resulting from (2.85) in the controller K(s) = (τ1s+1)(τ2s+1)
k

1
(τc+θ)s

. Comparing with (2.87), the
cascade PID settings become

K̃c =
1

k

τ1
τc + θ

, τ̃I = τ1, τ̃D = τ2 (2.92)

Using (2.88), the corresponding ideal PID settings become

Kc =
1

k

(τ1 + τ2)

τc + θ
, τI = τ1 + τ2, τD =

τ2
1 + τ2/τ1

(2.93)
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We note that the PID settings are simpler if we use the cascade form.
SIMC (Skogestad/Simple IMC) PID design for £rst- or second-order plus delay

process. Skogestad (2003) has derived simple rules for model reduction and PID tuning
based on the above ideas. He claims these are “probably the best simple PID tuning rules in
the world” �� . In process control, it is common to approximate the process with a £rst-order
plus time delay model,

G(s) =
k

τs+ 1
e−θs (2.94)

Specifying a £rst-order reference tracking response and using a £rst-order approximation of
the time delay then gives Kc = 1

k
τ

τc+θ and τI = τ (set τ1 = τ and τ2 = 0 in (2.93)). These
settings are derived for step references and also work well for step disturbances entering
directly at the plant output. However, for nearly integrating processes with large τ , say
τ ≥ 8θ, step disturbances entering at the plant input will affect the output in a ramp-like
fashion. To counteract this, one may modify (increase) the integral action by decreasing τI .
However, to avoid undesired closed-loop oscillations, τI cannot be decreased too much, and
Skogestad (2003) recommends the following SIMC PI settings for the plant model (2.94):

Kc =
1

k

τ

τc + θ
, τI = min (τ, 4(τc + θ)) (2.95)

For PI control there is no difference between the ideal (2.86) and cascade (2.87) forms. The
use of derivative action (PID control) is uncommon in process control applications, where
most plants are stable with simple overdamped responses. This is because the performance
improvement is usually too small to justify the added complexity and the increased sensitivity
to measurement noise. One exception is for a “dominant” second-order process,

G(s) = k
e−θs

(τ1s+ 1)(τ2s+ 1)
(2.96)

where τ1 ≥ τ2 and “dominant” means roughly speaking that τ2 > θ. We derived cascade
PID settings for this model in (2.92). Again, to improve the performance for integrating
disturbances, we need to modify the integral time for an integrating process. Thus, for the
plant model (2.96) the recommended SIMC settings with the cascade PID controller (2.87)
are

K̃c =
1

k

τ1
τc + θ

, τ̃I = min (τ1, 4(τc + θ)) , τ̃D = τ2 (2.97)

The corresponding settings for the ideal-form PID controller are obtained using (2.88), but
are more complicated.

The settings in (2.95) and (2.97) follow directly from the model, except for the single
tuning parameter τc that affects the controller gain (and the integral time for near-integrating
processes). The choice of the tuning parameter τc is based on a trade-off between output
performance (favoured by a small τc) and robustness and input usage (favoured by a large
τc). To achieve “fast” control with acceptable robustness, Skogestad (2003) recommends
τc = θ , which for the model (2.96) gives a sensitivity peak MS ≈ 1.7, gain margin GM
≈ 3 and crossover frequency ωc = 0.5/θ.

Model reduction and effective delay. To derive a model in the form (2.94) or (2.96),
where θ is the effective delay, Skogestad (2003) provides some simple analytic rules for
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model reduction. These are based on the approximations e−θs ≈ 1 − θs (for approximating
a RHP-zero as a delay) and e−θs ≈ 1/(1 + θs) (for approximating a lag as a delay). The
lag approximation is conservative, because in terms of control a delay is worse than a lag of
equal magnitude. Thus, when approximating the largest lag, Skogestad (2003) recommends
the use of the simple half rule:

• Half rule. The largest neglected lag (denominator) time constant is distributed equally to
the effective delay and the smallest retained time constant.

To illustrate, let the original model be in the form

G0(s) =

∏
j(−T inv

j0 s+ 1)∏
i(τi0s+ 1)

e−θ0s (2.98)

where the lags τi0 are ordered according to their magnitude, and T inv
j0 = 1/zj0 > 0

denote the inverse response (negative numerator) time constants corresponding to the RHP-
zeros located at s = zj0. Then, according to the half rule, to obtain a £rst-order model
G(s) = e−θs/(τ1s+ 1) (for PI control), we use

τ1 = τ10 +
τ20
2

; θ = θ0 +
τ20
2

+
∑

i≥3
τi0 +

∑

j

T inv
j0 +

h

2
(2.99)

and, to obtain a second-order model (2.96) (for PID control), we use

τ1 = τ10; τ2 = τ20 +
τ30
2

; θ = θ0 +
τ30
2

+
∑

i≥4
τi0 +

∑

j

T inv
j0 +

h

2
(2.100)

where h is the sampling period (for cases with digital implementation). The main objective
of the empirical half rule is to maintain the robustness of the proposed PI and PID tuning
rules, which with τc = θ giveMS about 1.7. This is discussed by Skogestad (2003), who also
provides additional rules for approximating positive numerator time constants (LHP-zeros).

Example 2.14 The process
G0(s) =

2

(s+ 1)(0.2s+ 1)

is approximated using the half rule as a £rst-order with time delay process, G(s) = ke−θs+1/(τs+1),
with k = 2, θ = 0.2/2 = 0.1 and τ = 1 + 0.2/2 = 1.1. Choosing τc = θ = 0.1 the SIMC PI settings
(2.95) become Kc =

1
2

1.1
2·0.1 = 2.75 and τI = min(1.1, 4 · 2 · 0.1) = 0.8.

In this case, we may also consider using a second-order model (2.96) with k = 2, τ1 = 1, τ2 =

0.2, θ = 0 (no approximation). Since θ = 0, we cannot choose τc = θ as it would yield an in£nite
controller gain. However, the controller gain is limited by other factors, such as the allowed input
magnitude, measurement noise and unmodelled dynamics. Because of such factors, let us assume that
the largest allowed controller gain is K̃c = 10. From (2.97) this corresponds to τc = 0.05, and we get
τ̃I = min (1, 4 · 0.05) = 0.2 and τ̃D = τ2 = 0.2. Using (2.88), the corresponding ideal PID settings
are Kc = 20, τI = 0.4 and τD = 0.1.

Example 2.15 Consider the process

G(s) = 3
(−0.8s+ 1)

(6s+ 1)(2.5s+ 1)2(0.4s+ 1)
e−1.2s
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Using the half rule, the process is approximated as a £rst-order time delay model with

k = 3, τ1 = 6 + 2.5/2 = 7.25, θ = 1.2 + 0.8 + 2.5/2 + 2.5 + 0.4 = 6.15

or as a second-order time delay model with

k = 3, τ1 = 6, τ2 = 2.5 + 2.5/2 = 3.75, θ = 1.2 + 0.8 + 2.5/2 + 0.4 = 3.65

The PI settings based on the £rst-order model are (choosing τc = θ = 6.15)

Kc =
1

3

7.25

2 · 7.15 = 0.169, τI = min (7.25, 8 · 6.15) = 7.25

and the cascade PID settings based on the second-order model are (choosing τc = θ = 3.65)

K̃c = 0.274, τ̃I = 6, τ̃D = 3.75

We note that a PI controller results from a £rst-order model, and a PID controller from a
second-order model. Since the effective delay θ is the main limiting factor in terms of control
performance, its value gives invaluable insight into the inherent controllability of the process.
With the effective delay computed using the half rule, it follows that PI control performance
is limited by (half of) the magnitude of the second-largest time constant τ2, whereas PID
control performance is limited by (half of) the magnitude of the third-largest time constant,
τ3.

Example 2.16 Let us £nally consider the “disturbance process” in (2.62)

G(s) =
200

10s+ 1

1

(0.05s+ 1)2

Using the half rule, the process is approximated as a £rst-order time delay model with k = 200, τ1 =
10.025 and θ = 0.075. The recommended choice for “fast” control is τc = θ = 0.075. However,
on page 47 it was stated that we aim for a gain crossover frequency of about wc = 10 [rad/s].
Since we desire a £rst-order closed-loop response, this corresponds to τc = 1/ωc = 0.1. With
τc = 0.1 the corresponding SIMC PI settings are Kc = 1

200
10.025

(0.1+0.075)
= 0.286 and τI =

min (10.025, 4 · (0.1 + 0.075)) = 0.7. This is an almost-integrating process, and we note that we
reduce the integral time from 10.025 (which would be good for tracking step references) to 0.7 in order
to get acceptable performance for input disturbances.

To improve further the performance, we use the half rule to obtain a second-order model (k =
200, τ1 = 10, τ2 = 0.075, θ = 0.025) and choose ωc = 0.1 to derive SIMC PID settings
(K̃c = 0.4, τ̃I = 0.5, τ̃D = 0.075). Interestingly, the corresponding controller

K(s) = 0.4
s+ 2

s
(0.075s+ 1)

is almost identical to the £nal controller K3 in (2.71), designed previously using loop-shaping ideas.

2.8 Shaping closed-loop transfer functions
In Section 2.6, we discussed the shaping of the magnitude of the open-loop transfer function
L(s). In this section, we introduce the reader to the shaping of the magnitudes of closed-
loop transfer functions, where we synthesize a controller by minimizing anH∞ performance
objective. The topic is discussed further in Section 3.5.7 and in more detail in Chapter 9.
Such a design strategy automates the actual controller design, leaving the engineer with the
task of selecting reasonable bounds (“weights”) on the desired closed-loop transfer functions.
Before explaining how this may be done in practice, we discuss the termsH∞ andH2.
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2.8.1 The termsH∞ andH2

TheH∞ norm of a stable scalar transfer function f(s) is simply the peak value of |f(jω)| as
a function of frequency, i.e.

‖f(s)‖∞ , max
ω
|f(jω)| (2.101)

Remark. Strictly speaking, we should here replace “max” (the maximum value) by “sup” (the
supremum, the least upper bound). This is because the maximum may only be approached as w → ∞
and may therefore not actually be achieved. However, for engineering purposes there is no difference
between “sup” and “max”.

The terms H∞ norm and H∞ control are intimidating at £rst, and a name conveying the
engineering signi£cance of H∞ would have been better. After all, we are simply talking
about a design method which aims to press down the peak(s) of one or more selected transfer
functions. However, the term H∞, which is purely mathematical, has now established itself
in the control community. To make the term less forbidding, an explanation of its background
may help. First, the symbol ∞ comes from the fact that the maximum magnitude over
frequency may be written as

max
ω
|f(jω)| = lim

p→∞

(∫ ∞

−∞
|f(jω)|pdω

)1/p

Essentially, by raising |f | to an in£nite power we pick out its peak value. Next, the symbolH
stands for “Hardy space”, andH∞ in the context of this book is the set of transfer functions
with bounded∞-norm, which is simply the set of stable and proper transfer functions.

Similarly, the symbol H2 stands for the Hardy space of transfer functions with bounded
2-norm, which is the set of stable and strictly proper transfer functions. The H2 norm of a
strictly proper stable scalar transfer function is de£ned as

‖f(s)‖2 ,

(
1

2π

∫ ∞

−∞
|f(jω)|2dω

)1/2

(2.102)

The factor 1/
√
2π is introduced to get consistency with the 2-norm of the corresponding

impulse response; see (4.120). Note that theH2 norm of a semi-proper (or bi-proper) transfer
function (where lims→∞ f(s) is a non-zero constant) is in£nite, whereas its H∞ norm is
£nite. An example of a semi-proper transfer function (with an in£nite H 2 norm) is the
sensitivity function S = (I +GK)−1.

2.8.2 Weighted sensitivity
As already discussed, the sensitivity function S is a very good indicator of closed-loop
performance, both for SISO and MIMO systems. The main advantage of considering S is
that because we ideally want S small, it is suf£cient to consider just its magnitude |S|; that
is, we need not worry about its phase. Typical speci£cations in terms of S include:

1. Minimum bandwidth frequency ω∗B (de£ned as the frequency where |S(jω)| crosses 0.707
from below).

2. Maximum tracking error at selected frequencies.
3. System type, or alternatively the maximum steady-state tracking error, A.
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4. Shape of S over selected frequency ranges.
5. Maximum peak magnitude of S, ‖S(jω)‖∞ ≤M .

The peak speci£cation prevents ampli£cation of noise at high frequencies, and also introduces
a margin of robustness; typically we select M = 2. Mathematically, these speci£cations may
be captured by an upper bound, 1/|wP (s)|, on the magnitude of S, where wP (s) is a weight
selected by the designer. The subscript P stands for performance since S is mainly used as a
performance indicator, and the performance requirement becomes
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Figure 2.28: Case where |S| exceeds its bound 1/|wP |, resulting in ‖wPS‖∞ > 1

|S(jω)| < 1/|wP (jω)|, ∀ω (2.103)

⇔ |wPS| < 1, ∀ω ⇔ ‖wPS‖∞ < 1 (2.104)

The last equivalence follows from the de£nition of the H∞ norm, and in words the
performance requirement is that theH∞ norm of the weighted sensitivity, wPS, must be less
than 1. In Figure 2.28(a), an example is shown where the sensitivity, |S|, exceeds its upper
bound, 1/|wP |, at some frequencies. The resulting weighted sensitivity, |wPS|, therefore
exceeds 1 at the same frequencies as is illustrated in Figure 2.28(b). Note that we usually
do not use a log-scale for the magnitude when plotting weighted transfer functions, such as
|wPS|.
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Figure 2.29: Inverse of performance weight: exact and asymptotic plot of 1/|wP (jω)| in (2.105)

Weight selection. An asymptotic plot of a typical upper bound, 1/|wP |, is shown in
Figure 2.29. The weight illustrated may be represented by

wP (s) =
s/M + ω∗B
s+ ω∗BA

(2.105)

and we see that 1/|wP (jω)| (the upper bound on |S|) is equal to A (typically A ≈ 0) at
low frequencies, is equal to M ≥ 1 at high frequencies, and the asymptote crosses 1 at the
frequency ω∗B , which is approximately the bandwidth requirement.
Remark. For this weight the loop shape L = ω∗B/s yields an S which exactly matches the bound
(2.104) at frequencies below the bandwidth and easily satis£es (by a factor M ) the bound at higher
frequencies.

In some cases, in order to improve performance, we may require a steeper slope for L (and
S) below the bandwidth, and then a higher-order weight may be selected. A weight which
goes as (wB/s)

n at frequencies below crossover is

wP (s) =
(s/M1/n + ω∗B)

n

(s+ ω∗BA
1/n)n

(2.106)

Exercise 2.4 For n = 2, make an asymptotic plot of 1/|wP | in (2.106) and compare with the
asymptotic plot of 1/|wP | in (2.105).

The insights gained in the previous section on loop-shaping design are very useful for
selecting weights. For example, for disturbance rejection we must satisfy |SGd(jω)| < 1 at
all frequencies (assuming the variables have been scaled to be less than 1 in magnitude). It
then follows that a good initial choice for the performance weight is to let |wP (jω)| look
like |Gd(jω)| at frequencies where |Gd| > 1. In other cases, one may £rst obtain an initial
controller using another design procedure, such as LQG, and the resulting sensitivity |S(jω)|
may then be used to select a performance weight for a subsequentH∞ design.

2.8.3 Stacked requirements: mixed sensitivity
The speci£cation ‖wPS‖∞ < 1 puts a lower bound on the bandwidth, but not an upper
one, and nor does it allow us to specify the roll-off of L(s) above the bandwidth. To do this
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one can make demands on another closed-loop transfer function, e.g. on the complementary
sensitivity T = I − S = GKS. For instance, one might specify an upper bound 1/|wT | on
the magnitude of T to make sure that L rolls off suf£ciently fast at high frequencies. Also,
to achieve robustness or to restrict the magnitude of the input signals, u = KS(r − Gdd),
one may place an upper bound, 1/|wu|, on the magnitude of KS. To combine these “mixed
sensitivity” speci£cations, a “stacking approach” is usually used, resulting in the following
overall speci£cation:

‖N‖∞ = max
ω

σ̄(N(jω)) < 1; N =



wPS
wTT
wuKS


 (2.107)

Here we use the maximum singular value, σ̄(N(jω)), to measure the size of the matrix N
at each frequency. For SISO systems, N is a vector and σ̄(N) is the usual Euclidean vector
norm:

σ̄(N) =
√
|wPS|2 + |wTT |2 + |wuKS|2 (2.108)

After selecting the form of N and the weights, the H∞ optimal controller is obtained by
solving the problem

min
K
‖N(K)‖∞ (2.109)

where K is a stabilizing controller. A good tutorial introduction to H∞ control is given by
Kwakernaak (1993).

Remark 1 The stacking procedure is selected for mathematical convenience as it does not allow us
to specify exactly the bounds on the individual transfer functions as described above. For example,
assume that φ1(K) and φ2(K) are two functions of K (which might represent φ1(K) = wPS and
φ2(K) = wTT ) and that we want to achieve

|φ1| < 1 and |φ2| < 1 (2.110)

This is similar to, but not quite the same as, the stacked requirement

σ̄

[
φ1
φ2

]
=
√
|φ1|2 + |φ2|2 < 1 (2.111)

Objectives (2.110) and (2.111) are very similar when either |φ1| or |φ2| is small, but in the “worst”
case when |φ1| = |φ2|, we get from (2.111) that |φ1| ≤ 0.707 and |φ2| ≤ 0.707. That is, there is a
possible “error” in each speci£cation equal to at most a factor

√
2 ≈ 3 dB. In general, with n stacked

requirements the resulting error is at most
√
n. This inaccuracy in the speci£cations is something we are

probably willing to sacri£ce in the interests of mathematical convenience. In any case, the speci£cations
are in general rather rough, and are effectively knobs for the engineer to select and adjust until a
satisfactory design is reached.

Remark 2 Let γmin = minK ‖N(K)‖∞ denote the optimal H∞ norm. An important property of
H∞ optimal controllers is that they yield a ¤at frequency response; that is, σ̄(N(jω)) = γmin at all
frequencies. The practical implication is that, except for at most a factor

√
n, the transfer functions

resulting from a solution to (2.109) will be close to γmin times the bounds selected by the designer.
This gives the designer a mechanism for directly shaping the magnitudes of σ̄(S), σ̄(T ), σ̄(KS), and
so on.
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Example 2.17 H∞ mixed sensitivity design for the disturbance process. Consider again the
plant in (2.62), and consider anH∞ mixed sensitivity S/KS design in which

N =

[
wPS
wuKS

]
(2.112)

Appropriate scaling of the plant has been performed so that the inputs should be about 1 or less in
magnitude, and we therefore select a simple input weight wu = 1. The performance weight is chosen,
in the form of (2.105), as

wP1(s) =
s/M + ω∗B
s+ ω∗BA

; M = 1.5, ω∗B = 10, A = 10−4 (2.113)

A value ofA = 0 would ask for integral action in the controller, but to get a stable weight and to prevent
numerical problems in the algorithm used to synthesize the controller, we have moved the integrator
slightly by using a small non-zero value for A. This has no practical signi£cance in terms of control
performance. The value ω∗B = 10 has been selected to achieve approximately the desired crossover
frequency ωc of 10 rad/s. The H∞ problem is solved with the Robust Control toolbox in Matlab using
the commands in Table 2.4.
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Figure 2.30: Inverse of performance weight (dashed line) and resulting sensitivity function (solid line)
for twoH∞ designs (1 and 2) for the disturbance process

Table 2.4: Matlab program to synthesizeH∞ controller for Example 2.17
% Uses the Robust Control toolbox
G=tf(200,conv([10 1],conv([0.05 1],[0.05 1]))); % Plant is G.
M=1.5; wb=10; A=1.e-4;
Wp = tf([1/M wb], [1 wb*A]); Wu = 1; % Weights.
% Find H-infinity optimal controller:
[khinf,ghinf,gopt] = mixsyn(G,Wp,Wu,[]);
Marg = allmargin(G*khinf) % Gain and phase margins

For this problem, we achieved an optimalH∞ norm of 1.37, so the weighted sensitivity requirements
are not quite satis£ed (see design 1 in Figure 2.30 where the curve for |S1| is slightly above that for
1/|wP1|). Nevertheless, the design seems good with ‖S‖∞ = MS = 1.30, ‖T‖∞ = MT = 1,
GM = 8, PM = 71.19◦ and ωc = 7.22 rad/s, and the tracking response is very good as shown
by curve y1 in Figure 2.31(a). (The design is actually very similar to the loop-shaping design for
references, K0, which was an inverse-based controller.)

However, we see from curve y1 in Figure 2.31(b) that the disturbance response is very sluggish.
If disturbance rejection is the main concern, then from our earlier discussion in Section 2.6.4 this
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Figure 2.31: Closed-loop step responses for two alternative H∞ designs (1 and 2) for the disturbance
process in Example 2.17

motivates the need for a performance weight that speci£es higher gains at low frequencies. We therefore
try

wP2(s) =
(s/M1/2 + ω∗B)

2

(s+ ω∗BA
1/2)2

, M = 1.5, ω∗B = 10, A = 10−4 (2.114)

The inverse of this weight is shown in Figure 2.30, and is seen from the dashed line to cross 1
in magnitude at about the same frequency as weight wP1, but it speci£es tighter control at lower
frequencies. With the weight wP2, we get a design with an optimal H∞ norm of 2.19, yielding
MS = 1.62, MT = 1.42, GM = 4.77, PM = 43.8◦ and ωc = 11.28 rad/s. (The design is actually
very similar to the loop-shaping design for disturbances, K3.) The disturbance response is very good,
whereas the tracking response has a somewhat high overshoot; see curve y2 in Figure 2.31(a).

In conclusion, design 1 is best for reference tracking whereas design 2 is best for disturbance
rejection. To get a design with both good tracking and good disturbance rejection we need a two
degrees-of-freedom controller, as was discussed in Example 2.11 (page 52).

Exercise 2.5 H∞ design for unstable plant. Obtain S/KS H∞ controllers for the unstable process
(2.37) using wu = 1 and the performance weights in (2.113) (design 1) and (2.114) (design 2). Plot the
frequency response of the controller for design 1 together with the PI controller (2.38) to con£rm that
the two controllers are almost identical. You will £nd that the response with the design 2 (second-order
weight) is faster, but on the other hand robustness margins are not quite as good:

γmin = ‖N‖∞ ωc MS MT GM GML PM
Design 1: 3.24 4.96 1.17 1.35 18.48 0.20 61.7◦
Design 2: 5.79 8.21 1.31 1.56 11.56 0.23 48.5◦

2.9 Conclusion
The main purpose of this chapter has been to present the classical ideas and techniques of
feedback control. We have concentrated on SISO systems so that insights into the necessary
design trade-offs, and the design approaches available, can be properly developed before
MIMO systems are considered. We also introduced the H∞ problem based on weighted
sensitivity, for which typical performance weights are given in (2.105) and (2.106).
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3

INTRODUCTION TO
MULTIVARIABLE CONTROL

In this chapter, we introduce the reader to multi-input multi-output (MIMO) systems. It is almost
“a book within the book” because a lot of topics are discussed in more detail in later chapters.
Topics include transfer functions for MIMO systems, multivariable frequency response analysis
and the singular value decomposition (SVD), relative gain array (RGA), multivariable control, and
multivariable right-half plane (RHP) zeros. The need for a careful analysis of the effect of uncertainty
in MIMO systems is motivated by two examples. Finally, we describe a general control con£guration
that can be used to formulate control problems. The chapter should be accessible to readers who have
attended a classical SISO control course.

3.1 Introduction
We consider a MIMO plant with m inputs and l outputs. Thus, the basic transfer function
model is y(s) = G(s)u(s), where y is an l × 1 vector, u is an m × 1 vector and G(s) is an
l ×m transfer function matrix.

If we make a change in the £rst input, u1, then this will generally affect all the outputs,
y1, y2, . . . , yl; that is, there is interaction between the inputs and outputs. A non-interacting
plant would result if u1 only affects y1, u2 only affects y2, and so on.

The main difference between a scalar (SISO) system and a MIMO system is the presence
of directions in the latter. Directions are relevant for vectors and matrices, but not for
scalars. However, despite the complicating factor of directions, most of the ideas and
techniques presented in the previous chapter on SISO systems may be extended to MIMO
systems. The singular value decomposition (SVD) provides a useful way of quantifying
multivariable directionality, and we will see that most SISO results involving the absolute
value (magnitude) may be generalized to multivariable systems by considering the maximum
singular value. An exception to this is Bode’s stability condition which has no generalization
in terms of singular values. This is related to the fact that it is dif£cult to £nd a good measure
of phase for MIMO transfer functions.

The chapter is organized as follows. We start by presenting some rules for determining
multivariable transfer functions from block diagrams. Although most of the formulae
for scalar systems apply, we must exercise some care since matrix multiplication is not
commutative: that is, in general GK 6= KG. Then we introduce the singular value
decomposition and show how it may be used to study directions in multivariable systems.

Multivariable Feedback Control: Analysis and Design. Second Edition
S. Skogestad and I. Postlethwaite c© 2005, 2006 John Wiley & Sons, Ltd
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We also give a brief introduction to multivariable control and decoupling. We then consider
a simple plant with a multivariable RHP-zero and show how the effect of this zero may be
shifted from one output channel to another. After this we discuss robustness, and study two
example plants, each 2 × 2, which demonstrate that the simple gain and phase margins used
for SISO systems do not generalize easily to MIMO systems. Finally, we consider a general
control problem formulation.

At this point, the reader may £nd it useful to browse through Appendix A where
some important mathematical tools are described. Exercises to test understanding of this
mathematics are given at the end of this chapter.

3.2 Transfer functions for MIMO systems

- G1
- G2

-
G

u z

(a) Cascade system

- -+
+ G1

-

¾G2

6
u yv

z

(b) Positive feedback system

Figure 3.1: Block diagrams for the cascade rule and the feedback rule

The following three rules are useful when evaluating transfer functions for MIMO systems.

1. Cascade rule. For the cascade (series) interconnection of G1 and G2 in Figure 3.1(a),
the overall transfer function matrix is G = G2G1.

Remark. The order of the transfer function matrices in G = G2G1 (£rst G2 and then G1) is the reverse
of the order in which they appear in the block diagram of Figure 3.1(a) (£rst G1 and then G2). This has
led some authors to use block diagrams in which the inputs enter at the right hand side. However, in this
case the order of the transfer function blocks in a feedback path will be reversed compared with their
order in the formula, so no fundamental bene£t is obtained.

2. Feedback rule. With reference to the positive feedback system in Figure 3.1(b), we have
v = (I − L)−1u where L = G2G1 is the transfer function around the loop.

3. Push-through rule. For matrices of appropriate dimensions

G1(I −G2G1)
−1 = (I −G1G2)

−1G1 (3.1)

Proof: Equation (3.1) is veri£ed by premultiplying both sides by (I −G1G2) and postmultiplying both
sides by (I −G2G1). 2

Exercise 3.1 ∗ Derive the cascade and feedback rules.

The cascade and feedback rules can be combined into the following MIMO rule for evaluating
closed-loop transfer functions from block diagrams.

MIMO rule: Start from the output and write down the blocks as you meet them
when moving backwards (against the signal ¤ow) towards the input. If you exit
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from a feedback loop then include a term (I − L)−1 for positive feedback (or
(I + L)−1 for negative feedback) where L is the transfer function around that
loop (evaluated against the signal ¤ow starting at the point of exit from the loop).
Parallel branches should be treated independently and their contributions added
together.

Care should be taken when applying this rule to systems with nested loops. For such systems
it is probably safer to write down the signal equations and eliminate internal variables to get
the transfer function of interest. The rule is best understood by considering an example.

-?-

¾

-? ---

-
+

+

+
+

z

P12

P11

P22

KP21

w

Figure 3.2: Block diagram corresponding to (3.2)

Example 3.1 The transfer function for the block diagram in Figure 3.2 is given by

z = (P11 + P12K(I − P22K)−1P21)w (3.2)

To derive this from the MIMO rule above we start at the output z and move backwards towardsw. There
are two branches, one of which gives the term P11 directly. In the other branch we move backwards and
meet P12 and then K. We then exit from a feedback loop and get a term (I − L)−1 (positive feedback)
with L = P22K, and £nally we meet P21.

Exercise 3.2 Use the MIMO rule to derive the transfer functions from u to y and from u to z in
Figure 3.1(b). Use the push-through rule to rewrite the two transfer functions.

Exercise 3.3 ∗ Use the MIMO rule to show that (2.19) corresponds to the negative feedback system in
Figure 2.4.

Negative feedback control systems

- -+
- K -+ +? - G -+ +? -
6

r yu
d2 d1

Figure 3.3: Conventional negative feedback control system

For the negative feedback system in Figure 3.3, we de£ne L to be the loop transfer function
as seen when breaking the loop at the output of the plant. Thus, for the case where the loop
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consists of a plant G and a feedback controller K we have

L = GK (3.3)

The sensitivity and complementary sensitivity are then de£ned as

S , (I + L)−1; T , I − S = L(I + L)−1 (3.4)

In Figure 3.3, T is the transfer function from r to y, and S is the transfer function from d1 to
y; also see (2.17) to (2.21) which apply to MIMO systems.
S and T are sometimes called the output sensitivity and output complementary sensitivity,

respectively, and to make this explicit one may use the notation LO ≡ L, SO ≡ S and
TO ≡ T . This is to distinguish them from the corresponding transfer functions evaluated at
the input to the plant.

We de£ne LI to be the loop transfer function as seen when breaking the loop at the input
to the plant with negative feedback assumed. In Figure 3.3

LI = KG (3.5)

The input sensitivity and input complementary sensitivity functions are then de£ned as

SI , (I + LI)
−1; TI , I − SI = LI(I + LI)

−1 (3.6)

In Figure 3.3,−TI is the transfer function from d2 to u. Of course, for SISO systems LI = L,
SI = S and TI = T .

Exercise 3.4 In Figure 3.3, what transfer function does SI represent? Evaluate the transfer functions
from d1 and d2 to r − y.

The following relationships are useful:

(I + L)−1 + L(I + L)−1 = S + T = I (3.7)

G(I +KG)−1 = (I +GK)−1G (3.8)

GK(I +GK)−1 = G(I +KG)−1K = (I +GK)−1GK (3.9)

T = L(I + L)−1 = (I + (L)−1)−1 (3.10)

Note that the matrices G and K in (3.7)–(3.10) need not be square whereas L = GK is
square: (3.7) follows trivially by factorizing out the term (I + L)−1 from the right; (3.8)
says that GSI = SG and follows from the push-through rule; (3.9) also follows from the
push-through rule; (3.10) can be derived from the identity M−1

1 M−1
2 = (M2M1)

−1.
Similar relationships, but with G and K interchanged, apply for the transfer functions

evaluated at the plant input. To assist in remembering (3.7)–(3.10) note that G comes £rst
(because the transfer function is evaluated at the output) and then G and K alternate in
sequence. A given transfer matrix never occurs twice in sequence. For example, the closed-
loop transfer functionG(I+GK)−1 does not exist (unlessG is repeated in the block diagram,
but then these G’s would actually represent two different physical entities).
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Remark 1 The above identities are clearly useful when deriving transfer functions analytically, but
they are also useful for numerical calculations involving state-space realizations, e.g. L(s) = C(sI −
A)−1B + D. For example, assume we have been given a state-space realization for L = GK with
n states (so A is an n × n matrix) and we want to £nd the state-space realization of T . Then we can
£rst form S = (I + L)−1 with n states, and then multiply it by L to obtain T = SL with 2n states.
However, a minimal realization of T has only n states. This may be obtained numerically using model
reduction, but it is preferable to £nd it directly using T = I − S, see (3.7).

Remark 2 Note also that the right identity in (3.10) can only be used to compute the state-space
realization of T if that of L−1 exists, so L must be semi-proper with D 6= 0 (which is rarely the
case in practice). On the other hand, since L is square, we can always compute the frequency response
of L(jω)−1 (except at frequencies where L(s) has jω-axis poles), and then obtain T (jω) from (3.10).

Remark 3 In Appendix A.7 we present some factorizations of the sensitivity function which will
be useful in later applications. For example, (A.147) relates the sensitivity of a perturbed plant,
S′ = (I +G′K)−1, to that of the nominal plant, S = (I +GK)−1. We have

S′ = S(I + EOT )
−1, EO , (G′ −G)G−1 (3.11)

where EO is an output multiplicative perturbation representing the difference between G and G′, and
T is the nominal complementary sensitivity function.

3.3 Multivariable frequency response analysis
The transfer functionG(s) is a function of the Laplace variable s and can be used to represent
a dynamic system. However, if we £x s = s0 then we may view G(s0) simply as an l ×m
complex matrix (with m inputs and l outputs), which can be analyzed using standard tools
in matrix algebra. In particular, the choice s0 = jω is of interest since G(jω) represents the
response to a sinusoidal signal of frequency ω.

3.3.1 Obtaining the frequency response from G(s)

-- y
G(s)

d

Figure 3.4: System G(s) with input d and output y

The frequency domain is ideal for studying directions in multivariable systems at any given
frequency. Consider the system G(s) in Figure 3.4 with input d(s) and output y(s):

y(s) = G(s)d(s) (3.12)

(We denote the input here by d rather than by u to avoid confusion with the matrix U used
below in the singular value decomposition.) In Section 2.1 we considered the sinusoidal
response of scalar systems. These results may be directly generalized to multivariable systems
by considering the elements gij of the matrix G. We have

• gij(jω) represents the sinusoidal response from input j to output i.
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To be more speci£c, we apply to input channel j a scalar sinusoidal signal given by

dj(t) = dj0 sin(ωt+ αj) (3.13)

This input signal is persistent: that is, it has been applied since t = −∞. Then the
corresponding persistent output signal in channel i is also a sinusoid with the same frequency

yi(t) = yi0 sin(ωt+ βi) (3.14)

where the ampli£cation (gain) and phase shift may be obtained from the complex number
gij(jω) as follows:

yio
djo

= |gij(jω)|, βi − αj = ∠gij(jω) (3.15)

In phasor notation, see (2.5) and (2.10), we may compactly represent the sinusoidal time
response described in (3.13)–(3.15) by

yi(ω) = gij(jω)dj(ω) (3.16)

where
dj(ω) = djoe

jαj , yi(ω) = yioe
jβi (3.17)

Here the use of ω (and not jω) as the argument of dj(ω) and yi(ω) implies that these
are complex numbers, representing at each frequency ω the magnitude and phase of the
sinusoidal signals in (3.13) and (3.14).

The overall response to simultaneous input signals of the same frequency in several
input channels is, by the superposition principle for linear systems, equal to the sum of the
individual responses, and we have from (3.16)

yi(ω) = gi1(jω)d1(ω) + gi2(jω)d2(ω) + · · · =
∑

j

gij(jω)dj(ω) (3.18)

or in matrix form
y(ω) = G(jω)d(ω) (3.19)

where

d(ω) =




d1(ω)
d2(ω)

...
dm(ω)


 and y(ω) =




y1(ω)
y2(ω)

...
yl(ω)


 (3.20)

represent the vectors of sinusoidal input and output signals.

Example 3.2 Consider a 2×2 multivariable system where we simultaneously apply sinusoidal signals
of the same frequency ω to the two input channels:

d(t) =
[
d1(t)
d2(t)

]
=

[
d10 sin(ωt+ α1)
d20 sin(ωt+ α2)

]
or d(ω) =

[
d10ejα1

d20ejα2

]
(3.21)

The corresponding output signal is

y(t) =
[
y1(t)
y2(t)

]
=

[
y10 sin(ωt+ β1)
y20 sin(ωt+ β2)

]
or y(ω) =

[
y10ejβ1

y20ejβ2

]
(3.22)

y(ω) is obtained by multiplying the complex matrix G(jω) by the complex vector d(ω), as given in
(3.19).
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3.3.2 Directions in multivariable systems
For a SISO system, y = Gd, the gain at a given frequency is simply

|y(ω)|
|d(ω)| =

|G(jω)d(ω)|
|d(ω)| = |G(jω)| (3.23)

The gain depends on the frequency ω, but since the system is linear it is independent of the
input magnitude |d(ω)|.

Things are not quite as simple for MIMO systems where the input and output signals are
both vectors, and we need to “sum up” the magnitudes of the elements in each vector by
use of some norm, as discussed in Appendix A.5.1. If we select the vector 2-norm, the usual
measure of length, then at a given frequency ω the magnitude of the vector input signal is

‖d(ω)‖2 =

√∑

j

|dj(ω)|2 =
√
d210 + d220 + · · · (3.24)

and the magnitude of the vector output signal is

‖y(ω)‖2 =

√∑

i

|yi(ω)|2 =
√
y210 + y220 + · · · (3.25)

The gain of the system G(s) for a particular input signal d(ω) is then given by the ratio

‖y(ω)‖2
‖d(ω)‖2

=
‖G(jω)d(ω)‖2
‖d(ω)‖2

=

√
y210 + y220 + · · ·√
d210 + d220 + · · ·

(3.26)

Again the gain depends on the frequency ω, and again it is independent of the input magnitude
‖d(ω)‖2. However, for a MIMO system there are additional degrees of freedom and the gain
depends also on the direction of the input d.1 The maximum gain as the direction of the input
is varied is the maximum singular value of G,

max
d6=0

‖Gd‖2
‖d‖2

= max
‖d‖2=1

‖Gd‖2 = σ̄(G) (3.27)

whereas the minimum gain is the minimum singular value of G,

min
d6=0

‖Gd‖2
‖d‖2

= min
‖d‖2=1

‖Gd‖2 = σ(G) (3.28)

The £rst identities in (3.27) and (3.28) follow because the gain is independent of the input
magnitude for a linear system.

Example 3.3 For a system with two inputs, d =
[
d10
d20

]
, the gain is in general different for the

following £ve inputs:

d1 =
[
1
0

]
, d2 =

[
0
1

]
, d3 =

[
0.707
0.707

]
, d4 =

[
0.707
−0.707

]
, d5 =

[
0.6
−0.8

]

1 The term direction refers to a normalized vector of unit length.
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Figure 3.5: Gain ‖Gd‖2/‖d‖2 as a function of d20/d10 for G in (3.29)

(which all have the same magnitude ‖d‖2 = 1 but are in different directions). For example, for the 2×2
system

G =
[
5 4
3 2

]
(3.29)

(a constant matrix) we compute for the £ve inputs dj the following output vectors:

y1 =
[
5
3

]
, y2 =

[
4
2

]
, y3 =

[
6.36
3.54

]
, y4 =

[
0.707
0.707

]
, y5 =

[
−0.2
0.2

]

and the 2-norms of these £ve outputs (i.e. the gains for the £ve inputs) are

‖y1‖2 = 5.83, ‖y2‖2 = 4.47, ‖y3‖2 = 7.30, ‖y4‖2 = 1.00, ‖y5‖2 = 0.28

This dependency of the gain on the input direction is illustrated graphically in Figure 3.5 where we
have used the ratio d20/d10 as an independent variable to represent the input direction. We see that,
depending on the ratio d20/d10, the gain varies between 0.27 and 7.34. These are the minimum and
maximum singular values of G, respectively.
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Figure 3.6: Outputs (right plot) resulting from use of ‖d‖2 = 1 (unit circle in left plot) for system G
in (3.29). The maximum (σ̄(G)) and minimum (σ(G)) gains are obtained for d = (v̄) and d = (v)
respectively.

An alternative plot, which shows the directions of the outputs more clearly, is shown in Figure 3.6.
From the shape of the output space (right plot), we see that it is easy to increase both y10 and
y20 simultaneously (gain σ̄(G) = 7.34), but dif£cult to increase one and decrease the other (gain
σ(G) = 0.27).
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3.3.3 Eigenvalues are a poor measure of gain
Before discussing in more detail the singular value decomposition, we want to demonstrate
that the magnitudes of the eigenvalues of a transfer function matrix, e.g. |λi(G(jω))|, do not
provide a useful means of generalizing the SISO gain, |G(jω)|. First of all, eigenvalues can
only be computed for square systems, and even then they can be very misleading. To see this,
consider the system y = Gd with

G =
[
0 100
0 0

]
(3.30)

which has both eigenvalues λi equal to zero. However, to conclude from the eigenvalues that
the system gain is zero is clearly misleading. For example, with an input vector d = [0 1]T

we get an output vector y = [100 0]T .
The “problem” is that the eigenvalues measure the gain for the special case when the inputs

and the outputs are in the same direction, namely in the direction of the eigenvectors. To
see this let ti be an eigenvector of G and consider an input d = ti. Then the output is
y = Gti = λiti where λi is the corresponding eigenvalue. We get

‖y‖/‖d‖ = ‖λiti‖/‖ti‖ = |λi|
so |λi| measures the gain in the direction ti. This may be useful for stability analysis, but not
for performance.

To £nd useful generalizations of gain of G for the case when G is a matrix, we need the
concept of a matrix norm, denoted ‖G‖. Two important properties which must be satis£ed
for a matrix norm are the triangle inequality

‖G1 +G2‖ ≤ ‖G1‖+ ‖G2‖ (3.31)

and the multiplicative property

‖G1G2‖ ≤ ‖G1‖ · ‖G2‖ (3.32)

(see Appendix A.5 for more details). As we may expect, the magnitude of the largest
eigenvalue, ρ(G) , |λmax(G)| (the spectral radius), does not satisfy the properties of a
matrix norm; also see (A.116).

In Appendix A.5.2 we introduce several matrix norms, such as the Frobenius norm ‖G‖F ,
the sum norm ‖G‖sum, the maximum column sum ‖G‖i1, the maximum row sum ‖G‖i∞,
and the maximum singular value ‖G‖i2 = σ̄(G) (the latter three norms are induced by a
vector norm, e.g. see (3.27); this is the reason for the subscript i). Actually, the choice of
matrix norm among these is not critical because the various norms of an l ×m matrix differ
at most by a factor

√
ml, see (A.119)–(A.124). In this book, we will use all of the above

norms, each depending on the situation. However, in this chapter we will mainly use the
induced 2-norm, σ̄(G). Notice that σ̄(G) = 100 for the matrix in (3.30).

Exercise 3.5 ∗ Compute the spectral radius and the £ve matrix norms mentioned above for the
matrices in (3.29) and (3.30).

3.3.4 Singular value decomposition
The singular value decomposition (SVD) is de£ned in Appendix A.3. Here we are interested
in its physical interpretation when applied to the frequency response of a MIMO systemG(s)
with m inputs and l outputs.
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Consider a £xed frequency ω where G(jω) is a constant l × m complex matrix, and
denote G(jω) by G for simplicity. Any matrix G may be decomposed into its singular value
decomposition, and we write

G = UΣV H (3.33)
where

Σ is an l × m matrix with k = min{l,m} non-negative singular values, σi, arranged in
descending order along its main diagonal; the other entries are zero. The singular
values are the positive square roots of the eigenvalues of GHG, where GH is the
complex conjugate transpose of G,

σi(G) =
√
λi(GHG) (3.34)

U is an l × l unitary matrix of output singular vectors, ui,

V is an m×m unitary matrix of input singular vectors, vi.

In short, any matrix may be decomposed into an input rotation V , a scaling matrix Σ and an
output rotation U . This is illustrated by the SVD of a real 2× 2 matrix which can always be
written in the form

G =
[
cos θ1 − sin θ1
sin θ1 cos θ1

]

︸ ︷︷ ︸
U

[
σ1 0
0 σ2

]

︸ ︷︷ ︸
Σ

[
cos θ2 ± sin θ2
− sin θ2 ± cos θ2

]T

︸ ︷︷ ︸
V T

(3.35)

where the angles θ1 and θ2 depend on the given matrix. From (3.35) we see that the matrices
U and V involve rotations and that their columns are orthonormal.

The singular values are sometimes called the principal values or principal gains, and the
associated directions are called principal directions. In general, the singular values must be
computed numerically. For 2 × 2 matrices, however, analytic expressions for the singular
values are given in (A.37).

Caution. It is standard notation to use the symbol U to denote the matrix of output singular vectors.
This is unfortunate as it is also standard notation to use u (lower case) to represent the input signal. The
reader should be careful not to confuse these two.

Input and output directions. The column vectors of U , denoted ui, represent the output
directions of the plant. They are orthogonal and of unit length (orthonormal), i.e.

‖ui‖2 =
√
|ui1|2 + |ui2|2 + · · ·+ |uil|2 = 1 (3.36)

uHi ui = 1, uHi uj = 0, i 6= j (3.37)
Likewise, the column vectors of V , denoted vi, are orthogonal and of unit length, and
represent the input directions. These input and output directions are related through the
singular values. To see this, note that since V is unitary we have V HV = I , so (3.33) may be
written as GV = UΣ, which for column i becomes

Gvi = σiui (3.38)

where vi and ui are vectors, whereas σi is a scalar. That is, if we consider an input in
the direction vi, then the output is in the direction ui. Furthermore, since ‖vi‖2 = 1 and
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‖ui‖2 = 1 we see that the i’th singular value σi directly gives the gain of the matrix G in this
direction. In other words

σi(G) = ‖Gvi‖2 =
‖Gvi‖2
‖vi‖2

(3.39)

Some advantages of the SVD over the eigenvalue decomposition for analyzing gains and
directionality of multivariable plants are:

1. The singular values give better information about the gains of the plant.
2. The plant directions obtained from the SVD are orthogonal.
3. The SVD also applies directly to non-square plants.

Maximum and minimum singular values. As already stated, it can be shown that the
largest gain for any input direction is equal to the maximum singular value

σ̄(G) ≡ σ1(G) = max
d6=0

‖Gd‖2
‖d‖2

=
‖Gv1‖2
‖v1‖2

(3.40)

and that the smallest gain for any input direction (excluding the “wasted” inputs in the null
space of G for cases with more inputs than outputs2)

is equal to the minimum singular value

σ(G) ≡ σk(G) = min
d6=0

‖Gd‖2
‖d‖2

=
‖Gvk‖2
‖vk‖2

(3.41)

where k = min{l,m}. Thus, for any vector d, not in the null space of G, we have that

σ(G) ≤ ‖Gd‖2‖d‖2
≤ σ̄(G) (3.42)

De£ning u1 = ū, v1 = v̄, uk = u and vk = v, then it follows that

Gv̄ = σ̄ū, Gv = σ u (3.43)

The vector v̄ corresponds to the input direction with largest ampli£cation, and ū is the
corresponding output direction in which the inputs are most effective. The directions
involving v̄ and ū are sometimes referred to as the “strongest”, “high-gain” or “most
important” directions. The next most important directions are associated with v2 and u2,
and so on (see Appendix A.3.5) until the “least important”, “weak” or “low-gain” directions
which are associated with v and u.
Example 3.3 continued. Consider again the system (3.29) with

G =
[
5 4
3 2

]
(3.44)

The SVD of G1 is

G =
[
0.872 0.490
0.490 −0.872

]

︸ ︷︷ ︸
U

[
7.343 0
0 0.272

]

︸ ︷︷ ︸
Σ

[
0.794 −0.608
0.608 0.794

]H

︸ ︷︷ ︸
VH

2 For a “fat” matrix G with more inputs than outputs (m > l), we can always choose a non-zero input d in the null
space of G such that Gd = 0.
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The largest gain of 7.343 is for an input in the direction v̄ =
[
0.794
0.608

]
. The smallest gain of 0.272 is for

an input in the direction v =
[
−0.608
0.794

]
. This con£rms the £ndings on page 73 (see Figure 3.6).

Note that the directions in terms of the singular vectors are not unique, in the sense that
the elements in each pair of vectors (ui, vi) may be multiplied by a complex scalar c of
magnitude 1 (|c| = 1). This is easily seen from (3.38). For example, we may change the
sign of the vector v̄ (multiply by c = −1) provided we also change the sign of the vector ū.
Also, if you use Matlab to compute the SVD of the matrix in (3.44) (g=[5 4; 3 2 ];
[u,s,v]=svd(g)), then you will probably £nd that the signs of the elements in U and V
are different from those given above.

Since in (3.44) both inputs affect both outputs, we say that the system is interactive.
This follows from the relatively large off-diagonal elements in G in (3.44). Furthermore,
the system is ill-conditioned: that is, some combinations of the inputs have a strong effect
on the outputs, whereas other combinations have a weak effect on the outputs. This may
be quanti£ed by the condition number: the ratio between the gains in the strong and weak
directions, which for the system in (3.44) is γ = σ̄/σ = 7.343/0.272 = 27.0.

Example 3.4 Shopping cart. Consider a shopping cart (supermarket trolley) with £xed wheels which
we may want to move in three directions: forwards, sideways and upwards. This is a simple illustrative
example where we can easily £gure out the principal directions from experience. The strongest direction,
corresponding to the largest singular value, will clearly be in the forwards direction. The next direction,
corresponding to the second singular value, will be sideways. Finally, the most “dif£cult” or “weak”
direction, corresponding to the smallest singular value, will be upwards (lifting up the cart).

For the shopping cart the gain depends strongly on the input direction, i.e. the plant is ill-conditioned.
Control of ill-conditioned plants is sometimes dif£cult, and the control problem associated with the
shopping cart can be described as follows. Assume we want to push the shopping cart sideways (maybe
we are blocking someone). This is rather dif£cult (the plant has low gain in this direction) so a strong
force is needed. However, if there is any uncertainty in our knowledge about the direction the cart is
pointing, then some of our applied force will be directed forwards (where the plant gain is large) and
the cart will suddenly move forward with an undesired large speed. We thus see that the control of an
ill-conditioned plant may be especially dif£cult if there is input uncertainty which can cause the input
signal to “spread” from one input direction to another. We will discuss this in more detail later.

Example 3.5 Distillation process. Consider the following steady-state model of a distillation
column:

G =
[
87.8 −86.4
108.2 −109.6

]
(3.45)

The variables have been scaled as discussed in Section 1.4. Thus, since the elements are much larger
than 1 in magnitude this suggests that there will be no problems with input constraints. However, this
is somewhat misleading as the gain in the low-gain direction (corresponding to the smallest singular
value) is actually only just above 1. To see this consider the SVD of G:

G =
[
0.625 −0.781
0.781 0.625

]

︸ ︷︷ ︸
U

[
197.2 0
0 1.39

]

︸ ︷︷ ︸
Σ

[
0.707 −0.708
−0.708 −0.707

]H

︸ ︷︷ ︸
VH

(3.46)

From the £rst input singular vector, v̄ = [ 0.707 −0.708 ]T , we see that the gain is 197.2 when we
increase one input and decrease the other input by a similar amount. On the other hand, from the
second input singular vector, v = [−0.708 −0.707 ]T , we see that if we change both inputs by the
same amount then the gain is only 1.39. The reason for this is that the plant is such that the two inputs
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counteract each other. Thus, the distillation process is ill-conditioned, at least at steady-state, and the
condition number is 197.2/1.39 = 141.7. The physics of this example is discussed in more detail below,
and later in this chapter we will consider a simple controller design (see Motivating robustness example
no. 2 in Section 3.7.2).

Example 3.6 Physics of the distillation process. The model in (3.45) represents two-point (dual)
composition control of a distillation column, where the top composition is to be controlled at yD = 0.99
(output y1) and the bottom composition at xB = 0.01 (output y2), using re¤ux L (input u1) and boilup
V (input u2) as manipulated inputs (see Figure 10.6 on page 408). Note that we have here returned to
the convention of using u1 and u2 to denote the manipulated inputs; the output singular vectors will be
denoted by ū and u.

The 1, 1-element of the gain matrix G is 87.8. Thus an increase in u1 by 1 (with u2 constant) yields a
large steady-state change in y1 of 87.8; that is, the outputs are very sensitive to changes in u1. Similarly,
an increase in u2 by 1 (with u1 constant) yields y1 = −86.4. Again, this is a very large change, but
in the opposite direction of that for the increase in u1. We therefore see that changes in u1 and u2
counteract each other, and if we increase u1 and u2 simultaneously by 1, then the overall steady-state
change in y1 is only 87.8− 86.4 = 1.4.

Physically, the reason for this small change is that the compositions in the distillation column are
only weakly dependent on changes in the internal ¤ows (i.e. simultaneous changes in the internal ¤ows
L and V ). This can also be seen from the smallest singular value, σ(G) = 1.39, which is obtained for
inputs in the direction v =

[
−0.708
−0.707

]
. From the output singular vector u =

[
−0.781
0.625

]
we see that

the effect is to move the outputs in different directions; that is, to change y1 − y2. Therefore, it takes
a large control action to move the compositions in different directions; that is, to make both products
purer simultaneously. This makes sense from a physical point of view.

On the other hand, the distillation column is very sensitive to changes in external ¤ows (i.e. increase
u1− u2 = L−V ). This can be seen from the input singular vector v̄ =

[
0.707
−0.708

]
associated with the

largest singular value, and is a general property of distillation columns where both products are of high
purity. The reason for this is that the external distillate ¤ow (which varies as V − L) has to be about
equal to the amount of light component in the feed, and even a small imbalance leads to large changes
in the product compositions.

For dynamic systems the singular values and their associated directions vary with frequency,
and for control purposes it is usually the frequency range corresponding to the closed-loop
bandwidth which is of main interest. The singular values are usually plotted as a function of
frequency in a Bode magnitude plot with a log-scale for frequency and magnitude. Typical
plots are shown in Figure 3.7.

Non-square plant
The SVD is also useful for non-square plants. For example, consider a plant with two inputs
and three outputs. In this case the third output singular vector, u3, tells us in which output
direction the plant cannot be controlled. Similarly, for a plant with more inputs than outputs,
the additional input singular vectors tell us in which directions the input will have no effect.

Example 3.7 Consider a non-square system with three inputs and two outputs,

G2 =
[
5 4 1
3 2 −1

]
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Figure 3.7: Typical plots of singular values

with SVD

G2 =
[
0.877 0.481
0.481 −0.877

]

︸ ︷︷ ︸
U

[
7.354 0 0
0 1.387 0

]

︸ ︷︷ ︸
Σ

[
0.792 −0.161 0.588
0.608 0.124 −0.785
0.054 0.979 0.196

]H

︸ ︷︷ ︸
VH

From our de£nition, the minimum singular value is σ(G2) = 1.387, but note that an input d in the

direction v3 =

[
0.588
−0.785
0.196

]
is in the null space of G and yields a zero output, y = Gd = 0.

Exercise 3.6 For a system with m inputs and one output, what is the interpretation of the singular
values and the associated input directions (V )? What is U in this case?

3.3.5 Singular values for performance
So far we have used the SVD primarily to gain insight into the directionality of MIMO
systems. But the maximum singular value is also very useful in terms of frequency domain
performance and robustness. We consider performance here.

For SISO systems we earlier found that |S(jω)| evaluated as a function of frequency
gives useful information about the effectiveness of feedback control. For example, it is the
gain from a sinusoidal reference input (or output disturbance) r(ω)3 to the control error,
|e(ω)| = |S(jω)| · · · |r(ω)|.

For MIMO systems a useful generalization results if we consider the ratio ‖e(ω)‖2/‖r(ω)‖2,
where r is the vector of reference inputs, e is the vector of control errors, and ‖ · ‖2 is the
vector 2-norm. As explained above, this gain depends on the direction of r(ω) and we have
from (3.42) that it is bounded by the maximum and minimum singular value of S,

σ(S(jω)) ≤ ‖e(ω)‖2‖r(ω)‖2
≤ σ̄(S(jω)) (3.47)

In terms of performance, it is reasonable to require that the gain ‖e(ω)‖2/‖r(ω)‖2 remains
small for any direction of r(ω), including the “worst-case” direction which gives a gain of
3 We use phasor notation here, see page 18, and |r(ω)| is the magnitude of the sinusoidal signal at frequency ω.
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σ̄(S(jω)). Let 1/|wP (jω)| (the inverse of the performance weight) represent the maximum
allowed magnitude of ‖e‖2/‖r‖2 at each frequency. This results in the following performance
requirement:

σ̄(S(jω)) < 1/|wP (jω)|, ∀ω ⇔ σ̄(wPS) < 1, ∀ω
⇔ ‖wPS‖∞ < 1 (3.48)

where theH∞ norm (see also page 60) is de£ned as the peak of the maximum singular value
of the frequency response

‖M(s)‖∞ , max
ω

σ̄(M(jω)) (3.49)

Typical performance weights wP (s) are given in Section 2.8.2, which should be studied
carefully.

The singular values of S(jω) may be plotted as functions of frequency, as illustrated later
in Figure 3.12(a). Typically, they are small at low frequencies where feedback is effective,
and they approach 1 at high frequencies because any real system is strictly proper:

ω →∞ : L(jω)→ 0 ⇒ S(jω)→ I (3.50)

The maximum singular value, σ̄(S(jω)), usually has a peak larger than 1 around the crossover
frequencies. This peak is undesirable, but it is unavoidable for real systems.

As for SISO systems we de£ne the bandwidth as the frequency up to which feedback
is effective. For MIMO systems the bandwidth will depend on directions, and we have a
bandwidth region between a lower frequency where the maximum singular value, σ̄(S),
reaches 0.7 (the “low-gain” or “worst-case” direction), and a higher frequency where the
minimum singular value, σ(S), reaches 0.7 (the “high-gain” or “best-case”)4. If we want
to associate a single bandwidth frequency for a multivariable system, then we consider the
worst-case (low-gain) direction, and de£ne

• Bandwidth, ωB : Frequency where σ̄(S) crosses 1√
2
= 0.7 from below.

It is then understood that the bandwidth is at least ωB for any direction of the input (reference
or disturbance) signal. Since S = (I + L)−1, (A.54) yields

σ(L)− 1 ≤ 1

σ̄(S)
≤ σ(L) + 1 (3.51)

Thus at frequencies where feedback is effective (namely where σ(L) À 1) we have
σ̄(S) ≈ 1/σ(L), and at the bandwidth frequency (where 1/σ̄(S(jωB)) =

√
2 = 1.41)

we have that σ(L(jωB)) is between 0.41 and 2.41. Thus, the bandwidth is approximately
where σ(L) crosses 1. Finally, at higher frequencies, where for any real system σ(L) (and
σ̄(L)) is small, we have that σ̄(S) ≈ 1.

3.3.6 Condition number
In Examples 3.4 and 3.5, we noted that the system’s gain varied considerably with the input
direction. Such systems are said to have strong directionality. Two measures which are used to
4 The terms “low-gain” and “high-gain” refer to L, whereas the terms “worst-case” and “best-case” refer to the

resulting speed of response for the closed-loop system.
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quantify the degree of directionality and the level of (two-way) interactions in MIMO systems
are the condition number and the relative gain array (RGA), respectively. We £rst consider
the condition number of a matrix which is de£ned as the ratio between the maximum and
minimum singular values,

γ(G)
4
= σ̄(G)/σ(G) (3.52)

A matrix with a large condition number is said to be ill-conditioned. For a non-singular
(square) matrix σ(G) = 1/σ̄(G−1), so γ(G) = σ̄(G)σ̄(G−1). It then follows from (A.120)
that the condition number is large if both G and G−1 have large elements.

The condition number depends strongly on the scaling of the inputs and outputs. To be
more speci£c, if D1 and D2 are diagonal scaling matrices, then the condition numbers of
the matrices G and D1GD2 may be arbitrarily far apart. In general, the matrix G should be
scaled on physical grounds, e.g. by dividing each input and output by its largest expected or
desired value as discussed in Section 1.4.

One might also consider minimizing the condition number over all possible scalings. This
results in the minimized or optimal condition number which is de£ned by

γ∗(G) = min
D1,D2

γ(D1GD2) (3.53)

and can be computed using (A.74).
The condition number has been used as an input–output controllability measure, and

in particular it has been postulated that a large condition number indicates sensitivity to
uncertainty. This is not true in general, but the reverse holds: if the condition number is small,
then the multivariable effects of uncertainty are not likely to be serious (see (6.89)).

If the condition number is large (say, larger than 10), then this may indicate control
problems:

1. A large condition number γ(G) = σ̄(G)/σ(G) may be caused by a small value of
σ(G), which is generally undesirable (on the other hand, a large value of σ̄(G) need not
necessarily be a problem).

2. A large condition number may mean that the plant has a large minimized condition
number, or equivalently, it has large RGA elements which indicate fundamental control
problems; see below.

3. A large condition number does imply that the system is sensitive to “unstructured” (full-
block) input uncertainty (e.g. with an inverse-based controller, see (8.136)), but this kind
of uncertainty often does not occur in practice. We therefore cannot generally conclude
that a plant with a large condition number is sensitive to uncertainty, e.g. see the diagonal
plant in Example 3.12 (page 89).

3.4 Relative gain array (RGA)
The RGA (Bristol, 1966) of a non-singular square complex matrix G is a square complex
matrix de£ned as

RGA(G) = Λ(G) , G× (G−1)T (3.54)
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where × denotes element-by-element multiplication (the Hadamard or Schur product). With
Matlab, we write5

RGA = G.*pinv(G).’

The RGA of a transfer matrix is generally computed as a function of frequency (see Matlab
program in Table 3.1). For a 2× 2 matrix with elements gij the RGA is

Λ(G) =

[
λ11 λ12
λ21 λ22

]
=

[
λ11 1− λ11

1− λ11 λ11

]
; λ11 =

1

1− g12g21
g11g22

(3.55)

The RGA is a very useful tool in practical applications. The RGA is treated in detail at
three places in this book. First, we give a general introduction in this section (pages 82–91).
The use of the RGA for decentralized control is discussed in more detail in Section 10.6
(pages 442–454). Finally, its algebraic properties and extension to non-square matrices are
considered in Appendix A.4 (pages 526–529).

3.4.1 Original interpretation: RGA as an interaction measure
We follow Bristol (1966) here, and show that the RGA provides a measure of interactions. Let
uj and yi denote a particular input–output pair for the multivariable plant G(s), and assume
that our task is to use uj to control yi. Bristol argued that there will be two extreme cases:

• All other loops open: uk = 0,∀k 6= j.
• All other loops closed with perfect control: yk = 0,∀k 6= i.

Perfect control is only possible at steady-state, but it is a good approximation at frequencies
within the bandwidth of each loop. We now evaluate “our” gain ∂yi/∂uj for the two extreme
cases:

Other loops open:
(
∂yi
∂uj

)

uk=0,k 6=j

= gij (3.56)

Other loops closed:
(
∂yi
∂uj

)

yk=0,k 6=i

, ĝij (3.57)

Here gij = [G]ij is the ij’th element of G, whereas ĝij is the inverse of the ji’th element of
G−1

ĝij = 1/[G−1]ji (3.58)

To derive (3.58) we note that

y = Gu ⇒
(
∂yi
∂uj

)

uk=0,k 6=j

= [G]ij (3.59)

and interchange the roles of G and G−1, of u and y, and of i and j to get

u = G−1y ⇒
(
∂uj
∂yi

)

yk=0,k 6=i

= [G−1]ji (3.60)

5 The symbol ’ in Matlab gives the conjugate transpose (AH ), and we must use .’ to get the “regular” transpose
(AT ).
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and (3.58) follows. Bristol argued that the ratio between the gains in (3.56) and (3.57) is a
useful measure of interactions, and de£ned the ij’th “relative gain” as

λij ,
gij
ĝij

= [G]ij [G
−1]ji (3.61)

The RGA is the corresponding matrix of relative gains. From (3.61) we see that Λ(G) =
G × (G−1)T where × denotes element-by-element multiplication (the Schur product). This
is identical to our de£nition of the RGA matrix in (3.54).

Remark. The assumption of yk = 0 (“perfect control of yk”) in (3.57) is satis£ed at steady-state
(ω = 0) provided we have integral action in the loop, but it will generally not hold exactly at other
frequencies. Unfortunately, this has led many authors to dismiss the RGA as being “only useful at
steady-state” or “only useful if we use integral action”. On the contrary, in most cases it is the value
of the RGA at frequencies close to crossover which is most important, and both the gain and the phase
of the RGA elements are important. The derivation of the RGA in (3.56) to (3.61) was included to
illustrate one useful interpretation of the RGA, but note that our de£nition of the RGA in (3.54) is
purely algebraic and makes no assumption about “perfect control”. The general usefulness of the RGA
is further demonstrated by the additional general algebraic and control properties of the RGA listed on
page 88.

Example 3.8 RGA for 2× 2 system. Consider a 2× 2 system with the plant model

y1 = g11(s)u1 + g12(s)u2 (3.62)
y2 = g21(s)u1 + g22(s)u2 (3.63)

Assume that “our” task is to use u1 to control y1. First consider the case when the other loop is open,
i.e. u2 is constant or equivalently u2 = 0 in terms of deviation variables. We then have

u2 = 0 : y1 = g11(s)u1

Next consider the case when the other loop is closed with perfect control, i.e. y2 = 0. In this case, u2
will also change when we change u1, due to interactions. More precisely, setting y2 = 0 in (3.63) gives

u2 = −g21(s)
g22(s)

u1

Substituting this into (3.62) gives

y2 = 0 : y1 =

(
g11 − g21

g22
g12

)

︸ ︷︷ ︸
ĝ11(s)

u1

This means that “our gain” changes from g11(s) to ĝ11(s) as we close the other loop, and the
corresponding RGA element becomes

λ11(s) =
“open-loop gain (withu2 = 0)”

“closed-loop gain (with y2 = 0)”
=
g11(s)

ĝ11(s)
=

1

1− g12(s)g21(s)
g11(s)g22(s)

Intuitively, for decentralized control, we prefer to pair variables uj and yi so that λij is close
to 1 at all frequencies, because this means that the gain from uj to yi is unaffected by closing
the other loops. More precisely, we have:
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Pairing rule 1 (page 450): Prefer pairings such that the rearranged system, with
the selected pairings along the diagonal, has an RGA matrix close to identity at
frequencies around the closed-loop bandwidth.

However, one should avoid pairings where the sign of the steady-state gain from uj to yi
may change depending on the control of the other outputs, because this will yield instability
with integral action in the loop. Thus, gij(0) and ĝ11(0) should have the same sign, and we
have:

Pairing rule 2 (page 450): Avoid (if possible) pairing on negative steady-state
RGA elements.

The reader is referred to Section 10.6.4 (page 438) for derivation and further discussion of
these pairing rules.

3.4.2 Examples: RGA
Example 3.9 Blending process. Consider a blending process where we mix sugar (u1) and water
(u2) to make a given amount (y1 = F ) of a soft drink with a given sugar fraction (y2 = x). The
balances “mass in = mass out” for total mass and sugar mass are

F1 + F2 = F

F1 = xF

Note that the process itself has no dynamics. Linearization yields

dF1 + dF2 = dF

dF1 = x∗dF + F ∗dx

With u1 = dF1, u2 = dF2, y1 = dF and y2 = dx we then get the model

y1 = u1 + u2

y2 =
1− x∗

F ∗
u1 − x∗

F ∗
u2

where x∗ = 0.2 is the nominal steady-state sugar fraction and F ∗ = 2 kg/s is the nominal amount. The
transfer matrix then becomes

G(s) =

[
1 1

1−x∗
F∗

− x∗

F∗

]
=

[
1 1
0.4 −0.1

]

and the corresponding RGA matrix is (at all frequencies)

Λ =

[
x∗ 1− x∗

1− x∗ x∗

]
=

[
0.2 0.8
0.8 0.2

]

For decentralized control, it then follows from pairing rule 1 (“prefer pairing on RGA elements close to
1”) that we should pair on the off-diagonal elements; that is, use u1 to control y2 and use u2 to control
y1. This corresponds to using the largest stream (water, u2) to control the amount (y1 = F ), which is
reasonable from a physical point of view. Pairing rule 2 is also satis£ed for this choice.
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Example 3.10 Steady-state RGA. Consider a 3× 3 plant for which we have at steady-state

G =




16.8 30.5 4.30
−16.7 31.0 −1.41
1.27 54.1 5.40


 , Λ(G) =




1.50 0.99 −1.48
−0.41 0.97 0.45
−0.08 −0.95 2.03


 (3.64)

For decentralized control, we need to pair on one element in each column or row. It is then clear that
the only choice that satis£es pairing rule 2 (“avoid pairing on negative RGA elements”) is to pair on
the diagonal elements; that is, use u1 to control y1, u2 to control y2 and u3 to control y3.

Remark. The plant in (3.64) represents the steady-state model of a ¤uid catalytic cracking (FCC)
process. A dynamic model of the FCC process in (3.64) is given in Exercise 6.17 (page 257).

Some additional examples and exercises, that further illustrate the effectiveness of the steady-
state RGA for selecting pairings, are given on page 443.

Example 3.11 Frequency-dependent RGA. The following model describes a a large pressurized
vessel (Skogestad and Wolff, 1991), for example, of the kind found in offshore oil-gas separations. The
inputs are the valve positions for liquid (u1) and vapour (u2) ¤ow, and the outputs are the liquid volume
(y1) and pressure (y2).

G(s) =
0.01e−5s

(s+ 1.72 · 10−4)(4.32s+ 1)

[
−34.54(s+ 0.0572) 1.913

−30.22s −9.188(s+ 6.95 · 10−4)

]
(3.65)
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Figure 3.8: Frequency-dependent RGA for G(s) in (3.65)

The RGA matrix Λ(s) depends on frequency. At steady-state (s = 0) the 2,1 element of G(s) is zero,
so Λ(0) = I . Similarly, at high frequencies the 1,2 element is small relative to the other elements, so
Λ(j∞) = I . This seems to suggest that the diagonal pairing should be used. However, at intermediate
frequencies, the off-diagonal RGA elements are closest to 1, see Figure 3.8(a). For example, at frequency
ω = 0.01 rad/s the RGA matrix becomes (see Table 3.1)

Λ =

[
0.2469 + 0.0193i 0.7531− 0.0193i
0.7531− 0.0193i 0.2469 + 0.0193i

]
(3.66)

Thus, from pairing rule 1, the reverse pairings is probably best if we use decentralized control and
the closed-loop bandwidth is around 0.01 rad/s. From a physical point of view the use of the reverse
pairings is quite surprising, because it involves using the vapour ¤ow (u2) to control liquid level (y1).
and the liquid ¤ow (u1) to control pressure (y2).
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Table 3.1: Matlab program to calculate frequency-dependent RGA
% Plant model (3.65)
s = tf(’s’);
G = (0.01/(s+1.72e-4)/(4.32*s + 1))*[-34.54*(s+0.0572),....
omega = logspace(-5,2,61);
% RGA
for i = 1:length(omega)

Gf = freqresp(G,omega(i)); % G(jω)
RGAw(:,:,i) = Gf.*inv(Gf).’; % RGA at frequency omega
RGAno(i) = sum(sum(abs(RGAw(:,:,i) - eye(2)))); % RGA number

end
RGA = frd(RGAw,omega);

Remark. Although it is possible to use decentralized control for this interactive process, see the
following exercise, one may achieve much better performance with multivariable control. If one insists
on using decentralized control, then it is recommended to add a liquid ¤ow measurement and use an
“inner” (lower layer) ¤ow controller. The resulting u1 is then the liquid ¤ow rate rather than the valve
position. Then u2 (vapour ¤ow) has no effect on y1 (liquid volume), and the plant is triangular with
g12 = 0. In this case the diagonal pairing is clearly best.

Exercise 3.7 ∗ Design decentralized single-loop controllers for the plant (3.65) using (a) the diagonal
pairings and (b) the off-diagonal pairings. Use the delay θ (which is nominally 5 seconds) as a
parameter. Use PI controllers independently tuned with the SIMC tuning rules (based on the paired
elements).

Outline of solution: For tuning purposes the elements in G(s) are approximated using the half rule
to get

G(s) ≈

 −0.0823 e−θs

s
0.01913 e

−(θ+2.16)s

s

−0.3022 e−θs

4.32s+1
−0.09188 e−θs

4.32s+1




For the diagonal pairings this gives the PI settings

Kc1 = −12.1/(τc1 + θ), τI1 = 4(τc1 + θ);Kc2 = −47.0/(τc2 + θ), τI2 = 4.32

and for the off-diagonal pairings (the index refers to the output)

Kc1 = 52.3/(τc1 + θ + 2.16), τI1 = 4(τc1 + θ + 2.16);Kc2 = −14.3/(τc2 + θ), τI2 = 4.32

For improved robustness, the level controller (y1) is tuned about 3 times slower than the pressure
controller (y2), i.e. use τc1 = 3θ and τc2 = θ. This gives a crossover frequency of about 0.5/θ in
the fastest loop. With a delay of about 5 s or larger you should £nd, as expected from the RGA at
crossover frequencies (pairing rule 1), that the off-diagonal pairing is best. However, if the delay is
decreased from 5 s to 1 s, then the diagonal pairing is best, as expected since the RGA for the diagonal
pairing approaches 1 at frequencies above 1 rad/s.

3.4.3 RGA number and iterative RGA
Note that in Figure 3.8(a) we plot only the magnitudes of λij , but this may be misleading
when selecting pairings. For example, a magnitude of 1 (seemingly a desirable pairing)
may correspond to an RGA element of −1 (an undesirable pairing). The phase of the RGA
elements should therefore also be considered. An alternative is to compute the RGA number,
as de£ned next.

RGA number. A simple measure for selecting pairings according to rule 1 is to prefer
pairings with a small RGA number. For a diagonal pairing,

RGA number , ‖Λ(G)− I‖sum (3.67)
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where we have (somewhat arbitrarily) chosen the sum norm, ‖A‖sum =
∑

i,j |aij |. The RGA
number for other pairings is obtained by subtracting 1 for the selected pairings; for example,
Λ(G) −

[
0 1
1 0

]
for the off-diagonal pairing for a 2 × 2 plant. The disadvantage with the

RGA number, at least for larger systems, is that it needs to be recomputed for each alternative
pairing. On the other hand, the RGA elements need to be computed only once.

Example 3.11 continued. The RGA number for the plant G(s) in (3.65) is plotted for the two
alternative pairings in Figure 3.8(b). As expected, we see that the off-diagonal pairing is preferred at
intermediate frequencies.

Exercise 3.8 Compute the RGA number for the six alternate pairings for the plant in (3.64). Which
pairing would you prefer?

Remark. Diagonal dominance. A more precise statement of pairing rule 1 (page 85) would be to prefer
pairings that have “diagonal dominance” (see de£nition on page 10.6.4). There is a close relationship
between a small RGA number and diagonal dominance, but unfortunately there are exceptions for plants
of size 4 × 4 or larger, so a small RGA number does not always guarantee diagonal dominance; see
Example 10.18 on page 441.

Iterative RGA. An iterative evaluation of the RGA, Λ2(G) = Λ(Λ(G)) etc., is very
useful for choosing pairings with diagonal dominance for large systems. Wolff (1994) found
numerically that

Λ∞ , lim
k→∞

Λk(G) (3.68)

is a permuted identity matrix (except for “borderline” cases). More importantly, Johnson and
Shapiro (1986, Theorem 2) have proven that Λ∞ always converges to the identity matrix if G
is a generalized diagonally dominant matrix (see de£nition in Remark 10.6.4 on page 440) .
Since permuting the matrix G causes similar permutations of Λ(G), Λ∞ may then be used as
a candidate pairing choice. Typically, Λk approaches Λ∞ for k between 4 and 8. For example,
for G =

[
1 2
−1 1

]
we get Λ =

[
0.33 0.67
0.67 0.33

]
, Λ2 =

[
−0.33 1.33
1.33 −0.33

]
, Λ3 =

[
−0.07 1.07
1.07 −0.07

]

and Λ4 =
[
0.00 1.00
1.00 0.00

]
, which indicates that the off-diagonal pairing is diagonally dominant.

Note that Λ∞ may sometimes “recommend” a pairing on negative RGA elements, even if a
positive pairing is possible.

Exercise 3.9 Test the iterative RGA method on the plant (3.64) and con£rm that it gives the diagonally
dominant pairing (as it should according to the theory).

3.4.4 Summary of algebraic properties of the RGA
The (complex) RGA matrix has a number of interesting algebraic properties, of which the
most important are (see Appendix A.4, page 526, for more details):

A1. It is independent of input and output scaling.
A2. Its rows and columns sum to 1.
A3. The RGA is the identity matrix if G is upper or lower triangular.
A4. A relative change in an element of G equal to the negative inverse of its corresponding

RGA element, g′ij = gij(1− 1/λij), yields singularity.
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A5. From (A.80), plants with large RGA elements are always ill-conditioned (with a large
value of γ(G)), but the reverse may not hold (i.e. a plant with a large γ(G) may have
small RGA elements).

From property A3, it follows that the RGA (or more precisely Λ − I) provides a measure
of two-way interaction.

Example 3.12 Consider a diagonal plant for which we have

G =

[
100 0
0 1

]
, Λ(G) = I, γ(G) =

σ̄(G)

σ(G)
=

100

1
= 100, γ∗(G) = 1 (3.69)

Here the condition number is 100 which means that the plant gain depends strongly on the input
direction. However, since the plant is diagonal there are no interactions so Λ(G) = I and the minimized
condition number γ∗(G) = 1.

Example 3.13 Consider a triangular plant G for which we get

G =

[
1 2
0 1

]
, G−1 =

[
1 −2
0 1

]
, Λ(G) = I, γ(G) =

2.41

0.41
= 5.83, γ∗(G) = 1 (3.70)

Note that for a triangular matrix, there is one-way interaction, but no two-way interaction, and the RGA
is always the identity matrix.

Example 3.14 Consider again the distillation process in (3.45) for which we have at steady-state

G =

[
87.8 −86.4
108.2 −109.6

]
, G−1 =

[
0.399 −0.315
0.394 −0.320

]
, Λ(G) =

[
35.1 −34.1
−34.1 35.1

]
(3.71)

In this case γ(G) = 197.2/1.391 = 141.7 is only slightly larger than γ∗(G) = 138.268. The
magnitude sum of the elements in the RGA matrix is ‖Λ‖sum = 138.275. This con£rms property
A5 which states that, for 2 × 2 systems, ‖Λ(G)‖sum ≈ γ∗(G) when γ∗(G) is large. The condition
number is large, but since the minimum singular value σ(G) = 1.391 is larger than 1 this does not by
itself imply a control problem. However, the large RGA elements indicate problems, as discussed below
(control property C1).

Example 3.15 Consider again the FCC process in (3.64) with γ = 69.6/1.63 = 42.6 and
γ∗ = 7.80. The magnitude sum of the elements in the RGA is ‖Λ‖sum = 8.86 which is close to
γ∗ as expected from property A5. Note that the rows and the columns of Λ in (3.64) sums to 1. Since
σ(G) is larger than 1 and the RGA elements are relatively small, this steady-state analysis does not
indicate any particular control problems for the plant.

3.4.5 Summary of control properties of the RGA
In addition to the algebraic properties listed above, the RGA has a surprising number of useful
control properties:

C1. Large RGA elements (typically, 5 − 10 or larger) at frequencies important for control
indicate that the plant is fundamentally dif£cult to control due to strong interactions and
sensitivity to uncertainty.

(a) Uncertainty in the input channels (diagonal input uncertainty). Plants with large RGA
elements (at crossover frequency) are fundamentally dif£cult to control because of
sensitivity to input uncertainty, e.g. caused by uncertain or neglected actuator dynamics.
In particular, decouplers or other inverse-based controllers should not be used for plants
with large RGA elements (see page 251).
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(b) Element uncertainty. As implied by algebraic property A4 above, large RGA elements
imply sensitivity to element-by-element uncertainty. However, this kind of uncertainty
may not occur in practice due to physical couplings between the transfer function
elements. Therefore, diagonal input uncertainty (which is always present) is usually
of more concern for plants with large RGA elements.

C2. RGA and RHP-zeros. If the sign of an RGA element changes as we go from s = 0 to
s = ∞, then there is a RHP-zero in G or in some subsystem of G (see Theorem 10.7,
page 446).

C3. Non-square plants. The de£nition of the RGA may be generalized to non-square matrices
by using the pseudo-inverse; see Appendix A.4.2. Extra inputs: If the sum of the elements
in a column of RGA is small (¿ 1), then one may consider deleting the corresponding
input. Extra outputs: If all elements in a row of RGA are small (¿ 1), then the
corresponding output cannot be controlled.

C4. RGA and decentralized control. The usefulness of the RGA is summarized by the two
pairing rules on page 85.

Example 3.14 continued. For the steady-state distillation model in (3.71), the large RGA element of
35.1 indicates a control problem. More precisely, fundamental control problems are expected if analysis
shows that G(jω) has large RGA elements also in the crossover frequency range. Indeed, with the
idealized dynamic model (3.93) used below, the RGA elements are large at all frequencies, and we will
con£rm in simulations that there is a strong sensitivity to input channel uncertainty with an inverse-
based controller, see page 100. For decentralized control, we should, according to rule 2, avoid pairing
on the negative RGA elements. Thus, the diagonal pairing is preferred.

Example 3.16 Consider the plant

G(s) =
1

5s+ 1

(
s+ 1 s+ 4
1 2

)
(3.72)

We £nd that λ11(∞) = 2 and λ11(0) = −1 have different signs. Since none of the diagonal elements
have RHP-zeros we conclude from property C2 that G(s) must have a RHP-zero. This is indeed true
and G(s) has a zero at s = 2.

Let us elaborate a bit more on the use of RGA for decentralized control (control property
C4). Assume we use decentralized control with integral action in each loop, and want to
pair on one or more negative steady-state RGA elements. This may happen because this
pairing is preferred for dynamic reasons or because there exists no pairing choice with only
positive RGA elements, e.g. see the system in (10.81) on page 444. What will happen? Will
the system be unstable? No, not necessarily. We may, for example, tune one loop at a time
in a sequential manner (usually starting with the fastest loops), and we will end up with a
stable overall system. However, due to the negative RGA element there will be some hidden
problem, because the system is not decentralized integral controllable (DIC); see page 443.
The stability of the overall system then depends on the individual loops being in service.
This means that detuning one or more of the individual loops may result in instability for the
overall system. Instability may also occur if an input saturates, because the corresponding
loop is then effectively out of service. In summary, pairing on negative steady-state RGA
elements should be avoided, and if it cannot be avoided then one should make sure that the
loops remain in service.
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For a detailed analysis of achievable performance of the plant (input–output controllability
analysis), one must consider the singular values, as well as the RGA and condition number as
functions of frequency. In particular, the crossover frequency range is important. In addition,
disturbances and the presence of unstable (RHP) plant poles and zeros must be considered.
All these issues are discussed in much more detail in Chapters 5 and 6 where we address
achievable performance and input–output controllability analysis for SISO and MIMO plants,
respectively.

3.5 Control of multivariable plants
3.5.1 Diagonal controller (decentralized control)
The simplest approach to multivariable controller design is to use a diagonal or block-
diagonal controller K(s). This is often referred to as decentralized control. Decentralized
control works well if G(s) is close to diagonal, because then the plant to be controlled is
essentially a collection of independent sub-plants. However, if the off-diagonal elements
in G(s) are large, then the performance with decentralized diagonal control may be poor
because no attempt is made to counteract the interactions. There are three basic approaches
to the design of decentralized controllers:

• Fully coordinated design
• Independent design
• Sequential design

Decentralized control is discussed in more detail in Chapter 10 on page 429.

3.5.2 Two-step compensator design approach
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Figure 3.9: One degree-of-freedom feedback control con£guration

Consider the simple feedback system in Figure 3.9. A conceptually simple approach
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to multivariable control is given by a two-step procedure in which we £rst design a
“compensator” to deal with the interactions in G, and then design a diagonal controller
using methods similar to those for SISO systems in Chapter 2. Several such approaches are
discussed below.

The most common approach is to use a pre-compensator, W1(s), which counteracts the
interactions in the plant and results in a “new” shaped plant:

Gs(s) = G(s)W1(s) (3.73)

which is more diagonal and easier to control than the original plant G(s). After £nding a
suitable W1(s) we can design a diagonal controller Ks(s) for the shaped plant Gs(s). The
overall controller is then

K(s) =W1(s)Ks(s) (3.74)
In many cases effective compensators may be derived on physical grounds and may include
nonlinear elements such as ratios.

Remark 1 Some design approaches in this spirit are the Nyquist array technique of Rosenbrock (1974)
and the characteristic loci technique of MacFarlane and Kouvaritakis (1977).

Remark 2 TheH∞ loop-shaping design procedure, described in detail in Section 9.4, is similar in that
a pre-compensator is £rst chosen to yield a shaped plant, Gs = GW1, with desirable properties, and
then a controller Ks(s) is designed. The main difference is that in H∞ loop shaping, Ks(s) is a full
multivariable controller, designed and based on optimization (to optimizeH∞ robust stability).

3.5.3 Decoupling
Decoupling control results when the compensator W1 is chosen such that Gs = GW1 in
(3.73) is diagonal at a selected frequency. The following different cases are possible:
1. Dynamic decoupling: Gs(s) is diagonal at all frequencies. For example, with Gs(s) = I

and a square plant, we get W1 = G−1(s) (disregarding the possible problems involved
in realizing G−1(s)). If we then select Ks(s) = l(s)I (e.g. with l(s) = k/s), the overall
controller is

K(s) = Kinv(s) , l(s)G−1(s) (3.75)
We will later refer to (3.75) as an inverse-based controller. It results in a decoupled nominal
system with identical loops, i.e. L(s) = l(s)I , S(s) = 1

1+l(s)I and T (s) = l(s)
1+l(s)I .

Remark. In some cases we may want to keep the diagonal elements in the shaped plant unchanged
by selecting W1 = G−1Gdiag . In other cases we may want the diagonal elements in W1 to be 1.
This may be obtained by selecting W1 = G−1((G−1)diag)

−1, and the off-diagonal elements of W1

are then called “decoupling elements”.

2. Steady-state decoupling:Gs(0) is diagonal. This may be obtained by selecting a constant
pre-compensator W1 = G−1(0) (and for a non-square plant we may use the pseudo-
inverse provided G(0) has full row (output) rank).

3. Approximate decoupling at frequency wo: Gs(jωo) is as diagonal as possible. This is
usually obtained by choosing a constant pre-compensator W1 = G−1o where Go is a real
approximation of G(jωo). Go may be obtained, for example, using the align algorithm of
Kouvaritakis (1974) (see £le align.m available at the book’s home page). The bandwidth
frequency is a good selection for ωo because the effect on performance of reducing
interaction is normally greatest at this frequency.
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The idea of decoupling control is appealing, but there are several dif£culties:

1. As one might expect, decoupling may be very sensitive to modelling errors and
uncertainties. This is illustrated below in Section 3.7.2 (page 100).

2. The requirement of decoupling and the use of an inverse-based controller may not be
desirable for disturbance rejection. The reasons are similar to those given for SISO systems
in Section 2.6.4, and are discussed further below; see (3.79).

3. If the plant has RHP-zeros then the requirement of decoupling generally introduces extra
RHP-zeros into the closed-loop system (see Section 6.6.1, page 236).

Even though decoupling controllers may not always be desirable in practice, they are of
interest from a theoretical point of view. They also yield insights into the limitations imposed
by the multivariable interactions on achievable performance. One popular design method,
which essentially yields a decoupling controller, is the internal model control (IMC) approach
(Morari and Za£riou, 1989).

Another common strategy, which avoids most of the problems just mentioned, is to use
partial (one-way) decoupling where Gs(s) in (3.73) is upper or lower triangular.

3.5.4 Pre- and post-compensators and the SVD controller
The above pre-compensator approach may be extended by introducing a post-compensator
W2(s), as shown in Figure 3.10. One then designs a diagonal controller Ks for the shaped

- - - -W2 Ks W1

K

Figure 3.10: Pre- and post-compensators, W1 and W2. Ks is diagonal.

plant W2GW1. The overall controller is then

K(s) =W1KsW2 (3.76)

The SVD controller is a special case of a pre- and post-compensator design. Here

W1 = Vo and W2 = UT
o (3.77)

where Vo and Uo are obtained from the SVD of Go = UoΣoV
T
o , where Go is a real

approximation of G(jωo) at a given frequency wo (often around the bandwidth). SVD
controllers are studied by Hung and MacFarlane (1982), and by Hovd et al. (1997) who
found that the SVD-controller structure is optimal in some cases, e.g. for plants consisting of
symmetrically interconnected subsystems.

In summary, the SVD controller provides a useful class of controllers. By selecting
Ks = l(s)Σ−1o a decoupling design is achieved, and selecting a diagonal Ks with a low
condition number (γ(Ks) small) generally results in a robust controller (see Section 6.10).
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3.5.5 What is the shape of the “best” feedback controller?
Consider the problem of disturbance rejection. The closed-loop disturbance response is
y = SGdd. Suppose we have scaled the system (see Section 1.4) such that at each frequency
the disturbances are of maximum magnitude 1, ‖d‖2 ≤ 1, and our performance requirement
is that ‖y‖2 ≤ 1. This is equivalent to requiring σ̄(SGd) ≤ 1. In many cases there is a trade-
off between input usage and performance, such that the controller that minimizes the input
magnitude is one that yields all singular values of SGd equal to 1, i.e. σi(SGd) = 1,∀ω.
This corresponds to

SminGd = U1 (3.78)

where U1(s) is some all-pass transfer function (which at each frequency has all its singular
values equal to 1). The subscript min refers to the use of the smallest loop gain that satis£es the
performance objective. For simplicity, we assume that Gd is square so U1(jω) is a unitary
matrix. At frequencies where feedback is effective we have S = (I + L)−1 ≈ L−1, and
(3.78) yields Lmin = GKmin ≈ GdU

−1
1 . In conclusion, the controller and loop shape with

the minimum gain will often look like

Kmin ≈ G−1GdU2, Lmin ≈ GdU2 (3.79)

where U2 = U−11 is some all-pass transfer function matrix. This provides a generalization
of |Kmin| ≈ |G−1Gd| which was derived in (2.66) for SISO systems, and the summary
following (2.66) on page 48 therefore also applies to MIMO systems. For example, we see
that for disturbances entering at the plant inputs, Gd = G, we get Kmin = U2, so a simple
constant unit gain controller yields a good trade-off between output performance and input
usage. We also note with interest that it is generally not possible to select a unitary matrix
U2 such that Lmin = GdU2 is diagonal, so a decoupling design is generally not optimal for
disturbance rejection. These insights can be used as a basis for a loop-shaping design; see
more onH∞ loop shaping in Chapter 9.

3.5.6 Multivariable controller synthesis
The above design methods are based on a two-step procedure in which we £rst design a
pre-compensator (for decoupling control) or we make an input–output pairing selection (for
decentralized control) and then we design a diagonal controller Ks(s). Invariably this two-
step procedure results in a suboptimal design.

The alternative is to synthesize directly a multivariable controller K(s) based on
minimizing some objective function (norm). Here we use the word synthesize rather than
design to stress that this is a more formalized approach. Optimization in controller design
became prominent in the 1960’s with “optimal control theory” based on minimizing the
expected value of the output variance in the face of stochastic disturbances. Later, other
approaches and norms were introduced, such asH∞ optimal control.

3.5.7 Summary of mixed-sensitivityH∞ synthesis (S/KS)
We provide a brief summary here of one multivariable synthesis approach, namely the S/KS
(mixed-sensitivity)H∞ design method which is used in later examples in this chapter. In the
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S/KS problem, the objective is to minimize theH∞ norm of

N =

[
WPS
WuKS

]
(3.80)

This problem was discussed earlier for SISO systems, and another look at Section 2.8.3 would
be useful now. A sample Matlab £le is provided in Example 2.17, page 64.

The following issues and guidelines are relevant when selecting the weights WP and Wu:

1. S is the transfer function from r to −e = r − y. A common choice for the performance
weight is WP = diag{wPi} with

wPi =
s/Mi + ω∗Bi

s+ ω∗BiAi
, Ai ¿ 1 (3.81)

(see also Figure 2.29 on page 62). Selecting Ai ¿ 1 ensures approximate integral action
with S(0) ≈ 0. Often we select Mi about 2 for all outputs, whereas the desired closed-
loop bandwidth ω∗Bi may be different for each output. A large value of ω∗Bi yields a faster
response for output i.

2. KS is the transfer function from references r to inputs u in Figure 3.9, so for a system
which has been scaled as in Section 1.4, a reasonable initial choice for the input weight is
Wu = I . However, if we require tight control at low frequencies (i.e. Ai small in (3.81)),
then input usage is unavoidable at low frequencies, and it may be better to use a weight
of the form Wu = s/(s + ω1), where the adjustable frequency ω1 is approximately the
closed-loop bandwidth. One could also include additional high-frequency penalty in Wu,
but often this is not necessary due to the low gain of G at high frequencies. If one wants to
bound KS at high frequencies, it is often better instead to put a bound on T (see below).

3. To £nd a reasonable initial choice for the weight WP , one can £rst obtain a controller with
some other design method, plot the magnitude of the resulting diagonal elements of S as
a function of frequency, and select wPi(s) as a rational approximation of 1/|Sii|.

4. For disturbance rejection, we may in some cases want a steeper slope for wPi(s) at low
frequencies than that given in (3.81), e.g. see the weight in (2.106). However, it may be
better to consider the disturbances explicitly by considering theH∞ norm of

N =

[
WPS WPSGd

WuKS WuKSGd

]
(3.82)

or equivalently

N =

[
WPSWd

WuKSWd

]
with Wd = [ I Gd ] (3.83)

where N represents the transfer function from
[
r
d

]
to the weighted e and u. In some

situations we may want to adjust WP or Gd in order to satisfy better our original
objectives. The helicopter case study in Section 13.2 illustrates this by introducing a scalar
parameter α to adjust the magnitude of Gd.

5. T is the transfer function from −n to y. To reduce sensitivity to noise and uncertainty,
we want T small at high frequencies, and so we may want additional roll-off in L. This
can be achieved in several ways. One approach is to add WTT to the stack for N in
(3.80), where WT = diag{wTi} and |wTi| is smaller than 1 at low frequencies and large
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at high frequencies. A more direct approach is to add high-frequency dynamics, W1(s),
to the plant model to ensure that the resulting shaped plant, Gs = GW1, rolls off with
the desired slope. We then obtain an H∞ optimal controller Ks for this shaped plant, and
£nally include W1(s) in the controller, K =W1Ks.

Numerically, the problem minK ‖N‖∞ is often solved by γ-iteration, where one solves for
the controllers that achieve ‖N‖∞ < γ, and then reduces γ iteratively to obtain the smallest
value γmin for which a solution exists. More details aboutH∞ design are given in Chapter 9.

3.6 Introduction to multivariable RHP-zeros
By means of an example, we now give the reader an appreciation of the fact that MIMO
systems have zeros even though their presence may not be obvious from the elements ofG(s).
As for SISO systems, we £nd that RHP-zeros impose fundamental limitations on control.

The zeros z of MIMO systems are de£ned as the values s = z where G(s) loses rank,
and we can £nd the direction of a zero by looking at the direction in which the matrix G(z)
has zero gain. For square systems we essentially have that the poles and zeros of G(s) are
the poles and zeros of detG(s). However, this crude method may fail in some cases, as it
may incorrectly cancel poles and zeros with the same location but different directions (see
Sections 4.5 and 4.5.3 for more details).

Example 3.17 Consider the following plant:

G(s) =
1

(0.2s+ 1)(s+ 1)

[
1 1

1 + 2s 2

]
(3.84)

The responses to a step in each individual input are shown in Figure 3.11(a) and (b). We see that the
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Figure 3.11: Open-loop response for G(s) in (3.84)

plant is interactive, but for these two inputs there is no inverse response to indicate the presence of a
RHP-zero. Nevertheless, the plant does have a multivariable RHP-zero at z = 0.5; that is, G(s) loses
rank at s = 0.5, and detG(0.5) = 0. The SVD of G(0.5) is

G(0.5) =
1

1.65

[
1 1
2 2

]
=

[
0.45 0.89
0.89 −0.45

]

︸ ︷︷ ︸
U

[
1.92 0
0 0

]

︸ ︷︷ ︸
Σ

[
0.71 0.71
0.71 −0.71

]H

︸ ︷︷ ︸
VH

(3.85)
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and we have as expected σ(G(0.5)) = 0. The directions corresponding to the RHP-zero are v =[
0.71
−0.71

]
(input direction) and u =

[
0.89
−0.45

]
(output direction). Thus, the RHP-zero is associated with

both inputs and with both outputs. The presence of the multivariable RHP-zero is indeed observed from
the time response in Figure 3.11(c), which is for a simultaneous input change in opposite directions,
u =

[
1
−1

]
. We see that y2 displays an inverse response whereas y1 happens to remain at zero for this

particular input change.
To see how the RHP-zero affects the closed-loop response, we design a controller which minimizes

theH∞ norm of the weighted S/KS matrix

N =

[
WPS
WuKS

]
(3.86)

with weights

Wu = I, WP =

[
wP1 0
0 wP2

]
, wPi =

s/Mi + ω∗Bi
s+ w∗BiAi

, Ai = 10−4 (3.87)

The Matlab £le for the design is the same as in Table 2.4 on page 64, except that we now have a 2× 2
system. Since there is a RHP-zero at z = 0.5 we expect that this will somehow limit the bandwidth of
the closed-loop system.

Design 1. We weight the two outputs equally and select

Design 1 : M1 = M2 = 1.5; ω∗B1 = ω∗B2 = z/2 = 0.25

This yields an H∞ norm for N of 2.80 and the resulting singular values of S are shown by the solid
lines in Figure 3.12(a). The closed-loop response to a reference change r = [ 1 −1 ]T is shown by
the solid lines in Figure 3.12(b). We note that both outputs behave rather poorly and both display an
inverse response.
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Figure 3.12: Alternative designs for 2× 2 plant (3.84) with RHP-zero

Design 2. For MIMO plants, one can often move most of the deteriorating effect (e.g. inverse
response) of a RHP-zero to a particular output channel. To illustrate this, we change the weight wP2 so
that more emphasis is placed on output 2. We do this by increasing the bandwidth requirement in output
channel 2 by a factor of 100:

Design 2 : M1 = M2 = 1.5; ω∗B1 = 0.25, ω∗B2 = 25
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This yields an H∞ norm for N of 2.92. In this case we see from the dashed line in Figure 3.12(b) that
the response for output 2 (y2) is excellent with no inverse response. However, this comes at the expense
of output 1 (y1) where the response is poorer than for Design 1.

Design 3. We can also interchange the weights wP1 and wP2 to stress output 1 rather than output 2.
In this case (not shown) we get an excellent response in output 1 with no inverse response, but output 2
responds very poorly (much poorer than output 1 for Design 2). Furthermore, the H∞ norm for N is
6.73, whereas it was only 2.92 for Design 2.

Thus, we see that it is easier, for this example, to get tight control of output 2 than of output 1. This
may be expected from the output direction of the RHP-zero, u =

[
0.89
−0.45

]
, which is mostly in the

direction of output 1. We will discuss this in more detail in Section 6.6.1.

Remark 1 We £nd from this example that we can direct the effect of the RHP-zero to either of the two
outputs. This is typical of multivariable RHP-zeros, but in other cases the RHP-zero is associated with
a particular output channel and it is not possible to move its effect to another channel. The zero is then
called a “pinned zero” (see Section 4.6).

Remark 2 It is observed from the plot of the singular values in Figure 3.12(a) that we were able to
obtain by Design 2 a very large improvement in the “good” direction (corresponding to σ(S)) at the
expense of only a minor deterioration in the “bad” direction (corresponding to σ̄(S)). Thus Design
1 demonstrates a shortcoming of the H∞ norm: only the worst direction (maximum singular value)
contributes to theH∞ norm and it may not always be easy to get a good trade-off between the various
directions.

3.7 Introduction to MIMO robustness
To motivate the need for a deeper understanding of robustness, we present two examples
which illustrate that MIMO systems can display a sensitivity to uncertainty not found in
SISO systems. We focus our attention on diagonal input uncertainty, which is present in any
real system and often limits achievable performance because it enters between the controller
and the plant.

3.7.1 Motivating robustness example no. 1: spinning satellite
Consider the following plant (Doyle, 1986; Packard et al., 1993) which can itself be motivated
by considering the angular velocity control of a satellite spinning about one of its principal
axes:

G(s) =
1

s2 + a2

[
s− a2 a(s+ 1)
−a(s+ 1) s− a2

]
; a = 10 (3.88)

A minimal state-space realization, G = C(sI −A)−1B +D, is

[
A B
C D

]
=




0 a 1 0
−a 0 0 1
1 a 0 0
−a 1 0 0


 (3.89)

The plant has a pair of jω-axis poles at s = ±ja so it needs to be stabilized. Let us apply
negative feedback and try the simple diagonal constant controller

K = I
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The complementary sensitivity function is

T (s) = GK(I +GK)−1 =
1

s+ 1

[
1 a
−a 1

]
(3.90)

Nominal stability (NS). The closed-loop system has two poles at s = −1 and so it is
stable. This can be veri£ed by evaluating the closed-loop state matrix

Acl = A−BKC =

[
0 a
−a 0

]
−
[

1 a
−a 1

]
=

[
−1 0
0 −1

]

(To derive Acl use ẋ = Ax+Bu, y = Cx and u = −Ky.)
Nominal performance (NP). The singular values of L = GK = G are shown in

Figure 3.7(a), page 80. We see that σ(L) = 1 at low frequencies and starts dropping off
at about ω = 10. Since σ(L) never exceeds 1, we do not have tight control in the low-gain
direction for this plant (recall the discussion following (3.51)), so we expect poor closed-
loop performance. This is con£rmed by considering S and T . For example, at steady-state
σ̄(T ) = 10.05 and σ̄(S) = 10. Furthermore, the large off-diagonal elements in T (s) in (3.90)
show that we have strong interactions in the closed-loop system. (For reference tracking,
however, this may be counteracted by use of a two degrees-of-freedom controller.)

Robust stability (RS). Now let us consider stability robustness. In order to determine
stability margins with respect to perturbations in each input channel, one may consider
Figure 3.13 where we have broken the loop at the £rst input. The loop transfer function
at this point (the transfer function from w1 to z1) is L1(s) = 1/s (which can be derived from
t11(s) = 1

1+s = L1(s)
1+L1(s)

). This corresponds to an in£nite gain margin and a phase margin
of 90◦. On breaking the loop at the second input we get the same result. This suggests good
robustness properties irrespective of the value of a. However, the design is far from robust as
a further analysis shows. Consider input gain uncertainty, and let ε1 and ε2 denote the relative
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Figure 3.13: Checking stability margins “one-loop-at-a-time”

error in the gain in each input channel. Then

u′1 = (1 + ε1)u1, u′2 = (1 + ε2)u2 (3.91)
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where u′1 and u′2 are the actual changes in the manipulated inputs, while u1 and u2 are the
desired changes as computed by the controller. It is important to stress that this diagonal
input uncertainty, which stems from our inability to know the exact values of the manipulated
inputs, is always present. In terms of a state-space description, (3.91) may be represented by
replacing B by

B′ =

[
1 + ε1 0

0 1 + ε2

]

The corresponding closed-loop state matrix is

A′cl = A−B′KC =

[
0 a
−a 0

]
−
[
1 + ε1 0

0 1 + ε2

] [
1 a
−a 1

]

which has a characteristic polynomial given by

det(sI −A′cl) = s2 + (2 + ε1 + ε2)︸ ︷︷ ︸
a1

s+ 1 + ε1 + ε2 + (a2 + 1)ε1ε2︸ ︷︷ ︸
a0

(3.92)

The perturbed system is stable if and only if both the coef£cients a0 and a1 are positive. We
therefore see that the system is always stable if we consider uncertainty in only one channel
at a time (at least as long as the channel gain is positive). More precisely, we have stability
for (−1 < ε1 < ∞, ε2 = 0) and (ε1 = 0,−1 < ε2 < ∞). This con£rms the in£nite gain
margin seen earlier. However, the system can only tolerate small simultaneous changes in the
two channels. For example, let ε1 = −ε2, then the system is unstable (a0 < 0) for

|ε1| >
1√

a2 + 1
≈ 0.1

In summary, we have found that checking single-loop margins is inadequate for MIMO
problems. We have also observed that large values of σ̄(T ) or σ̄(S) indicate robustness
problems. We will return to this in Chapter 8, where we show that with input uncertainty of
magnitude |εi| < 1/σ̄(T ), we are guaranteed robust stability (even for “full-block complex
perturbations”).

In the next example we £nd that there can be sensitivity to diagonal input uncertainty
even in cases where σ̄(T ) and σ̄(S) have no large peaks. This cannot happen for a diagonal
controller, see (6.92), but it will happen if we use an inverse-based controller for a plant with
large RGA elements, see (6.93).

3.7.2 Motivating robustness example no. 2: distillation process
The following is an idealized dynamic model of a distillation column:

G(s) =
1

75s+ 1

[
87.8 −86.4
108.2 −109.6

]
(3.93)

(time is in minutes). The physics of this example was discussed in Example 3.6. The plant
is ill-conditioned with condition number γ(G) = 141.7 at all frequencies. The plant is also
strongly two-way interactive and the RGA matrix at all frequencies is

Λ(G) =

[
35.1 −34.1
−34.1 35.1

]
(3.94)
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The large elements in this matrix indicate that this process is fundamentally dif£cult to
control.

Remark. Equation (3.93) is admittedly a very crude model of a real distillation column; there should
be a high-order lag in the transfer function from input 1 to output 2 to represent the liquid ¤ow down to
the column, and higher-order composition dynamics should also be included. Nevertheless, the model
is simple and displays important features of distillation column behaviour. It should be noted that with a
more detailed model, the RGA elements would approach 1 at frequencies around 1 rad/min, indicating
less of a control problem.
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Figure 3.14: Response with decoupling controller to £ltered reference input r1 = 1/(5s + 1). The
perturbed plant has 20% gain uncertainty as given by (3.97).

We consider the following inverse-based controller, which may also be looked upon as a
steady-state decoupler with a PI controller:

Kinv(s) =
k1
s
G−1(s) =

k1(1 + 75s)

s

[
0.3994 −0.3149
0.3943 −0.3200

]
, k1 = 0.7 (3.95)

Nominal performance (NP). We have GKinv = KinvG = 0.7
s I . With no model error this

controller should counteract all the interactions in the plant and give rise to two decoupled
£rst-order responses each with a time constant of 1/0.7 = 1.43 min. This is con£rmed by
the solid line in Figure 3.14 which shows the simulated response to a reference change in
y1. The responses are clearly acceptable, and we conclude that nominal performance (NP) is
achieved with the decoupling controller.

Robust stability (RS). The resulting sensitivity and complementary sensitivity functions
with this controller are

S = SI =
s

s+ 0.7
I; T = TI =

1

1.43s+ 1
I (3.96)

Thus, σ̄(S) and σ̄(T ) are both less than 1 at all frequencies, so there are no peaks which
would indicate robustness problems. We also £nd that this controller gives an in£nite gain
margin (GM) and a phase margin (PM) of 90◦ in each channel. Thus, use of the traditional
margins and the peak values of S and T indicate no robustness problems. However, from the
large RGA elements there is cause for concern, and this is con£rmed in the following.

We consider again the input gain uncertainty (3.91) as in the previous example, and we
select ε1 = 0.2 and ε2 = −0.2. We then have

u′1 = 1.2u1, u′2 = 0.8u2 (3.97)
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Note that we use deviation variables; for example, u1 is actually the change ∆u1. This
means that the uncertainty is on the change in the inputs (¤ow rates), and not on their
absolute values. A 20% error is typical for process control applications (see Remark 2 on
page 297). The uncertainty in (3.97) does not by itself yield instability. This is veri£ed
by computing the closed-loop poles, which, assuming no cancellations, are solutions to
det(I + L(s)) = det(I + LI(s)) = 0 (see (4.105) and (A.12)). In our case

L′I(s) = KinvG
′ = KinvG

[
1 + ε1 0

0 1 + ε2

]
=

0.7

s

[
1 + ε1 0

0 1 + ε2

]

so the perturbed closed-loop poles are

s1 = −0.7(1 + ε1), s2 = −0.7(1 + ε2) (3.98)

and we have closed-loop stability as long as the input gains 1+ ε1 and 1+ ε2 remain positive,
so we can have up to 100% error in each input channel. We thus conclude that we have robust
stability (RS) with respect to input gain errors for the decoupling controller.

Robust performance (RP). For SISO systems we generally have that nominal
performance (NP) and robust stability (RS) imply robust performance (RP), but this is not
the case for MIMO systems. This is clearly seen from the dashed lines in Figure 3.14 which
show the closed-loop response of the perturbed system. It differs drastically from the nominal
response represented by the solid line, and even though it is stable, the response is clearly
not acceptable; it is no longer decoupled, and y1(t) and y2(t) reach a value of about 2.5
before settling at their desired values of 1 and 0. Thus RP is not achieved by the decoupling
controller.

Remark 1 There is a simple reason for the observed poor response to the reference change in y1. To
accomplish this change, which occurs mostly in the direction corresponding to the low plant gain, the
inverse-based controller generates relatively large inputs u1 and u2, while trying to keep u1 − u2 very
small. However, the input uncertainty makes this impossible – the result is an undesired large change
in the actual value of u′1 − u′2, which subsequently results in large changes in y1 and y2 because of the
large plant gain (σ̄(G) = 197.2) in this direction, as seen from (3.46).

Remark 2 The system remains stable for gain uncertainty up to 100% because the uncertainty occurs
only at one side of the plant (at the input). If we also consider uncertainty at the output then we £nd that
the decoupling controller yields instability for relatively small errors in the input and output gains. This
is illustrated in Exercise 3.11 below.

Remark 3 It is also dif£cult to get a robust controller with other standard design techniques for this
model. For example, an S/KS design as in (3.80) with WP = wP I (using M = 2 and ωB = 0.05 in
the performance weight (3.81)) and Wu = I yields a good nominal response (although not decoupled),
but the system is very sensitive to input uncertainty, and the outputs go up to about 3.4 and settle very
slowly when there is 20% input gain error.

Remark 4 Attempts to make the inverse-based controller robust using the second step of the Glover–
McFarlane H∞ loop-shaping procedure are also unhelpful; see Exercise 3.12. This shows that
robustness with respect to general coprime factor uncertainty does not necessarily imply robustness
with respect to input uncertainty. In any case, the solution is to avoid inverse-based controllers for a
plant with large RGA elements.
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Exercise 3.10 ∗ Design an SVD controller K = W1KsW2 for the distillation process in (3.93), i.e.
select W1 = V and W2 = UT where U and V are given in (3.46). Select Ks in the form

Ks =

[
c1

75s+1
s

0
0 c2

75s+1
s

]

and try the following values:
(a) c1 = c2 = 0.005;
(b) c1 = 0.005, c2 = 0.05;
(c) c1 = 0.7/197 = 0.0036, c2 = 0.7/1.39 = 0.504.
Simulate the closed-loop reference response with and without uncertainty. Designs (a) and (b) should
be robust. Which has the best performance? Design (c) should give the response in Figure 3.14. In
the simulations, include high-order plant dynamics by replacing G(s) by 1

(0.02s+1)5
G(s). What is the

condition number of the controller in the three cases? Discuss the results. (See also the conclusion on
page 251.)

Exercise 3.11 Consider again the distillation process (3.93) with the decoupling controller, but also
include output gain uncertainty ε̂i. That is, let the perturbed loop transfer function be

L′(s) = G′Kinv =
0.7

s

[
1 + ε̂1 0

0 1 + ε̂2

]
G
[
1 + ε1 0

0 1 + ε2

]
G−1

︸ ︷︷ ︸
L0

(3.99)

where L0 is a constant matrix for the distillation model (3.93), since all elements in G share the
same dynamics, G(s) = g(s)G0. The closed-loop poles of the perturbed system are solutions to
det(I + L′(s)) = det(I + (k1/s)L0) = 0, or equivalently

det

(
s

k1
I + L0

)
= (s/k1)

2 + tr(L0)(s/k1) + det(L0) = 0 (3.100)

For k1 > 0 we have from the Routh–Hurwitz stability condition that instability occurs if and only
if the trace and/or the determinant of L0 are negative. Since det(L0) > 0 for any gain error
less than 100%, instability can only occur if tr(L0) < 0. Evaluate tr(L0) and show that with
gain errors of equal magnitude the combination of errors which most easily yields instability is with
ε̂1 = −ε̂2 = −ε1 = ε2 = ε. Use this to show that the perturbed system is unstable if

|ε| >
√

1

2λ11 − 1
(3.101)

where λ11 = g11g22/ detG is the 1, 1 element of the RGA of G. In our case λ11 = 35.1 and we get
instability for |ε| > 0.120. Check this numerically, e.g. using Matlab.

Remark. The instability condition in (3.101) for simultaneous input and output gain uncertainty applies
to the very special case of a 2×2 plant, in which all elements share the same dynamics,G(s) = g(s)G0,
and an inverse-based controller, K(s) = (k1/s)G

−1(s).

Exercise 3.12 ∗ Consider again the distillation process G(s) in (3.93). The response using the
inverse-based controller Kinv in (3.95) was found to be sensitive to input gain errors. We want to see if
the controller can be modi£ed to yield a more robust system by using the Glover–McFarlaneH∞ loop-
shaping procedure. To this effect, let the shaped plant be Gs = GKinv, i.e. W1 = Kinv, and design an
H∞ controller Ks for the shaped plant (see page 370 and Chapter 9), such that the overall controller
becomes K = KinvKs. (You will £nd that γmin = 1.414 which indicates good robustness with respect
to coprime factor uncertainty, but the loop shape is almost unchanged and the system remains sensitive
to input uncertainty.)
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3.7.3 Robustness conclusions
From the two motivating examples above we found that multivariable plants can display a
sensitivity to uncertainty (in this case input uncertainty) which is fundamentally different
from what is possible in SISO systems.

In the £rst example (spinning satellite), we had excellent stability margins (PM and GM)
when considering one loop at a time, but small simultaneous input gain errors gave instability.
This might have been expected from the peak values (H∞ norms) of S and T , de£ned as

‖T‖∞ = max
ω

σ̄(T (jω)), ‖S‖∞ = max
ω

σ̄(S(jω)) (3.102)

which were both large (about 10) for this example.
In the second example (distillation process), we again had excellent stability margins (PM

and GM), and the system was also robustly stable to errors (even simultaneous) of up to
100% in the input gains. However, in this case small input gain errors gave very poor output
performance, so robust performance was not satis£ed, and adding simultaneous output gain
uncertainty resulted in instability (see Exercise 3.11). These problems with the decoupling
controller might have been expected because the plant has large RGA elements. For this
second example the H∞ norms of S and T were both about 1, so the absence of peaks in S
and T does not guarantee robustness.

Although sensitivity peaks, RGA elements, etc., are useful indicators of robustness
problems, they provide no exact answer to whether a given source of uncertainty will yield
instability or poor performance. This motivates the need for better tools for analyzing the
effects of model uncertainty. We want to avoid a trial-and-error procedure based on checking
stability and performance for a large number of candidate plants. This is very time consuming,
and in the end one does not know whether those plants are the limiting ones. What is desired,
is a simple tool which is able to identify the worst-case plant. This will be the focus of
Chapters 7 and 8 where we show how to represent model uncertainty in the H∞ framework,
and introduce the structured singular value µ as our tool. The two motivating examples are
studied in more detail in Example 8.10 and Section 8.11.3 where a µ-analysis predicts the
robustness problems found above.

3.8 General control problem formulation

¾

-

--

K

P

sensed outputscontrol signals

exogenous inputs
(weighted)

exogenous outputs
(weighted)

u v

zw

Figure 3.15: General control con£guration for the case with no model uncertainty
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In this section we consider a general method of formulating control problems introduced
by Doyle (1983; 1984). The formulation makes use of the general control con£guration in
Figure 3.15, where P is the generalized plant andK is the generalized controller as explained
in Table 1.1 on page 13. Note that positive feedback is used.

The overall control objective is to minimize some norm of the transfer function from w to
z, e.g. theH∞ norm. The controller design problem is then:

• Find a controller K, which, based on the information in v, generates a control signal u,
which counteracts the in¤uence of w on z, thereby minimizing the closed-loop norm from
w to z.

The most important point of this section is to appreciate that almost any linear control
problem can be formulated using the block diagram in Figure 3.15 (for the nominal case)
or in Figure 3.23 (with model uncertainty).

Remark 1 The con£guration in Figure 3.15 may at £rst glance seem restrictive. However, this is not
the case, and we will demonstrate the generality of the setup with a few examples, including the design
of observers (the estimation problem) and feedforward controllers.

Remark 2 We may generalize the control con£guration still further by including diagnostics as
additional outputs from the controller giving the 4-parameter controller introduced by Nett (1986),
but this is not considered in this book.

3.8.1 Obtaining the generalized plant P
The routines in Matlab for synthesizing H∞ and H2 optimal controllers assume that the
problem is in the general form of Figure 3.15; that is, they assume that P is given. To derive
P (and K) for a speci£c case we must £rst £nd a block diagram representation and identify
the signals w, z, u and v. To construct P one should note that it is an open-loop system
and remember to break all “loops” entering and exiting the controller K. Some examples are
given below and further examples are given in Section 9.3 (Figures 9.9, 9.10, 9.11 and 9.12).

6

¾?

-?----

ym

u

+
+

+
+

n

y

d

GK-
+r

Figure 3.16: One degree-of-freedom control con£guration

Example 3.18 One degree-of-freedom feedback control con£guration. We want to £nd P for the
conventional one degree-of-freedom control con£guration in Figure 3.16. The £rst step is to identify the
signals for the generalized plant:

w =



w1

w2

w3


 =



d
r
n


 ; z = e = y − r; v = r − ym = r − y − n (3.103)
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Figure 3.17: Equivalent representation of Figure 3.16 where the error signal to be minimized is
z = y − r and the input to the controller is v = r − ym

With this choice of v, the controller only has information about the deviation r − ym. Also note that
z = y − r, which means that performance is speci£ed in terms of the actual output y and not in terms
of the measured output ym. The block diagram in Figure 3.16 then yields

z = y − r = Gu+ d− r = Iw1 − Iw2 + 0w3 +Gu

v = r − ym = r −Gu− d− n = −Iw1 + Iw2 − Iw3 −Gu

and P which represents the transfer function matrix from [w u ]T to [ z v ]T is

P =

[
I −I 0 G
−I I −I −G

]
(3.104)

Note that P does not contain the controller. Alternatively, P can be obtained by inspection from the
representation in Figure 3.17.

Remark. Obtaining the generalized plant P may seem tedious. However, when performing numerical
calculations P can be generated using software. For example, in Matlab we may use the simulink
program, or we may use the sysic program in the Robust Control toolbox. The code in Table 3.2
generates the generalized plant P in (3.104) for Figure 3.16.

Table 3.2: Matlab program to generate P in (3.104)
% Uses the Robust Control toolbox
systemnames = ’G’; % G is the SISO plant.
inputvar = ’[d(1);r(1);n(1);u(1)]’; % Consists of vectors w and u.
input to G = ’[u]’;
outputvar = ’[G+d-r; r-G-d-n]’; % Consists of vectors z and v.
sysoutname = ’P’;
sysic;

3.8.2 Controller design: including weights in P

To get a meaningful controller synthesis problem, e.g. in terms of the H∞ or H2 norms, we
generally have to include weights Wz and Ww in the generalized plant P , see Figure 3.18.
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Figure 3.18: General control con£guration for the case with no model uncertainty

That is, we consider the weighted or normalized exogenous inputs w (where w̃ = Www
consists of the “physical” signals entering the system; disturbances, references and noise),
and the weighted or normalized controlled outputs z = Wz z̃ (where z̃ often consists of the
control error y−r and the manipulated input u). The weighting matrices are usually frequency
dependent and typically selected such that weighted signals w and z are of magnitude 1; that
is, the norm from w to z should be less than 1. Thus, in most cases only the magnitude of
the weights matter, and we may without loss of generality assume that Ww(s) and Wz(s) are
stable and minimum-phase (they need not even be rational transfer functions but if not they
will be unsuitable for controller synthesis using current software).

Example 3.19 Stacked S/T/KS problem. Consider anH∞ problem where we want to bound σ̄(S)
(for performance), σ̄(T ) (for robustness and to avoid sensitivity to noise) and σ̄(KS) (to penalize large
inputs). These requirements may be combined into a stackedH∞ problem

min
K
‖N(K)‖∞, N =



WuKS
WTT
WPS


 (3.105)

where K is a stabilizing controller. In other words, we have z = Nw and the objective is to minimize
theH∞ norm fromw to z. Except for some negative signs which have no effect when evaluating ‖N‖∞,
the N in (3.105) may be represented by the block diagram in Figure 3.19 (convince yourself that this is
true). Herew represents a reference command (w = −r, where the negative sign does not really matter)
or a disturbance entering at the output (w = dy), and z consists of the weighted input z1 = Wuu, the
weighted output z2 = WT y, and the weighted control error z3 = WP (y− r). We get from Figure 3.19
the following set of equations:

z1 = Wuu

z2 = WTGu

z3 = WPw +WPGu

v = −w −Gu

so the generalized plant P from [w u ]T to [ z v ]T is

P =




0 WuI
0 WTG

WP I WPG
−I −G


 (3.106)
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Figure 3.19: Block diagram corresponding to z = Nw in (3.105)

3.8.3 Partitioning the generalized plant P
We often partition P as

P =

[
P11 P12
P21 P22

]
(3.107)

such that its parts are compatible with the signals w, z, u and v in the generalized control
con£guration,

z = P11w + P12u (3.108)
v = P21w + P22u (3.109)

The reader should become familiar with this notation. In Example 3.19 we get

P11 =

[
0
0

WP I

]
, P12 =

[
WuI
WTG
WPG

]
(3.110)

P21 = −I, P22 = −G (3.111)
Note that P22 has dimensions compatible with the controller, i.e. if K is an nu × nv matrix,
then P22 is an nv × nu matrix. For cases with one degree-of-freedom negative feedback
control we have P22 = −G.

3.8.4 Analysis: closing the loop to get N

-- z
N

w

Figure 3.20: General block diagram for analysis with no uncertainty

The general feedback con£gurations in Figures 3.15 and 3.18 have the controller K as
a separate block. This is useful when synthesizing the controller. However, for analysis
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of closed-loop performance the controller is given, and we may absorb K into the
interconnection structure and obtain the system N as shown in Figure 3.20 where

z = Nw (3.112)

where N is a function of K. To £nd N , we £rst partition the generalized plant P as given in
(3.107)–(3.109), combine this with the controller equation

u = Kv (3.113)

and eliminate u and v from (3.108), (3.109) and (3.113) to yield z = Nw where N is given
by

N = P11 + P12K(I − P22K)−1P21 , Fl(P,K) (3.114)

Here Fl(P,K) denotes a lower linear fractional transformation (LFT) of P with K as the
parameter. Some properties of LFTs are given in Appendix A.8. In words,N is obtained from
Figure 3.15 by using K to close a lower feedback loop around P . Since positive feedback is
used in the general con£guration in Figure 3.15 the term (I − P22K)−1 has a negative sign.

Remark. To assist in remembering the sequence of P12 and P21 in (3.114), notice that the £rst (last)
index in P11 is the same as the £rst (last) index in P12K(I − P22K)−1P21. The lower LFT in (3.114)
is also represented by the block diagram in Figure 3.2.

The reader is advised to become comfortable with the above manipulations before
progressing further.

Example 3.20 We want to derive N for the partitioned P in (3.110) and (3.111) using the LFT
formula in (3.114). We get

N =




0
0

WP I


+



WuI
WTG
WPG


K(I +GK)−1(−I) =



−WuKS
−WTT
WPS




where we have made use of the identities S = (I + GK)−1, T = GKS and I − T = S. With the
exception of the two negative signs, this is identical to N given in (3.105). Of course, the negative signs
have no effect on the norm of N .

Again, it should be noted that deriving N from P is much simpler using available software.
For example, in the Matlab Robust Control toolbox we can evaluate N = Fl(P,K) using the
command N=lft(P,K).

Exercise 3.13 Consider the two degrees-of-freedom feedback con£guration in Figure 1.3(b). (i) Find
P when

w =



d
r
n


 ; z =

[
y − r
u

]
; v =

[
r
ym

]
(3.115)

(ii) Let z = Nw and derive N in two different ways: directly from the block diagram and using
N = Fl(P,K).
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Figure 3.21: System with feedforward, local feedback and two degrees-of-freedom control

3.8.5 Generalized plant P : further examples
To illustrate the generality of the con£guration in Figure 3.15, we now present two further
examples: one in which we derive P for a problem involving feedforward control, and one
for a problem involving estimation.

Example 3.21 Consider the control system in Figure 3.21, where y1 is the output we want to control,
y2 is a secondary output (extra measurement), and we also measure the disturbance d. By secondary we
mean that y2 is of secondary importance for control; that is, there is no control objective associated with
it. The control con£guration includes a two degrees-of-freedom controller, a feedforward controller
and a local feedback controller based on the extra measurement y2. To recast this into our standard
con£guration of Figure 3.15 we de£ne

w =

[
d
r

]
; z = y1 − r; v =




r
y1
y2
d


 (3.116)

Note that d and r are both inputs and outputs to P and we have assumed a perfect measurement of the
disturbance d. Since the controller has explicit information about r we have a two degrees-of-freedom
controller. The generalized controller K may be written in terms of the individual controller blocks in
Figure 3.21 as follows:

K = [K1Kr −K1 −K2 Kd ] (3.117)
By writing down the equations or by inspection from Figure 3.21 we get

P =




G1 −I G1G2

0 I 0
G1 0 G1G2

0 0 G2

I 0 0


 (3.118)

Then partitioning P as in (3.108) and (3.109) yields P22 = [ 0T (G1G2)
T GT

2 0T ]T .
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Exercise 3.14 ∗ Cascade implementation. Consider Example 3.21 further. The local feedback based
on y2 is often implemented in a cascade manner; see also Figure 10.11. In this case the output from K1

enters into K2 and it may be viewed as a reference signal for y2. Derive the generalized controller K
and the generalized plant P in this case.

Remark. From Example 3.21 and Exercise 3.14, we see that a cascade implementation does not usually
limit the achievable performance since, unless the optimal K2 or K1 have RHP-zeros, we can obtain
from the optimal overallK the subcontrollersK2 andK1 (although we may have to add a smallD-term
to K to make the controllers proper). However, if we impose restrictions on the design such that, for
example, K2 or K1 are designed “locally” (without considering the whole problem), then this will limit
the achievable performance. For example, for a two degrees-of-freedom controller a common approach
is £rst to design the feedback controller Ky for disturbance rejection (without considering reference
tracking) and then design Kr for reference tracking. This will generally give some performance loss
compared to a simultaneous design of Ky and Kr .

Example 3.22 Output estimator. Consider a situation where we have no measurement of the output
y which we want to control. However, we do have a measurement of another output variable y2. Let d
denote the unknown external inputs (including noise and disturbances) and uG the known plant inputs
(a subscript G is used because in this case the output u from K is not the plant input). Let the model be

y = GuG +Gdd; y2 = FuG + Fdd

The objective is to design an estimator, Kest, such that the estimated output ŷ = Kest

[
y2
uG

]
is as close

as possible in some sense to the true output y; see Figure 3.22. This problem may be written in the
general framework of Figure 3.15 with

w =
[

d
uG

]
, u = ŷ, z = y − ŷ, v =

[
y2
uG

]

Note that u = ŷ; that is, the output u from the generalized controller is the estimate of the plant output.
Furthermore, K = Kest and

P =



Gd G −I
Fd F 0
0 I 0


 (3.119)

We see that P22 =
[
0
0

]
since the estimator problem does not involve feedback.

Exercise 3.15 State estimator (observer). In the Kalman £lter problem studied in Section 9.2 the
objective is to minimize x − x̂ (whereas in Example 3.22 the objective was to minimize y − ŷ). Show
how the Kalman £lter problem can be represented in the general con£guration of Figure 3.15 and £nd
P .

3.8.6 Deriving P from N

For cases where N is given and we wish to £nd a P such that

N = Fl(P,K) = P11 + P12K(I − P22K)−1P21

it is usually best to work from a block diagram representation. This was illustrated above for
the stacked N in (3.105). Alternatively, the following procedure may be useful:

1. Set K = 0 in N to obtain P11.
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ŷ

z

-
+

Kest
FFd

GGd

uG

d

Figure 3.22: Output estimation problem. One particular estimator Kest is a Kalman £lter

2. De£ne Q = N − P11 and rewrite Q such that each term has a common factor R =
K(I − P22K)−1 (this gives P22).

3. Since Q = P12RP21, we can now usually obtain P12 and P21 by inspection.

Example 3.23 Weighted sensitivity. We will use the above procedure to deriveP whenN = wPS =
wP (I +GK)−1, where wP is a scalar weight.
1. P11 = N(K = 0) = wP I .
2. Q = N−wP I = wP (S−I) = −wPT = −wPGK(I+GK)−1, and we haveR = K(I+GK)−1

so P22 = −G.
3. Q = −wPGR so we have P12 = −wPG and P21 = I , and we get

P =
[
wP I −wPG
I −G

]
(3.120)

Remark. When obtaining P from a given N , we have that P11 and P22 are unique, whereas from step
3 in the above procedure we see that P12 and P21 are not unique. For instance, let α be a real scalar,
then we may instead choose P̃12 = αP12 and P̃21 = (1/α)P21. For P in (3.120) this means that we
may move the negative sign of the scalar wP from P12 to P21.

Exercise 3.16 ∗ Mixed sensitivity. Use the above procedure to derive the generalized plant P for the
stacked N in (3.105).

3.8.7 Problems not covered by the general formulation
The above examples have demonstrated the generality of the control con£guration in
Figure 3.15. Nevertheless, there are some controller design problems which are not covered.
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Let N be some closed-loop transfer function whose norm we want to minimize. To use
the general form we must £rst obtain a P such that N = Fl(P,K). However, this is not
always possible, since there may not exist a block diagram representation for N . As a simple
example, consider the stacked transfer function

N =

[
(I +GK)−1

(I +KG)−1

]
(3.121)

The transfer function (I + GK)−1 may be represented on a block diagram with the input
and output signals after the plant, whereas (I+KG)−1 may be represented by another block
diagram with input and output signals before the plant. However, in N there are no cross
coupling terms between an input before the plant and an output after the plant (corresponding
to G(I + KG)−1), or between an input after the plant and an output before the plant
(corresponding to −K(I + GK)−1) so N cannot be represented in block diagram form.
Equivalently, if we apply the procedure in Section 3.8.6 to N in (3.121), we are not able to
£nd solutions to P12 and P21 in step 3.

Another stacked transfer function which cannot in general be represented in block diagram
form is

N =

[
WPS
SGd

]
(3.122)

Remark. The case where N cannot be written as an LFT of K is a special case of the Hadamard-
weightedH∞ problem studied by van Diggelen and Glover (1994a). Although the solution to thisH∞
problem remains intractable, van Diggelen and Glover (1994b) present a solution for a similar problem
where the Frobenius norm is used instead of the singular value to “sum up the channels”.

Exercise 3.17 Show thatN in (3.122) can be represented in block diagram form ifWP = wP I where
wP is a scalar.

3.8.8 A general control con£guration including model uncertainty
The general control con£guration in Figure 3.15 may be extended to include model
uncertainty as shown by the block diagram in Figure 3.23. Here the matrix ∆ is a block-
diagonal matrix that includes all possible perturbations (representing uncertainty) to the
system. It is usually normalized in such a way that ‖∆‖∞ ≤ 1.

The block diagram in Figure 3.23 in terms of P (for synthesis) may be transformed into
the block diagram in Figure 3.24 in terms of N (for analysis) by using K to close a lower
loop around P . If we partition P to be compatible with the controller K, then the same lower
LFT as found in (3.114) applies, and

N = Fl(P,K) = P11 + P12K(I − P22K)−1P21 (3.123)

To evaluate the perturbed (uncertain) transfer function from external inputs w to external
outputs z, we use ∆ to close the upper loop around N (see Figure 3.24), resulting in an upper
LFT (see Appendix A.8):

z = Fu(N,∆)w; Fu(N,∆) , N22 +N21∆(I −N11∆)−1N12 (3.124)

Remark 1 Controller synthesis based on Figure 3.23 is still an unsolved problem, although good
practical approaches like DK-iteration to £nd the “µ-optimal” controller are in use (see Section 8.12).
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Figure 3.24: General block diagram for analysis with uncertainty included

For analysis (with a given controller), the situation is better and with the H∞ norm an assessment of
robust performance involves computing the structured singular value, µ. This is discussed in more detail
in Chapter 8.

Remark 2 In (3.124) N has been partitioned to be compatible with ∆; that is, N11 has dimensions
compatible with ∆. Usually, ∆ is square, in which case N11 is a square matrix of the same dimension
as ∆. For the nominal case with no uncertainty we have Fu(N,∆) = Fu(N, 0) = N22, so N22 is the
nominal transfer function from w to z.

Remark 3 Note that P and N here also include information about how the uncertainty affects the
system, so they are not the same P and N as used earlier, e.g. in (3.114). Actually, the parts P22 and
N22 of P andN in (3.123) (with uncertainty) are equal to the P andN in (3.114) (without uncertainty).
Strictly speaking, we should have used another symbol for N and P in (3.123), but for notational
simplicity we did not.

Remark 4 The fact that almost any control problem with uncertainty can be represented by Figure 3.23
may seem surprising, so some explanation is in order. First, represent each source of uncertainty by a
perturbation block, ∆i, which is normalized such that ‖∆i‖ ≤ 1. These perturbations may result from
parametric uncertainty, neglected dynamics, etc., as will be discussed in more detail in Chapters 7 and
8. Then “pull out” each of these blocks from the system so that an input and an output can be associated
with each ∆i as shown in Figure 3.25(a). Finally, collect these perturbation blocks into a large block-
diagonal matrix having perturbation inputs and outputs as shown in Figure 3.25(b). In Chapter 8 we
discuss in detail how to obtain N and ∆. Generally, it is dif£cult to perform these tasks manually, but
this can be easily done using software; see examples in Chapters 7.
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(a) (b)

Figure 3.25: Rearranging a system with multiple perturbations into the N∆-structure

3.9 Additional exercises
Most of these exercises are based on material presented in Appendix A. The exercises
illustrate material which the reader should know before reading the subsequent chapters.

Exercise 3.18 ∗ Consider the performance speci£cation ‖wPS‖∞ < 1. Suggest a rational transfer
function weight wP (s) and sketch it as a function of frequency for the following two cases:
1. We desire no steady-state offset, a bandwidth better than 1 rad/s and a resonance peak (worst

ampli£cation caused by feedback) lower than 1.5.
2. We desire less than 1% steady-state offset, less than 10% error up to frequency 3 rad/s, a bandwidth

better than 10 rad/s, and a resonance peak lower than 2. (Hint: See (2.105) and (2.106).)

Exercise 3.19 By ‖M‖∞ one can mean either a spatial or temporal norm. Explain the difference
between the two and illustrate by computing the appropriate in£nity norm for

M1 =

[
3 4
−2 6

]
, M2(s) =

s− 1

s+ 1

3

s+ 2

Exercise 3.20 ∗ What is the relationship between the RGA matrix and uncertainty in the individual
elements? Illustrate this for perturbations in the 1, 1 element of the matrix

A =

[
10 9
9 8

]
(3.125)

Exercise 3.21 Assume that A is non-singular. (i) Formulate a condition in terms of the maximum
singular value of E for the matrix A + E to remain non-singular. Apply this to A in (3.125) and (ii)
£nd an E of minimum magnitude which makes A+ E singular.

Exercise 3.22 ∗ Compute ‖A‖i1, σ̄(A) = ‖A‖i2, ‖A‖i∞, ‖A‖F , ‖A‖max and ‖A‖sum for the
following matrices and tabulate your results:

A1 = I; A2 =

[
1 0
0 0

]
;A3 =

[
1 1
1 1

]
;A4 =

[
1 1
0 0

]
;A5 =

[
1 0
1 0

]

Show using the above matrices that the following bounds are tight (i.e. we may have equality) for 2× 2
matrices (m = 2):

σ̄(A) ≤ ‖A‖F ≤
√
m σ̄(A)

‖A‖max ≤ σ̄(A) ≤ m‖A‖max
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‖A‖i1/
√
m ≤ σ̄(A) ≤ √m‖A‖i1

‖A‖i∞/
√
m ≤ σ̄(A) ≤ √m‖A‖i∞
‖A‖F ≤ ‖A‖sum

Exercise 3.23 Find example matrices to illustrate that the above bounds are also tight when A is a
square m×m matrix with m > 2.

Exercise 3.24 ∗ Do the extreme singular values bound the magnitudes of the elements of a matrix?
That is, is σ̄(A) greater than the largest element (in magnitude), and is σ(A) smaller than the smallest
element? For a non-singular matrix, how is σ(A) related to the largest element in A−1?

Exercise 3.25 Consider a lower triangular m ×m matrix A with aii = −1, aij = 1 for all i > j,
and aij = 0 for all i < j.
(a) What is detA?
(b) What are the eigenvalues of A?
(c) What is the RGA of A?
(d) Let m = 4 and £nd an E with the smallest value of σ̄(E) such that A+ E is singular.

Exercise 3.26 ∗ Find two matrices A and B such that ρ(A + B) > ρ(A) + ρ(B) which proves that
the spectral radius does not satisfy the triangle inequality and is thus not a norm.

Exercise 3.27 Write T = GK(I +GK)−1 as an LFT of K, i.e. £nd P such that T = Fl(P,K).

Exercise 3.28 ∗ Write K as an LFT of T = GK(I +GK)−1, i.e. £nd J such that K = Fl(J, T ).

Exercise 3.29 State-space descriptions may be represented as LFTs. To demonstrate this £nd H for

Fl(H, 1/s) = C(sI −A)−1B +D

Exercise 3.30 ∗ Show that the set of all stabilizing controllers in (4.94) can be written as K =
Fl(J,Q) and £nd J .

Exercise 3.31 In (3.11) we stated that the sensitivity of a perturbed plant, S ′ = (I + G′K)−1, is
related to that of the nominal plant, S = (I +GK)−1, by

S′ = S(I + EOT )
−1

whereEO = (G′−G)G−1. This exercise deals with how the above result may be derived in a systematic
(though cumbersome) manner using LFTs (see also Skogestad and Morari, 1988a).

(a) First £nd F such that S′ = (I +G′K)−1 = Fl(F,K), and £nd J such that K = Fl(J, T ) (see
Exercise 3.28).

(b) Combine these LFTs to £nd S′ = Fl(N,T ). What is N in terms of G and G′? Note that since
J11 = 0 we have from (A.164)

N =

[
F11 F12J12

J21F21 J22 + J21F22J12

]

(c) Evaluate S′ = Fl(N,T ) and show that

S′ = I −G′G−1T (I − (I −G′G−1)T )−1

(d) Finally, show that this may be rewritten as S ′ = S(I + EOT )
−1.
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3.10 Conclusion
The main purpose of this chapter has been to give an overview of methods for analysis and
design of multivariable control systems.

In terms of analysis, we have shown how to evaluate MIMO transfer functions and
how to use the singular value decomposition of the frequency-dependent plant transfer
function matrix to provide insight into multivariable directionality. Other useful tools for
analyzing directionality and interactions are the condition number and the RGA. Closed-loop
performance may be analyzed in the frequency domain by evaluating the maximum singular
value of the sensitivity function as a function of frequency. Multivariable RHP-zeros impose
fundamental limitations on closed-loop performance, but for MIMO systems we can often
direct the undesired effect of a RHP-zero to a subset of the outputs. MIMO systems are often
more sensitive to uncertainty than SISO systems, and we demonstrated in two examples the
possible sensitivity to input gain uncertainty.

In terms of controller design, we discussed some simple approaches such as decoupling
and decentralized control. We also introduced a general control con£guration in terms of the
generalized plant P , which can be used as a basis for synthesizing multivariable controllers
using a number of methods, including LQG,H2,H∞ and µ-optimal control. These methods
are discussed in much more detail in Chapters 8 and 9. In this chapter we have only discussed
theH∞ weighted sensitivity method.
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4

ELEMENTS OF LINEAR
SYSTEM THEORY

The main objective of this chapter is to summarize important results from linear system theory. The
treatment is thorough, but readers are encouraged to consult other books, such as Kailath (1980) or
Zhou et al. (1996), for more details and background information if these results are new to them.

4.1 System descriptions
The most important property of a linear system (operator) is that it satis£es the superposition
principle. Let f(u) be a linear operator, let u1 and u2 be two independent variables (e.g. input
signals), and let α1 and α2 be two real scalars, then

f(α1 · u1 + α2 · u2) = α1 · f(u1) + α2 · f(u2) (4.1)

We use in this book various representations of time-invariant linear systems, all of which
are equivalent for systems that can be described by linear ordinary differential equations
with constant coef£cients and which do not require differentiation of the inputs (independent
variables). The most important of these representations are discussed in this section.

4.1.1 State-space representation
Consider a system with m inputs (vector u) and l outputs (vector y) which has an internal
description of n states (vector x). A natural way to represent many physical systems is by
nonlinear state-space models of the form

ẋ = f(x, u); y = g(x, u) (4.2)

where ẋ ≡ dx/dt and f and g are nonlinear functions. Linear state-space models may then
be derived from the linearization of such models. In terms of deviation variables (where x
represents a deviation from some nominal value or trajectory, etc.) we have

ẋ(t) = Ax(t) +Bu(t) (4.3)

y(t) = Cx(t) +Du(t) (4.4)
where A, B, C and D are real matrices. The dependence of x, u and y of time t is usually
omitted to simplify notation. We consider time-invariant linear systems where these matrices

Multivariable Feedback Control: Analysis and Design. Second Edition
S. Skogestad and I. Postlethwaite c© 2005, 2006 John Wiley & Sons, Ltd
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are independent of time. If (4.3) is derived by linearizing (4.2) then A = ∂f/∂x and
B = ∂f/∂u (see Section 1.5 for an example of such a derivation). A is sometimes called
the state matrix. These equations provide a convenient means of describing the dynamic
behaviour of proper, rational, linear systems. They may be rewritten as

[
ẋ
y

]
=

[
A B
C D

] [
x
u

]

which gives rise to the shorthand notation

G
s
=

[
A B
C D

]
(4.5)

which is frequently used to describe a state-space model of a system G. Note that the
representation in (4.3)–(4.4) is not a unique description of the input–output behaviour of a
linear system. First, there exist realizations with the same input–output behaviour, but with
additional unobservable and/or uncontrollable states (modes). Second, even for a minimal
realization (a realization with the fewest number of states and consequently no unobservable
or uncontrollable modes) there are an in£nite number of possibilities. To see this, let S be
an invertible constant matrix, and introduce the new states x̃ = Sx, i.e. x = S−1x̃. Then an
equivalent state-space realization (i.e. one with the same input–output behaviour) in terms of
these new states is

Ã = SAS−1, B̃ = SB, C̃ = CS−1, D̃ = D

The most common realizations are given by a few canonical forms, such as the Jordan
(diagonalized) canonical form, the observability canonical form, etc.; see page 126.

Given the linear dynamical system in (4.3) with an initial state condition x(t0) and an input
u(t), the dynamical system response x(t) for t ≥ t0 can be determined from

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ (4.6)

where the matrix exponential is

eAt = I +
∞∑

k=1

(At)k/k! =
n∑

i=1

tie
λitqHi (4.7)

The latter dyadic expansion, involving the right (ti) and left (qi) eigenvectors of A, applies
for cases with distinct eigenvalues λi of A, see (A.23). We will refer to the term eλit as the
mode associated with the eigenvalue λi(A). For a diagonalized realization (where we select
S such that Ã = SAS−1 = Λ is a diagonal matrix) we have that eÃt = diag{eλi(A)t}; see
(A.22).

Remark 1 In the state-space model (4.3)–(4.4) u represents all independent variables. Usually, we
consider three kinds of independent variables, namely the manipulated inputs (u), the disturbances (d)
and the measurement noise n. The state-space model is then written as

ẋ = Ax+Bu+Bdd
y = Cx+Du+Ddd+ n

(4.8)

Note that the symbol n is used to represent both the noise signal and the number of states.
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Remark 2 A more general state-space representation is the descriptor representation

Eẋ = Ax+Bu (4.9)

If E is non-singular, (4.9) is a special case of (4.3), because (4.9) may then be written as

ẋ = Āx+ B̄u

where Ā = E−1A and B̄ = E−1B. However, if the matrix E is singular then (4.9) allows for implicit
algebraic relations between the states x. For example, if E = [ I 0 ] then (4.9) is equivalent to the
following set of differential and algebraic equations:

ẋ1 = A11x1 +A12x2 +B1u

0 = A21x1 +A22x2 +B2u

It would be possible to eliminate the algebraic variables x2 (by solving the algebraic equations) to get
x2 = −A−122 (A21x1 + B2u) and thus derive a set of differential equations (4.3) in x1 only. However,
it is often more convenient to keep the system on the original descriptor form in (4.9).

4.1.2 Impulse response representation
The impulse response matrix is

g(t) =

{
0 t < 0
CeAtB +Dδ(t) t ≥ 0

(4.10)

where δ(t) is the unit impulse (delta) function which satis£es limε→0

∫ ε

0
δ(t)dt = 1. The ij’th

element of the impulse response matrix, gij(t), represents the response yi(t) to an impulse
uj(t) = δ(t) for a system with a zero initial state.

With initial state x(0) = 0, the dynamic response to an arbitrary input u(t) (which is zero
for t < 0) may from (4.6) be written as

y(t) = g(t) ∗ u(t) =
∫ t

0

g(t− τ)u(τ)dτ (4.11)

where ∗ denotes the convolution operator.

4.1.3 Transfer function representation – Laplace transforms
The transfer function representation is unique and is very useful for directly obtaining insight
into the properties of a system. It is de£ned as the Laplace transform of the impulse response
matrix

G(s) =

∫ ∞

0

g(t)e−stdt (4.12)

Alternatively, we may start from the state-space description. With the assumption of a zero
initial state, x(t = 0) = 0, the Laplace transforms of (4.3) and (4.4) become1

sx(s) = Ax(s) +Bu(s) ⇒ x(s) = (sI −A)−1Bu(s) (4.13)
1 We make the usual abuse of notation and let f(s) denote the Laplace transform of f(t).



122 MULTIVARIABLE FEEDBACK CONTROL

y(s) = Cx(s) +Du(s) ⇒ y(s) = (C(sI −A)−1B +D)︸ ︷︷ ︸
G(s)

u(s) (4.14)

where G(s) is the transfer function matrix. Equivalently, from (A.1),

G(s) =
1

det(sI −A) [C adj(sI −A)B +D det(sI −A)] (4.15)

where det(sI − A) =
∏n

i=1(s − pi) is the pole polynomial. The poles are equal to the
eigenvalues of A, i.e. pi = λi(A). For cases where the eigenvalues of A are distinct, we may
use the dyadic expansion of A given in (A.23), and derive

G(s) =

n∑

i=1

Ctiq
H
i B

s− pi
+D (4.16)

where qi and ti are the left and right eigenvectors of the state matrix A respectively. When
disturbances are treated separately, see (4.8), the corresponding disturbance transfer function
is

Gd(s) = C(sI −A)−1Bd +Dd (4.17)

Note that any system written in the state-space form of (4.3) and (4.4) has a transfer
function, but the opposite is not true. For example, time delays and improper systems can
be represented by Laplace transforms, but do not have a state-space representation. On the
other hand, the state-space representation yields an internal description of the system which
may be useful if the model is derived from physical principles. It is also more suitable for
numerical calculations.

4.1.4 Frequency response
An important advantage of transfer functions is that the frequency response (Fourier
transform) is directly obtained from the Laplace transform by setting s = jω in G(s). For
more details on the frequency response, the reader is referred to Sections 2.1 and 3.3.

4.1.5 Coprime factorization
Another useful way of representing systems is the coprime factorization which may be used
both in state-space and transfer function form. In the latter case a right coprime factorization
of G is

G(s) = Nr(s)M
−1
r (s) (4.18)

where Nr(s) and Mr(s) are stable coprime transfer functions. The stability implies that
Nr(s) should contain all the RHP-zeros of G(s), and Mr(s) should contain as RHP-zeros all
the RHP-poles ofG(s). The coprimeness implies that there should be no common RHP-zeros
(including the point at in£nity) in Nr and Mr, which result in pole–zero cancellations when
formingNrM

−1
r . Mathematically, coprimeness means that there exist stable Ur(s) and Vr(s)

such that the following Bezout identity is satis£ed:

UrNr + VrMr = I (4.19)
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Similarly, a left coprime factorization of G is

G(s) =M−1
l (s)Nl(s) (4.20)

Here Nl and Ml are stable and coprime; that is, there exist stable Ul(s) and Vl(s) such that
the following Bezout identity is satis£ed:

NlUl +MlVl = I (4.21)

For a scalar system, the left and right coprime factorizations are identical, G = NM−1 =
M−1N .

Remark. Two stable scalar transfer functions, N(s) and M(s), are coprime if and only if they have
no common RHP-zeros including the point at s = ∞. In this case, we can always £nd stable U and V
such that NU +MV = 1.

Example 4.1 Consider the scalar system

G(s) =
(s− 1)(s+ 2)

(s− 3)(s+ 4)
(4.22)

To obtain a coprime factorization, we £rst make all the RHP-poles of G zeros of M , and all the RHP-
zeros of G zeros of N . We then allocate the poles of N and M so that N and M are both proper and
the identity G = NM−1 holds. Thus

N(s) =
s− 1

s+ 4
, M(s) =

s− 3

s+ 2

is a coprime factorization. Usually, we select N and M to have the same poles as each other and
the same order as G(s). This gives the most degrees of freedom subject to having a realization of
[M(s) N(s) ]T with the lowest order. We then have that

N(s) = k
(s− 1)(s+ 2)

s2 + k1s+ k2
, M(s) = k

(s− 3)(s+ 4)

s2 + k1s+ k2
(4.23)

is a coprime factorization of (4.22) for any k and for any k1, k2 > 0.

From the above example, we see that the coprime factorization is not unique. Now we
introduce the operator M∗ de£ned as M ∗(s) = MT (−s) (which for s = jω is the same
as the complex conjugate transpose MH = M̄T ). Then G(s) = Nr(s)M

−1
r (s) is called a

normalized right coprime factorization if

M∗
rMr +N∗rNr = I (4.24)

In this case Xr(s) =

[
Mr

Nr

]
satis£esX ∗

rXr = I and is called an inner transfer function. The

normalized left coprime factorization G(s) = M−1
l (s)Nl(s) is de£ned similarly, requiring

that
MlM

∗
l +NlN

∗
l = I (4.25)

In this case Xl(s) = [Ml Nl ] is co-inner which means that XlX
∗
l = I . The normalized

coprime factorizations are unique to within a right (left) multiplication by a unitary matrix.

Exercise 4.1 ∗ We want to £nd the normalized coprime factorization for the scalar system in (4.22).
Let N and M be as given in (4.23), and substitute them into (4.24). Show that after some algebra and
comparing of terms one obtains: k = ±0.71, k1 = 5.67 and k2 = 8.6.
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To derive normalized coprime factorizations by hand, as in the above exercise, is in general
dif£cult. Numerically, however, one can easily £nd a state-space realization. If G has a
minimal state-space realization

G
s
=

[
A B
C D

]

then a minimal state-space realization of a normalized left coprime factorization is given
(Vidyasagar, 1988) by

[Nl(s) Ml(s) ]
s
=

[
A+HC B +HD H

R−1/2C R−1/2D R−1/2

]
(4.26)

where
H , −(BDT + ZCT )R−1, R , I +DDT

and the matrix Z is the unique positive de£nite solution to the algebraic Riccati equation

(A−BS−1DTC)Z + Z(A−BS−1DTC)T − ZCTR−1CZ +BS−1BT = 0

where
S , I +DTD

Notice that the formulae simplify considerably for a strictly proper plant, i.e. when D = 0.
The Matlab commands in Table 4.1 can be used to £nd the normalized coprime factorization
for G(s) using (4.26).

Table 4.1: Matlab commands to generate a normalized coprime factorization
% Uses the Robust Control toolbox
%
% Find Normalized Coprime factors of system [a,b,c,d] using (4.26)
%
S=eye(size(d’*d))+d’*d;
R=eye(size(d*d’))+d*d’;
A1 = a-b*inv(S)*d’*c;
R1 = c’*inv(R)*c;
[R1s,R1err] = sqrtm(R1);
Q1 = b*inv(S)*b’;
[Z,L,G]=care(A1’,R1s,Q1); %Solve Riccati equation

H = -(b*d’ + Z*c’)*inv(R);
A = a + H*c;
Bn = b + H*d; Bm = H;
C = inv(sqrtm(R))*c;
Dn = inv(sqrtm(R))*d;
Dm = inv(sqrtm(R));
N = ss(A,Bn,C,Dn);
M = ss(A,Bm,C,Dm);

Exercise 4.2 Verify numerically (e.g. using the Matlab £le in Table 4.1 or the Robust Control toolbox
command ncfmr) that the normalized coprime factors of G(s) in (4.22) are as given in Exercise 4.1.
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4.1.6 More on state-space realizations
Inverse system. In some cases we may want to £nd a state-space description of the inverse
of a system. For a square G(s) we have

G−1
s
=

[
A−BD−1C BD−1

−D−1C D−1

]
(4.27)

where D is assumed to be non-singular. For a non-square G(s) in which D has full row (or
column) rank, a right (or left) inverse of G(s) can be found by replacing D−1 by D†, the
pseudo-inverse of D.

For a strictly proper system with D = 0, one may obtain an approximate inverse by
including a small additional feed-through term D, preferably chosen on physical grounds.
One should be careful, however, to select the signs of the terms in D such that one does not
introduce RHP-zeros in G(s) because this will make G(s)−1 unstable.

Improper systems. Improper transfer functions, where the order of the s-polynomial in
the numerator exceeds that of the denominator, cannot be represented in standard state-
space form. To approximate improper systems by state-space models, we can include some
high-frequency dynamics which we know from physical considerations will have little
signi£cance.

Realization of SISO transfer functions. Transfer functions are a good way of
representing systems because they give more immediate insight into a system’s behaviour.
However, for numerical calculations a state-space realization is usually desired. One way of
obtaining a state-space realization from a SISO transfer function is given next. Consider a
strictly proper transfer function (D = 0) of the form

G(s) =
βn−1sn−1 + · · ·+ β1s+ β0

sn + an−1sn−1 + · · ·+ a1s+ a0
(4.28)

Then, since multiplication by s corresponds to differentiation in the time domain, (4.28) and
the relationship y(s) = G(s)u(s) correspond to the following differential equation:

yn(t) + an−1y
n−1(t) + · · ·+ a1y

′(t) + a0y(t) = βn−1u
n−1(t) + · · ·+ β1u

′(t) + β0u(t)

where yn−1(t) and un−1(t) represent n − 1’th order derivatives, etc. We can further write
this as

yn = (−an−1yn−1 + βn−1u
n−1) + · · ·+ (−a1y′ + β1u

′) + (−a0y + β0u)︸ ︷︷ ︸
x′n︸ ︷︷ ︸

x2n−1︸ ︷︷ ︸
xn1

where we have introduced new variables x1, x2, . . . , xn and we have y = x1. Note that xn1
is the n’th derivative of x1(t). With the notation ẋ ≡ x′(t) = dx/dt, we have the following
state-space equations:

ẋn = −a0x1 + β0u

ẋn−1 = −a1x1 + xn + β1u

...
ẋ1 = −an−1x1 + x2 + βn−1u
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corresponding to the realization

A =




−an−1 1 0 · · · 0 0
−an−2 0 1 0 0

...
...

. . .
...

−a2 0 0 1 0
−a1 0 0 · · · 0 1
−a0 0 0 · · · 0 0



, B =




βn−1
βn−2

...
β2
β1
β0




(4.29)

C = [ 1 0 0 · · · 0 0 ]

This is called the observer canonical form. Two advantages of this realization are that one
can obtain the elements of the matrices directly from the transfer function, and that the output
y is simply equal to the £rst state. Notice that if the transfer function is not strictly proper,
then we must £rst bring out the constant term, i.e. write G(s) = G1(s) + D, and then £nd
the realization of G1(s) using (4.29).

Example 4.2 To obtain the state-space realization, in observer canonical form, of the SISO transfer
function G(s) = s−a

s+a
, we £rst bring out a constant term by division to get

G(s) =
s− a

s+ a
=
−2a
s+ a

+ 1

Thus D = 1. For the term −2a
s+a

we get from (4.28) that β0 = −2a and a0 = a, and therefore (4.29)
yields A = −a,B = −2a and C = 1.

Example 4.3 Consider an ideal PID controller

K(s) = Kc

(
1 +

1

τIs
+ τDs

)
= Kc

τIτDs
2 + τIs+ 1

τIs
(4.30)

Since this involves differentiation of the input, it is an improper transfer function and cannot be written
in state-space form. A proper PID controller may be obtained by letting the derivative action be effective
over a limited frequency range. For example,

K(s) = Kc

(
1 +

1

τIs
+

τDs

1 + ετDs

)
(4.31)

where ε is typically about 0.1 (see also page 56). This can now be realized in state-space form in
an in£nite number of ways. Four common forms are given below. In all cases, the D-matrix, which
represents the controller gain at high frequencies (s→∞), is a scalar given by

D = Kc
1 + ε

ε
(4.32)

1. Diagonalized form (Jordan canonical form)

A =
[
0 0
0 − 1

ετD

]
, B =

[
Kc/τI

Kc/(ε2τD)

]
, C = [ 1 −1 ] (4.33)

2. Observability canonical form

A =
[
0 1
0 − 1

ετD

]
, B =

[
γ1
γ2

]
, C = [ 1 0 ] (4.34)

where γ1 = Kc

(
1

τI
− 1

ε2τD

)
, γ2 =

Kc

ε3τ2D



ELEMENTS OF LINEAR SYSTEM THEORY 127

3. Controllability canonical form

A =
[
0 0
1 − 1

ετD

]
, B =

[
1
0

]
, C = [ γ1 γ2 ] (4.35)

where γ1 and γ2 are as given above.
4. Observer canonical form in (4.29)

A =
[
− 1
ετD

1

0 0

]
, B =

[
β1
β0

]
, C = [ 1 0 ] (4.36)

where β0 =
Kc

ετIτD
, β1 = Kc

ε2τD − τI
ε2τIτD

On comparing these four realizations with the transfer function model in (4.31), it is clear
that the transfer function offers more immediate insight. One can at least see that it is a PID
controller.

Time delay. A time delay (or dead time) is an in£nite-dimensional system and not
representable as a rational transfer function. For a state-space realization it must therefore
be approximated. An n’th-order approximation of a time delay θ may be obtained by putting
n £rst-order Padé approximations in series

e−θs ≈ (1− θ
2ns)

n

(1 + θ
2ns)

n
(4.37)

Alternative (and possibly better) approximations are in use, but the above approximation is
often preferred because of its simplicity.

4.2 State controllability and state observability
It is useful to introduce the concept of pole vectors. We de£ne the i’th input pole vector

upi , BHqi (4.38)

and the i’th output pole vector
ypi , Cti (4.39)

(see Matlab commands in Table 4.2). For the case when A has distinct eigenvalues, we have
from (4.16) the following dyadic expansion of the transfer function matrix from inputs to
outputs:

G(s) =

n∑

i=1

Ctiq
H
i B

s− pi
+D =

n∑

i=1

ypiu
H
pi

s− pi
+D (4.40)

where we have scaled the eigenvectors such that qHi ti = 1. From (4.40), up,i is an indication
of how much the i’th mode is excited (and thus may be “controlled”) by the inputs, whereas
yp,i indicates how much the i’th mode is observed in the outputs. Thus, the pole vectors may
be used for checking the state controllability and observability of a system. This is explained
in more detail below, but let us start by de£ning state controllability.

De£nition 4.1 State controllability. The dynamical system ẋ = Ax+Bu, or equivalently
the pair (A,B), is said to be state controllable if, for any initial state x(0) = x0, any time
t1 > 0 and any £nal state x1, there exists an input u(t) such that x(t1) = x1. Otherwise the
system is said to be state uncontrollable.
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Table 4.2: Matlab commands to £nd pole vectors
% Find pole vectors of system [A,B,C,D]
%
[T,Po] = eig(A);
YP = C*T % output pole vectors (must normalize columns to obtain directions)
[Q,Pi] = eig(A’);
UP = B’*Q % input pole vectors
Shouldbezero=Po-Pi % if not, the pole vectors refer to different poles

To test for state controllability it is instructive to consider the individual poles pi and the
associated input pole vectors up,i. Based on (4.40) we have (Zhou et al., 1996, p. 52):

Theorem 4.1 Let pi be an eigenvalue of A or, equivalently, a pole of the system.
• The pole pi is state controllable if and only if

up,i = BHqi 6= 0 (4.41)

for all left eigenvectors qi (including linear combinations) associated with pi. Otherwise,
the pole is uncontrollable.

• A system is state controllable if and only if every pole pi is controllable.
Remark. The need to consider linear combinations of eigenvectors only applies when pi is a repeated
pole (with multiplicity greater than 1). In this case, we may collect the left eigenvectors associated with
pi in the matrix Qi and collect the corresponding input pole vectors in the matrix Up,i = BHQi. The
number of uncontrollable states corresponding to the pole pi is then rank(Qi)− rank(Up,i).

In summary, a system is state controllable if and only if all its input pole vectors are non-
zero.

There exist many other tests for state controllability. Two of these are:
1. The system (A,B) is state controllable if and only if the controllability matrix

C , [B AB A2B · · · An−1B ] (4.42)

has rank n (full row rank). Here n is the number of states.
2. From (4.6) one can verify that a particular input which achieves x(t1) = x1 is

u(t) = −BT eA
T (t1−t)Wc(t1)

−1(eAt1x0 − x1) (4.43)

where Wc(t) is the Gramian matrix at time t,

Wc(t) ,

∫ t

0

eAτBBT eA
T τdτ

Therefore, the system (A,B) is state controllable if and only if the Gramian matrix Wc(t)
has full rank (and thus is positive de£nite) for any t > 0. For a stable system (A is stable)
we only need to consider P , Wc(∞); that is, the pair (A,B) is state controllable if and
only if the controllability Gramian

P ,

∫ ∞

0

eAτBBT eA
T τdτ (4.44)

is positive de£nite (P > 0) and thus has full rank n. P may also be obtained as the solution
to the Lyapunov equation

AP + PAT = −BBT (4.45)
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Example 4.4 Consider a scalar system with two states and the following state-space realization:

A =
[
−2 −2
0 −4

]
, B =

[
1
1

]
, C = [ 1 0 ], D = 0

The transfer function (minimal realization) is

G(s) = C(sI −A)−1B =
1

s+ 4

which has only one state. In fact, the £rst state corresponding to the eigenvalue at−2 is not controllable.
This is veri£ed by considering state controllability.
1. The eigenvalues of A, and thus the system poles, are p1 = −2 and p2 = −4. The corresponding left

eigenvectors are q1 = [ 0.707 −0.707 ]T and q2 = [ 0 1 ]T . The two input pole vectors are

up1 = BHq1 = 0, up2 = BHq2 = 1

and since up1 is zero we have that the £rst pole (eigenvalue) is not state controllable.
2. The controllability matrix has rank 1 since it has two linearly dependent rows:

C = [B AB ] =
[
1 −4
1 −4

]

3. The controllability Gramian is also singular

P =
[
0.125 0.125
0.125 0.125

]

Example 4.5 Consider a scalar system G(s) = 1/(τs+ 1)4 with the following realization:

A =



−1/τ 0 0 0
1/τ −1/τ 0 0
0 1/τ −1/τ 0
0 0 1/τ −1/τ


, B =



1/τ
0
0
0


, C = [ 0 0 0 1 ] (4.46)

The system has four repeated eigenvalues at −1/τ (multiplicity 4), and the corresponding left
eigenvectors of A are the columns of

Q =



1 −1 1 −1
0 0 0 0
0 0 0 0
0 0 0 0




Since the four eigenvectors qi are linearly dependent, there is no need to consider linear combinations,
and since all input pole vectors are non-zero (up,i = BHqi = ±1/τ, i = 1, . . . , 4), we conclude that
the system is state controllable. The is con£rmed by computing the controllability matrix C in (4.42)
which has full rank.

In words, if a system is state controllable we can by use of its inputs u bring it from any
initial state to any £nal state within any given £nite time. State controllability would therefore
seem to be an important property for practical control, but it rarely is for the following four
reasons:

1. It says nothing about how the states behave at earlier and later times, e.g. it does not imply
that one can hold (as t→∞) the states at a given value.

2. The required inputs may be very large with sudden changes.
3. Some of the states may be of no practical importance.
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Figure 4.1: State controllability of four £rst-order systems in series

4. The de£nition is an existence result which provides no degree of controllability (see
Hankel singular values for this).

The £rst two objections are illustrated by the following example.
Example 4.5 continued. State controllability of tanks in series. Consider a system with one
input and four states arising from four £rst-order systems in series:

G(s) = 1/(τs+ 1)4

A state-space realization is given by (4.46). A physical example could be four identical tanks (e.g.
bath tubs) in series where water ¤ows from one tank to the next. Energy balances, assuming no
heat loss, yield T4 = 1

τs+1
T3, T3 = 1

τs+1
T2, T2 = 1

τs+1
T1, T1 = 1

τs+1
T0 where the states

x = [T1 T2 T3 T4 ]
T are the four tank temperatures, the input u = T0 is the inlet temperature,

and τ = 100 s is the residence time in each tank. In practice, we know that it is very dif£cult to control
the four temperatures independently, since at steady-state all temperatures must be equal. However, we
found above that the system is state controllable, so it must be possible to achieve at any given time
any desired temperature in each of the four tanks simply by adjusting the inlet temperature. This sounds
almost too good to be true, so let us consider a speci£c case.

Assume that the system is initially at steady-state (all temperatures are zero), and that we want to
achieve at t = 400 s the following temperatures: T1(400) = 1, T2(400) = −1, T3(400) = 1 and
T4(400) = −1. The change in inlet temperature, T0(t), to achieve this was computed from (4.43) and
is shown as a function of time in Figure 4.1(a). The corresponding tank temperatures are shown in
Figure 4.1(b). Two things are worth noting:
1. The required change in inlet temperature T0 is more than 100 times larger than the desired

temperature changes in the tanks and it also varies widely with time.
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2. Although the states (tank temperatures Ti) are indeed at their desired values of ±1 at t = 400 s, it
is not possible to hold them at these values, since at steady-state all the states must be equal (in our
case, all states approach 0 as time goes to in£nity, since u = T0 is reset to 0 at t = 400 s).

It is quite easy to explain the shape of the input T0(t). The fourth tank is furthest away and we want its
temperature to decrease (T4(400) = −1) and therefore the inlet temperature T0 is initially decreased
to about −40. Then, since T3(400) = 1 is positive, T0 is increased to about 30 at t = 220 s; it is
subsequently decreased to about −40, since T2(400) = −1, and £nally increased to more than 100 to
achieve T1(400) = 1.

From the above example, we see clearly that the property of state controllability may
not imply that the system is “controllable” in a practical sense2. This is because state
controllability is concerned only with the value of the states at discrete values of time (target
hitting), while in most cases we want the outputs to remain close to some desired value (or
trajectory) for all values of time, and without using inappropriate control signals.

So now we know that state controllability does not imply that the system is controllable
from a practical point of view. But what about the reverse: if we do not have state
controllability, is this an indication that the system is not controllable in a practical sense?
In other words, should we be concerned if a system is not state controllable? In many cases
the answer is “no”, since we may not be concerned with the behaviour of the uncontrollable
states which may be outside our system boundary or of no practical importance. If we are
indeed concerned about these states then they should be included in the output vector y. State
uncontrollability will then appear as a rank de£ciency in the transfer function matrix G(s)
(see functional controllability).

In conclusion, state controllability is neither a necessary nor suf£cient condition for a
system to be controllable in a practical sense (input–output controllability). So is the issue
of state controllability of any value at all? Yes, because it tells us whether we have included
some states in our model that we have no means of affecting. This is certainly a practical (and
numerical) concern if the associated mode is unstable. It also tells us when we can save on
computer time by deleting uncontrollable states which have no effect on the output for a zero
initial state.

In summary, state controllability is a system theoretical concept which is important when
it comes to computations and realizations. However, its name is somewhat misleading, and
most of the above discussion might have been avoided if only Kalman, who originally de£ned
(state) controllability, had used a different terminology. For example, better terms might
have been “point-wise controllability” or “state affectability” from which it would have been
understood that although all the states could be individually affected, we might not be able to
control them independently over a period of time.

De£nition 4.2 State observability. The dynamical system ẋ = Ax + Bu, y = Cx + Du
(or the pair (A,C)) is said to be state observable if, for any time t1 > 0, the initial state
x(0) = x0 can be determined from the time history of the input u(t) and the output y(t) in
the interval [0, t1]. Otherwise the system, or (A,C), is said to be state unobservable.

To test for state observability it is instructive to consider the individual modes pi and the
associated output pole vectors yp,i. Based on (4.40) we have (Zhou et al., 1996, p. 52):

Theorem 4.2 Let pi be an eigenvalue of A or, equivalently, a mode of the system.
2 In Chapter 5, we introduce a more practical concept of controllability which we call “input–output controllability”.



132 MULTIVARIABLE FEEDBACK CONTROL

• The mode pi is observable if and only if

yp,i = Cti 6= 0 (4.47)

for all right eigenvectors ti (including linear combinations) associated with pi. Otherwise,
the mode is unobservable.

• A system is observable if and only if every mode pi is observable.

Remark. The need to consider linear combinations of eigenvectors only applies when pi is a repeated
pole (with multiplicity greater than 1). In this case, we may collect the right eigenvectors associated
with pi in the matrix Ti and collect the corresponding input pole vectors in the matrix Yp,i = CTi. The
number of unobservable states corresponding to the mode pi is then rank(Ti)− rank(Yp,i).

In summary, a system is observable if and only if all its output pole vectors are non-zero.
The following example illustrates this, and what may happen if we have repeated poles.

Example 4.6 Consider a system with two states, two inputs, one output and the following state-space
realization:

A =
[
p1 0
0 p2

]
, B =

[
1 4
2 0

]
, C = [ 0.5 0.25 ], D = [ 0 0 ]

The corresponding transfer function is

G(s) = C(sI −A)−1B =

[
s− (p1 + p2)/2

(s− p1)(s− p2)

2

s− p1

]

The eigenvalues (poles) are p1 and p2 and the corresponding right and left eigenvector matrices are

T =
[
1 0
0 1

]
, Q =

[
1 0
0 1

]

(where the £rst column is associated with p1 and the second with p2). The associated output and input
pole vectors may be collected in matrices,

Yp = CT = [ yp,1 yp,2 ] = [ 0.5 0.25 ], Up = BHQ = [up,1 up,2 ] =
[
1 2
4 0

]

Let us £rst consider the case with distinct poles, i.e. p1 6= p2. We see that the two output pole
“vectors” (columns in Yp) are both non-zero, so both modes are observable. The two input pole vectors
(columns in Up) are also both non-zero, so both modes are state controllable. However, since the second
element in up,2 is 0 it follows that mode p2 is not state controllable from input 2 (which is also easily
seen from the transfer function representation).

Next consider the case with two repeated poles, p1 = p2. In this case, both the columns of T and
their linear combinations are the right eigenvectors of A. Since rank(T )− rank(Yp) = 2−1 = 1, one
of the two states is not observable (which is also easily seen from the transfer function representation
as there is a pole–zero cancellation in the £rst element in G(s)). However, both states remain state
controllable since rank(Q)− rank(Up) = 2− 2 = 0.

In the above example the poles are “in parallel” (as can been seen since the £rst element
in G(s) can be written 0.5

s−p1
+ 0.5

s−p2
), and this may give problems with observability and

controllability for repeated poles. However, if the repeated poles are “in series” there is no
such problem, as illustrated in Example 4.5 and further in the following example.
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Example 4.7 Consider the scalar system

G(s) =
1

(s− p)2
s
=

[
A B

C D

]
=




p 1 0
0 p 1

1 0 0




There are two eigenvalues (poles) at p and the corresponding right and left eigenvector matrices are

T =

[
1 −1
0 0

]
, Q =

[
0 0
1 −1

]

Note that the two right (left) eigenvectors are linearly dependent. The associated output and input pole
vectors are collected in matrices,

Yp = CT = [ 1 −1 ] , Up = BHQ = [ 1 −1 ]
Both states are observable since rank(T ) − rank(Yp) = 1 − 1 = 0, and both states are state
controllable since rank(Q) − rank(Up) = 1 − 1 = 0. This agrees with the transfer function
representation.

Two other tests for state observability are:

1. The system (A,C) is state observable if and only if we have full column rank (rank n) of
the observability matrix

O ,




C
CA

...
CAn−1


 (4.48)

2. For a stable system we may consider the observability Gramian

Q ,

∫ ∞

0

eA
T τCTCeAτdτ (4.49)

which must have full rank n (and thus be positive de£nite) for the system to be state
observable. Q can also be found as the solution to the following Lyapunov equation:

ATQ+QA = −CTC (4.50)

A system is state observable if we can obtain the value of all individual states by measuring
the output y(t) over some time period. However, even if a system is state observable it may not
be observable in a practical sense. For example, obtaining x(0) may require taking high-order
derivatives of y(t) which may be numerically poor and sensitive to noise. This is illustrated
in the following example.
Example 4.5 (tanks in series) continued. We have y = T4 (the temperature of the last tank), and,
similar to Example 4.7, all states are observable from y. However, consider a case where the initial
temperatures in the tanks, Ti(0), i = 1, . . . , 4, are non-zero (and unknown), and the inlet temperature
T0(t) = u(t) is zero for t ≥ 0. Then, from a practical point of view, it is clear that it is numerically
very dif£cult to back-calculate, for example, T1(0) based on measurements of y(t) = T4(t) over some
interval [0, t1], although in theory all states are observable from the output.

De£nition 4.3 Minimal realization, McMillan degree and hidden mode. A state-space
realization (A,B,C,D) of G(s) is said to be a minimal realization of G(s) if A has the
smallest possible dimension (i.e. the fewest number of states). The smallest dimension is
called the McMillan degree of G(s). A mode is hidden if it is not state controllable or
observable and thus does not appear in the minimal realization.
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Since only controllable and observable states contribute to the input–output behaviour from
u to y, it follows that a state-space realization is minimal if and only if (A,B) is state
controllable and (A,C) is state observable.

Remark 1 Note that uncontrollable states will contribute to the output response y(t) if the initial state
is non-zero, x(t = 0) 6= 0, but this effect will die out if the uncontrollable states are stable.

Remark 2 Unobservable states have no effect on the outputs whatsoever, and may be viewed as outside
the system boundary, and thus of no direct interest from a control point of view (unless the unobservable
state is unstable, because we want to avoid the system “blowing up”). However, observability is
important for measurement selection and when designing state estimators (observers).

4.3 Stability
There are a number of ways in which stability may be de£ned, e.g. see Willems (1970).
Fortunately, for linear time-invariant systems these differences have no practical signi£cance,
and we use the following de£nition:

De£nition 4.4 A system is (internally) stable if none of its components contain hidden
unstable modes and the injection of bounded external signals at any place in the system
results in bounded output signals measured anywhere in the system.

Here we de£ne a signal u(t) to be “bounded” if there exists a constant c such that |u(t)| < c
for all t. The word internally is included in the de£nition to stress that we do not only require
the response from one particular input to another particular output to be stable, but require
stability for signals injected or measured at any point of the system. This is discussed in
more detail for feedback systems in Section 4.7. Similarly, the components must contain no
hidden unstable modes; that is, any instability in the components must be contained in their
input–output behaviour.

De£nition 4.5 Stabilizable, detectable and hidden unstable modes. A system is
stabilizable if all unstable modes are state controllable. A system is detectable if all unstable
modes are observable. A system with unstabilizable or undetectable modes is said to contain
hidden unstable modes.

A linear system is stabilizable (detectable) if and only if all input (output) pole vectors
associated with the unstable modes are non-zero; see (4.41) and (4.47) for details. If a system
is not detectable, then there is a state within the system which will eventually grow out of
bounds, but we have no way of observing this from the outputs y(t).

Remark 1 Any unstable linear system can be stabilized by feedback control (at least in theory)
provided the system contains no hidden unstable mode(s). However, this may require an unstable
controller, see also page 150.

Remark 2 Systems with hidden unstable modes must be avoided both in practice and in computations
(since variables will eventually blow up on our computer if not on the factory ¤oor). In the book we
always assume, unless otherwise stated, that our systems contain no hidden unstable modes.
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4.4 Poles
We have above used that the poles of a system are the eigenvalues of the state-spaceA-matrix,
and this is the de£nition given below. More generally, the poles of G(s) may be somewhat
loosely de£ned as the £nite values s = p where G(p) has a singularity (“is in£nite”), see also
Theorem 4.4 below.

De£nition 4.6 Poles. The poles pi of a system with state-space description (4.3)–(4.4) are
the eigenvalues λi(A), i = 1, . . . , n, of the matrix A. The pole or characteristic polynomial
φ(s) is de£ned as φ(s) , det(sI − A) = ∏n

i=1(s − pi). Thus the poles are the roots of the
characteristic equation

φ(s) , det(sI −A) = 0 (4.51)

To see that this de£nition is reasonable, recall (4.15) and see Appendix A.2.1. Note that if A
does not correspond to a minimal realization then the poles by this de£nition will include the
poles (eigenvalues) corresponding to uncontrollable and/or unobservable states.

4.4.1 Poles and stability
For linear systems, the poles determine stability:

Theorem 4.3 A linear dynamic system ẋ = Ax + Bu is stable if and only if all the poles
are in the open left-half plane (LHP); that is, Re(pi) = Re{λi(A)} < 0,∀i. A matrix A with
such a property is said to be “stable” or Hurwitz.

Proof: From (4.7) we see that the time response (4.6) can be written as a sum of terms each containing
a mode epit. Poles in the RHP with Re{pi} > 0 give rise to unstable modes since in this case epit
is unbounded as t → ∞. Poles in the open LHP give rise to stable modes where epit → 0 as
t→∞. Systems with poles on the jω-axis, including integrators, are unstable from our De£nition 4.4
of stability. For example, consider y = Gu and assume G(s) has imaginary poles s = ±jωo. Then
with a bounded sinusoidal input, u(t) = sinωot, the output y(t) grows unbounded as t→∞. 2

4.4.2 Poles from state-space realizations
Poles are usually obtained numerically by computing the eigenvalues of the A-matrix. To get
the fewest number of poles, without unstabilizable or uncontrollable modes, we should use a
minimal realization of the system.

4.4.3 Poles from transfer functions
The following theorem from MacFarlane and Karcanias (1976) allows us to obtain the poles
directly from the transfer function matrix G(s) and is useful for hand calculations. It also has
the advantage of yielding only the poles corresponding to a minimal realization of the system.

Theorem 4.4 The pole polynomial φ(s) corresponding to a minimal realization of a system
with transfer function G(s) is the least common denominator of all non-identically zero
minors of all orders of G(s).

A minor of a matrix is the determinant of the matrix obtained by deleting certain rows and/or
columns of the matrix. We will use the notation M r

c to denote the minor corresponding to the
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deletion of rows r and columns c in G(s). In the procedure de£ned by the theorem we cancel
common factors in the numerator and denominator of each minor. It then follows that only
observable and controllable poles will appear in the pole polynomial.

Example 4.8 Consider the plant G(s) = (3s+1)2

(s+1)
e−θs which has no state-space realization as it

contains a delay and is also improper. Thus we cannot compute the poles from (4.51). However, from
Theorem 4.4 we have that the denominator is (s+ 1) and as expected G(s) has a pole at s = −1.

Example 4.9 Consider the square transfer function matrix

G(s) =
1

1.25(s+ 1)(s+ 2)

[
s− 1 s
−6 s− 2

]
(4.52)

The minors of order 1 are the four elements that all have (s+1)(s+2) in the denominator. The minor
of order 2 is the determinant

detG(s) =
(s− 1)(s− 2) + 6s

1.252(s+ 1)2(s+ 2)2
=

1

1.252(s+ 1)(s+ 2)
(4.53)

Note the pole–zero cancellation when evaluating the determinant. The least common denominator of
all the minors is then

φ(s) = (s+ 1)(s+ 2) (4.54)
so a minimal realization of the system has two poles: one at s = −1 and one at s = −2.

Example 4.10 Consider the 2× 3 system, with three inputs and two outputs,

G(s) =
1

(s+ 1)(s+ 2)(s− 1)

[
(s− 1)(s+ 2) 0 (s− 1)2

−(s+ 1)(s+ 2) (s− 1)(s+ 1) (s− 1)(s+ 1)

]
(4.55)

The minors of order 1 are the £ve non-zero elements (e.g. M 2
2,3 = g11(s)):

1

s+ 1
,

s− 1

(s+ 1)(s+ 2)
,
−1
s− 1

,
1

s+ 2
,

1

s+ 2
(4.56)

The minor of order 2 corresponding to the deletion of column 2 is

M2 =
(s− 1)(s+ 2)(s− 1)(s+ 1) + (s+ 1)(s+ 2)(s− 1)2

((s+ 1)(s+ 2)(s− 1))2
=

2

(s+ 1)(s+ 2)
(4.57)

The other two minors of order 2 are

M1 =
−(s− 1)

(s+ 1)(s+ 2)2
, M3 =

1

(s+ 1)(s+ 2)
(4.58)

By considering all minors we £nd their least common denominator to be

φ(s) = (s+ 1)(s+ 2)2(s− 1) (4.59)

The system therefore has four poles: one at s = −1, one at s = 1 and two at s = −2.

From the above examples we see that the MIMO poles are essentially the poles of the
elements. However, by looking at only the elements it is not possible to determine the
multiplicity of the poles. For instance, let G0(s) be a square m×m transfer function matrix
with no pole at s = −a, and consider

G1(s) =
1

s+ a
G0(s) (4.60)
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How many poles at s = −a does a minimal realization of G1(s) have? From (A.10),

det (G1(s)) = det

(
1

s+ a
G0(s)

)
=

1

(s+ a)m
det (G0(s)) (4.61)

so if G0 has no zeros at s = −a, then G1(s) has m poles at s = −a. However, G0 may have
zeros at s = −a. As an example, consider a 2 × 2 plant in the form given by (4.60). It may
have two poles at s = −a (as in (3.93)), one pole at s = −a (as in (4.52) where detG0(s)
has a zero at s = −a) or no pole at s = −a (if all the elements of G0(s) have a zero at
s = −a).

As noted above, the poles are obtained numerically by computing the eigenvalues of the
A-matrix. Thus, to compute the poles of a transfer functionG(s), we must £rst obtain a state-
space realization of the system. Preferably this should be a minimal realization. For example,
if we make individual realizations of the £ve non-zero elements in Example 4.10 and then
simply combine them to get an overall state-space realization, we will get a system with 15
states, where each of the three poles (in the common denominator) are repeated £ve times. A
model reduction to obtain a minimal realization will subsequently yield a system with four
poles as given in (4.59).

4.4.4 Pole vectors and directions
In multivariable systems poles have directions associated with them. To quantify them we use
the input and output pole vectors de£ned in (4.38) and (4.39):

ypi = Cti, upi = BHqi (4.62)

These give an indication of how much the i’th mode is excited in each output and input. Pole
directions are de£ned as pole vectors normalized to have unit length, i.e.

y′p,i =
1

‖ypi‖2
ypi , u′p,i =

1

‖upi‖2
upi (4.63)

The pole directions may alternatively be obtained directly from the transfer function matrix by
evaluating G(s) at the pole pi and considering the directions of the resulting complex matrix
G(pi). The matrix is in£nite in the direction of the pole, and we may somewhat crudely write

G(pi) u
′
pi =∞ · y′pi (4.64)

where u′pi is the input pole direction, and y′pi is the output pole direction. The pole directions
may then in principle be obtained from an SVD of G(pi) = UΣV H . Then u′pi is the £rst
column in V (corresponding to the in£nite singular value), and y ′pi the £rst column in U . For
numerical calculations we may evaluate G(s) at s = pi + ε where ε is a small number.

Remark 1 As already mentioned, if up = BHq = 0 then the corresponding pole is not state
controllable, and if yp = Ct = 0 the corresponding pole is not state observable (see also Zhou
et al., 1996, p. 52).

Remark 2 For a multivariable plant the pole vectors de£ned in (4.62) provide a very useful tool for
selecting inputs and outputs for stabilization; see Section 10.4.3 for details. For a single unstable
mode, selecting the input corresponding to the largest element in up and the output corresponding
to the largest element in yp minimizes the input usage required for stabilization. More precisely, this
choice minimizes the lower bound on both the H2 and H∞ norms of the transfer function KS from
measurement (output) noise to input (Havre and Skogestad, 2003).
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Remark 3 Notice that there is difference between the non-normalized pole vector and the normalized
pole direction (vector). Above we used a ′ to show explicitly that the direction vector is normalized,
but later in the book this is omitted. For zeros (see below) such problems do not arise because we are
only interested in the normalized zero direction (vector).

4.5 Zeros
Zeros of a system arise when competing effects, internal to the system, are such that the
output is zero even when the inputs (and the states) are not themselves identically zero. For
a SISO system the zeros zi are the solutions to G(zi) = 0. In general, it can be argued that
zeros are values of s at which G(s) loses rank (from rank 1 to rank 0 for a SISO system).
This is the basis for the following de£nition of zeros for a multivariable system (MacFarlane
and Karcanias, 1976):

De£nition 4.7 Zeros. zi is a zero of G(s) if the rank of G(zi) is less than the normal rank
of G(s). The zero polynomial is de£ned as z(s) =

∏nz
i=1(s − zi) where nz is the number of

£nite zeros of G(s).

In this book, we do not consider zeros at in£nity; we require that zi is £nite. The normal
rank of G(s) is de£ned as the rank of G(s) at all values of s except at a £nite number of
singularities (which are the zeros).

This de£nition of zeros is based on the transfer function matrix, corresponding to a minimal
realization of a system. These zeros are sometimes called “transmission zeros”, but we
will simply call them “zeros”. We may sometimes use the term “multivariable zeros” to
distinguish them from the zeros of the elements of the transfer function matrix.

4.5.1 Zeros from state-space realizations
Zeros are usually computed from a state-space description of the system. First note that the
state-space equations of a system may be written as

P (s)
[
x
u

]
=

[
0
y

]
, P (s) =

[
sI −A −B

C D

]
(4.65)

The zeros are then the values s = z for which the polynomial system matrix, P (s), loses
rank, resulting in zero output for some non-zero input. Numerically, the zeros are found as
non-trivial solutions (with uz 6= 0 and xz 6= 0) to the following problem:

(zIg −M)
[
xz
uz

]
= 0 (4.66)

M =
[
A B
C D

]
; Ig =

[
I 0
0 0

]
(4.67)

This is solved as a generalized eigenvalue problem – in the conventional eigenvalue problem
we have Ig = I . Note that we usually get additional zeros if the realization is not minimal.
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4.5.2 Zeros from transfer functions
The following theorem from MacFarlane and Karcanias (1976) is useful for hand calculating
the zeros of a transfer function matrix G(s).

Theorem 4.5 The zero polynomial z(s), corresponding to a minimal realization of the
system, is the greatest common divisor of all the numerators of all order-r minors of G(s),
where r is the normal rank of G(s), provided that these minors have been adjusted in such a
way as to have the pole polynomial φ(s) as their denominator.

Example 4.11 Consider the 2× 2 transfer function matrix

G(s) =
1

s+ 2

[
s− 1 4
4.5 2(s− 1)

]
(4.68)

The normal rank of G(s) is 2, and the minor of order 2 is the determinant, detG(s) = 2(s−1)2−18
(s+2)2

=

2 s−4
s+2

. From Theorem 4.4, the pole polynomial is φ(s) = s + 2 and therefore the zero polynomial is
z(s) = s− 4. Thus, G(s) has a single RHP-zero at s = 4.

This illustrates that in general multivariable zeros have no relationship with the zeros of the
transfer function elements. This is also shown by the following example where the system
has no zeros.

Example 4.9 continued. Consider again the 2×2 system in (4.52) where detG(s) in (4.53) already
has φ(s) as its denominator. Thus the zero polynomial is given by the numerator of (4.53), which is 1,
and we £nd that the system has no multivariable zeros.

The next two examples consider non-square systems.

Example 4.12 Consider the 1× 2 system

G(s) =
[ s− 1

s+ 1

s− 2

s+ 2

]
(4.69)

The normal rank of G(s) is 1, and since there is no value of s for which both elements become zero,
G(s) has no zeros.

In general, non-square systems are less likely to have zeros than square systems. For instance,
for a square 2×2 system to have a zero, there must be a value of s for which the two columns
in G(s) are linearly dependent. On the other hand, for a 2× 3 system to have a zero, we need
all three columns in G(s) to be linearly dependent.

The following is an example of a non-square system which does have a zero.
Example 4.10 continued. Consider again the 2× 3 system in (4.55), and adjust the minors of order
2 in (4.57) and (4.58) so that their denominators are φ(s) = (s+ 1)(s+ 2)2(s− 1). We get

M1(s) =
−(s− 1)2

φ(s)
, M2(s) =

2(s− 1)(s+ 2)

φ(s)
, M3(s) =

(s− 1)(s+ 2)

φ(s)
(4.70)

The common factor for these minors is the zero polynomial z(s) = (s − 1). Thus, the system has a
single RHP-zero located at s = 1.

We also see from the last example that a minimal realization of a MIMO system can have
poles and zeros at the same value of s, provided their directions are different.
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4.5.3 Zero directions
In the following let s be a £xed complex scalar and consider G(s) as a complex matrix. For
example, given a state-space realization, we can evaluate G(s) = C(sI − A)−1B +D. Let
G(s) have a zero at s = z. Then G(s) loses rank at s = z, and there will exist non-zero
vectors uz and yz such that

G(z)uz = 0 · yz (4.71)
Here uz is de£ned as the input zero direction, and yz is de£ned as the output zero direction.
We usually normalize the direction vectors to have unit length,

uHz uz = 1; yHz yz = 1

From a practical point of view, the output zero direction, yz , is usually of more interest than
uz , because yz gives information about which output (or combination of outputs) may be
dif£cult to control.

Remark 1 Taking the Hermitian (conjugate transpose) of (4.71) yields uHz G
H(z) = 0 · yHz .

Premultiplying by uz and postmultiplying by yz noting that uHz uz = 1 and yHz yz = 1 yields
G(z)Hyz = 0 · uz , or

yHz G(z) = 0 · uHz (4.72)

Remark 2 In principle, we may obtain uz and yz from an SVD of G(z) = UΣV H , and we have
that uz is the last column in V (corresponding to the zero singular value of G(z)) and yz is the last
column of U . An example was given earlier in (3.85). A better approach numerically is to obtain uz
from a state-space description using the generalized eigenvalue problem in (4.66). Similarly, yz may be
obtained from the transposed state-space description, see (4.72), using MT in (4.66).

Example 4.13 Zero and pole directions. Consider the 2× 2 plant in (4.68), which has a RHP-zero
at z = 4 and a LHP-pole at p = −2. The pole and zero directions are usually found from a state-space
realization using (4.38)–(4.39) and (4.65)–(4.67), respectively. However, we will here use an SVD of
G(z) and G(p) to determine the zero and pole directions using the Matlab commands in Table 4.3,
although we stress that this is generally not a reliable method numerically. An SVD of G(z) gives

G(z) = G(4) =
1

6

[
3 4
4.5 6

]
=

1

6

[
0.55 −0.83
0.83 0.55

][
9.01 0
0 0

][
0.6 −0.8
0.8 0.6

]H

The input and output zero directions are associated with the zero singular value of G(z), see (4.71),
and we get uz =

[
−0.80
0.60

]
and yz =

[
−0.83
0.55

]
. We see from yz that the zero has a slightly larger

component in the £rst output. Next, to determine the pole directions consider

G(p+ ε) = G(−2 + ε) =
1

ε2

[
−3 + ε 4
4.5 2(−3 + ε)

]
(4.73)

The SVD as ε→ 0 becomes

G(−2 + ε) =
1

ε2

[
−0.55 −0.83
0.83 −0.55

][
9.01 0
0 0

][
0.6 −0.8
−0.8 −0.6

]H

The pole input and output directions are associated with the largest singular value, σ1 = 9.01/ε2,
and we get up =

[
0.60
−0.80

]
and yp =

[
−0.55
0.83

]
. We note from yp that the pole has a slightly larger

component in the second output.

It is important to note that although the locations of the poles and zeros are independent
of input and output scalings, their directions are not. Thus, the inputs and outputs need to be
scaled properly before making any interpretations based on pole and zero directions.
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Table 4.3: Matlab program to £nd pole and zero directions from transfer function
%
s = tf(’s’); G = [(s-1) 4; 4.5 2*(s-1)]/(s+2);p=-2;z=4;
% Crude method for computing pole and zero directions
Gz = evalfr(G,z); n = min(size(Gz));
[U,S,V] = svd(Gz); yz = U(:,n), uz = V(:,n)
Gp = evalfr(G,p+1.e-5);
[U,S,V] = svd(Gp); yp = U(:,1), up = V(:,1)

4.6 Some important remarks on poles and zeros
1. The zeros resulting from a minimal realization are sometimes called the transmission

zeros. If one does not have a minimal realization, then numerical computations (e.g. using
Matlab) may yield additional invariant zeros. These invariant zeros plus the transmission
zeros are sometimes called the system zeros. The invariant zeros can be further subdivided
into input and output decoupling zeros. These cancel poles associated with uncontrollable
or unobservable states and hence have limited practical signi£cance. To avoid all these
complications, we recommend that a minimal realization is found before computing the
zeros.

2. Rosenbrock (1966; 1970) £rst de£ned multivariable zeros using something similar to the
Smith–McMillan form. Poles and zeros are de£ned in terms of the McMillan form in Zhou
et al. (1996).

3. In the time domain, the presence of zeros implies blocking of certain input signals
(MacFarlane and Karcanias, 1976). If z is a zero of G(s), then there exists an input signal
of the form uze

zt1+(t), where uz is a (complex) vector and 1+(t) is a unit step, and a set
of initial conditions (states) xz , such that y(t) = 0 for t > 0.

4. For square systems we essentially have that the poles and zeros of G(s) are the poles and
zeros of detG(s). However, this crude de£nition may fail in a few cases, for instance
when there is a zero and pole in different parts of the system which happen to cancel when
forming detG(s). For example, the system

G(s) =
[
(s+ 2)/(s+ 1) 0

0 (s+ 1)/(s+ 2)

]
(4.74)

has detG(s) = 1, although the system obviously has poles at −1 and −2 and
(multivariable) zeros at −1 and −2.

5. G(s) in (4.74) provides a good example for illustrating the importance of directions when
discussing poles and zeros of multivariable systems. We note that although the system has
poles and zeros at the same locations (at −1 and −2), their directions are different and
so they do not cancel or otherwise interact with each other. In (4.74) the pole at −1 has
directions up = yp = [ 1 0 ]T , whereas the zero at −1 has directions uz = yz = [ 0 1 ]T .

6. For square systems with a non-singular D-matrix, the number of poles is the same as the
number of zeros, and the zeros of G(s) are equal to the poles G−1(s), and vice versa.
Furthermore, if the inverse of G(p) exists then it follows from the SVD that

G−1(p)yp = 0 · up (4.75)

7. There are no zeros if the outputs y contain direct information about all the states; that is, if
from y we can directly obtain x. For example, we have no zeros if y = x or more generally
if rank C = n andD = 0 (see a proof in Example 4.15). This probably explains why zeros
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were given very little attention in the optimal control theory of the 1960’s which was based
on state feedback.

8. Zeros usually appear when there are fewer inputs or outputs than states, or when D 6= 0.
Consider a square m×m plant G(s) = C(sI −A)−1B +D with n states. We then have
for the number of (£nite) zeros of G(s) (Maciejowski, 1989, p. 55)

D 6= 0 : At most n−m+ rank(D) zeros
D = 0 : At most n− 2m+ rank(CB) zeros
D = 0 and rank(CB) = m : Exactly n−m zeros

(4.76)

9. Moving poles. How are the poles affected by (a) feedback (G(I + KG)−1), (b) series
compensation (GK, feedforward control) and (c) parallel compensation (G + K)? The
answer is that (a) feedback control moves the poles (e.g. G = 1

s+a ,K = −2a moves the
pole from −a to +a), (b) series compensation cannot move the poles, but we may cancel
poles inG by placing zeros inK (e.g.G = 1

s+a ,K = s+a
s+k ), and (c) parallel compensation

cannot move the poles, but we may cancel their effect by subtracting identical poles in K
(e.g. G = 1

s+a ,K = − 1
s+a ).

10. For a strictly proper plant G(s) = C(sI − A)−1B, the open-loop poles are determined
by the characteristic polynomial φol(s) = det(sI − A). If we apply constant gain
negative feedback u = −K0y, the poles are determined by the corresponding closed-
loop characteristic polynomial φcl(s) = det(sI−A+BK0C). Thus, unstable plants may
be stabilized by use of feedback control. See also Example 4.14.

11. Moving zeros. Consider next the effect of feedback, series and parallel compensation on
the zeros.
(a) With feedback, the zeros of G(I + KG)−1 are the zeros of G plus the poles of K.
This means that the zeros in G, including their output directions yz , are unaffected by
feedback. However, even though yz is £xed it is still possible with feedback control to
move the deteriorating effect of a RHP-zero to a given output channel, provided yz has a
non-zero element for this output. This was illustrated by the example in Section 3.6, and
is discussed in more detail in Section 6.6.1.
(b) Series compensation can counter the effect of zeros in G by placing poles in K to
cancel them, but cancellations are not possible for RHP-zeros due to internal stability (see
Section 4.7).
(c) The only way to move zeros is by parallel compensation, y = (G +K)u, which, if y
is a physical output, can only be accomplished by adding an extra input (actuator).

12. Pinned zeros. A zero is pinned to a subset of the outputs if yz has one or more elements
equal to zero. In most cases, pinned zeros have a scalar origin. Pinned zeros are quite
common in practice, and their effect cannot be moved freely to any output. For example,
the effect of a measurement delay for output y1 cannot be moved to output y2. Similarly, a
zero is pinned to certain inputs if uz has one or more elements equal to zero. An example
is G(s) in (4.74), where the zero at −2 is pinned to input u1 and to output y1.

13. Zeros of non-square systems. The existence of zeros for non-square systems is common
in practice in spite of what is sometimes claimed in the literature. In particular, they
appear if we have a zero pinned to the side of the plant with the fewest number of
channels. As an example consider a plant with three inputs and two outputs G1(s) =[

h11 h12 h13
h21(s− z) h22(s− z) h23(s− z)

]
which has a zero at s = z which is pinned to output

y2, i.e. yz = [ 0 1 ]T . This follows because the second row of G1(z) is equal to zero, so
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the rank of G1(z) is 1, which is less than the normal rank of G1(s), which is 2. On the
other hand, G2(s) =

[
h11(s− z) h12 h13
h21(s− z) h22 h23

]
does not have a zero at s = z since G2(z)

has rank 2 which is equal to the normal rank of G2(s) (assuming that the last two columns
of G2(s) have rank 2).

14. The concept of functional controllability, see page 233, is related to zeros. Loosely
speaking, one can say that a system which is functionally uncontrollable has in a certain
output direction “a zero for all values of s”.

The control implications of RHP-zeros and RHP-poles are discussed for SISO systems on
pages 183–197 and for MIMO systems on pages 235–237.

Example 4.14 Effect of feedback on poles and zeros. Consider a SISO negative feedback system
with plant G(s) = z(s)/φ(s) and a constant gain controller, K(s) = k. The closed-loop response
from reference r to output y is

T (s) =
L(s)

1 + L(s)
=

kG(s)

1 + kG(s)
=

kz(s)

φ(s) + kz(s)
= k

zcl(s)

φcl(s)
(4.77)

Note the following:
1. The zero polynomial is zcl(s) = z(s), so the zero locations are unchanged by feedback.
2. The pole locations are changed by feedback. For example,

k → 0 ⇒ φcl(s)→ φ(s) (4.78)

k →∞ ⇒ φcl(s)→ kz(s) (4.79)
That is, as we increase the feedback gain, the closed-loop poles move from open-loop poles to the
open-loop zeros. RHP-zeros therefore imply high-gain instability. These results are well known from
a classical root locus analysis.

Example 4.15 We want to prove that G(s) = C(sI − A)−1B + D has no zeros if D = 0 and
rank (C) = n, where n is the number of states. Solution: Consider the polynomial system matrix P (s)
in (4.65). The £rst n columns of P are independent because C has rank n. The last m columns are
independent of s. Furthermore, the £rst n and last m columns are independent of each other, since
D = 0 and C has full column rank and thus cannot have any columns equal to zero. In conclusion,
P (s) always has rank n +m and there are no zeros. (We need D = 0 because if D is non-zero then
the £rst n columns of P may depend on the last m columns for some value of s.)

Exercise 4.3 ∗ (a) Consider a SISO system G(s) = C(sI − A)−1B + D with just one state, i.e. A
is a scalar. Find the zeros. Does G(s) have any zeros for D = 0? (b) Do GK and KG have the same
poles and zeros for a SISO system? Ditto, for a MIMO system?

Exercise 4.4 Determine the poles and zeros of

G(s) =




11s3−18s2−70s−50
s(s+10)(s+1)(s−5)

(s+2)
(s+1)(s−5)

5(s+2)
(s+1)(s−5)

5(s+2)
(s+1)(s−5)




given that

detG(s) =
50(s4 − s3 − 15s2 − 23s− 10)

s(s+ 1)2(s+ 10)(s− 5)2
=

50(s+ 1)2(s+ 2)(s− 5)

s(s+ 1)2(s+ 10)(s− 5)2

How many poles does G(s) have?



144 MULTIVARIABLE FEEDBACK CONTROL

Exercise 4.5 ∗ Given y(s) = G(s)u(s), with G(s) = 1−s
1+s

. Determine a state-space realization of
G(s) and then £nd the zeros of G(s) using the generalized eigenvalue problem. What is the transfer
function from u(s) to x(s), the single state of G(s), and what are the zeros of this transfer function?

Exercise 4.6 Find the zeros for a 2× 2 plant with

A =
[
a11 a12
a21 a22

]
, B =

[
1 1
b21 b22

]
, C = I, D = 0

Exercise 4.7 ∗ For what values of c1 does the following plant have RHP-zeros?

A =
[
10 0
0 −1

]
, B = I, C =

[
10 c1
10 0

]
, D =

[
0 0
0 1

]
(4.80)

Exercise 4.8 Consider the plant in (4.80), but assume that both states are measured and used for
feedback control, i.e. ym = x (but the controlled output is still y = Cx + Du). Can a RHP-zero in
G(s) give problems with stability in the feedback system? Can we achieve “perfect” control of y in this
case? (Answers: No and no).

4.7 Internal stability of feedback systems
To test for closed-loop stability of a feedback system, it is usually enough to check just one
closed-loop transfer function, e.g. S = (I+GK)−1. However, this assumes that there are no
internal RHP pole–zero cancellations between the controller and the plant. The point is best
illustrated by an example.

Example 4.16 Consider the feedback system shown in Figure 4.2 where G(s) = s−1
s+1

and K(s) =

6
-?? ----- +

+
+

+
+
-

yu

dydu
G

s−1
s+1

k(s+1)
s(s−1)

K

r

Figure 4.2: Internally unstable system

k
s
s+1
s−1 . In forming the loop transfer function L = GK we then cancel the term (s−1), a RHP pole–zero

cancellation, to obtain
L = GK =

k

s
, and S = (I + L)−1 =

s

s+ k
(4.81)

S(s) is stable; that is, the transfer function from dy to y is stable. However, the transfer function from
dy to u is unstable:

u = −K(I +GK)−1dy = − k(s+ 1)

(s− 1)(s+ k)
dy (4.82)

Consequently, although the system appears to be stable when considering the output signal y, it is
unstable when considering the “internal” signal u, so the system is (internally) unstable.
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Remark 1 In practice, it is not possible to cancel exactly a plant zero or pole because of modelling
errors. In the above example, therefore, L and S will in practice also be unstable. However, it is
important to stress that even in the ideal case with a perfect RHP pole–zero cancellation, as in the
above example, we would still get an internally unstable system. This is a subtle but important point. In
this ideal case the state-space descriptions of L and S contain an unstable hidden mode corresponding
to an unstabilizable or undetectable state.

Remark 2 By the same reasoning as in Example 4.16, we get an internally unstable system if we
use feedforward control to cancel a RHP-zero or to stabilize an unstable plant. For example, consider
Figure 4.2 with the feedback loop removed and K as the feedforward controller. For an unstable plant
G(s) = s+1

s−1 we may use a feedforward controller K(s) = s−1
s+1

and get an (apparently) stable response
y = GKr = r. First, this requires a perfect model with perfect cancellation of the unstable pole at
s = 1. Second, even with a perfect model, we have y = Gdu where G is unstable, so any signal du
entering between the controller and the plant will eventually drive the system out of bounds. Thus, the
only way to stabilize an unstable plant is to move the unstable poles from the RHP to the LHP and this
can only be accomplished by feedback control.

6
¾ ¾

?

?--
6

+

+

+

+
y

dy u

du

G

−K

Figure 4.3: Block diagram used to check internal stability of feedback system

From the above example, it is clear that to be rigorous we must consider internal stability
of the feedback system, see De£nition 4.4. To this effect consider the system in Figure 4.3
where we inject and measure signals at both locations between the two components, G and
K. We get

u = (I +KG)−1du −K(I +GK)−1dy (4.83)

y = G(I +KG)−1du + (I +GK)−1dy (4.84)

The theorem below follows immediately:

Theorem 4.6 Assume that the components G and K contain no unstable hidden modes.
Then the feedback system in Figure 4.3 is internally stable if and only if all four closed-loop
transfer matrices in (4.83) and (4.84) are stable.

The following can be proved using the above theorem (recall Example 4.16). If there are
RHP pole–zero cancellations betweenG(s) andK(s), i.e. ifGK andKG do not both contain
all the RHP-poles in G and K, then the system in Figure 4.3 is internally unstable.

If we disallow RHP pole–zero cancellations between system components, such as G and
K, then stability of one closed-loop transfer function implies stability of the others. This is
stated in the following theorem.
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Theorem 4.7 Assume there are no RHP pole–zero cancellations between G(s) and K(s);
that is, all RHP-poles in G(s) and K(s) are contained in the minimal realizations of GK
and KG. Then the feedback system in Figure 4.3 is internally stable if and only if one of the
four closed-loop transfer function matrices in (4.83) and (4.84) is stable.

Proof: A proof is given by Zhou et al. (1996, p. 125). 2

Note how we de£ne pole–zero cancellations in the above theorem. In this way, RHP pole–
zero cancellations resulting fromG orK not having full normal rank are also disallowed. For
example, with G(s) = 1/(s − a) and K = 0 we get GK = 0 so the RHP-pole at s = a
has disappeared and there is effectively a RHP pole–zero cancellation. In this case, we get
S(s) = 1 which is stable, but internal stability is clearly not possible.

Exercise 4.9 ∗ Use (A.7) to show that the signal relationships (4.83) and (4.84) may also be written
as [

u
y

]
= M(s)

[
du
dy

]
; M(s) =

[
I K
−G I

]−1
(4.85)

From this we get that the system in Figure 4.3 is internally stable if and only if M(s) is stable.

4.7.1 Implications of the internal stability requirement
The requirement of internal stability in a feedback system leads to a number of interesting
results, some of which are investigated below. Note in particular Exercise 4.12, where we
discuss alternative ways of implementing a two degrees-of-freedom controller.

We £rst prove the following important statements which apply when the overall feedback
system is internally stable (Youla et al., 1974):

1. If G(s) has a RHP-zero at z, then also L = GK, T = GK(I + GK)−1, SG =
(I + GK)−1G, LI = KG and TI = KG(I + KG)−1 will each have a RHP-zero at
z.

2. If G(s) has a RHP-pole at p, then also L = GK and LI = KG each have a RHP-pole at
p, while S = (I + GK)−1,KS = K(I + GK)−1 and SI = (I +KG)−1 each have a
RHP-zero at p.

Proof of 1: To achieve internal stability, RHP pole–zero cancellations between system components,
such as G and K, are not allowed. Thus L = GK must have a RHP-zero when G has a RHP-zero.
Now S is stable and thus has no RHP-pole which can cancel the RHP-zero in L, and so T = LS must
have a RHP-zero at z. Similarly, SG = (I +GK)−1G must have a RHP-zero, etc. 2

Proof of 2: Clearly, L has a RHP-pole at p. Since T is stable, it follows from T = LS that S must have
a RHP-zero which exactly cancels the RHP-pole in L, etc. 2

We notice from this that a RHP pole–zero cancellation between two transfer functions,
such as between L and S = (I + L)−1, does not necessarily imply internal instability. It
is only between separate physical components (e.g. controller, plant) that RHP pole–zero
cancellations are not allowed.

Exercise 4.10 Interpolation constraints. Prove the following interpolation constraints which apply
for SISO feedback systems when the plant G(s) has a RHP-zero z or a RHP-pole p:

G(z) = 0 ⇒ L(z) = 0 ⇔ T (z) = 0, S(z) = 1 (4.86)

G−1(p) = 0 ⇒ L(p) =∞ ⇔ T (p) = 1, S(p) = 0 (4.87)
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Exercise 4.11 ∗ Given the complementary sensitivity functions

T1(s) =
2s+ 1

s2 + 0.8s+ 1
T2(s) =

−2s+ 1

s2 + 0.8s+ 1

what can you say about possible RHP-poles or RHP-zeros in the corresponding loop transfer functions,
L1(s) and L2(s)?

The following exercise demonstrates another application of the internal stability
requirement.
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Figure 4.4: Different forms of two degrees-of-freedom controller:
(a) General form
(b) Suitable when Ky(s) has no RHP-zeros
(c) Suitable when Ky(s) is stable (no RHP-poles)
(d) Ky(s) = K1(s)K2(s). Suitable when K1(s) contains

no RHP-zeros and K2(s) no RHP poles
(e) Yet another form is shown in Figure 2.5

Exercise 4.12 Internal stability of two degrees-of-freedom control con£gurations. A two degrees-
of-freedom controller allows one to improve performance by treating disturbance rejection and
command tracking separately (at least to some degree). The general form shown in Figure 4.4(a) is
usually preferred for both implementation and design. However, in some cases one may want £rst to
design the pure feedback part of the controller, here denoted Ky(s), for disturbance rejection, and
then to add a simple pre-compensator, Kr(s), for command tracking. This approach is in general not
optimal, and may also yield problems when it comes to implementation, in particular if the feedback
controller Ky(s) contains RHP-poles or zeros, which can happen. This implementation issue is dealt
with in this exercise by considering the three alternative forms in Figure 4.4(b)–4.4(d). In all these
schemes Kr must clearly be stable.

(a) The issue is to avoid “unnecessary” RHP-zeros in the transfer function from r to y. Show that
(1) KyS has a RHP-zero where Ky has a RHP-zero, and (2) SG has a RHP-zero where Ky has a
RHP-pole.

(b) Explain why the con£guration in Figure 4.4(b) should not be used if Ky contains RHP-zeros.
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(c) Explain why the con£guration in Figure 4.4(c) should not be used if Ky contains RHP-poles.
This implies that this con£guration should not be used if we want integral action in Ky .

(d) Show that the con£guration in Figure 4.4(d) may be used, provided the RHP-poles (including
integrators) of Ky are contained in K1 and the RHP-zeros in K2. Discuss why one may often set
Kr = I in this case (to give a fourth possibility).

(e) A £fth form, where r goes to both Kr and Ky , is shown in Figure 2.5. When is this form suitable?

The requirement of internal stability also dictates that we must exercise care when we use
a separate unstable disturbance model Gd(s). To avoid this problem one should for state-
space computations use a combined model for inputs and disturbances, i.e. write the model
y = Gu+Gdd in the form

y = [G Gd ]

[
u
d

]

where G and Gd share the same states, see (4.14) and (4.17).

4.8 Stabilizing controllers
In this section, we introduce a parameterization, known as the Q-parameterization or
Youla-parameterization (Youla et al., 1976), of all stabilizing controllers for a plant. By all
stabilizing controllers we mean all controllers that yield internal stability of the closed-loop
system. We £rst consider stable plants, for which the parameterization is easily derived, and
then unstable plants where we make use of the coprime factorization.

4.8.1 Stable plants
The following lemma forms the basis for parameterizing all stabilizing controllers for stable
plants:

Lemma 4.8 For a stable plant G(s) the negative feedback system in Figure 4.3 is internally
stable if and only if Q = K(I +GK)−1 is stable.

Proof: The four transfer functions in (4.83) and (4.84) are easily shown to be

K(I +GK)−1 = Q (4.88)

(I +GK)−1 = I −GQ (4.89)
(I +KG)−1 = I −QG (4.90)

G(I +KG)−1 = G(I −QG) (4.91)
which are clearly all stable if G and Q are stable. Thus, with G stable the system is internally stable if
and only if Q is stable. 2

As proposed by Zames (1981), by solving (4.88) with respect to the controllerK, we £nd that
a parameterization of all stabilizing negative feedback controllers for the stable plant G(s) is
given by

K = (I −QG)−1Q = Q(I −GQ)−1 (4.92)

where the “parameter” Q is any stable transfer function matrix.
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Remark 1 If only proper controllers are allowed then Q must be proper since the term (I −QG)−1 is
semi-proper.

Remark 2 We have shown that by varying Q freely (but stably) we will always have internal stability,
and thus avoid internal RHP pole–zero cancellations between K and G. This means that although Q
may generate unstable controllers K, there is no danger of getting a RHP-pole in K that cancels a
RHP-zero in G.

The parameterization in (4.92) is identical to the internal model control (IMC)
parameterization (Morari and Za£riou, 1989) of stabilizing controllers. It may be derived
directly from the IMC structure given in Figure 4.5. The idea behind the IMC structure is that
the “controller” Q can be designed in an open-loop fashion since the feedback signal only
contains information about the difference between the actual output and the output predicted
from the model.

? --
6

?--

---
+
+

dy

-
+

model

G -
+

y
plant

GQ

K

r

Figure 4.5: The internal model control (IMC) structure

Exercise 4.13 ∗ Show that the IMC structure in Figure 4.5 is internally unstable if either Q or G is
unstable.

Exercise 4.14 Show that testing internal stability of the IMC structure is equivalent to testing for
stability of the four closed-loop transfer functions in (4.88)–(4.91).

Exercise 4.15 ∗ Given a stable controller K. What set of plants can be stabilized by this controller?
(Hint: Interchange the roles of plant and controller.)

4.8.2 Unstable plants
For an unstable plant G(s), consider its left coprime factorization

G(s) =M−1
l Nl (4.93)

A parameterization of all stabilizing negative feedback controllers for the plant G(s) is then
(Vidyasagar, 1985)

K(s) = (Vr −QNl)
−1(Ur +QMl) (4.94)



150 MULTIVARIABLE FEEDBACK CONTROL

where Vr and Ur satisfy the Bezout identity (4.19) for the right coprime factorization,
and Q(s) is any stable transfer function satisfying the technical condition det(Vr(∞) −
Q(∞)Nl(∞)) 6= 0. Similar to (4.94), the stabilizing negative feedback controllers can also
be parameterized based on the right coprime factors, Mr, Nr (Vidyasagar, 1985).

Remark 1 With Q = 0 we have K0 = V −1r Ur , so Vr and Ur can alternatively be obtained from a left
coprime factorization of some initial stabilizing controller K0.

Remark 2 For a stable plant, we may write G(s) = Nl(s) corresponding to Ml = I . In this case
K0 = 0 is a stabilizing controller, so we may from (4.19) select Ur = 0 and Vr = I , and (4.94) yields
K = (I −QG)−1Q as found before in (4.92).

Remark 3 We can also formulate the parameterization of all stabilizing controllers in state-space form,
e.g. see page 312 in Zhou et al. (1996) for details.

The Q-parameterization may be very useful for controller synthesis. First, the search over
all stabilizing K’s (e.g. S = (I +GK)−1 must be stable) is replaced by a search over stable
Q’s. Second, all closed-loop transfer functions (S, T , etc.) will be in the form H1+H2QH3,
so they are af£ne3 in Q. This further simpli£es the optimization problem.

Strongly stabilizable. In theory, any linear plant may be stabilized irrespective of the
location of its RHP-poles and RHP-zeros, provided the plant does not contain unstable hidden
modes. However, this may require an unstable controller, and for practical purposes it is
sometimes desirable that the controller is stable. If such a stable controller exists the plant is
said to be strongly stabilizable. Youla et al. (1974) proved that a strictly proper rational SISO
plant is strongly stabilizable by a proper controller if and only if every real RHP-zero inG(s)
lies to the left of an even number (including zero) of real RHP-poles in G(s). Note that the
presence of any complex RHP-poles or complex RHP-zeros does not affect this result. We
then have:

• A strictly proper rational plant with a single real RHP-zero z and a single real RHP-pole
p, e.g. G(s) = s−z

(s−p)(τs+1) , can be stabilized by a stable proper controller if and only if
z > p.

Notice the requirement that G(s) is strictly proper. For example, the plant G(s) = s−1
s−2

with z = 1 < p = 2 is stabilized with a stable constant gain controller K(s) = Kc with
−2 < Kc < −1. However, this plant is not strictly proper so the result by Youla et al. (1974)
does not apply.

4.9 Stability analysis in the frequency domain
As noted above, the stability of a linear system is equivalent to the system having no poles
in the closed RHP. This test may be used for any system, be it open-loop or closed-loop.
In this section we will study the use of frequency domain techniques to derive information
about closed-loop stability from the open-loop transfer matrix L(jω). This provides a direct
generalization of Nyquist’s stability test for SISO systems.

Note that when we talk about eigenvalues in this section, we refer to the eigenvalues of a
complex matrix, usually of L(jω) = GK(jω), and not those of the state matrix A.
3 A function f(x) is af£ne in x if f(x) = ax+ b, and is linear in x if f(x) = ax.
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4.9.1 Open- and closed-loop characteristic polynomials

6
--- y

L-
+r

Figure 4.6: Negative feedback system

We £rst derive some preliminary results involving the determinant of the return difference
operator I + L. Consider the feedback system shown in Figure 4.6, where L(s) is the loop
transfer function matrix. Stability of the open-loop system is determined by the poles of L(s).

If L(s) has a state-space realization
[
Aol Bol

Col Dol

]
, i.e.

L(s) = Col(sI −Aol)
−1Bol +Dol (4.95)

then the poles of L(s) are the roots of the open-loop characteristic polynomial

φol(s) = det(sI −Aol) (4.96)

Assume there are no RHP pole–zero cancellations between G(s) and K(s). Then from
Theorem 4.7 internal stability of the closed-loop system is equivalent to the stability of
S(s) = (I + L(s))−1. The state matrix of S(s) is given (assuming L(s) is well-posed,
i.e. Dol + I is invertible) by

Acl = Aol −Bol(I +Dol)
−1Col (4.97)

This equation may be derived by writing down the state-space equations for the transfer
function from r to y in Figure 4.6

ẋ = Aolx+Bol(r − y) (4.98)

y = Colx+Dol(r − y) (4.99)
and using (4.99) to eliminate y from (4.98). The closed-loop characteristic polynomial is thus
given by

φcl(s) , det(sI −Acl) = det(sI −Aol +Bol(I +Dol)
−1Col) (4.100)

Relationship between characteristic polynomials
The above identities may be used to express the determinant of the return difference operator,
I + L, in terms of φcl(s) and φol(s). From (4.95) we get

det(I + L(s)) = det(I + Col(sI −Aol)
−1Bol +Dol) (4.101)

Schur’s formula (A.14) then yields (with A11 = I + Dol, A12 = −Col, A22 = sI −
Aol, A21 = Bol)

det(I + L(s)) =
φcl(s)

φol(s)
· c (4.102)
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where c = det(I + Dol) is a constant which is of no signi£cance when evaluating the
poles. Note that φcl(s) and φol(s) are polynomials in s which have zeros only, whereas
det(I + L(s)) is a transfer function with both poles and zeros.

Example 4.17 We will rederive expression (4.102) for SISO systems. Let L(s) = k z(s)
φol(s)

The
sensitivity function is given by

S(s) =
1

1 + L(s)
=

φol(s)

kz(s) + φol(s)
(4.103)

and the denominator is

d(s) = kz(s) + φol(s) = φol(s)

(
1 +

kz(s)

φol(s)

)
= φol(s)(1 + L(s)) (4.104)

which is the same as φcl(s) in (4.102) (except for the constant c which is necessary to make the leading
coef£cient of φcl(s) equal to 1, as required by its de£nition).

Remark 1 One may be surprised to see from (4.103) that the zero polynomial of S(s) is equal to the
open-loop pole polynomial, φol(s), but this is indeed correct. On the other hand, note from (4.77) that
the zero polynomial of T (s) = L(s)/(1 + L(s)) is equal to z(s), the open-loop zero polynomial.

Remark 2 From (4.102), for the case when there are no cancellations between φol(s) and φcl(s), we
have that the closed-loop poles are solutions to

det(I + L(s)) = 0 (4.105)

4.9.2 MIMO Nyquist stability criteria
We will consider the negative feedback system of Figure 4.6, and assume there are no internal
RHP pole–zero cancellations in the loop transfer function matrix L(s), i.e. L(s) contains no
unstable hidden modes. Expression (4.102) for det(I +L(s)) then enables a straightforward
generalization of Nyquist’s stability condition to multivariable systems.

Theorem 4.9 Generalized (MIMO) Nyquist theorem. Let Pol denote the number of open-
loop unstable poles in L(s). The closed-loop system with loop transfer function L(s) and
negative feedback is stable if and only if the Nyquist plot of det(I + L(s))

(i) makes Pol anti-clockwise encirclements of the origin, and
(ii) does not pass through the origin.

The theorem is proved below, but let us £rst make some important remarks.

Remark 1 By “Nyquist plot of det(I + L(s))” we mean “the image of det(I + L(s)) as s goes
clockwise around the NyquistD-contour”. The NyquistD-contour includes the entire jω-axis (s = jω)
and an in£nite semi-circle into the RHP as illustrated in Figure 4.7. The D-contour must also avoid
locations where L(s) has jω-axis poles by making small indentations (semi-circles) around these
points.

Remark 2 In the following discussion, for practical reasons, we de£ne unstable poles or RHP-poles as
poles in the open RHP, excluding the jω-axis. In this case the Nyquist D-contour should make a small
semi-circular indentation into the RHP at locations where L(s) has jω-axis poles, thereby avoiding the
extra count of encirclements due to jω-axis poles.

Remark 3 Another practical way of avoiding the indentation is to shift all jω-axis poles into the LHP,
e.g. by replacing the integrator 1/s by 1/(s+ ε) where ε is a small positive number.
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Figure 4.8: Typical Nyquist plot of det(I + L(jω))

Remark 4 We see that for stability det(I + L(jω)) should make no encirclements of the origin
if L(s) is open-loop stable, and should make Pol anti-clockwise encirclements if L(s) is unstable.
If this condition is not satis£ed then the number of closed-loop unstable poles of (I + L(s))−1 is
Pcl = N + Pol, where N is the number of clockwise encirclements of the origin by the Nyquist plot
of det(I + L(jω)).

Remark 5 For any real system,L(s) is proper and so to plot det(I+L(s)) as s traverses theD-contour
we need to consider s = jω only along the imaginary axis. This follows since lims→∞ L(s) = Dol is
£nite, and therefore for s =∞ the Nyquist plot of det(I + L(s)) converges to det(I +Dol) which is
on the real axis.

Remark 6 In many cases L(s) contains integrators so for ω = 0 the plot of det(I + L(jω)) may
“start” from ±j∞. A typical plot for positive frequencies is shown in Figure 4.8 for the system

L = GK, G =
3(−2s+ 1)

(10s+ 1)(5s+ 1)
, K = 1.14

12.7s+ 1

12.7s
(4.106)
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Note that the solid and dashed curves (positive and negative frequencies) need to be connected as ω
approaches 0, so there is also a large (in£nite) semi-circle (not shown) corresponding to the indentation
of the D-contour into the RHP at s = 0 (the indentation is to avoid the integrator in L(s)). To £nd
which way the large semi-circle goes, one can use the rule (based on conformal mapping arguments)
that a right-angled turn in the D-contour will result in a right-angled turn in the Nyquist plot. It then
follows for the example in (4.106) that there will be an in£nite semi-circle into the RHP. There are
therefore no encirclements of the origin. Since there are no open-loop unstable poles (jω-axis poles are
excluded in the counting), Pol = 0, and we conclude that the closed-loop system is stable.

Proof of Theorem 4.9: The proof makes use of the following result from complex variable theory
(Churchill et al., 1974):

Lemma 4.10 Argument principle. Consider a (transfer) function f(s) and let C denote a closed
contour in the complex plane. Assume that:
1. f(s) is “analytic” along C; that is, f(s) has no poles on C.
2. f(s) has Z zeros inside C.
3. f(s) has P poles inside C.
Then the image f(s) as the complex argument s traverses the contour C once in a clockwise direction
will make Z − P clockwise encirclements of the origin.

LetN (A, f(s), C) denote the number of clockwise encirclements of the point A by the image f(s) as
s traverses the contour C clockwise. Then a restatement of Lemma 4.10 is

N (0, f(s), C) = Z − P (4.107)

We now recall (4.102) and apply Lemma 4.10 to the function f(s) = det(I+L(s)) = φcl(s)
φol(s)

c selecting
C to be the Nyquist D-contour. We assume c = det(I+Dol) 6= 0 since otherwise the feedback system
would be ill-posed. The contour D goes along the jω-axis and around the entire RHP, but avoids open-
loop poles of L(s) on the jω-axis (where φol(jω) = 0) by making small semi-circles into the RHP.
This is needed to make f(s) analytic along D. We then have that f(s) has P = Pol poles and Z = Pcl
zeros inside D. Here Pcl denotes the number of unstable closed-loop poles (in the open RHP). Equation
(4.107) then gives

N (0, det(I + L(s)), D) = Pcl − Pol (4.108)
Since the system is stable if and only if Pcl = 0, condition (i) of Theorem 4.9 follows. However, we
have not yet considered the possibility that f(s) = det(I+L(s)), and hence φcl(s) has zeros on theD-
contour itself, which will also correspond to a closed-loop unstable pole. To avoid this, det(I+L(jω))
must not be zero for any value of ω and condition (ii) in Theorem 4.9 follows. 2

Example 4.18 SISO stability conditions. Consider an open-loop stable SISO system. In this case,
the Nyquist stability condition states that for closed-loop stability the Nyquist plot of 1 + L(s) should
not encircle the origin. This is equivalent to the Nyquist plot of L(jω) not encircling the point −1 in
the complex plane

4.9.3 Eigenvalue loci
The eigenvalue loci (sometimes called characteristic loci) are de£ned as the eigenvalues of
the frequency response of the open-loop transfer function, λi(L(jω)). They partly provide a
generalization of the Nyquist plot ofL(jω) from SISO to MIMO systems, and with them gain
and phase margins can be de£ned as in the classical sense. However, these margins are not too
useful as they only indicate stability with respect to a simultaneous parameter change in all
of the loops. Therefore, although characteristic loci were well researched in the 1970’s and
greatly in¤uenced the British developments in multivariable control, e.g. see Postlethwaite
and MacFarlane (1979), they will not be considered further in this book.
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4.9.4 Small-gain theorem
The small-gain theorem is a very general result which we will £nd useful in the book. We
present £rst a generalized version of it in terms of the spectral radius, ρ(L(jω)), which at
each frequency is de£ned as the maximum eigenvalue magnitude

ρ(L(jω)) , max
i
|λi(L(jω))| (4.109)

Theorem 4.11 Spectral radius stability condition. Consider a system with a stable loop
transfer function L(s). Then the closed-loop system is stable if

ρ(L(jω)) < 1 ∀ω (4.110)

Proof: The generalized Nyquist theorem (Theorem 4.9) says that if L(s) is stable, then the closed-
loop system is stable if and only if the Nyquist plot of det(I + L(s)) does not encircle the origin.
To prove condition (4.110) we will prove the “reverse”; that is, if the system is unstable and therefore
det(I + L(s)) does encircle the origin, then there is an eigenvalue, λi(L(jω)), which is larger than 1
at some frequency. If det(I +L(s)) does encircle the origin, then there must exist a gain ε ∈ (0, 1] and
a frequency ω′ such that

det(I + εL(jω′)) = 0 (4.111)
This is easily seen by geometric arguments since det(I + εL(jω′)) = 1 for ε = 0. Expression (4.111)
is equivalent to (see eigenvalue properties in Appendix A.2.1)

∏

i

λi(I + εL(jω′)) = 0 (4.112)

⇔ 1 + ελi(L(jω
′)) = 0 for some i (4.113)

⇔ λi(L(jω
′)) = −1

ε
for some i (4.114)

⇒ |λi(L(jω′))| ≥ 1 for some i (4.115)
⇔ ρ(L(jω′)) ≥ 1 (4.116)

2

Theorem 4.11 is quite intuitive, as it simply says that if the system gain is less than 1 in
all directions (all eigenvalues) and for all frequencies (∀ω), then all signal deviations will
eventually die out, and the system is stable.

In general, the spectral radius theorem is conservative because phase information is not
considered. For SISO systems ρ(L(jω)) = |L(jω)|, and consequently the above stability
condition requires that |L(jω)| < 1 for all frequencies. This is clearly conservative, since
from the Nyquist stability condition for a stable L(s), we only require |L(jω)| < 1 at
frequencies where the phase of L(jω) is−180◦±n ·360◦. As an example, let L = k/(s+ε).
Since the phase never reaches−180◦ the system is closed-loop stable for any value of k > 0.
However, to satisfy (4.110) we need k ≤ ε, which for a small value of ε is very conservative
indeed.

Remark. Later we will consider cases where the phase of L is allowed to vary freely, and in which case
Theorem 4.11 is not conservative. Actually, a clever use of the above theorem is the main idea behind
most of the conditions for robust stability and robust performance presented later in this book.
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The small-gain theorem below follows directly from Theorem 4.11 if we consider a matrix
norm, which by de£nition satis£es ‖AB‖ ≤ ‖A‖ · ‖B‖. Then, at any frequency, we have
ρ(L) ≤ ‖L‖ (see (A.117)).

Theorem 4.12 Small-gain theorem. Consider a system with a stable loop transfer function
L(s). Then the closed-loop system is stable if

‖L(jω)‖ < 1 ∀ω (4.117)

where ‖L‖ denotes any matrix norm satisfying ‖AB‖ ≤ ‖A‖ · ‖B‖.

Remark 1 This result is only a special case of a more general small-gain theorem which also applies
to many nonlinear systems (Desoer and Vidyasagar, 1975).

Remark 2 The small-gain theorem does not consider phase information, and is therefore independent
of the sign of the feedback.

Remark 3 Any induced norm can be used, e.g. the singular value, σ̄(L).

Remark 4 The small-gain theorem can be extended to include more than one block in the loop, e.g.
L = L1L2. In this case we get from (A.98) that the system is stable if ‖L1‖ · ‖L2‖ < 1, ∀ω.

Remark 5 The small-gain theorem is generally more conservative than the spectral radius condition in
Theorem 4.11. Therefore, the arguments on conservatism made following Theorem 4.11 also apply to
Theorem 4.12.

4.10 System norms

-- zw
G

Figure 4.9: System G

Consider the system in Figure 4.9, with a stable transfer function matrix G(s) and impulse
response matrix g(t). To evaluate the performance we ask the question: given information
about the allowed input signals w(t), how large can the outputs z(t) become? To answer this,
we must evaluate the relevant system norm.

We will here evaluate the output signal in terms of the usual 2-norm,

‖z(t)‖2 =

√∑

i

∫ ∞

−∞
|zi(τ)|2dτ (4.118)

and consider three different choices for the inputs:

1. w(t) is a series of unit impulses.
2. w(t) is any signal satisfying ‖w(t)‖2 = 1.
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3. w(t) is any signal satisfying ‖w(t)‖2 = 1, but w(t) = 0 for t ≥ 0, and we only measure
z(t) for t ≥ 0.

The relevant system norms in the three cases are theH2 ,H∞ and Hankel norms, respectively.
TheH2 andH∞ norms also have other interpretations as are discussed below. We introduced
theH2 andH∞ norms in Section 2.8, where we also discussed the terminology. In Appendix
A.5.7 we present a more detailed interpretation and comparison of these and other norms.

4.10.1 H2 norm
Consider a strictly proper system G(s), i.e. D = 0 in a state-space realization. For the H2

norm we use the Frobenius norm spatially (for the matrix) and integrate over frequency, i.e.

‖G(s)‖2 ,

√√√√√
1

2π

∫ ∞

−∞
tr(G(jω)HG(jω))︸ ︷︷ ︸

‖G(jω)‖2
F
=

∑
ij |Gij(jω)|2

dω (4.119)

We see thatG(s) must be strictly proper, otherwise theH2 norm is in£nite. TheH2 norm can
also be given another interpretation. By Parseval’s theorem, (4.119) is equal to the H2 norm
of the impulse response

‖G(s)‖2 = ‖g(t)‖2 ,

√√√√√
∫ ∞

0

tr(gT (τ)g(τ))︸ ︷︷ ︸
‖g(τ)‖2

F
=

∑
ij |gij(τ)|2

dτ (4.120)

Remark 1 Note that G(s) and g(t) are dynamic systems while G(jω) and g(τ) are constant matrices
(for a given value of ω or τ ).

Remark 2 We can change the order of integration and summation in (4.120) to get

‖G(s)‖2 = ‖g(t)‖2 =

√∑

ij

∫ ∞

0

|gij(τ)|2dτ (4.121)

where gij(t) is the ij’th element of the impulse response matrix, g(t). From this we see that the H2

norm can be interpreted as the 2-norm output resulting from applying unit impulses δj(t) to each input,
one after another (allowing the output to settle to zero before applying an impulse to the next input).
This is more clearly seen by writing ‖G(s)‖2 =

√∑m
i=1 ‖zi(t)‖22 where zi(t) is the output vector

resulting from applying a unit impulse δi(t) to the i’th input.

In summary, we have the following deterministic performance interpretation of theH2 norm:

‖G(s)‖2 = max
w(t)= unit impulses

‖z(t)‖2 (4.122)

The H2 norm can also be given a stochastic interpretation (see page 355) in terms of the
quadratic criterion in optimal control (LQG) where we measure the expected root mean
square (rms) value of the output in response to white noise excitation.

For numerical computations of the H2 norm, consider the state-space realization G(s) =
C(sI −A)−1B. By substituting (4.10) into (4.120) we £nd

‖G(s)‖2 =
√

tr(BTQB) or ‖G(s)‖2 =
√

tr(CPCT ) (4.123)

where P and Q are the controllability and observability Gramians, respectively, obtained as
solutions to the Lyapunov equations (4.45) and (4.50).
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4.10.2 H∞ norm
Consider a proper linear stable system G(s) (i.e. D 6= 0 is allowed). For the H∞ norm we
use the singular value (induced 2-norm) spatially (for the matrix) and pick out the peak value
as a function of frequency

‖G(s)‖∞ , max
ω

σ̄(G(jω)) (4.124)

In terms of performance we see from (4.124) that the H∞ norm is the peak of the transfer
function “magnitude”, and by introducing weights, the H∞ norm can be interpreted as the
magnitude of some closed-loop transfer function relative to a speci£ed upper bound. This
leads to specifying performance in terms of weighted sensitivity, mixed sensitivity, and so
on.

However, theH∞ norm also has several time domain performance interpretations. First, as
discussed in Section 3.3.5, it is the worst-case gain for sinusoidal inputs at any frequency.
As t → ∞, let z(ω) denote the response of the system to a persistent sinusoidal input
w(ω) (phasor notation). Then we have z(ω) = G(jω)w(ω). At a given frequency ω, the
ampli£cation (gain) ‖z(ω)‖2/‖w(ω)‖2 depends on the direction of w(ω), and the gain in the
worst-case direction is given by the maximum singular value:

σ̄(G(jω)) = max
w(ω)6=0

‖z(ω)‖2
‖w(ω)‖2

The gain also depends on frequency, and the gain at the worst-case frequency is given by the
H∞ norm:

‖G(s)‖∞ = max
ω

max
w(ω)6=0

‖z(ω)‖2
‖w(ω)‖2

= max
‖w(ω)‖2=1

‖z(ω)‖2 (4.125)

Second, from Tables A.1 and A.2 in the Appendix (page 540) we see that the H∞ norm is
equal to the induced (worst-case) 2-norm of any time domain signal:

‖G(s)‖∞ = max
w(t)6=0

‖z(t)‖2
‖w(t)‖2

= max
‖w(t)‖2=1

‖z(t)‖2 (4.126)

The latter is a fortunate fact from functional analysis which is proved, for example, in Desoer
and Vidyasagar (1975). In essence, (4.126) arises because the worst input signal w(t) is a
sinusoid with frequency ω∗ and a direction which gives σ(G(jω∗)) as the maximum gain.

Third, the H∞ norm is equal to the induced power (rms) norm, and, fourth, has an
interpretation as an induced norm in terms of the expected values of stochastic signals. All
these various interpretations make theH∞ norm useful in engineering applications.

The H∞ norm is usually computed numerically from a state-space realization as the
smallest value of γ such that the Hamiltonian matrix H has no eigenvalues on the imaginary
axis, where

H =

[
A+BR−1DTC BR−1BT

−CT (I +DR−1DT )C −(A+BR−1DTC)T

]
(4.127)

and R = γ2I − DTD, see Zhou et al. (1996, p. 115). This is an iterative procedure, where
one may start with a large value of γ and reduce it until imaginary eigenvalues for H appear.
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4.10.3 Difference between theH2 andH∞ norms
To understand the difference between theH2 andH∞ norms, note that from (A.127) we can
write the Frobenius norm in terms of singular values. We then have

‖G(s)‖2 =

√
1

2π

∫ ∞

−∞

∑

i

σ2i (G(jω))dω (4.128)

From this we see that minimizing the H∞ norm corresponds to minimizing the peak of
the largest singular value (“worst direction, worst frequency”), whereas minimizing the H2

norm corresponds to minimizing the sum of the squares of all the singular values over all
frequencies (“average direction, average frequency”). In summary, we have

• H∞: “push down peak of largest singular value”.
• H2: “push down whole thing” (all singular values over all frequencies).

Example 4.19 We will compute theH∞ andH2 norms for the following SISO plant:

G(s) =
1

s+ a
(4.129)

TheH2 norm is

‖G(s)‖2 =




1

2π

∫ ∞

−∞
|G(jω)|2︸ ︷︷ ︸

1
ω2+a2

dω




1
2

=

(
1

2πa

[
tan−1

(ω
a

)]∞
−∞

) 1
2

=

√
1

2a
(4.130)

To check Parseval’s theorem we consider the impulse response

g(t) = L−1
(

1

s+ a

)
= e−at, t ≥ 0 (4.131)

and we get

‖g(t)‖2 =

√∫ ∞

0

(e−at)2dt =

√
1

2a
(4.132)

as expected. TheH∞ norm is

||G(s)||∞ = max
ω
|G(jω)| = max

ω

1

(ω2 + a2)
1
2

=
1

a
(4.133)

For interest, we also compute the 1-norm of the impulse response (which is equal to the induced ∞-
norm in the time domain):

‖g(t)‖1 =

∫ ∞

0

| g(t)︸︷︷︸
e−at

|dt = 1

a
(4.134)

In general, it can be shown that ‖G(s)‖∞ ≤ ‖g(t)‖1, and this example illustrates that we may have
equality.

Example 4.20 There exists no general relationship between the H2 and H∞ norms. As an example
consider the two systems

f1(s) =
1

εs+ 1
, f2(s) =

εs

s2 + εs+ 1
(4.135)

and let ε→ 0. Then we have for f1 that theH∞ norm is 1 and theH2 norm is in£nite. For f2 theH∞
norm is again 1 (at ω = 1), but now theH2 norm is zero.
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Why is theH∞ norm so popular? In robust control we use theH∞ norm mainly because
it is convenient for representing unstructured model uncertainty, and because it satis£es the
multiplicative property (A.98):

‖A(s)B(s)‖∞ ≤ ‖A(s)‖∞ · ‖B(s)‖∞ (4.136)

This follows from (4.126) which shows that theH∞ norm is an induced norm.
What is wrong with theH2 norm? TheH2 norm has a number of good mathematical and

numerical properties, and its minimization has important engineering implications. However,
the H2 norm is not an induced norm and does not satisfy the multiplicative property. This
implies that we cannot, by evaluating the H2 norm of individual components, say anything
about how their series (cascade) interconnection will behave.

Example 4.21 Consider againG(s) = 1/(s+a) in (4.129), for which we found ‖G(s)‖2 =
√

1/2a.
Now consider theH2 norm of G(s)G(s):

‖G(s)G(s)‖2 =

√√√√√√√

∫ ∞

0

| L−1
[(

1

s+ a

)2
]

︸ ︷︷ ︸
te−at

|2 =

√
1

a

1

2a
=

√
1

a
‖G(s)‖22

and we £nd, for a < 1, that
‖G(s)G(s)‖2 > ‖G(s)‖2 · ‖G(s)‖2 (4.137)

which does not satisfy the multiplicative property (A.98). On the other hand, theH∞ norm does satisfy
the multiplicative property, and for the speci£c example we have equality with ‖G(s)G(s)‖∞ = 1

a2
=

‖G(s)‖∞ · ‖G(s)‖∞.

4.10.4 Hankel norm
In the following discussion, we aim to develop an understanding of the Hankel norm. The
Hankel norm of a stable system G(s) is obtained when one applies an input w(t) up to t = 0
and measures the output z(t) for t > 0, and selects w(t) to maximize the ratio of the 2-norms
of these two signals:

‖G(s)‖H , max
w(t)

√∫∞
0
‖z(τ)‖22dτ√∫ 0

−∞ ‖w(τ)‖22dτ
(4.138)

The Hankel norm is a kind of induced norm from past inputs to future outputs. Its de£nition
is analogous to trying to pump a swing with limited input energy such that the subsequent
length of jump is maximized as illustrated (by the mythical creature) in Figure 4.10.

It may be shown that the Hankel norm is equal to

‖G(s)‖H =
√
ρ(PQ) (4.139)

where ρ is the spectral radius (absolute value of maximum eigenvalue), P is the controllability
Gramian de£ned in (4.44) and Q the observability Gramian de£ned in (4.49). The name
“Hankel” is used because the matrix PQ has the special structure of a Hankel matrix
(which has identical elements along the “wrong-way” diagonals). The corresponding Hankel
singular values are the positive square roots of the eigenvalues of PQ,

σi =
√
λi(PQ) (4.140)
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Figure 4.10: Pumping a swing: illustration of Hankel norm. The input is applied for t ≤ 0 and the jump
starts at t = 0.

The Hankel andH∞ norms are closely related and we have (Zhou et al., 1996, p. 111)

‖G(s)‖H ≡ σ1 ≤ ‖G(s)‖∞ ≤ 2

n∑

i=1

σi (4.141)

Thus, the Hankel norm is always smaller than (or equal to) the H∞ norm, which is also
reasonable by comparing the de£nitions in (4.126) and (4.138).

Model reduction. Consider the following problem: given a state-space description G(s)
of a system, £nd a model Ga(s) with fewer states such that the input–output behaviour (from
w to z) is changed as little as possible. Based on the discussion above it seems reasonable
to make use of the Hankel norm, since the inputs only affect the outputs through the states
at t = 0. For model reduction, we usually start with a realization of G which is internally
balanced; that is, such that Q = P = Σ, where Σ is the matrix of Hankel singular values. We
may then discard states (or rather combinations of states corresponding to certain subspaces)
corresponding to the smallest Hankel singular values. The change in H∞ norm caused by
deleting states in G(s) is less than twice the sum of the discarded Hankel singular values, i.e.

‖G(s)−Ga(s)‖∞ ≤ 2(σk+1 + σk+2 + · · ·) (4.142)

where Ga(s) denotes a truncated or residualized balanced realization with k states; see
Chapter 11. The method of Hankel norm minimization gives a somewhat improved error
bound, where we are guaranteed that ‖G(s)−Ga(s)‖∞ is less than the sum of the discarded
Hankel singular values. This and other methods for model reduction are discussed in detail
in Chapter 11 where a number of examples can be found.
Example 4.22 We want to compute analytically the various system norms for G(s) = 1/(s + a)
using state-space methods. A state-space realization is A = −a, B = 1, C = 1 and D = 0.
The controllability Gramian P is obtained from the Lyapunov equation AP + PAT = −BBT ⇔
−aP − aP = −1, so P = 1/2a. Similarly, the observability Gramian is Q = 1/2a. From (4.123) the
H2 norm is then

‖G(s)‖2 =
√

tr(BTQB) =
√

1/2a

The eigenvalues of the Hamiltonian matrix H in (4.127) are

λ(H) = λ
[
−a 1/γ2

−1 a

]
= ±

√
a2 − 1/γ2
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We £nd that H has no imaginary eigenvalues for γ > 1/a, so

‖G(s)‖∞ = 1/a

The Hankel matrix is PQ = 1/4a2 and from (4.139) the Hankel norm is

‖G(s)‖H =
√
ρ(PQ) = 1/2a

These results agree with the frequency domain calculations in Example 4.19.

Exercise 4.16 Let a = 0.5 and ε = 0.0001 and check numerically the results in Examples 4.19,
4.20, 4.21 and 4.22 using, for example, the Matlab Robust Control toolbox commands norm(sys,2),
norm(sys,inf), and for the Hankel norm, max(hankelsv(sys)).

4.11 Conclusion
This chapter has covered the following important elements of linear system theory:
system descriptions, state controllability and observability, poles and zeros, stability and
stabilization, and system norms. The topics are standard and the treatment is complete for
the purposes of this book.



5

LIMITATIONS ON
PERFORMANCE IN SISO
SYSTEMS

In this chapter, we discuss the fundamental limitations on performance in SISO systems. We summarize
these limitations in the form of a procedure for input–output controllability analysis, which is then
applied to a series of examples. Input–output controllability of a plant is the ability to achieve acceptable
control performance. Proper scaling of the input, output and disturbance variables prior to this analysis
is critical.

5.1 Input–output controllability
In university courses on control, methods for controller design and stability analysis are
usually emphasized. However, in practice the following three questions are often more
important:

I. How well can the plant be controlled? Before starting any controller design one should
£rst determine how easy the plant actually is to control. Is it a dif£cult control problem?
Indeed, does there even exist a controller which meets the required performance objectives?

II. What control structure should be used? By this we mean what variables should we
measure and control, which variables should we manipulate, and how are these variables
best paired together? In other textbooks one can £nd qualitative rules for these problems. For
example, in Seborg et al. (1989) in a chapter called “The art of process control”, the following
rules are given:

1. Control the outputs that are not self-regulating.
2. Control the outputs that have favourable dynamic and static characteristics, i.e. for each

output, there should exist an input which has a signi£cant, direct and rapid effect on it.
3. Select the inputs that have large effects on the outputs.
4. Select the inputs that rapidly affect the controlled variables

These rules are reasonable, but what are “self-regulating”, “large”, “rapid” and “direct”? A
major objective of this chapter is to quantify these terms.

III. How might the process be changed to improve control? For example, to reduce the
effects of a disturbance one might in process control consider changing the size of a buffer
tank, or in automotive control one might decide to change the properties of a spring. In other

Multivariable Feedback Control: Analysis and Design. Second Edition
S. Skogestad and I. Postlethwaite c© 2005, 2006 John Wiley & Sons, Ltd
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situations, the speed of response of a measurement device might be an important factor in
achieving acceptable control.

The above three questions are each related to the inherent control characteristics of
the process itself. We will introduce the term input–output controllability to capture these
characteristics as described in the following de£nition.

De£nition 5.1 (Input–output) controllability is the ability to achieve acceptable control
performance; that is, to keep the outputs (y) within speci£ed bounds or displacements from
their references (r), in spite of unknown but bounded variations, such as disturbances (d) and
plant changes (including uncertainty), using available inputs (u) and available measurements
(ym or dm).

In summary, a plant is controllable if there exists a controller (connecting plant measurements
and plant inputs) that yields acceptable performance for all expected plant variations. Thus,
controllability is independent of the controller, and is a property of the plant (or process)
alone. It can only be affected by changing the plant itself; that is, by (plant) design changes.
These may include:

• changing the apparatus itself, e.g. type, size, etc.
• relocating sensors and actuators
• adding new equipment to dampen disturbances
• adding extra sensors
• adding extra actuators
• changing the control objectives
• changing the con£guration of the lower layers of control already in place

Whether or not the last two actions are design modi£cations is arguable, but at least they
address important issues which are relevant before the controller is designed.

Input–output controllability analysis is applied to a plant to £nd out what control
performance can be expected. Another term for input–output controllability analysis is
performance targeting. Early work on input–output controllability analysis includes that of
Ziegler and Nichols (1943) and Rosenbrock (1970). Morari (1983) talked about “dynamic
resilience” and made use of the concept of “perfect control”. Important ideas on performance
limitations are also found in Bode (1945), Horowitz (1963), Frank (1968a; 1968b),
Kwakernaak and Sivan (1972), Horowitz and Shaked (1975), Zames (1981), Doyle and
Stein (1981), Francis and Zames (1984), Boyd and Desoer (1985), Kwakernaak (1985),
Freudenberg and Looze (1985; 1988), Engell (1988), Morari and Za£riou (1989), Middleton
(1991), Boyd and Barratt (1991), Chen (1995), Seron et al. (1997), Chen (2000) and Havre
and Skogestad (2001). We also refer the reader to two IFAC workshops on Interactions
between process design and process control (Perkins, 1992; Za£riou, 1994) and the special
issue of IEEE Transactions on Automatic Control on Performance limitations (Chen and
Middleton, 2003).

5.1.1 Input–output controllability analysis
Surprisingly, given the plethora of mathematical methods available for control system design,
the methods available for controllability analysis are largely qualitative. In most cases,
the “simulation approach” is used, i.e. performance is assessed by exhaustive simulations.
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However, this requires a speci£c controller design and speci£c values of disturbances and
setpoint changes. Consequently, with this approach, one can never know if the result is a
fundamental property of the plant, or if it depends on the speci£c controller designed, the
disturbances or the setpoints.

A rigorous approach to controllability analysis would be to formulate mathematically
the control objectives, the class of disturbances, the model uncertainty, etc., and then to
synthesize controllers to see whether the objectives can be met. With model uncertainty
this involves designing a µ-optimal controller (see Chapter 8). However, in practice such an
approach is dif£cult and time consuming, especially if there are a large number of candidate
measurements or actuators; see Chapter 10. Moreover, it provides little insight into the
reasons for any controllability problems. More desirable is to have a few simple tools which
can be used to get a rough idea of how easy the plant is to control, i.e. to determine whether or
not a plant is controllable, without performing a detailed controller design. The main objective
of this chapter is to derive such controllability tools based on appropriately scaled models of
G(s) and Gd(s).

An apparent shortcoming of the controllability analysis presented in this book is that all
the tools are linear. Recently, there has been some interest in analyzing the controller design
trade-offs for nonlinear systems directly (see e.g. Middleton and Braslavsky, 2002), but we
point out that usually the assumption of linearity is not restrictive. In fact, one of the most
important nonlinearities, namely that associated with input constraints, can be handled quite
well with a linear analysis. Also, to deal with slowly varying changes one may perform a
controllability analysis at several selected operating points. Nonlinear simulations to validate
the linear controllability analysis are of course still recommended. Experience from a large
number of case studies con£rms that the linear measures are often very good.

5.1.2 Scaling and performance
The above de£nition of controllability does not specify the allowed bounds for the
displacements or the expected variations in the disturbance; that is, no de£nition of the
desired performance is included. Throughout this chapter and the next, when we discuss
controllability, we will assume that the variables and models have been scaled as outlined in
Section 1.4, so that the requirement for acceptable performance is:

• For any reference r(t) between −R and R and any disturbance d(t) between −1 and 1,
keep the output y(t) within the range r(t)− 1 to r(t) + 1 (at least most of the time), using
an input u(t) within the range −1 to 1.

We will interpret this de£nition from a frequency-by-frequency sinusoidal point of view, i.e.
d(t) = sinωt, and so on. With e = y − r we then have:

For any disturbance |d(ω)| ≤ 1 and any reference |r(ω)| ≤ R(ω), the
performance requirement is to keep at each frequency ω the control error
|e(ω)| ≤ 1, using an input |u(ω)| ≤ 1.

It is impossible to track very fast reference changes, so we will assume that R(ω) is
frequency dependent; for simplicity, we assume that R(ω) is R (a constant) up to the
frequency ωr and is zero above that frequency.

It could also be argued that the magnitude of the sinusoidal disturbances should approach
zero at high frequencies. While this may be true, we really only care about frequencies within
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the bandwidth of the system, and in most cases it is reasonable to assume that the plant
experiences sinusoidal disturbances of constant magnitude up to this frequency. Similarly,
it might also be argued that the allowed control error should be frequency dependent. For
example, we may require no steady-state offset, i.e. e should be zero at low frequencies.
However, including frequency variations is not recommended when doing a preliminary
analysis (however, one may take such considerations into account when interpreting the
results).

Recall that with r = Rr̃ (see Section 1.4) the control error may be written as

e = y − r = Gu+Gdd−Rr̃ (5.1)

where R is the magnitude of the reference and |r̃(ω)| ≤ 1 and |d(ω)| ≤ 1 are unknown
signals. We will use (5.1) to unify our treatment of disturbances and references. Speci£cally,
we will derive results for disturbances, which can then be applied directly to the references
by replacing Gd by −R; see (5.1) .

5.1.3 Remarks on the term controllability
The de£nition of (input–output) controllability on page 164 is in tune with most engineers’
intuitive feeling about what the term means, and was also how the term was used historically
in the control literature. For example, Ziegler and Nichols (1943) de£ned controllability
as “the ability of the process to achieve and maintain the desired equilibrium value”.
Unfortunately, in the 1960’s “controllability” became synonymous with the rather narrow
concept of “state controllability” introduced by Kalman, and the term is still used in this
restrictive manner by the systems theory community. State controllability is the ability to
bring a system from a given initial state to any £nal state within a £nite time. However,
as shown in Example 4.5 this gives no regard to the quality of the response between
these two states and later, and the required inputs may be excessive. The concept of state
controllability is important for realizations and numerical calculations, but as long as we
know that all the unstable modes are both controllable and observable, it usually has little
practical signi£cance. For example, Rosenbrock (1970, p. 177) notes that “most industrial
plants are controlled quite satisfactorily though they are not [state] controllable”. And
conversely, there are many systems, like the tanks in series (Example 4.5), which are state
controllable, but which are not input–output controllable. To avoid any confusion between
practical controllability and Kalman’s state controllability, Morari (1983) introduced the term
dynamic resilience. However, this term does not capture the fact that it is related to control,
so instead we prefer the term input–output controllability, or simply controllability when it is
clear that we are not referring to state controllability.

Where are we heading? In this chapter we will discuss a number of results related to
achievable performance. In Sections 5.2 and 5.3, we present some fundamental limitations
imposed by RHP-poles and RHP-zeros. Readers who are more interested in the engineering
implications of controllability may want to skip to Section 5.4. Many of the results can be
formulated as upper and lower bounds on the bandwidth of the system. As noted in Section
2.4.5, there are several de£nitions of bandwidth (ωB , ωc and ωBT ) in terms of the transfer
functions S, L and T , but since we are looking for approximate bounds we will not be too
concerned with these differences. The main results are summarized at end of the chapter in
terms of eight controllability rules.
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5.2 Fundamental limitations on sensitivity
In this section, we present some fundamental algebraic and analytic constraints on the
sensitivities S and T , including the waterbed effects. Bounds on the peak of |S| and other
closed-loop transfer functions are presented in Section 5.3.

5.2.1 S plus T is one
From the de£nitions S = (I + L)−1 and T = L(I + L)−1 we derive

S + T = I (5.2)

(or S+T = 1 for a SISO system). Ideally, we want S small to obtain the bene£ts of feedback
(small control error for commands and disturbances), and T small to avoid sensitivity to
noise which is one of the disadvantages of feedback. Unfortunately, these requirements are
not simultaneously possible at any frequency as is clear from (5.2). Speci£cally, (5.2) implies
that at any frequency either |S(jω)| or |T (jω)| must be larger than or equal to 0.5, and also
that |S(jω)| and |T (jω)| at any frequency can differ by at most 1.

5.2.2 Interpolation constraints
If p is a RHP-pole of the plant G(s) then

T (p) = 1, S(p) = 0 (5.3)

Similarly, if z is a RHP-zero of G(s) then

T (z) = 0, S(z) = 1 (5.4)

These interpolation constraints follow from the requirement of internal stability as shown in
(4.86) and (4.87). The conditions clearly restrict the allowable S and T and prove very useful
in Section 5.3.

We can also formulate interpolation constraints resulting from the loop transfer function
L(s) = G(s)K(s). The fundamental constraints imposed by the RHP-poles and zeros of
G(s) will still be present, whereas the new constraints, identical to (5.3) and (5.4), arising
from the RHP-poles and zeros of K(s), are to some extent under our control and therefore
not fundamental.

5.2.3 The waterbed effects (sensitivity integrals)
A typical sensitivity function is shown by the solid line in Figure 5.1. We note that |S|
has a peak value greater than 1; we will show that this peak is unavoidable in practice.
Two formulae are given, in the form of theorems, which essentially say that if we push the
sensitivity down at some frequencies then it will have to increase at others. The effect is
similar to sitting on a waterbed: pushing it down at one point, which reduces the water level
locally, will result in an increased level somewhere else on the bed. In general, a trade-off
between sensitivity reduction and sensitivity increase must be performed whenever:
1. L(s) has at least two more poles than zeros (£rst waterbed formula), or
2. L(s) has a RHP-zero (second waterbed formula).
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Figure 5.1: Plot of typical sensitivity, |S|, with upper bound 1/|wP |

Pole excess of two: £rst waterbed formula
To motivate the £rst waterbed formula consider the open-loop transfer function L(s) =

1
s(s+1) . As shown in Figure 5.2, there exists a frequency range over which the Nyquist plot of
L(jω) is inside the unit circle centred on the point−1, such that |1+L|, which is the distance
between L and−1, is less than 1, and thus |S| = |1+L|−1 is greater than 1. In practice, L(s)
will have at least two more poles than zeros (at least at suf£ciently high frequency, e.g. due
to actuator and measurement dynamics), so there will always exist a frequency range over
which |S| is greater than 1. This behaviour may be quanti£ed by the following theorem, of
which the stable case is a classical result due to Bode.

−1 1 2

−2

−1

1

2

PSfrag replacements

Re

Im

L(s) = 2
s(s+1)

L(jω)

Figure 5.2: |S| > 1 whenever the Nyquist plot of L is inside the circle

Theorem 5.1 Bode sensitivity integral (£rst waterbed formula). Suppose that the open-
loop transfer function L(s) is rational and has at least two more poles than zeros (relative
degree of two or more). Suppose also that L(s) has Np RHP-poles at locations pi. Then for
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closed-loop stability the sensitivity function must satisfy

∫ ∞

0

ln |S(jω)|dw = π ·
Np∑

i=1

Re(pi) (5.5)

where Re(pi) denotes the real part of pi.

Proof: See Doyle et al. (1992, p. 100) or Zhou et al. (1996). The generalization of Bode’s criterion to
unstable plants is due to Freudenberg and Looze (1985; 1988). 2

For a graphical interpretation of (5.5) note that the magnitude scale is logarithmic whereas
the frequency scale is linear.

Stable plant. For a stable plant (5.5) gives
∫ ∞

0

ln |S(jω)|dw = 0 (5.6)

and the area of sensitivity reduction (ln |S| negative) must equal the area of sensitivity
increase (ln |S| positive). In this respect, the bene£ts and costs of feedback are balanced
exactly, as in the waterbed analogy. From this we expect that an increase in the bandwidth (S
smaller than 1 over a larger frequency range) must come at the expense of a larger peak in
|S|.

Remark. Although this is true in most practical cases, the effect may not be so striking in some cases,
and it is not strictly implied by (5.5) anyway. This is because the increase in area may come over a large
frequency range; imagine a very large waterbed. Consider |S(jω)| = 1 + δ for ω ∈ [ω1, ω2], where
δ is arbitrarily small (small peak), then we can choose ω1 arbitrary large (high bandwidth) simply by
selecting the interval [ω1, ω2] to be suf£ciently large. However, in practice the frequency response of L
has to roll off at frequencies above the bandwidth frequency ωc and it is required that (Stein, 2003)

∫ ωc

0

ln |S(jω)|dw = 0 (5.7)

Thus, (5.5) and (5.6) impose real design limitations. This is illustrated in Figure 5.5.

Unstable plant. The presence of unstable poles usually increases the peak of the
sensitivity, as seen from the positive contribution π ·∑Np

i=1Re(pi) in (5.5). Speci£cally, the
area of sensitivity increase (|S| > 1) exceeds that of sensitivity reduction by an amount
proportional to the sum of the distance from the unstable poles to the LHP. This is plausible
since we might expect to have to pay a price for stabilizing the system.

RHP-zeros: second waterbed formula
For plants with RHP-zeros the sensitivity function must satisfy an additional integral
relationship, which has stronger implications for the peak of S. Before stating the result,
let us illustrate why the presence of a RHP-zero implies that the peak of S must exceed
1. First, consider the non-minimum-phase loop transfer function L(s) = 1

1+s
1−s
1+s and its

minimum-phase counterpart Lm(s) = 1
1+s . From Figure 5.3 we see that the additional phase

lag contributed by the RHP-zero and the extra pole causes the Nyquist plot to penetrate the
unit circle and hence causes the sensitivity function to be larger than 1.
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Figure 5.3: Additional phase lag contributed by RHP-zero causes |S| > 1

As a further example, consider Figure 5.4 which shows the magnitude of the sensitivity
function for the following loop transfer function:

L(s) =
k

s

2− s
2 + s

k = 0.1, 0.5, 1.0, 2.0 (5.8)

The plant has a RHP-zero at z = 2, and we see that an increase in the controller gain k,
corresponding to a higher bandwidth, results in a larger peak for S. For k = 2 the closed-
loop system becomes unstable with a pair of complex conjugate poles on the imaginary axis,
and the peak of S is in£nite.
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Figure 5.4: Effect of increased controller gain on |S| for system with RHP-zero at z = 2,L(s) = k
s
2−s
2+s

Theorem 5.2 Weighted sensitivity integral (second waterbed formula). Suppose that
L(s) has a single real RHP-zero z or a complex conjugate pair of zeros z = x± jy, and has
Np RHP-poles, pi. Let p̄i denote the complex conjugate of pi. Then for closed-loop stability
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the sensitivity function must satisfy

∫ ∞

0

ln |S(jω)| · w(z, ω)dω = π · ln
Np∏

i=1

∣∣∣∣
pi + z

p̄i − z

∣∣∣∣ (5.9)

where if the zero is real

w(z, ω) =
2z

z2 + ω2
=

2

z

1

1 + (ω/z)2
(5.10)

and if the zero pair is complex (z = x± jy)

w(z, ω) =
x

x2 + (y − ω)2 +
x

x2 + (y + ω)2
(5.11)

Proof: See Freudenberg and Looze (1985; 1988). 2

Note that when there is a RHP-pole close to the RHP-zero (pi → z) then pi+z
pi−z →∞. This

is not surprising as such plants are in practice impossible to stabilize.
The weight w(z, ω) effectively “cuts off” the contribution from ln |S| to the sensitivity

integral at frequencies ω > z. Thus, for a stable plant where |S| is reasonably close to 1 at
high frequencies we have approximately

∫ z

0

ln |S(jω)|dω ≈ 0 (5.12)

This is similar to Bode’s sensitivity integral relationship in (5.6), except that the trade-off
between S less than 1 and S larger than 1 is done over a limited frequency range. Thus,
in this case the waterbed is £nite, and a large peak for |S| is unavoidable if we try to push
down |S| at low frequencies. This is illustrated by the example in Figure 5.4 and further by
the example in Figure 5.5. In Figure 5.5 we plot ln |S| as a function of ω (note the linear
frequency scale) for two cases. In both cases, the areas of lnS below and above 100 = 1
(dotted line) are equal, see (5.6), but for case 2 this must happen at frequencies below the
RHP-zero at z = 5, see (5.12), and to achieve this the peak of |S2| must be higher.
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(with RHP-zero at z = 5) (solid line)
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Exercise 5.1 ∗ Kalman inequality. The Kalman inequality for optimal state feedback, which also
applies to unstable plants, says that |S| ≤ 1 ∀ω, see Example 9.2. Explain why this does not con¤ict
with the above sensitivity integrals. (Solution: 1. Optimal control with state feedback yields a loop
transfer function with a pole–zero excess of 1 so (5.5) does not apply. 2. There are no RHP-zeros when
all states are measured so (5.9) does not apply.)

5.3 Fundamental limitations: bounds on peaks
In Theorem 5.2, we found that a RHP-zero implies that a peak in |S| is inevitable, and that the
peak will increase if we reduce |S| at other frequencies. Here we derive explicit bounds on the
peaks of the important closed-loop transfer functions, which are more useful in applications
than the integral relationships in Theorem 5.2. By the “peak” we mean the maximum value
of the frequency response orH∞ norm:

‖f(s)‖∞ = max
ω
|f(jω)|

We £rst consider bounds on the weighted sensitivity (wPS) and the weighted
complementary sensitivity (wTT ). The weights wP and wT are useful if we want to specify
that |S| and |T | should be small in some selected frequency region.

5.3.1 Minimum peaks for S and T

Theorem 5.3 Sensitivity peak. For closed-loop stability the sensitivity function must satisfy
for each RHP-zero z of G(s)

‖wPS‖∞ ≥ |wP (z)| ·
Np∏

i=1

|z + pi|
|z − pi|

︸ ︷︷ ︸
Mzpi

(5.13)

where pi denote the Np RHP-poles of G(s). If G(s) has no RHP-poles the bound simpli£es
to

‖wPS‖∞ ≥ |wP (z)| (5.14)
Without a weight the bound (5.13) simpli£es to

‖S‖∞ =MS ≥
Np∏

i=1

|z + pi|
|z − pi|

︸ ︷︷ ︸
Mzpi

(5.15)

The bounds (5.13), (5.14) and (5.15) are tight for the case with a single real RHP-zero z
and no time delay. Here “tight” means that there exists a controller (possibly improper) that
achieves the bound (with equality). For example, with a single RHP-zero and no time delay,
minK ‖S‖∞ =MS,min =Mzpi .

We note that the bound (5.15) approaches in£nity, as the distance |z − pi| approaches
zero. A time delay imposes additional problems for stabilization, but there does not exist a
tight lower bound for S in terms of the time delay. However, similar bounds apply for the
complementary sensitivity T and here the time delay also enters the tight bound.
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Theorem 5.4 Complementary sensitivity peak. The complementary sensitivity function
must satisfy for each RHP-pole p of G(s)

‖wTT‖∞ ≥ |wT (p)| ·
Nz∏

j=1

|zj + p|
|zj − p|

︸ ︷︷ ︸
Mpzj

· |epθ| (5.16)

where zj denote the Nz RHP-zeros of G(s) and θ denotes the time delay of G(s). If G(s) has
no RHP-zeros and time delay, the bound simpli£es to

‖wTT‖∞ ≥ |wT (p)| (5.17)

Without a weight the bound (5.16) simpli£es to

‖T‖∞ =MT ≥
Nz∏

j=1

|zj + p|
|zj − p|

︸ ︷︷ ︸
Mpzj

· |epθ| (5.18)

The bounds (5.16), (5.17) and (5.18) are tight for the case with a single real RHP-pole p. For
example, with a single RHP-pole, minK ‖T‖∞ =MT,min =Mpzj · |epθ|.

Note that (5.18) also imposes a bound on the peak of S for plants with a time delay. From
(5.2), |S| and |T | differ by at most 1, so

‖S‖∞ ≥ ‖T‖∞ − 1 (5.19)

and a peak in |T | also implies a peak in |S|. Example 5.1 on page 175 further illustrates this
point.

Proof of (5.13): The bounds for S were originally derived by Zames (1981). The results can be derived
using the interpolation constraints S(z) = 1 and T (p) = 1 given above. In addition, we make use of the
maximum modulus principle for complex analytic functions (e.g. see maximum principle in Churchill
et al., 1974), which for our purposes can be stated as follows:

Maximum modulus principle. Suppose f(s) is stable (i.e. f(s) is analytic in the complex RHP1).
Then the maximum value of |f(s)| for s in the RHP is attained on the region’s boundary, i.e. somewhere
along the jω-axis. Hence, we have for a stable f(s)

‖f(jω)‖∞ = max
ω
|f(jω)| ≥ |f(s0)| ∀s0 ∈RHP (5.20)

Remark. Expression (5.20) can be understood by imagining a 3-D plot of |f(s)| as a function of the
complex variable s. In such a plot |f(s)| has “peaks” at its poles and “valleys” at its zeros. Thus, if f(s)
has no poles (peaks) in the RHP, we £nd that |f(s)| slopes downwards from the LHP and into the RHP.

1 A function f(s) of the complex variable s is analytic at a point s0 if its derivative exists not only at s0 but at each
point s in some neighbourhood around s0. If the derivative does not exist at s0 but does so in some neighbourhood
of s0, then s0 is called a singular point. We are considering a rational transfer function f(s), which is analytic
except at its poles (s0 = p). The poles are singular points.
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For a plant with a RHP-zero z, applying (5.20) to f(s) = wP (s)S(s) and using the interpolation
constraint S(z) = 1 gives ‖wPS‖∞ ≥ |wP (z)S(z)| = |wP (z)|. To derive the additional penalty if
the plant also has RHP-poles, we use a a “trick” where we £rst factor out the RHP-zeros in S into an
all-pass part Sa (with magnitude 1 at all points on the jω-axis). Since G has RHP-poles at pi, S(s) has
RHP-zeros at pi (see (5.3)) and we may write

S = SaSm, Sa(s) =
∏

i

s− pi
s+ p̄i

(5.21)

Here Sm is the “minimum-phase version” of S with all RHP-zeros mirrored into the LHP. Sa(s) is
all-pass with |Sa(jω)| = 1 at all frequencies. (Remark: There is a technical problem here with jω-axis
poles: these must £rst be moved slightly into the RHP.) The weight wP (s) is as usual assumed to be
stable and minimum-phase. Consider a RHP-zero located at z, for which we get from the maximum
modulus principle

‖wPS‖∞ = max
ω
|wPS(jω)| = max

ω
|wPSm(jω)| ≥ |wP (z)Sm(z)|

where Sm(z) = S(z)Sa(z)
−1 = 1 · Sa(z)−1. This proves (5.13). Chen (1995) and Chen (2000, p.

1107) provide an alternative proof of the bound, based on the integral relationship (5.9). The tightness
of the bound was £rst proved by Havre and Skogestad (1998). An alternative proof is given by Chen
(2000, p. 1109). 2

Proof of (5.16): The proof of (5.16) is similar to the proof of (5.13). We write T = TaTm, where Ta
contains the RHP-zeros zj and the time delay; see also Theorem 5.5. 2

From the bounds in Theorem 5.3 and 5.4, we note that

• S is primarily limited by RHP-zeros. The bound |wPS| ≥ |wP (z)| shows that we cannot
freely specify the shape of |S| for a plant with a RHP-zero z.

• T is primarily limited by RHP-poles. The bound |wTT | ≥ |wT (p)| shows that we cannot
freely specify the shape of |T | for a plant with a RHP-pole p.

• The terms Mzpi and Mpzj show that the limitations are more serious if we have both RHP-
poles and RHP-zeros. Large peaks for S and T are unavoidable if we have a RHP-zero and
RHP-pole located close to each other.

Remark 1 Let MS,min and MT,min denote the lowest achievable values for ‖S‖∞ and ‖T‖∞
respectively; that is, minK ‖S‖∞ , MS,min and minK ‖T‖∞ , MT,min. Chen (2000) shows that
the bound (5.15) is also tight for ‖T‖∞ and the bound (5.18) (for the case with no time delay) is also
tight for ‖S‖∞. Then, for a plant with a single RHP-zero z (and no time delay) and any number of
RHP-poles we have the following tight lower bound on ‖S‖∞ and ‖T‖∞:

MS,min = MT,min =

Np∏

i=1

|z + pi|
|z − pi|

︸ ︷︷ ︸
Mzpi

(5.22)

and for the case with a single RHP-pole p and any number of RHP-zeros (but no time delay) we have
the following tight lower bound on ‖S‖∞ and ‖T‖∞:

MS,min = MT,min =

Nz∏

j=1

|zj + p|
|zj − p|

︸ ︷︷ ︸
Mpzj

(5.23)

These tight bounds are further generalized in (6.8) (page 224) to any number of RHP-poles and RHP-
zeros (including complex poles and zeros).
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Remark 2 (5.22) and (5.23) provide non-tight lower bounds for plants with multiple RHP-zeros and
multiple RHP-poles, respectively. For example, with multiple RHP-zeros, ‖S‖∞ ≥ maxzj Mzjpi and
with multiple RHP-poles, ‖T‖∞ ≥ maxpi Mpizj · |epiθ|. However, these bounds are generally not
tight.

Remark 3 These bounds may be generalized to MIMO systems if the directions of poles and zeros are
taken into account, see Chapter 6.

Example 5.1 Unstable plant with time delay. The plant

G(s) =
e−0.5s

s− 3

has p = 3 and θ = 0.5. Since pθ = 1.5 is larger than 1, the peak of |T | will be large, and we will have
dif£culty in stabilizing the plant. Speci£cally, from (5.18) it follows that for any controller we must have

‖T‖∞ ≥MT,min = e0.5·3 = e1.5 = 4.48

This bound is tight in the sense that there exists a controller that achieves it. The peak of the sensitivity
S must also be large since

‖S‖∞ ≥MS,min ≥MT,min − 1 = 4.48− 1 = 3.38

This bound is not tight, so the actual value of MS,min may be higher than 3.38, but not higher than
5.38, since the peaks of |S| and |T | differ by at most 1. The unavoidable large values for ‖S‖∞ and
‖T‖∞ for this process imply poor performance and robustness problems.

Example 5.2 Plant with complex RHP poles. The plant

G(s) = 10 · s− 2

s2 − 2s+ 5
(5.24)

has a RHP-zero at z = 2 and RHP-poles at p = 1 ± j2. From (5.22), a tight lower bound on ‖S‖∞
and ‖T‖∞ is

Mzpi =
(2 + 1)2 + 22

(2− 1)2 + 22
= 2.6

We can also use (5.23), where Mpzj =
√
2.6 = 1.61, but this does not give a tight bound since we

have two RHP poles.

The effect of combined RHP-poles and RHP-zeros is further illustrated by examples on
page 179.

Stabilization. The results, e.g. (5.23), show that large peaks on S and T are unavoidable if
we have a RHP-pole p located close to a RHP-zero z, such that |z − p| is small. In practice,
such a plant is impossible to stabilize. However, in theory, any linear plant may be stabilized
irrespective of the location of its RHP-poles and RHP-zeros, provided the plant does not
contain unstable hidden modes (e.g. corresponding to the situation p = z); see also page 150.

5.3.2 Minimum peaks for other closed-loop transfer functions
In this section, we provide bounds on peaks for some other closed-loop transfer functions. To
motivate, recall from (2.19) and (2.20) that the closed-loop control error e = y − r and the
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plant input u for the system in Figure 2.4 (page 21) are

e = −Sr − Tn+
∑

k

SGdkdk (5.25)

u = KSr −KSn+
∑

k

KSGdkdk (5.26)

Here we have considered the case with several disturbances dk. One disturbance of particular
interest is an input (or “load”) disturbance dk = du, for which Gdk = G.

Ideally, we want both e and u small, so it is desirable that all the closed-loop transfer
functions in (5.25) and (5.26) be small. This is generally not possible, because of algebraic
constraints of the kind S + T = I . Nevertheless, we would like to avoid large peaks in any
of these transfer functions.

In addition, we would like to bound these transfer functions for robustness reasons. In
Figure 8.5 (page 293), we show six forms of uncertainty. To maintain robustness with respect
to these uncertainties, we see from (8.53)–(8.58) that the following six transfer functions
should be small:

KS, TI = KSG, T = GKS, SG, SI = (I +KG)−1, S

Notice that for SISO systems, SI is equal to S and T = GKS is equal to TI = KSG.
We have already considered S and T , and will now derive bounds for the remaining transfer
functions SG, SGd, KS and KSGd.

The results are summarized in Table 5.1, which also gives the performance and robustness
reasons behind minimizing the peaks of each closed-loop transfer function. Note that the
factors Mzpi and Mpzj express the additional penalty of combined RHP-zeros and RHP-
poles.

Bounds on SG. The transfer function SG is required to be small to reduce the effect
of the input disturbances on the control error signal (see (5.25)) and for robustness against
pole uncertainty (see Figure 8.5(d) on page 293). Due to the interpolation constraints, any
controller stabilizing S also stabilizes SG. Further, ‖SG‖∞ = ‖SGms‖∞, where Gms, the
“minimum-phase, stable version” of G, is

Gms ,
∏

i
s−pi
s+pi

·
︸ ︷︷ ︸

,Gs(s)

,Gm(s)︷ ︸︸ ︷
G(s) ·

∏
j

s+zj
s−zj (5.27)

Theorem 5.3 can be used to calculate the peak value for SG by treating Gms as a weight.
Speci£cally, for every RHP-zero of the system, ‖SG‖∞ must satisfy

‖SG‖∞ ≥ |Gms(z)| ·
Np∏

i=1

|z + pi|
|z − pi|

︸ ︷︷ ︸
Mzpi

= |Gm(z)| (5.28)

where Gm is the “minimum-phase version” of G; see (5.27). This bound is tight for plants
with a single RHP-zero.
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Bounds on SGd. In the general disturbance case, Gd 6= G and we want to keep ‖SGd‖∞
small to reduce the effect of disturbances on the outputs. This case can be handled similar to
SG by replacing Gms by Gd,ms in (5.28) to get

‖SGd‖∞ ≥ |Gd,ms(z)| ·
Np∏

i=1

|z + pi|
|z − pi|

︸ ︷︷ ︸
Mzpi

(5.29)

Bounds on KS. The peak on the transfer function KS is required to be small to avoid
large input signals in response to noise and disturbances; see (5.26). In particular, this is
important for an unstable plant, where a large value of ‖KS‖∞ is likely to cause saturation
in u resulting in dif£culties in stabilization.

Let σH denote the smallest Hankel singular value and U(G)∗ be the mirror image of the
anti-stable part of G. Glover (1986), who considered robustness against additive uncertainty,
proved that

‖KS‖∞ ≥ 1/σH(U(G)∗) (5.30)
The bound (5.30) is tight, in the sense that there always exists a controller (possibly
improper) that achieves the bound. For a stable plant there is no lower bound, as in this
case, minK ‖KS‖∞ = 0, which can be achieved by K = 0.

A simpler bound is also available, since for any RHP-pole p, σH(U(G)∗) ≤ |Gs(p)|, where
Gs(s) is the “stable version” of G with its RHP-poles mirrored into the LHP; see (5.27).
Equality applies for a plant with a single real RHP-pole p. This gives the bound (Havre and
Skogestad, 2001)

‖KS‖∞ ≥ |G−1s (p)| (5.31)
which is tight for plants with a single real RHP-pole p. This bound also applies to plants with
time delay.

Proof of (5.31): We £rst prove the following generalized bound (Havre and Skogestad, 2001):

Theorem 5.5 Let V T be a (weighted) closed-loop transfer function, where T is the complementary
sensitivity function. Then for closed-loop stability we must require for each RHP-pole p in G,

‖V T‖∞ ≥ |Vms(p)| ·
Nz∏

j=1

|zj + p|
|zj − p| · |e

pθ| (5.32)

where Vms is the “minimum-phase and stable version” of V (with its RHP-poles and RHP-zeros
mirrored into the LHP), and zj denote the Nz RHP-zeros of G. If G has no RHP-zeros the bound
is simply ‖V T‖∞ ≥ |Vms(p)|. The bound (5.32) is tight (equality) for the case when G has only one
RHP-pole.

Proof: G has RHP-zeros at zj , and therefore T must have RHP-zeros at zj , so we write T =

TaTm with Ta(s) =
∏
j

s−zj
s+z̄j

. Next, note that ‖V T‖∞ = ‖VmsTms‖∞ = ‖VmsTm‖∞. Now,
consider a RHP-pole located at p, and use the maximum modulus principle to show that ‖V T‖∞ ≥
|Vms(p)Tm(p)| = |Vms(p)T (p)Ta(p)−1| = |Vms(p) · 1 ·

∏
j

p+z̄j
p−zj | which proves (5.32). To prove

(5.31) we make use of the identity KS = G−1GKS = G−1T . Use of (5.32) with V = G−1 then
gives

‖KS‖∞ ≥ |Gms(p)
−1| ·

∏

j

|zj + p|
|zj − p|

︸ ︷︷ ︸
Mpzj

= |Gs(p)
−1|
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which proves (5.31). 2

Example 5.3 For the unstable plant G(s) = 1
s−3 we have Gs(s) =

1
s+3

and from (5.31) ‖KS‖∞ ≥
|Gs(p)

−1| = 6. That is, irrespective of the controller, the closed-loop transfer function KS, from plant
output (e.g. measurement noise) to plant input, must exceed 6 in magnitude at some frequency.

Exercise 5.2 For a system with a single unstable pole p, show that the two bounds on ‖KS‖∞, (5.30)
and (5.31), are equivalent. (Hint: Use (4.140) to £nd the minimum (and only) Hankel singular value of
U(G)∗ = (G(s) · (s− p))|s=p /(s− p).)

Bounds on KSGd. For arbitrary disturbances, the bound (5.30) can be generalized
as (Kariwala, 2004)

‖KSGd‖∞ ≥ 1/σH(U(G−1d,msG)
∗) (5.33)

where U(G−1d,msG)
∗ is the mirror image of the anti-stable part of G−1d,msG. Note that any

unstable modes in Gd must be contained in G such that they are stabilizable with feedback
control. Under the same condition, the bound (5.31) may be generalized using (5.32) to get
(Havre and Skogestad, 2001)

‖KSGd‖∞ ≥ |Gms(p)
−1Gd,ms(p)| ·Mpzj · |epθ| = |Gs(p)

−1Gd,ms(p)| (5.34)

Here Gd,ms denotes the “stable and minimum-phase version” of Gd with both the RHP-
poles and RHP-zeros mirrored into the LHP. The bound is tight for a single RHP-pole p. The
bounds (5.30) and (5.33) can also be used for delay systems, since although the delay system
itself is irrational, its anti-stable part is rational (Kariwala, 2004).

Example 5.4 Consider a plant and disturbance model

G(s) =
5

(s− 3)(10s+ 1)
, Gd =

0.5

(s− 3)(0.2s+ 1)
e−1.5s

We have Gs(s) = 5
(s+3)(10s+1)

and Gd,ms = 0.5
(s+3)(0.2s+1)

. Notice that the time delay in Gd drops
out in Gd,ms. With p = 3, (5.34) gives the following lower bound on the peak of the transfer function
from a disturbance to plant input:

‖KSGd‖∞ ≥ |Gms(p)
−1Gd,ms(p)| = 6 · 31

5
· 0.5

6 · 1.6 = 1.94

Example 5.5 Consider an unstable plant (p ≥ 0) with a RHP-zero (z ≥ 0) and a time delay (θ ≥ 0),
given by

G(s) =
k

s− p

(s− z)

(s+ z)
e−θs (5.35)

We have |Gs(p)| = | k
s+p

(s−z)
(s+z)

e−θs|s=p = k
2p
|p−z|
|p+z| e

−θp, and from (5.31) we must have for any
stabilizing controller

‖KS‖∞ ≥ |Gs(p)
−1| =

∣∣∣∣
2p

k

∣∣∣∣ ·
|p+ z|
|p− z| · |e

θp| (5.36)

Since u = −KS(Gdd+ n), we see from the £rst term that the required input u is large if |p| is large;
that is, if the unstable mode is “fast”. In addition, we note that the exponential term eθp grows sharply
for θ > 1/p.

For example, consider the following plant, which we will show is impossible to control in practice:

G(s) =
1

s− 3

s− 6

s+ 6
e−0.5s
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First, from (5.36), we have that at some frequency |KS(jω)| ≥ 2·3
1
· |3+6|
|3−6|e

0.5·3 = 6 ·3 ·4.48 = 80.67.
This gain is large, so the presence of noise or disturbances is likely to saturate the inputs, which
again will most likely result in failure to stabilize the plant. In addition, we have from (5.18) that
MT,min = |p+z|

|p−z| · epθ = 3 · 4.48 = 13.4, so |T | must exceed 13.4 at some frequency and since
S + T = 1, ‖S‖∞ must exceed 13.4 − 1 = 12.4. This is much larger than the typical maximum
allowed value of about 2. The plant is therefore impossible to stabilize and control from a practical
point of view.

When considering controllability of a plant, all the closed-loop transfer functions in
Table 5.1 should be considered. For a SISO plant, scaling of the signals y, u and d does
not matter for S and T . However, for proper evaluation of KS, SGd and KSGd, it is
recommended that the plant is scaled as outlined in Section 5.1.2. A peak value of KS,
SGd or KSGd much larger than 1 will then imply possible control problems.

Exercise 5.3 ∗ Consider again the plant (5.24) from Example 5.2. Compute the bounds on ‖S‖∞,
‖T‖∞, ‖KS‖∞ and ‖SG‖∞ using Table 5.1. Do you expect any dif£culties in controlling this plant?

Exercise 5.4 For the plant G(s) = s2−s+3
s2−3s+1

, compute the bounds on ‖S‖∞, ‖T‖∞, ‖KS‖∞ and
‖SG‖∞ using both the “special” and “general” cases in Table 5.1.

This concludes the two sections on fundamental limitations. In the rest of this chapter, we
will use these and other results in order to understand better what limits the (input–output)
controllability of a plant. We start £rst with the simple idea of “perfect control”.

5.4 Perfect control and plant inversion
A good way of obtaining insight into the inherent limitations on performance, which originate
from the plant itself, is to consider the inputs needed to achieve perfect control (Morari, 1983).
Let the plant model be

y = Gu+Gdd (5.37)

“Perfect control” (which, of course, cannot be realized in practice) is achieved when the
output is identically equal to the reference, i.e. y = r. To £nd the corresponding plant input,
set y = r and solve for u in (5.37):

u = G−1r −G−1Gdd (5.38)

Equation (5.38) represents a perfect feedforward controller, assuming d is measurable. When
feedback control u = K(r − y) is used, we have from (2.21) that

u = KSr −KSGdd

or since the complementary sensitivity function is T = GKS,

u = G−1Tr −G−1TGdd (5.39)

We see that at frequencies where feedback is effective and T ≈ I (these arguments also
apply to MIMO systems and this is the reason why we here choose to use matrix notation),
the input generated by feedback in (5.39) is the same as the perfect control input in (5.38).
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That is, high-gain feedback generates an inverse of G even though the controller K may be
very simple.

An important lesson therefore is that perfect control requires the controller somehow to
generate an inverse of G. From this we get that perfect control cannot be achieved if

• G contains RHP-zeros (since then G−1 is unstable)
• G contains time delay (since then G−1 contains a non-causal prediction)
• G has more poles than zeros (since then G−1 is unrealizable)

In addition, for feedforward control we have that perfect control cannot be achieved because

• G is always uncertain (so G−1 cannot be obtained exactly)

The last restriction may be overcome by high-gain feedback, because then the model inverse
is not generated from a model, but from output feedback. However, we know that we cannot
have high-gain feedback at all frequencies.

The required input in (5.38) must not exceed the maximum physically allowed value.
Therefore, perfect control cannot be achieved if

• |G−1Gd| is large
• |G−1R| is large

where “large” with our scaled models means larger than 1. There are also other situations
which make control dif£cult such as

• G is unstable
• |Gd| is large

If the plant is unstable, the outputs will “take off”, and eventually hit physical constraints,
unless feedback control is applied to stabilize the system. Similarly, if |Gd| is large, then
without control a disturbance will cause the outputs to move far away from their desired
values. So in both cases control is required, and problems occur if this demand for control
is somehow in con¤ict with the other factors mentioned above which also make control
dif£cult. We have assumed perfect measurements in the discussion so far, but in practice,
noise and uncertainty associated with the measurements of disturbances and outputs will
present additional problems for feedforward and feedback control, respectively.

5.5 Ideal ISE optimal control
Another good way of obtaining insight into performance limitations is to consider an “ideal”
controller which is integral square error (ISE) optimal. That is, for a given command r(t)
(which is zero for t < 0), the “ideal” controller is the one that generates the plant input u(t)
(zero for t < 0) which minimizes

ISE =

∫ ∞

0

|y(t)− r(t)|2dt (5.40)

This controller is “ideal” in the sense that it may not be realizable in practice because the cost
function includes no penalty on the input u(t). This particular problem is considered in detail
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by Frank (1968a; 1968b) and Morari and Za£riou (1989), and also Qiu and Davison (1993)
who study “cheap” linear quadratic regulator (LQR) control. Morari and Za£riou show that
for stable plants with RHP-zeros at zj (real and/or complex) and a time delay θ, the “ideal”
response y = Tr when r(t) is a unit step is given by

T (s) =
∏

j

−s+ zj
s+ z̄j

e−θs (5.41)

and the corresponding optimal ISE value is (Goodwin et al., 2003)

ISEmin = min

∫ ∞

0

|y(t)− 1|2dt = θ + 2
∑

j

1

zj
(5.42)

The optimal ISE values for three simple stable plants are then:

1. with a delay θ : ISEmin = θ
2. with a RHP-zero z : ISEmin = 2/z
3. with complex RHP-zeros z = x± jy : ISEmin = 4x/(x2 + y2)

We see that the worst case is to have a RHP-zero at the origin (zj = 0). This is reasonable
because the steady-state gain is then zero, so it will not be possible to keep y(t) at a steady-
state value of 1 as t→∞ and ISE =∞.

However, note that these ISE values are for step changes in the reference which emphasize
the low-frequency behaviour. Alternatively, consider the tracking of a sinusoidal reference,
r(t) = sin(ωt). In this case, we get for a plant with RHP-zeros at zj (Qiu and Davison, 1993)

ISEmin = 2
∑

j

(
1

zj − jω
+

1

zj + jω

)
(5.43)

As expected, ISEmin =∞ for a purely complex zero located at the frequency ω, zj = ±jw,
because then G(jw) = 0. For a real RHP-zero zj , the maximum (worst) value of ISEmin is
achieved when ω = zj , and ISEmin = 0 when zj = 0 (zero located at the origin) or zj =∞
(zero located far out in the RHP). In summary, we £nd that a RHP-zero zj mainly limits
the performance around the frequency |zj |, This interpretation is con£rmed below when we
consider the achievable bandwidth.

5.6 Limitations imposed by time delays
A time delay (e−θs) imposes a serious limitation on achievable control performance. This is
easy to understand, since no matter what controller we use, the effect of an input change on
the output will be delayed by the time θ, see (5.42). In this section we consider the bandwidth
implications.

The closed-loop bandwidth is limited to be less than 1/θ, approximately. To see this more
clearly, consider the ”ideal” T (s) = e−θs for the case of step changes in the reference, see
(5.41). The corresponding “ideal” sensitivity function is

S = 1− T = 1− e−θs (5.44)
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Figure 5.6: “Ideal” sensitivity function (5.44) for a plant with delay

The magnitude |S| is plotted in Figure 5.6. At low frequencies, ωθ < 1, we have 1− e−θs ≈
θs (by a Taylor series expansion of the exponential) and the low-frequency asymptote of
|S(jω)| crosses 1 at a frequency of about 1/θ (the exact frequency where |S(jω)| crosses
1 in Figure 5.6 is π

3
1
θ = 1.05/θ). Since for S = 1 − e−θs, we have |S| = 1/|L|, we

also have that 1/θ is equal to the gain crossover frequency for L. The “ideal” ISE optimal
controller bounds the practically realizable controllers, so we expect this value to provide an
approximate upper bound on wc, namely (for a process with a time delay and performance
requirements at low frequency)

ωc < 1/θ (5.45)

This approximate bound is the same as derived in Section 2.6.2 by considering the limitations
imposed on a loop-shaping design by a time delay θ. In addition to this bandwidth limitation,
we also have the limitations on the peak of the closed-loop transfer functions given in
Table 5.1.

5.7 Limitations imposed by RHP-zeros
We will here consider plants with a zero z in the closed RHP (and no pure time delay).
RHP-zeros typically appear when we have competing effects of slow and fast dynamics. For
example, the plant

G(s) =
1

s+ 1
− 2

s+ 10
=

−s+ 8

(s+ 1)(s+ 10)

has a real RHP-zero at z = 8. We may also have complex zeros, and since these always occur
in complex conjugate pairs we have z = x± jy where x ≥ 0 for RHP-zeros.

The question here is: what control problems can be expected for a plant with a RHP-zero
z? A good starting point for such a discussion is the fundamental constraint on the sensitivity
function for internal instability:

S(z) = 1

We note immediately that this is not compatible with the desire to have |S| small (compared
to 1) in order to have tight control (good output performance). We therefore expect that
the presence of a RHP-zero poses fundamental limitations in terms of the achievable output
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performance. In the following we attempt to build up insight into the performance limitations
imposed by RHP-zeros using a number of different results in both the time and frequency
domains.

5.7.1 Time response: inverse response and undershoot
RHP-zeros imply inverse response behaviour in the time domain. For a stable SISO plant
with nz real RHP-zeros, it may be proven (Leon de la Barra S., 1994) that the output in
response to a step change in the input will cross zero (its original value) at least nz times.
Typical closed-loop responses for the case with one RHP-zero are shown in Figure 5.7(b).
We see that the closed-loop output initially decreases before increasing to its positive steady-
state value. With two real RHP-zeros the output will initially increase, then decrease below
its original value, and £nally increase to its positive steady-state value.

Similar to the overshoot de£ned in Section 2.4.2 on page 30, we may de£ne the undershoot
(yus) as the “negative” peak value of the output signal y divided by the £nal value yf . For a
plant with a real RHP-zero z (z > 0), we have the following lower bound on the closed-loop
undershoot (Middleton, 1991; Seron et al., 1997):

|yus| ≥ |yf |
1− ε
ezts − 1

(5.46)

where ts is the settling time and ε is the corresponding level for the settling time (typically
ε = 0.05); see Figure 2.10 on page 30. Relation (5.46) implies that the step response of a
system with real RHP-zeros will display large undershoot as the settling time is reduced.
This agrees with the simulation in Figure 5.7(b), which is further discussed in the following
example.

Example 5.6 Trade-off between undershoot and settling time. Consider the plant

G(s) =
−s+ z

s+ z
, z = 1

which is controlled by
K1(s) = Kc

s+ 1

s

1

0.05s+ 1

The sensitivity function and the step response of the closed-loop system for Kc = 0.2, 0.5, 0.8 are
shown in Figure 5.7. We note that as the controller becomes more aggressive (Kc increased), the
settling time decreases, but this performance improvement comes at the cost of higher undershoot. This
is expected from (5.46) and also from the fact that a higher value of Kc results in a higher bandwidth,
but increased sensitivity peak; see Figure 5.7(a). However, (5.46) is conservative. With ε = 0.05 and
Kc = 0.8, the undershoot is approximately 1.8, whereas (5.46) gives a lower bound of only 0.106. The
bound (5.46) is not tight, nevertheless it clearly illustrates the trade-off between undershoot and settling
time for systems with real RHP-zeros.

5.7.2 High-gain instability
It is well known from classical root–locus analysis that as the feedback gain increases towards
in£nity, the closed-loop poles migrate to the positions of the open-loop zeros; also see (4.79).
Thus, the presence of RHP-zeros implies high-gain instability. For example, the system in
Example 5.6 is unstable for Kc ≥ 1. Since high gain is required for performance, RHP-zeros
limit the performance of a closed-loop system.
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Figure 5.7: Control of plant with RHP-zero at z = 1 using negative feedback

5.7.3 Frequency response: bandwidth limitation
Consider the bound (5.14) on weighted sensitivity in Theorem 5.3. The idea is to select a form
for the performance weight wP (s), and then to derive a bound for the “bandwidth parameter”
in the weight.

The bandwidth is here de£ned as the frequency range where the asymptotic magnitude
(straight-line approximation) of the sensitivity function is less than 1. To derive limitations on
the achievable control bandwidth, we consider the interpolation constraints on the sensitivity
function. As usual, we select 1/|wP | as an upper bound on the sensitivity function (see
Figure 5.1 on page 168); that is, we require

|S(jω)| < 1/|wP (jω)| ∀ω ⇔ ‖wPS‖∞ < 1 (5.47)

However, from the interpolation constraints S(z) = 1 and we have, as shown in (5.14), that
‖wPS‖∞ ≥ |wP (z)S(z)| = |wP (z)|, so to be able to satisfy (5.47) we must at least require
that the weight satis£es

|wP (z)| < 1 (5.48)

(We say “at least” because condition (5.14) is not an equality.) We will now use (5.48) to gain
insight into the limitations imposed by RHP-zeros: (A) by considering a weight that requires
good performance at low frequencies, and (B) by considering a weight that requires good
performance at high frequencies.

A. RHP-zero and performance at low frequencies
Consider the following performance weight:

wP (s) =
s/M + ω∗B
s+ ω∗BA

(5.49)

This weight emphasizes low-frequency performance. From (5.47) it speci£es a minimum
bandwidth ω∗B , a maximum peak of |S| less than M , a steady-state offset less than A < 1,
and at frequencies lower than the bandwidth the sensitivity is required to improve by at least
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20 dB/decade (i.e. |S| has slope 1 or larger on a log–log plot); see Section 2.8.2 for further
details. If the plant has a RHP-zero at s = z, then from (5.48) we must require

|wP (z)| =
∣∣∣∣
z/M + ω∗B
z + ω∗BA

∣∣∣∣ < 1 (5.50)

Real zero. Consider the case when z is real. Then all variables are real and positive and
from (5.50) we derive the following bound on the achievable bandwidth:

ω∗B < z
1− 1/M

1−A (5.51)

For example, with A = 0 (no steady-state offset) and M = 2 (‖S‖∞ < 2) we must at least
require

ω∗B < 0.5z (5.52)
Complex zeros. When the system has a pair of complex conjugate RHP-zeros z = x± jy,

x ≥ 0, a similar derivation with A = 0 yields

ω∗B < − x

M
+

√
x2 + y2

(
1− 1

M2

)
(5.53)

and with M = 2, we require that

ω∗B < −0.5x+
√
x2 + 0.75y2 (5.54)

The next two exercises show that the bound on ω∗B does not depend much on the slope of
the weight at low frequencies, or on how the weight behaves at high frequencies.

Exercise 5.5 Consider the weight

wP (s) =
s+Mω∗B

s

s+ fMω∗B
s+ fM2ω∗B

(5.55)

with f > 1. This is the same weight as (5.49) withA = 0 except that it approaches 1 at high frequencies,
and f gives the frequency range over which we allow a peak. Plot the weight for f = 10 and M = 2.
Derive an upper bound on ω∗B for the case with f = 10 and M = 2.

Exercise 5.6 ∗ Consider the weight wP (s) = 1
M

+ (
ω∗B
s
)n which requires |S| to have a slope of n at

low frequencies and requires its low-frequency asymptote to cross 1 at a frequency ω∗B . Note that n = 1
yields the weight (5.49) with A = 0. Derive an upper bound on ω∗B when the plant has a RHP-zero at
z. Show that the bound becomes ω∗B ≤ |z| as n→∞.

Remark. The result for n → ∞ in Exercise 5.6 is a bit surprising. It says that the bound ω∗B < |z| is
independent of the required slope (n) at low frequency and is also independent of M . This is surprising
since from Bode’s integral relationship (5.5) we expect to pay something for having the sensitivity
smaller at low frequencies, so we would expect ω∗B to be smaller for larger n. This illustrates that
|wP (z)| < 1 in (5.48) is a necessary condition on the weight (i.e. it must at least satisfy this condition),
but since it is not suf£cient it can be optimistic. For the simple weight (5.49), with n = 1, condition
(5.48) is not very optimistic (as is con£rmed by other results), but apparently it is optimistic for large n.

In summary, if we have a RHP-zero z and want tight control at low frequencies (frequency
zero and upwards), then the upper bandwidth is limited to |z|/2, approximately. The reader
is also referred to Exercise 5.11 for bandwidth limitations for plants having RHP-poles in
addition to a RHP-zero.
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B. RHP-zero and performance at high frequencies
We now consider the case where we want tight control at high frequencies, by use of the
performance weight

wP (s) =
1

M
+

s

ω∗B
(5.56)

This requires tight control (|S(jω)| < 1) at frequencies higher than ω∗B , whereas the only
requirement at low frequencies is that the peak of |S| is less than M . Admittedly, the weight
in (5.56) is unrealistic in that it requires S → 0 at high frequencies, but this does not affect
the result as is con£rmed in Exercise 5.9 where a more realistic weight is studied. In any case,
to satisfy ‖wPS‖∞ < 1 we must at least require that the weight satis£es |wP (z)| < 1, and
with a real RHP-zero we derive for the weight in (5.56)

ω∗B > z
1

1− 1/M
(5.57)

For example, with M = 2 the requirement is ω∗B > 2z, so we can only achieve tight control
at frequencies beyond the frequency of the RHP-zero.

Exercise 5.7 Draw an asymptotic magnitude Bode plot of 1/wP (s) in (5.56).

In summary, if we have a RHP-zero z and want tight control at high frequencies towards
in£nity, then the lower bandwidth is limited to 2|z|, approximately.

RHP-zero: limitations around frequency |z|
Based on (5.51) and (5.57) we see that a RHP-zero will pose control limitations either at low
or high frequencies. In most cases we desire tight control at low frequencies, and with a real
RHP-zero this may be achieved at frequencies lower than about |z|/2. However, if we do not
need tight control at low frequencies, then we may usually reverse the sign of the controller
gain, and instead achieve tight control at frequencies higher than about 2|z|.

Example 5.7 To illustrate this, consider in Figures 5.7 and 5.8 the use of negative and positive
feedback for the plant

G(s) =
−s+ z

s+ z
, z = 1 (5.58)

Note that G(s) ≈ 1 at low frequencies (ω ¿ z), whereas G(s) ≈ −1 at high frequencies (ω À z).
The negative plant gain in the latter case explains why we then use positive feedback in order to achieve
tight control at high frequencies.

More precisely, we show in the £gures the sensitivity function and the time response to a step change
in the reference using
1. PI control with negative feedback (Figure 5.7)
2. Derivative control with positive feedback (Figure 5.8).
Note that the time scales for the simulations are different. For positive feedback the step change in
reference only has a duration of 0.1 s. This is because we cannot track references over longer times than
this since the RHP-zero then causes the output to start drifting away (as can be seen in Figure 5.8(b)).
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Figure 5.8: Control of plant with RHP-zero at z = 1 using positive feedback: G(s) = −s+1
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Remark 1 The reversal of the sign in the controller is probably best understood by considering the
inverse response behaviour of a plant with a RHP-zero. Normally, we want tight control at low
frequencies, and the sign of the controller is based on the steady-state gain of the plant. However, if
we instead want tight control at high frequencies (and have no requirements at low frequencies) then
we base the controller design on the plant’s initial response where the gain is reversed because of the
inverse response.

Remark 2 An important case, where we can only achieve tight control at high frequencies, is
characterized by plants with a zero at the origin, e.g. G(s) = s/(5s + 1). In this case, good transient
control is possible, but the control has no effect at steady-state. The only way to achieve tight control at
low frequencies is to use an additional actuator (input) as is often done in practice.

Remark 3 Short-term control. In this book, we generally assume that the system behaviour as t→∞
is important. However, this is not true in some cases because the system may only be under closed-loop
control for a £nite time tf . In this case, the presence of a “slow” RHP-zero (with |z| small) may not be
signi£cant provided tf ¿ 1/|z|. For example, in Figure 5.8(b) if the total control time is tf = 0.01 [s],
then the RHP-zero at z = 1 [rad/s] is insigni£cant.

As an example of short-term control, consider treating a patient with some medication. Let u be
the dosage of medication and y the condition of the patient. With most medications we £nd that
in the short term the treatment has a positive effect, whereas in the long term the treatment has a
negative effect (due to side effects which may eventually lead to death). However, this inverse response
behaviour (characteristic of a plant with a RHP-zero) may be largely neglected during limited treatment,
although one may £nd that the dosage has to be increased during the treatment to have the desired effect.
Interestingly, the last point is illustrated by the upper left curve in Figure 5.9, which shows the input
u(t) using an internally unstable controller which over some £nite time may eliminate the effect of
the RHP-zero. In process control, similar conclusions are also applicable to the control of batch or
semi-batch processes.

Exercise 5.8 (a) Plot the plant input u(t) corresponding to Figure 5.8 and discuss in the light of the
above remark.

(b) In the simulations in Figures 5.7 and 5.8, we use simple PI and derivative controllers. As an
alternative, use the S/KS method in (3.80) to synthesize H∞ controllers for both the negative and
positive feedback cases. Use performance weights in the form given by (5.49) and (5.56), respectively.
With ω∗B = 1000 and M = 2 in (5.56) and wu = 1 (for the weight on KS) you will £nd that the
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time response is quite similar to that in Figure 5.8 with Kc = 0.5. Try to improve the response, e.g. by
letting the weight have a steeper slope at the crossover near the RHP-zero.

Exercise 5.9 ∗ Consider the case of a plant with a RHP-zero z where we want to limit the sensitivity
function over some frequency range. To this effect let

wP (s) =
( 1000s
ω∗
B

+ 1
M
)( s
Mω∗

B
+ 1)

( 10s
ω∗
B

+ 1)( 100s
ω∗
B

+ 1)
(5.59)

This weight is equal to 1/M at low and high frequencies, has a maximum value of about 10/M at
intermediate frequencies, and the asymptote crosses 1 at frequencies ω∗B/1000 and ω∗B . Thus we require
“tight” control, |S| < 1, in the frequency range between ω∗BL = ω∗B/1000 and ω∗BH = ω∗B .

(a) Make a sketch of 1/|wP | (which provides an upper bound on |S|).
(b) Show that the RHP-zero z cannot be in the frequency range where we require tight control, and

that we can achieve tight control at frequencies either below about z/2 (the usual case) or above
about 2z. To see this, select M = 2 and evaluate wP (z) for various values of ω∗B = kz, e.g.
k = 0.1, 0.5, 1, 10, 100, 1000, 2000, 10000. (You will £nd that wP (z) = 0.95 (≈ 1) for k = 0.5
(corresponding to the requirement ω∗BH < z/2) and for k = 2000 (corresponding to the requirement
ω∗BL > 2z).)

5.7.4 RHP-zeros and non-causal controllers
Perfect control can actually be achieved for a plant with a time delay or RHP-zero if we use
a non-causal controller2, i.e. a controller which uses information about the future. This is
sometimes called “Preview Control” and may be relevant for certain servo problems, e.g. in
robotics and for product changeovers in chemical plants. A brief discussion is given here,
but non-causal controllers are not considered in the rest of the book since our focus is on
feedback control.

Time delay. For a delay e−θs we may achieve perfect control with a non-causal
feedforward controller Kr = eθs (a prediction). Such a controller may be used if we have
knowledge about future changes in r(t) or d(t).

For example, if we know that we should be at work at 08:00, and we know that it takes
30 min to get to work, then we make a prediction and leave home at 07:30. We don’t wait
until 08:00 when we are suddenly told, by the appearance of a step change in our reference
position, that we should be at work.

RHP-zero. Future knowledge can also be used to give perfect control in the presence of a
RHP-zero. As an example, consider a plant with a real RHP-zero given by

G(s) =
−s+ z

s+ z
; z > 0 (5.60)

and a desired reference change

r(t) =

{
0 t < 0
1 t ≥ 0

With a feedforward controller Kr the response from r to y is y = G(s)Kr(s)r. In theory, we
may achieve perfect control (y(t) = r(t)) with the following two controllers (e.g. Eaton and
Rawlings, 1992):
2 A system is causal if its outputs depend only on past inputs, and non-causal if its outputs also depend on future

inputs.
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Figure 5.9: Control of plant with RHP-zero at z = 1

1. A causal unstable feedback controller

Kr(s) =
s+ z

−s+ z

For a step in r from 0 to 1 at t = 0, this controller generates the following input signal:

u(t) =

{
0 t < 0
1− 2ezt t ≥ 0

However, since the controller cancels the RHP-zero in the plant it yields an internally
unstable system.

2. A stable non-causal (feedforward) “preview” controller that assumes that the future
setpoint change is known. This controller cannot be represented in the usual transfer
function form, but it will generate the following input:

u(t) =

{
2ezt t < 0
1 t ≥ 0

These input signals u(t) and the corresponding outputs y(t) are shown in Figure 5.9 for
a plant with z = 1. Note that for perfect control the non-causal controller needs to start
changing the input at t = −∞, but for practical reasons we started the simulation at t = −5
where u(t) = 2e−5 = 0.013.

The £rst option, the unstable controller, is not acceptable as it yields an internally unstable
system in which u(t) goes to in£nity as t increases (an exception may be if we want to control
the system only over a limited time tf ; see page 188).

The second option, the non-causal controller, is usually not possible because future setpoint
changes are unknown. However, if we have such information, it is certainly bene£cial for
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plants with RHP-zeros. For example, for a system with single RHP-zero z (Middleton
et al., 2004),

‖wPS‖∞ ≥ |wP (z)|e−ztP (5.61)
where tp is the preview time (reference change is known at time tp before it occurs). Then,
similar to (5.52),

ω∗B < 0.5zeztP (5.62)
which shows that the non-causal controller can overcome the bandwidth limitation imposed
by the RHP-zero (by having a large preview time).

3. In most cases we have to accept the poor performance resulting from the RHP-zero and use
a stable causal controller. The ideal causal feedforward controller in terms of minimizing
the ISE (H2 norm) of y(t) for the plant in (5.60) is to use Kr = 1, and the corresponding
plant input and output responses are shown in the lower plots in Figure 5.9.

5.7.5 LHP-zeros
Zeros in the LHP, usually corresponding to “overshoots” in the time response, do not present a
fundamental limitation on control, but in practice a LHP-zero located close to the origin may
cause problems. First, one may encounter problems with input constraints at low frequencies
(because the steady-state gain is small). Second, a simple controller can probably not then be
used. For example, a simple PID controller as in (2.93) contains no adjustable poles that can
be used to counteract the effect of a LHP-zero.

For uncertain plants, zeros can cross from the LHP into the RHP, either through zero (which
is worse if we want tight control at low frequencies) or through in£nity. We discuss this in
Section 7.4 (page 264).

5.8 Limitations imposed by phase lag
We know that the phase lag from RHP-zeros and time delays pose a fundamental problem, but
are there any limitations imposed by the phase lag resulting from minimum-phase elements?
The answer is both no and yes: No, there are no fundamental limitations, but Yes, there are
often limitations on practical designs.

As an example, consider a minimum-phase plant of the form

G(s) =
k

(1 + τ1s)(1 + τ2s)(1 + τ3s) · · ·
=

k∏n
i=1(1 + τis)

(5.63)

where n is 3 or larger. At high frequencies the gain drops sharply with frequency, |G(jω)| ≈
(k/

∏
τi)ω

−n. From condition (5.82) derived below, it is therefore likely (at least if k is
small) that we encounter problems with input saturation. Otherwise, the presence of high-
order lags does not present any fundamental limitations.

However, in practice a large phase lag at high frequencies, e.g. ∠G(jω) → −n · 90◦ for
the plant in (5.63), poses a problem (independent of K) even when input saturation is not an
issue. This is because for stability we need a positive phase margin, i.e. the phase of L = GK
must be larger than −180◦ at the gain crossover frequency ωc. That is, for stability we need
ωc < ω180; see (2.32).



192 MULTIVARIABLE FEEDBACK CONTROL

In principle, ω180 (the frequency at which the phase lag around the feedback loop is−180◦)
is not directly related to phase lag in the plant, but in most practical cases there is a close
relationship. De£ne ωu as the frequency where the phase lag in the plant G is −180◦, i.e.

∠G(jωu) , −180◦

Note that ωu depends only on the plant model. Then, with a proportional controller we have
that ω180 = ωu, and with a PI controller ω180 < ωu. Thus with these two simple controllers
a phase lag in the plant does pose a fundamental limitation:

Stability bound for P or PI control: ωc < ωu (5.64)

Note that this is a strict bound to get stability, and for performance (phase and gain margin)
we typically need ωc less than about 0.5ωu.

If we want to extend the gain crossover frequency ωc beyond ωu, we must place zeros in
the controller (e.g. “derivative action”) to provide phase lead which counteracts the negative
phase in the plant. A commonly used controller is the PID controller which has a maximum
phase lead of 90◦ at high frequencies. In practice, the maximum phase lead is smaller than
90◦. For example, an industrial cascade PID controller (2.87) typically has derivative action
over only one decade, and the maximum phase lead is 55◦ (which is the maximum phase lead
of the term τDs+1

0.1τDs+1 ). This is also a reasonable value for the phase margin, so for performance
we approximately require

Practical performance bound (PID control): ωc < ωu (5.65)

We stress again that plant phase lag does not pose a fundamental limitation if a more complex
controller is used. Speci£cally, if the model is known exactly and there are no RHP-zeros or
time delays, then one may in theory extend ωc to in£nite frequency. For example, one may
simply invert the plant model by placing zeros in the controller at the plant poles, and then let
the controller roll off at high frequencies beyond the dynamics of the plant. However, in many
practical cases the bound in (5.65) applies because we may want to use a simple controller,
and also because uncertainty about the plant model often makes it dif£cult to place controller
zeros which counteract the plant poles at high frequencies.

Remark. The relative order (relative degree) of the plant is sometimes used as an input–output
controllability measure (e.g. Daoutidis and Kravaris, 1992). The relative order may also be de£ned for
nonlinear plants, and it corresponds for linear plants to the pole excess of G(s). For a minimum-phase
plant the phase lag at in£nite frequency is the relative order times −90◦. Of course, we want the inputs
directly to affect the outputs, so we want the relative order to be small. However, the practical usefulness
of the relative order is rather limited since it only gives information at in£nite frequency. The phase lag
of G(s) as a function of frequency, including the value of ωu, provides much more information.

Another approach for quantifying the limitations of phase lags is to approximate the higher-
order lags as an “effective delay” as discussed in Chapter 2; see (2.99) (PI control) and (2.100)
(PID control).

5.9 Limitations imposed by unstable (RHP) poles
We now consider the limitations imposed when the plant has an unstable (RHP) pole at s = p.
For example, the plant G(s) = 1/(s− 3) has a RHP-pole at p = 3. We already know from
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the bounds on MS and MT , (5.15) and (5.18), that RHP-poles combined with RHP-zeros
or a time delay make control dif£cult. The question here is: does a RHP-pole by itself pose
problems in terms of control performance?

First, feedback control is required, so we need some measurement of the plant output. The
reason for this is that it is impossible to stabilize a system with feedforward control – even
with a perfect model that allows us to cancel perfectly the unstable pole. As discussed on
page 145, we would get an internally unstable system, which eventually grows out of bounds.

Next, what problems does a RHP-pole p pose for feedback control? A good starting
point for such a discussion is the fundamental constraint on the sensitivity function for
internal stability, S(p) = 0 . Recall that the corresponding constraint with a RHP-zero z

was S(z) = 1, which was a problem because it is not compatible with the desire to have
|S| small (compared to 1) in order to have tight control (good output performance). At £rst,
it may therefore seem that the requirement S(p) = 0 does not pose a problem, because it is
compatible with tight control (good output performance). Actually, the main problem is at the
plant input, because stabilization of an unstable plant requires feedback control with the active
use of plant inputs. With feedback control, u = KS(r − n− dy), where S = (1 +GK)−1.
Note that changes in n and dy are outside our control and therefore “unavoidable”, and for
an unstable plant a minimum value on |KS| is also unavoidable, as derived in Section 5.3.2.

This leads to the conclusion that for an unstable plant a minimum input usage u is required.
In addition, the presence of a RHP-pole imposes a lower bound on the required bandwidth
and also causes an overshoot in the output signal, as summarized below:

1. RHP-pole limitation on input usage. For an unstable plant, the transfer function KS
(from measurement noise n or output disturbances dy to plant input u) must satisfy, see
(5.31),

‖KS‖∞ ≥ |G−1s (p)| (5.66)

which is tight for the case of a single real RHP-pole p. A tight lower bound for a plant
with multiple unstable poles is given by (5.30).

2. RHP-pole limitation on lower bandwidth. To stabilize a plant, we need to react
suf£ciently fast, and we must require that the closed-loop bandwidth is larger than
(approximately, see proof below)
• 2p, for a real RHP-pole p.
• 0.67(x+

√
4x2 + 3y2), for a pair of complex RHP-poles p = x± jy.

• 1.15|p|, for a pair of purely imaginary poles p = j|p|.
3. RHP-pole limitation on overshoot. A stable feedback system with a real RHP-pole

must have an overshoot in its closed-loop response y(t) to a step in the reference; see
Figure 5.12(b). To quantify this overshoot yos, we require a slightly different version of
rise time than that de£ned on page 30. In accordance with Middleton (1991), we de£ne
rise time tr as the maximum tr for which the output signal y(t) to a step r satis£es
y(t)/r ≤ t/tr ∀ t; see Figure 5.10.3 Then, the step response of a system with a real
RHP-pole p (p > 0) must satisfy (Middleton, 1991; Seron et al., 1997)

yos ≥ yf
(ptr − 1)eptr + 1

ptr
+ r ≥ yf

ptr
2

+ r (5.67)

3 The rise time tr can also be analytically calculated as tr = mint(t r)/y(t) for t > 0.
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where yf is the £nal value of the output signal y. With integral action yf = r and a large
overshoot (yos) is unavoidable if the response is slow with large rise time (tr).
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Figure 5.10: Rise time tr according to de£nition y(t)/r ≤ t/tr ∀ t for plant in (5.71) with Kc = τI =
1.25. The straight line with slope 1/tr just touches y(t).

Stabilization becomes more dif£cult and the above bounds become worse, if the plant has
a time delay or RHP-zeros located close to the RHP-poles. In essence, “the system may go
unstable before we have time to react”; see also Example 5.5.

Proof of limitations on lower bandwidth: We start from the requirement that an unstable pole p requires
for internal stability T (p) = 1. Consider that the weight wT (s) is selected such that 1/|wT | is a
reasonable upper bound on the complementary sensitivity function:

|T (jω)| < 1/|wT (jω)| ∀ω ⇔ ‖wTT‖∞ < 1

To satisfy this we must, since from (5.17) ‖wTT‖∞ ≥ |wT (p)|, at least require that the weight satis£es
|wT (p)| < 1 . Now consider the following weight

wT (s) =
s

ω∗BT
+

1

MT
(5.68)

which requires that (i) T (like |L|) has a roll-off rate of at least 1 at high frequencies (which must be
satis£ed for any real system), (ii) |T | is less than MT at low frequencies, and (iii) |T | drops below 1 at
frequency ω∗BT . The requirements on |T | are shown graphically in Figure 5.11. For a real RHP-pole at
s = p, the condition wT (p) < 1 yields

ω∗BT > p
MT

MT − 1
(5.69)

With MT = 2 (reasonable robustness) this gives

ω∗BT > 2p (5.70)

which proves the above bandwidth requirement.
2

Exercise 5.10 ∗ For purely imaginary poles located at p = ±j|p| a similar analysis of the weight
(5.68) with MT = 2 shows that we must at least require ω∗BT > 1.15|p|. Derive this bound.
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Since u = −KS(Gdd + n), the exact bounds (5.66) and (5.34) imply that stabilization
may be impossible in the presence of measurement noise n or a disturbance d, since the
required inputs u may be outside the saturation limit. When the input saturates, the system is
practically open-loop and stabilization is impossible (see also Section 5.11.3 on page 201).

The limitations on the bandwidth and overshoot are related: to stabilize an unstable plant,
we need a minimum bandwidth, which corresponds to a maximum rise time. If the rise time
is too large, then control is bound to be poor. This is clearly seen from (5.67). With integral
action, yf = r, and the “excess” overshoot yos − r must exceed ptr

2 r. For example, with
tr > 1/p, the excess overshoot must exceed 0.5r (50%).
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Figure 5.12: Control of plant with RHP-pole at p = 1

Example 5.8 Overshoot due to RHP-pole. Consider the following PI-controlled system, earlier used
in Example 2.5 (page 30):

G(s) =
4

(s− 1)(0.02s+ 1)2
, K(s) = Kc

τIs+ 1

τIs
(5.71)

with τI = 1.25. We note from the simulation in Figure 5.12(b) that as the controller becomes more
aggressive (Kc increased), both the rise time and overshoot decrease. This is expected from (5.67) and
also from the fact that a higher value of Kc results in higher bandwidth, but decreased peak of |T |; see
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Figure 5.12(a). For Kc = 2, the rise time is 0.2 s. The resulting overshoot is 1.22, which is reasonably
close to the lower bound from (5.67)

yos ≥ yf
(ptr − 1)eptr + 1

ptr
+ r = 1 · (0.2− 1)e0.2 + 1

0.2
+ 1 = 1.11

It may seem that we can improve the performance by increasing Kc further. This is probably not
possible, as the actual limitation due to the RHP-pole occurs at the plant input. The peak in KS

increases with Kc (not shown here), so a larger value of Kc can cause saturation problems.

Combined RHP-pole and RHP-zeros. In Section 5.3 (e.g. Table 5.1 on page 177), we
derived lower bounds on the peaks of important closed-loop transfer functions, and found
that the combined effect of a RHP-zero z and RHP-pole p is to increase the minimum peak
by a factor |z+p|

|z−p| . Here, we consider in some more detail the possibly con¤icting bandwidth
limitation imposed by having RHP-poles combined with RHP-zeros or a time delay. In
order to get acceptable low-frequency performance while maintaining robustness, we have
from (5.45) and (5.52) the approximate bounds ωB ≈ ωc < 0.5|z| for a RHP-zero and
ωB ≈ ωc < 1/θ for a time delay. On the other hand, for a RHP-pole we have approximately
wB > 2|p|. Put together we get the approximate requirements |p| < 0.25|z| and |p|θ < 0.5
in order to stabilize a plant while achieving acceptable low-frequency performance and
robustness. The following example con£rms that these requirements are reasonable.

Example 5.9 H∞ design for plant with RHP-pole and RHP-zero. We want to design an H∞
controller for the following plant with z = 4 and p = 1:

G(s) =
s− 4

(s− 1)(0.1s+ 1)
(5.72)
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Figure 5.13:H∞ design for a plant with RHP-zero at z = 4 and RHP-pole at p = 1

Note that z > p, so from the condition on page 150 it is possible to stabilize this plant with a
stable controller. Furthermore, |p| = 0.25|z| so from the condition just derived it should be possible to
achieve acceptable low-frequency performance and robustness. We use the S/KS design method as in
Example 2.17 with input weight wu = 1 and performance weight wp in (5.49) with A = 0, M = 2,

ω∗B = 1. The software gives a stable and minimum-phase controller with ‖
[
wpS
wuKS

]
‖∞ = 1.89.
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The corresponding sensitivity and complementary sensitivity functions, and the time response to a unit
step reference change, are shown in Figure 5.13. The time response is good, taking into account the
closeness of the RHP-pole and zero.

From (5.22), we have for a plant with a single real RHP-pole p and a single real RHP-zero z:

MS,min = MT,min =
|z + p|
|z − p| (5.73)

The plant in (5.72) has z = 4 and p = 1, so |z+p|
|z−p| =

5
3
= 1.67 and therefore it follows that for any

controller we must at least have ‖S‖∞ > 1.67 and ‖T‖∞ > 1.67. The actual peak values for the
above S/KS-design are 2.40 and 2.43, respectively.

Example 5.10 Balancing a rod. This example is taken from Doyle et al. (1992) (also see Stein, 2003).
Consider the problem of balancing a rod in the palm of one’s hand. The objective is to keep the rod
upright, by small hand movements, based on observing the rod either at its far end (output y1) or the
end in one’s hand (output y2). The linearized transfer functions for the two cases are

G1(s) =
−g

s2 (Mls2 − (M +m)g)
; G2(s) =

ls2 − g

s2 (Mls2 − (M +m)g)

Here l [m] is the length of the rod and m [kg] its mass. M [kg] is the mass of your hand and g [≈ 10
m/s2] is the acceleration due to gravity. In both cases, the plant has three unstable poles: two at the
origin and one at p =

√
(M+m)g

Ml
. A short rod with a large mass gives a large value of p, and this

in turn means that the system is more dif£cult to stabilize. For example, with M = m and l = 1 [m]
we get p ≈ 4.5 [rad/s] and from (5.70) we desire a bandwidth of about 9 [rad/s] (corresponding to a
response time of about 0.1 [s]).

If one is measuring y1 (looking at the far end of the rod) then achieving this bandwidth is the main
requirement. However, if one tries to balance the rod by looking at one’s hand (y2) there is also a RHP-
zero at z =

√
g
l
. If the mass of the rod is small (m/M is small), then p is close to z and stabilization is

in practice impossible with any controller. Even with a large mass, stabilization is very dif£cult because
p > z whereas we would normally prefer to have the RHP-zero far from the origin and the RHP-pole
close to the origin (z > p). So although in theory the rod may be stabilized by looking at one’s hand
(G2), it seems doubtful that this is possible for a human. To quantify these problems we can use (5.73)
to get

MS,min = MT,min =
|z + p|
|z − p| =

|1 + γ|
|1− γ| , γ =

√
M +m

M

Consider a light-weight rod with m/M = 0.1, for which we expect stabilization to be dif£cult. We
obtain MS,min = MT,min = 42, and we must have ‖S‖∞ ≥ 42 and ‖T‖∞ ≥ 42, so poor control
performance is inevitable if we try to balance the rod by looking at our hand (y2).

The difference between the two cases, measuring y1 and measuring y2, highlights the importance of
sensor location on the achievable performance of control.

Exercise 5.11 ∗ For a system with a single real RHP-zero z and Np RHP-poles pi and tight control
at low frequencies (A = 0 in (5.50)) derive the following generalization of (5.52):

ω∗B < z




Np∏

i=1

|z − pi|
|z + pi|

− 1

M


 (5.74)

(Hint: Use (5.13).) Note that for a plant with a single RHP-pole and RHP-zero the bound (5.74) with
M = 2 is feasible (upper bound on ω∗B is positive) for p < 0.33z. This con£rms the approximate
bound p < 0.25z derived for stability with acceptable low-frequency performance and robustness on
page 196.
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5.10 Performance requirements imposed by disturbances
and commands

The question we want to answer here is: how fast must the control system be in order to
reject disturbances and track commands of a given magnitude? The required bandwidth varies
because some plants have better “built-in” disturbance rejection capabilities than others. This
may be analyzed directly by considering the appropriately scaled disturbance model, Gd(s).
Similarly, for tracking we may consider the magnitude R of the reference change.

Disturbance rejection. Consider a single disturbance d and assume that the reference
is constant, i.e. r = 0. Without control the steady-state sinusoidal response is e(ω) =
Gd(jω)d(ω); recall (2.10). If the variables have been scaled as outlined in Section 1.4 then
the worst-case disturbance at any frequency is d(t) = sinωt, i.e. |d(ω)| = 1, and the control
objective is that at each frequency |e(t)| < 1, i.e. |e(ω)| < 1. From this we can immediately
conclude that

• No control is needed if |Gd(jω)| < 1 at all frequencies (in which case the plant is said to
be “self-regulated”).

If |Gd(jω)| > 1 at some frequency, then we need control (feedforward or feedback). In the
following, we consider feedback control, in which case we have

e(s) = S(s)Gd(s)d(s) (5.75)

The performance requirement |e(ω)| < 1 for any |d(ω)| ≤ 1 at any frequency is satis£ed if
and only if

|SGd(jω)| < 1 ∀ω ⇔ ‖SGd‖∞ < 1 (5.76)

⇔ |S(jω)| < 1/|Gd(jω)| ∀ω (5.77)

A typical plot of 1/|Gd(jω)| is shown in Figure 5.14 (dashed line). If the plant has a RHP-
zero at s = z, which £xes S(z) = 1, then using (5.14) we have the following necessary
condition for satisfying ‖SGd‖∞ < 1:

|Gd(z)| < 1 (5.78)

From (5.77) we also get that the frequency ωd where |Gd| crosses 1 from above yields a lower
bound on the bandwidth:

ωB > ωd where ωd is defined by |Gd(jωd)| = 1 (5.79)

A plant with a small |Gd| or a small ωd is preferable since the need for feedback control is then
less, or alternatively, given a feedback controller (which £xes S) the effect of disturbances on
the output is less.

Example 5.11 Assume that the disturbance model is Gd(s) = kd/(1 + τds) where kd = 10 and
τd = 100 [seconds]. Scaling has been applied to Gd so this means that without feedback, the effect of
disturbances on the outputs at low frequencies is kd = 10 times larger than we desire. Thus feedback
is required, and since |Gd| crosses 1 at a frequency ωd ≈ kd/τd = 0.1 rad/s, the minimum bandwidth
requirement for disturbance rejection is ωB > 0.1 [rad/s].
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Figure 5.14: Typical performance requirement on S imposed by disturbance rejection

Remark. Gd is of high order. The actual bandwidth requirement imposed by disturbances may be
higher than ωd if |Gd(jω)| drops with a slope steeper than −1 (on a log–log plot) just before the
frequency ωd. The reason for this is that we must, in addition to satisfying (5.77), also ensure stability
with reasonable margins; so as discussed in Section 2.6.2 we cannot let the slope of |L(jω)| around
crossover be much larger than −1.

An example, in which Gd(s) is of high order, is given later in Section 5.15.3 for a neutralization
process. There we actually overcome the limitation on the slope of |L(jω)| around crossover by using
local feedback loops in series. We £nd that, although each loop has a slope −1 around crossover, the
overall loop transfer function L(s) = L1(s)L2(s) · · ·Ln(s) has a slope of about −n; see the example
for more details. This is a case where stability is determined by each I +Li separately, but the bene£ts
of feedback are determined by 1 +

∏
i Li (also see Horowitz (1991, p. 284) who refers to lectures by

Bode).

Command tracking. Assume that there are no disturbances, i.e. d = 0, and consider
a reference change r(t) = Rr̃(t) = R sin(ωt). Since e = Gu + Gdd − Rr̃, the same
performance requirement as found for disturbances, see (5.76), applies to command tracking
with Gd replaced by −R. Thus for acceptable control (|e(ω)| < 1) we must have

|S(jω)R| < 1 ∀ω ≤ ωr (5.80)

where ωr is the frequency up to which performance tracking is required.

Remark. The bandwidth requirement imposed by (5.80) depends on how sharply |S(jω)| increases in
the frequency range from ωr (where |S| < 1/R) to ωB (where |S| ≈ 1). If |S| increases with a slope of
1 then the approximate bandwidth requirement becomes ωB > Rωr , and if |S| increases with a slope
of 2 it becomes ωB >

√
Rωr .

5.11 Limitations imposed by input constraints
In all physical systems there are limits to the changes that can be made to the manipulated
variables. In this section, we assume that the model has been scaled as outlined in Section 1.4,
so that at any time we must have |u(t)| ≤ 1. The question we want to answer is: can the



200 MULTIVARIABLE FEEDBACK CONTROL

expected disturbances be rejected and can we track the reference changes while maintaining
|u(t)| ≤ 1? We will consider separately the two cases of perfect control (e = 0) and
acceptable control (|e| < 1). These results apply to both feedback and feedforward control.

At the end of the section we consider the additional problems encountered for unstable
plants (where feedback control is required).

Remark 1 We use a frequency-by-frequency analysis and assume that at each frequency |d(ω)| ≤ 1 (or
|r̃(ω)| ≤ 1). The worst-case disturbance at each frequency is |d(ω)| = 1 and the worst-case reference
is r = Rr̃ with |r̃(ω)| = 1.

Remark 2 Note that rate limitations, |du/dt| ≤ 1, may also be handled by our analysis. This is done
by considering du/dt as the plant input by including a term 1/s in the plant model G(s). Alternatively
we multiply the derived lower bounds on |G|, e.g. in (5.84), by the frequency ω. For the more general
case with limitations on both magnitude (|u| ≤ 1) and rate (|du/dt| ≤ u̇max), the derived lower bounds
on |G| should be multiplied by max(1, ω/u̇max).

Remark 3 Below we require |u| < 1 rather than |u| ≤ 1. This has no practical effect, and is used to
simplify the presentation.

5.11.1 Inputs for perfect control
From (5.38) the input required to achieve perfect control (e = 0) is

u = G−1r −G−1Gdd (5.81)

Disturbance rejection. With r = 0 and |d(ω)| = 1 the requirement |u(ω)| < 1 gives

|G−1(jω)Gd(jω)| < 1 ∀ω (5.82)

In other words, to achieve perfect control and avoid input saturation we need |G| > |Gd| at
all frequencies. (However, as is discussed below, we do not really need control at frequencies
where |Gd| < 1.)

Command tracking. Next let d = 0 and consider the worst-case reference command
which is |r(ω)| = R at all frequencies up to ωr. To keep the inputs within their constraints
we must then require from (5.81) that

|G−1(jω)R| < 1 ∀ω ≤ ωr (5.83)

In other words, to avoid input saturation we need |G| > R at all frequencies where perfect
command tracking is required.

Example 5.12 Consider a process with

G(s) =
40

(5s+ 1)(2.5s+ 1)
, Gd(s) = 3

50s+ 1

(10s+ 1)(s+ 1)

From Figure 5.15 we see that |G| < |Gd| for ω > ω1, and |Gd| < 1 for ω > ωd. Thus, condition
(5.82) is not satis£ed for ω > ω1. However, for frequencies ω > ωd we do not really need control.
Thus, in practice, we expect that disturbances in the frequency range between ω1 and ωd may cause
input saturation.
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Figure 5.15: Input saturation is expected for disturbances at intermediate frequencies from ω1 to ωd

5.11.2 Inputs for acceptable control
For simplicity above, we assumed perfect control. However, perfect control is never really
required, especially not at high frequencies, and the input magnitude required for acceptable
control (namely |e(jω)| < 1) is somewhat smaller. For disturbance rejection we must then
require

|G| > |Gd| − 1 at frequencies where |Gd| > 1 (5.84)

Proof: Consider a “worst-case” disturbance with |d(ω)| = 1. The control error is e = y = Gu+Gdd.
Thus at frequencies where |Gd(jω)| > 1 the smallest input needed to reduce the error to |e(ω)| = 1 is
found when u(ω) is chosen such that the complex vectors Gu and Gdd have opposite directions. That
is, |e| = 1 = |Gdd| − |Gu|, and with |d| = 1 we get |u| = |G−1|(|Gd| − 1), and the result follows by
requiring |u| < 1. 2

Similarly, to achieve acceptable control for command tracking we must require

|G| > |R| − 1 ∀ω ≤ ωr (5.85)

In summary, if we want “acceptable control” (|e| < 1) rather than “perfect control” (e = 0),
then |Gd| in (5.82) should be replaced by |Gd| − 1, and similarly, R in (5.83) should be
replaced by R − 1. The differences are clearly small at frequencies where |Gd| and |R| are
much larger than 1.

The requirements given by (5.84) and (5.85) are restrictions imposed on the plant design
in order to avoid input constraints and they apply to any controller (feedback or feedforward
control). If these bounds are violated at some frequency then performance will not be
satisfactory (i.e. |e(ω)| > 1) for a worst-case disturbance or reference occurring at this
frequency.

5.11.3 Inputs for stabilization
Feedback control is required to stabilize an unstable plant. However, input constraints
combined with large disturbances or noise may make stabilization dif£cult. To achieve
|u| < 1 for |d| = 1 we must from (5.34) require (Havre and Skogestad, 2001)

|Gs(p)| > |Gd,ms(p)| (5.86)
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(this is for stabilization of a plant with a real RHP-pole at p). Otherwise, the input u will
exceed 1 (and thus saturate) when there is a sinusoidal disturbance d(t) = sinωt, and we
may not be able to stabilize the plant.

Remark. The result in (5.86) was not available on publication of the £rst edition of this book (Skogestad
and Postlethwaite, 1996) where we instead used the approximate, but nevertheless useful, bound

|G(jω)| > |Gd(jω)| ∀ω < p (5.87)

This approximate bound is based on (5.69) where we found that we need |T (jω)| ≥ 1 up to the
frequency p, approximately. Since u = KSGdd = TG−1Gdd this implies that we need |u| ≥
|G−1Gd| · |d| up to the frequency p, and to have |u| ≤ 1 for |d| = 1 (the worst-case disturbance)
we must require |G−1Gd| ≤ 1.

Example 5.13 Consider

G(s) =
5

(10s+ 1)(s− 1)
, Gd(s) =

kd
(s+ 1)(0.2s+ 1)

, kd < 1 (5.88)

Since kd < 1 and the performance objective is |e| < 1, we do not really need control for disturbance
rejection, but feedback control is required for stabilization, since the plant has a RHP-pole at p = 1.
We have |G| > |Gd| (i.e. |G−1Gd| < 1) for frequencies lower than 0.5/kd, see Figure 5.16(a), so from
the approximate bound (5.87) we do not expect problems with input constraints at low frequencies.
However, at high frequencies we have |G| < |Gd|, and from (5.87) we must approximately require
0.5/kd > p, i.e. kd < 0.5 to avoid problems with input saturation. This is con£rmed by the exact
bound in (5.86). We get

Gs(1) =
5

(10s+ 1)(s+ 1)

∣∣∣∣
s=1

= 0.227, Gd,ms(1) =
kd

(s+ 1)(0.2s+ 1)

∣∣∣∣
s=1

= 0.417kd

and from (5.86) we must require kd < 0.54 in order to avoid input saturation (|u| < 1) when we have
sinusoidal disturbances of unit magnitude.
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Figure 5.16: Instability caused by input saturation for unstable plant

To check this for a particular case we select kd = 0.5 and use the controller

K(s) =
0.04

s

(10s+ 1)2

(0.1s+ 1)2
(5.89)
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which without constraints yields a stable closed-loop system with a gain crossover frequency, ωc, of
about 1.7. The closed-loop response to a unit step disturbance occurring after 1 second is shown in
Figure 5.16(b). The stable closed-loop response when there is no input constraint is shown by the dashed
line. However, we note that the input signal exceeds 1 for a short time, and when u is constrained to be
within the interval [−1, 1] we £nd indeed that the system is unstable (solid lines).

Remark. For this example, a small reduction in the disturbance magnitude from kd = 0.5 to
kd = 0.48 results in a stable closed-loop response in the presence of input constraints (not shown).
Since kd = 0.54 is the limiting value obtained from (5.86), this seems to indicate that (5.86) is a
very tight condition in terms of predicting stability, but one should be careful about making such a
conclusion. First, (5.86) is actually only tight for sinusoids and the simulations in this example are for a
step disturbance. Second, in the example we use a particular controller, whereas (5.86) is for the “best”
stabilizing controller in terms of minimizing input usage.

For unstable plants, reference changes can also drive the system into input saturation
and instability. However, this is not really a fundamental problem, because, in contrast to
disturbance changes and measurement noise, one has the option of using a two degrees-
of-freedom controller to £lter the reference signal and thus reduce the magnitude of the
manipulated input.

5.12 Limitations imposed by uncertainty
The presence of uncertainty requires us to use feedback control rather than just feedforward
control. The main objective of this section is to gain more insight into this statement. A further
discussion is given in Section 6.10, where we consider MIMO systems.

5.12.1 Feedforward control and uncertainty
Consider feedforward control from the reference and measured disturbance (see Figure 2.5),

u = Krr −Kdd (5.90)

When applied to the nominal plant y = Gu+Gdd the resulting control error is e = y − r =
−(1−GKr)r + (Gd −GKd)d. Correspondingly, for the actual plant (with model error)

y′ = G′u+G′dd (5.91)

the control error is

e′ = y′ − r = −(1−G′Kr)r + (G′d −G′Kd)d = −S′rr + S′dG
′
dd (5.92)

where S′r , 1 − G′Kr and S′d , 1 − G′KdG
′
d
−1 are the feedforward sensitivity functions.

These are 1 for the case with no feedforward control, and should be less than 1 in magnitude
for feedforward control to be bene£cial. However, this may not be the case since any change
in the process (G′ and G′d) directly propagates to a corresponding change in S ′r and S′d and
thus in the control error. This is the main problem with feedforward control.

To see this more clearly, consider the “perfect” feedforward controller Kr = G(s)−1 and
Kd = G(s)−1Gd, which gives perfect nominal control (with e = 0, Sr = 0 and Sd = 0).
(We must here assume that G(s) is minimum-phase and stable and assume that there are no
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problems with input saturation.) Applying the perfect feedforward controller to the actual
plant gives

e′ = y′ − r =
(
G′

G
− 1

)

︸ ︷︷ ︸
−S′r= rel. error in G

r −
(
G′/G′d
G/Gd

− 1

)

︸ ︷︷ ︸
S′
d
= rel. error in G/Gd

G′dd (5.93)

Thus, we £nd that S ′r and S′d are equal to the (negative) relative errors in G and G/Gd,
respectively. If the model error (uncertainty) is suf£ciently large, such that the relative error in
G/Gd is larger than 1, then |S′d| is larger than 1 and feedforward control makes this situation
worse. This may quite easily happen in practice. For example, if the gain in G is increased
by 33% and the gain in Gd is reduced by 33%, such that S ′d = − G′/G

G′
d
/Gd

+ 1 = − 1.33
0.67 + 1 =

−2 + 1 = −1. In words, the feedforward controller overcompensates for the disturbance,
such that its negative counteracting effect is twice that of the original effect.

Another important insight from (5.93) is the following: to achieve |e′| < 1 for |d| = 1 we
must require that the relative model error in G/Gd is less than 1/|G′d|. This requirement is
unlikely to be satis£ed at frequencies where |G ′d| is much larger than 1 (see the following
example) , and this clearly motivates the need for feedback control for “sensitive” plants
where the disturbances have a large effect on the output.

Example 5.14 Consider disturbance rejection for a plant with

G =
300

10s+ 1
; Gd =

100

10s+ 1

The objective is to keep |y| < 1 for d = 1, but notice that the disturbance gain at steady-state is 100.
Nominally, the feedforward controller Kd = G−1Gd gives perfect control, y = 0. Now apply this
controller to the actual process where the gains have changed by 10%

G′ =
330

10s+ 1
; G′d =

90

10s+ 1

From (5.93), the disturbance response in this case is

y′ = −
(
G′/G′d
G/Gd

− 1

)
G′dd = −0.22 ·G′dd =

−20
10s+ 1

d

Thus, for a step disturbance d of magnitude 1, the output y will approach −20, which is much larger
than the bound |y| < 1. This means that we need to use feedback control, which, as discussed in the
next section, is hardly affected by the above model error. Although feedforward control by itself is not
suf£cient for this example, it has some bene£ts. This is because the feedforward controller reduces the
effect of the disturbance, and the minimum bandwidth requirement for feedback control is reduced from
ωd ≈ |kd|/τd = 100/10 = 10 rad/s (no feedforward) to about 20/10 = 2 rad/s (with feedforward).

5.12.2 Feedback control and uncertainty
With feedback control the closed-loop response with no model error is y − r = S(Gdd− r)
where S = (I +GK)−1 is the sensitivity function. With model error we get

y′ − r = S′(G′dd− r) (5.94)
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where S′ = (I +G′K)−1 can be written (see (A.147)) as

S′ = S
1

1 + ET
(5.95)

Here E = (G′ − G)/G is the relative error for G, and T is the complementary sensitivity
function.

From (5.94) we see that the control error is only weakly affected by model error at
frequencies where feedback is effective (where |S| ¿ 1 and T ≈ 1). For example, if we
have integral action in the feedback loop and if the feedback system with model error is
stable, then S(0) = S′(0) = 0 and the steady-state control error is zero even with model
error.

Uncertainty at crossover. Although feedback control counteracts the effect of uncertainty
at frequencies where the loop gain is large, uncertainty in the crossover frequency region
can result in poor performance and even instability. This may be analyzed, for example, by
considering the effect of the uncertainty on the gain margin, GM = 1/|L(jω180)|, where
ω180 is the frequency where ∠L is −180◦; see (2.40). Most practical controllers behave as a
constant gain Ko in the crossover region, so |L(jω180)| ≈ Ko|G(jω180)| where ω180 ≈ ωu

(since the phase lag of the controller is approximately zero at this frequency; see also
Section 5.8). This observation yields the following approximate rule:

• De£ne ωu as the frequency where ∠G(jωu) = −180◦. Uncertainty which keeps |G(jωu)|
approximately constant will not change the gain margin. Uncertainty which increases
|G(jωu)| will decrease the gain margin and may yield instability.

This rule is useful, for example, when evaluating the effect of parametric uncertainty. This is
illustrated in the following example.

Example 5.15 Consider a stable £rst-order delay process, G(s) = ke−θs/(1 + τs), where the
parameters k, τ and θ are uncertain in the sense that they may vary with operating conditions. If
we assume τ > θ then ωu ≈ (π/2)/θ and we derive

|G(jωu)| ≈ 2

π
k
θ

τ
(5.96)

We see that to keep |G(jωu)| constant we want k θ
τ

constant. If only the delay θ increases, then |G(jωu)|
increases and we may get instability (as we expect). However, the uncertainty in the parameters is often
coupled. For example, if θ and τ increase proportionally (which is quite common in practice) such that
the ratio τ/θ remains constant, then stability is not affected. In another case the steady-state gain k
may change with operating point, but this may not affect stability if the ratio k/τ , which determines the
high-frequency gain, is unchanged.

The above example illustrates the importance of taking into account the structure of the
uncertainty, e.g. the coupling between the uncertain parameters. A robustness analysis which
assumes the uncertain parameters to be uncorrelated is generally conservative. This is further
discussed in Chapters 7 and 8.
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Figure 5.17: Feedback control system

5.13 Summary: controllability analysis with feedback
control

We will now summarize the results of this chapter by a set of “controllability rules”. We
use the term “(input–output) controllability” since the bounds depend on the plant only;
that is, are independent of the speci£c controller. Except for Rule 7, all requirements are
fundamental, although some of the expressions, as seen from the derivations, are approximate
(i.e. they may be off by a factor of 2 or so). However, for practical designs the bounds will
need to be satis£ed to get acceptable performance.

Consider the control system in Figure 5.17, where all the blocks are scalar. The model is

y = G(s)u+Gd(s)d; ym = Gm(s)y (5.97)

Here Gm(s) denotes the measurement transfer function and we assume Gm(0) = 1 (perfect
steady-state measurement). The variables d, u, y and r are assumed to have been scaled as
outlined in Section 1.4, and therefore G(s) and Gd(s) are the scaled transfer functions. Let
ωc denote the gain crossover frequency, de£ned as the frequency where |L(jω)| crosses 1
from above. Let ωd denote the frequency at which |Gd(jωd)| £rst crosses 1 from above.

The £rst step for controllability analysis with feedback control is to evaluate the bounds on
the peaks of the different closed-loop transfer functions, i.e. S, T,KS, SG and SGd, using
formulae summarized in Table 5.1. We require that the peaks of all of these closed-loop
transfer functions be small. For example, the performance requirement of keeping control
error signal e small is satis£ed, only if ‖S‖∞ and ‖T‖∞ are small. Similarly, it is necessary
to ensure that ‖KS‖∞ is small to avoid actuator saturation, which may destabilize the system.
In addition, the following rules apply (Skogestad, 1996):

Rule 1. Speed of response to reject disturbances. We approximately require ωc > ωd.
More speci£cally, with feedback control we require |S(jω)| ≤ |1/Gd(jω)| ∀ω. (See
(5.76) and (5.79).)

Rule 2. Speed of response to track reference changes. We require |S(jω)| ≤ 1/R up to
the frequency ωr where tracking is required. (See (5.80).)
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Rule 3. Input constraints arising from disturbances. For acceptable control (|e| < 1)
we require |G(jω)| > |Gd(jω)| − 1 at frequencies where |Gd(jω)| > 1. For perfect
control (e = 0) the requirement is |G(jω)| > |Gd(jω)|. (See (5.82) and (5.84).)

Rule 4. Input constraints arising from setpoints. We require |G(jω)| > R − 1 up to the
frequency ωr where tracking is required. (See (5.85).)

Rule 5. Time delay θ in G(s)Gm(s). We approximately require ωc < 1/θ. (See (5.45).)

Rule 6. Tight control at low frequencies with a RHP-zero z in G(s)Gm(s). For a real
RHP-zero we require ωc < z/2 and for an imaginary RHP-zero we approximately
require ωc < 0.86|z|. (See (5.52) and (5.53).)

Remark. Strictly speaking, a RHP-zero only makes it impossible to have tight control in the
frequency range close to the location of the RHP-zero. If we do not need tight control at low
frequencies, then we may reverse the sign of the controller gain, and instead achieve tight control
at higher frequencies. In this case we must for a RHP-zero z approximately require ωc > 2z.
A special case is for plants with a zero at the origin; here we can achieve good transient control
even though the control has no effect at steady-state.

Rule 7. Phase lag constraint. We require in most practical cases (e.g. with PID control):
ωc < ωu. Here the ultimate frequency ωu is where ∠GGm(jωu) = −180◦. (See
(5.65).)
Since time delays (Rule 5) and RHP-zeros (Rule 6) also contribute to the phase lag,
one may in most practical cases combine Rules 5, 6 and 7 into the single rule: ωc < ωu

(Rule 7).

Rule 8. Real open-loop unstable pole in G(s) at s = p. We need high feedback gains to
stabilize the system and we approximately require ωc > 2p. (See (5.70).)

In addition, for unstable plants we need |Gs(p)| > |Gd,ms(p)|. Otherwise, the input
may saturate when there are disturbances, and the plant cannot be stabilized; see
(5.86).

Most of the rules are illustrated graphically in Figure 5.18.
We have not formulated a rule to guard against model uncertainty. This is because, as

given in (5.94) and (5.95), uncertainty has only a minor effect on feedback performance for
SISO systems, except at frequencies where the relative uncertainty E approaches 100%, and
we obviously have to detune the system. Also, since 100% uncertainty at a given frequency
allows for the presence of a RHP-zero on the imaginary axis at this frequency (G(jω) = 0),
it is already covered by Rule 6.

The rules are necessary conditions (“minimum requirements”) to achieve acceptable
control performance. They are not suf£cient since among other things we have only
considered one effect at a time.

The rules quantify the qualitative rules given in the introduction. For example, the rule
“Control outputs that are not self-regulating” may be quanti£ed as “Control outputs y for
which |Gd(jω)| > 1 at some frequency” (Rule 1). Another important insight from Rule
1 is that a larger disturbance or a smaller speci£cation on the control error requires faster
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Figure 5.18: Illustration of controllability requirements

response (higher bandwidth).4 The rule “Select inputs that have a large effect on the outputs”
may be quanti£ed as “In terms of scaled variables, to avoid input saturation we must have
|G| > |Gd| − 1 at frequencies where |Gd| > 1 (Rule 3), and we must have |G| > R − 1 at
frequencies where setpoint tracking is desired (Rule 4).” The rule “Control outputs that have
favourable dynamic and static characteristics” is quanti£ed by Rule 3 (“want large gain to
avoid input constraints”) and Rules 4, 5 and 6 (“avoid time delay, RHP-zeros and large phase
lag”).

In summary, Rules 1, 2 and 8 tell us that we need high feedback gain (“fast control”) in
order to reject disturbances, to track setpoints and to stabilize the plant. On the other hand,
Rules 5, 6 and 7 tell us that we must use low feedback gains in the frequency range where
there are RHP-zeros or delays or where the plant has a lot of phase lag. We have formulated
these requirements for high and low gain as bandwidth requirements. If they somehow are
in con¤ict then the plant is not controllable and the only remedy is to introduce design
modi£cations to the plant.

Sometimes the problem is that the disturbances are so large that the inputs saturate, or the
required bandwidth is not achievable. To avoid the latter problem, we must at least require
that the effect of the disturbance is less than 1 (in terms of scaled variables) at frequencies
4 Another reason for preferring a large (scaled) gain from the inputs to the outputs is to be able to keep the plant

close to its optimum by use of a constant setpoint policy, see “self-optimizing control” on page 390. Also note that
here the scaling procedure is different than that used for controllability analysis.
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beyond the bandwidth (Rule 1)

|Gd(jω)| < 1 ∀ω ≥ ωc (5.98)

where as found above we approximately require ωc < 1/θ (Rule 5), ωc < z/2 (Rule 6) and
ωc < ωu (Rule 7). Condition (5.98) may be used, as in the example of Section 5.15.3 below,
to determine the size of equipment.

5.14 Summary: controllability analysis with feedforward
control

The above controllability rules apply to feedback control, but we £nd that essentially the
same conclusions apply to feedforward control when relevant. That is, if a plant is not
controllable using feedback control, it is usually not controllable with feedforward control.
A major difference, as shown below, is that a delay in Gd(s) is an advantage for feedforward
control (“it gives the feedforward controller more time to make the right action”). Also, a
RHP-zero in Gd(s) is also an advantage for feedforward control if G(s) has a RHP-zero at
the same location. Rules 3 and 4 on input constraints apply directly to feedforward control,
but Rule 8 does not apply since unstable plants can only be stabilized by feedback control.
The remaining rules in terms of performance and “bandwidth” do not apply directly to
feedforward control.

Controllability can be analyzed by considering the feasibility of achieving perfect control.
The feedforward controller is

u = Kd(s)dm

where dm = Gmd(s)d is the measured disturbance. The disturbance response with r = 0
becomes

e = Gu+Gdd = (GKdGmd +Gd)d (5.99)

(Reference tracking can be analyzed similarly by setting Gmd = 1 and Gd = −R.)
Perfect control. From (5.99), e = 0 is achieved with the controller

Kperfect
d = −G−1GdG

−1
md (5.100)

This assumes that Kperfect
d is stable and causal (no prediction), and so GG−1d Gmd should

have no RHP-zeros and no (positive) delay. From this we £nd that a delay (or RHP-zero) in
Gd(s) is an advantage if it cancels a delay (or RHP-zero) in GGmd.

Ideal control. If perfect control is not possible, then one may analyze controllability by
considering an “ideal” feedforward controller, K ideal

d , which is (5.100) modi£ed to be stable
and causal (no prediction). The controller is ideal in that it assumes we have a perfect model.
Controllability is then analyzed by using K ideal

d in (5.99). An example is given below in
(5.109) and (5.110) for a £rst-order delay process.

Model uncertainty. As discussed in Section 5.12, model uncertainty is a more serious
problem for feedforward than for feedback control because there is no correction from the
output measurement. For disturbance rejection, we have from (5.93) that the plant is not
controllable with feedforward control if the relative model error for G/Gd at any frequency
exceeds 1/|Gd|. Here Gd is the scaled disturbance model. For example, if |Gd(jω)| = 10



210 MULTIVARIABLE FEEDBACK CONTROL

then the error in G/Gd must not exceed 10% at this frequency. In practice, this means that
feedforward control has to be combined with feedback control if the output is sensitive to the
disturbance (i.e. if |Gd| is much larger than 1 at some frequency).

Combined feedback and feedforward control. To analyze controllability in this case we
may assume that the feedforward controller Kd has already been designed. Then from (5.99)
the controllability of the remaining feedback problem can be analyzed using the rules in
Section 5.13 if Gd(s) is replaced by

Ĝd(s) = GKdGmd +Gd (5.101)

However, one must be aware that the feedforward control may be very sensitive to model
error, so the bene£ts of feedforward may be less in practice.

Conclusion. From (5.101) we see that the primary potential bene£t of feedforward control
is to reduce the effect of the disturbance and make Ĝd less than 1 at frequencies where
feedback control is not effective due to, for example, a delay or a large phase lag in GGm(s).

5.15 Applications of controllability analysis
5.15.1 First-order delay process
Problem statement. Consider disturbance rejection for the following process:

G(s) = k
e−θs

1 + τs
; Gd(s) = kd

e−θds

1 + τds
(5.102)

In addition there are measurement delays θm for the output and θmd for the disturbance. All
parameters have been appropriately scaled such that at each frequency |u| < 1, |d| < 1 and
we want |e| < 1. Assume |kd| > 1. Treat the two cases of (i) feedback control only, and (ii)
feedforward control only, and carry out the following:

(a) For each of the eight parameters in this model explain qualitatively what value you
would choose from a controllability point of view (with descriptions such as large, small,
value has no effect).

(b) Give quantitative relationships between the parameters which should be satis£ed to
achieve controllability. Assume that appropriate scaling has been applied in such a way that
the disturbance is less than 1 in magnitude, and that the input and the output are required to
be less than 1 in magnitude.

Solution. (a) Qualitative. We want the input to have a “large, direct and fast effect” on the
output, while we want the disturbance to have a “small, indirect and slow effect”. By “direct”
we mean without any delay or inverse response. This leads to the following conclusion. For
both feedback and feedforward control we want k and τd large, and τ , θ and kd small. For
feedforward control we also want θd large (we then have more time to react), but for feedback
the value of θd does not matter; it translates time, but otherwise has no effect. Clearly, we want
θm small for feedback control (it is not used for feedforward), and we want θmd small for
feedforward control (it is not used for feedback).

(b) Quantitative. To stay within the input constraints (|u| < 1) we must require from Rule
3 that |G(jω)| > |Gd(jω)| for frequencies ω < ωd. Speci£cally, for both feedback and
feedforward control

k > kd; k/τ > kd/τd (5.103)
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Now consider performance where the results for feedback and feedforward control differ.
(i) First consider feedback control. From Rule 1 we need for acceptable performance (|e| < 1)
with disturbances

ωd ≈ kd/τd < ωc (5.104)

On the other hand, from Rule 5 we require for stability and performance

ωc < 1/θtot (5.105)

where θtot = θ + θm is the total delay around the loop. The combination of (5.104) and
(5.105) yields the following requirement for controllability:

Feedback: θ + θm < τd/kd (5.106)

(ii) For feedforward control, any delay for the disturbance itself yields a smaller “net
delay”, and to have |e| < 1 we need “only” require

Feedforward: θ + θmd − θd < τd/kd (5.107)

Proof of (5.107): Introduce θ̂ = θ + θmd − θd, and consider £rst the case with θ̂ ≤ 0 (so (5.107) is
clearly satis£ed). In this case perfect control is possible using the controller (5.100),

Kperfect
d = −G−1GdG

−1
md = −kd

k

1 + τs

1 + τds
eθ̂s (5.108)

so we can even achieve e = 0. Next, consider θ̂ > 0. Perfect control is not possible, so instead we use
the “ideal” controller obtained by deleting the prediction eθ̂s,

K ideal
d = −kd

k

1 + τs

1 + τds
(5.109)

From (5.99) the response with this controller is

e = (GK ideal
d Gmd +Gd)d =

kde
−θds

1 + τds
(1− e−θ̂s)d (5.110)

and to achieve |e|/|d| < 1 we must require kd
τd
θ̂ < 1 (using asymptotic values and 1 − e−x ≈ x for

small x) which is equivalent to (5.107). 2

5.15.2 Application: room heating
Consider the problem of maintaining a room at constant temperature, as discussed in
Section 1.5, see Figure 1.2. Let y be the room temperature, u the heat input and d the outdoor
temperature. Feedback control should be used. Let the measurement delay for temperature
(y) be θm = 100 s.

1. Is the plant controllable with respect to disturbances?
2. Is the plant controllable with respect to setpoint changes of magnitude R = 3 (±3 K)

when the desired response time for setpoint changes is τr = 1000 s (17 min)?
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Figure 5.19: Frequency responses for room heating example

Solution. A critical part of controllability analysis is scaling. A model in terms of scaled
variables was derived in (1.32)

G(s) =
20

1000s+ 1
; Gd(s) =

10

1000s+ 1
(5.111)

The frequency responses of |G| and |Gd| are shown in Figure 5.19.
1. Disturbances. From Rule 1 feedback control is necessary up to the frequency ωd =

10/1000 = 0.01 rad/s, where |Gd| crosses 1 in magnitude (ωc > ωd). This is exactly the
same frequency as the upper bound given by the delay, 1/θ = 0.01 rad/s (ωc < 1/θ). We
therefore conclude that the system is barely controllable for this disturbance. From Rule 3 no
problems with input constraints are expected since |G| > |Gd| at all frequencies. To support
these conclusions, we design a series PID controller of the form K(s) = Kc

1+τIs
τIs

τDs+1
0.1τDs+1 .

With G(s) = 20e−100s

1000s+1 , the SIMC PI tunings (page 57) for this process are Kc = 0.25 (scaled
variables) and τI = 800 s. This yields smooth responses, but the output peak exceeds 1.7
in response to the disturbance and the settling to the new steady-state is slow. To reduce the
output peak below 1, it is necessary to increase Kc to about 0.4. Reducing τI from 800 s
to 200 s reduces the settling time. The introduction of derivative action with τD = 60 s
gives better robustness and fewer oscillations. The £nal controller settings are Kc = 0.4
(scaled variables), τI = 200 s and τD = 60 s. The closed-loop simulation for a unit step
disturbance (corresponding to a sudden 10 K increase in the outdoor temperature) is shown
in Figure 5.20(a). The output error exceeds its allowed value of 1 for a very short time after
about 100 s, but then returns quite quickly to zero. The input goes down to about −0.8 and
thus remains within its allowed bound of ±1.

2. Setpoints. The plant is controllable with respect to the desired setpoint changes. First,
the delay is 100 s which is much smaller than the desired response time of 1000 s, and thus
poses no problem. Second, |G(jω)| ≥ R = 3 up to about ω1 = 0.007 [rad/s] which is seven
times higher than the required ωr = 1/τr = 0.001 [rad/s]. This means that input constraints
pose no problem. In fact, we should be able to achieve response times of about 1/ω1 = 150 s
without reaching the input constraints. This is con£rmed by the simulation in Figure 5.20(b)
for a desired setpoint change 3/(150s+ 1) using the same PID controller as above.

Exercise 5.12 ∗ Perform closed-loop simulations with the SIMC PI controller and the proposed PID
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Figure 5.20: PID feedback control of room heating example

controller for the room heating process. Also compute the robustness parameters (GM, PM, MS and
MT ) for the two designs.

5.15.3 Application: neutralization process
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Figure 5.21: Neutralization process with one mixing tank

The following application is interesting in that it shows how the controllability analysis tools
may assist the engineer in redesigning the process to make it controllable.

Problem statement. Consider the process in Figure 5.21, where a strong acid with pH
= −1 (yes, a negative pH is possible – it corresponds to cH+ = 10 mol/l) is neutralized by
a strong base (pH = 15) in a mixing tank with volume V = 10 m3. We want to use feedback
control to keep the pH in the product stream (output y) in the range 7 ± 1 (“salt water”) by
manipulating the amount of base, qB (input u), in spite of variations in the ¤ow of acid, qA
(disturbance d). The delay in the pH measurement is θm = 10 s.

To achieve the desired product with pH = 7 one must exactly balance the in¤ow of acid (the
disturbance) by the addition of base (the manipulated input). Intuitively, one might expect that
the main control problem is to adjust the base accurately by means of a very accurate valve.
However, as we will see, this “feedforward” way of thinking is misleading, and the main
hurdle to good control is the need for very fast response times.

We take the controlled output to be the excess of acid, c [mol/l], de£ned as c = cH+ −
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cOH− , which avoids the need to include a chemical reaction term in the model. In terms of
this variable c, the control objective is to keep |c| ≤ cmax = 10−6 mol/l, and the plant is a
simple mixing process modelled by

d

dt
(V c) = qAcA + qBcB − qc (5.112)

The nominal values for the acid and base ¤ows are q∗A = q∗B = 0.005 [m3/s] resulting in a
product ¤ow q∗ = 0.01 [m3/s] = 10 [l/s]. Here superscript ∗ denotes the steady-state value.
We divide each variable by its maximum deviation to get the following scaled variables:

y =
c

10−6
; u =

qB
q∗B

; d =
qA

0.5q∗A
(5.113)

Then the appropriately scaled linear model for one tank becomes

Gd(s) =
kd

1 + τhs
; G(s) =

−2kd
1 + τhs

; kd = 2.5 · 106 (5.114)

where τh = V/q = 1000 s is the residence time for the liquid in the tank. Note that the
steady-state gain in terms of scaled variables is more than a million, so the output is extremely
sensitive to both the input and the disturbance. The reason for this high gain is the much higher
concentration in the two feed streams, compared to that desired in the product stream. The
question is: can acceptable control be achieved?
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Figure 5.22: Frequency responses for the neutralization process with one mixing tank

Controllability analysis. The frequency responses of Gd(s) and G(s) are shown
graphically in Figure 5.22. From Rule 2, input constraints do not pose a problem since
|G| = 2|Gd| at all frequencies. The main control problem is the high disturbance sensitivity,
and from (5.104) (Rule 1) we £nd the frequency up to which feedback is needed

ωd ≈ kd/τ = 2500 rad/s (5.115)

This requires a response time of 1/2500 = 0.4 milliseconds which is clearly impossible in a
process control application, and is in any case much less than the measurement delay of 10 s.

Design change: multiple tanks. The only way to improve controllability is to modify
the process. This is done in practice by performing the neutralization in several steps as



LIMITATIONS IN SISO SYSTEMS 215

? ?

?

-
6

¾
?ACID BASE

pHI

pHC

Figure 5.23: Neutralization process with two tanks and one controller

illustrated in Figure 5.23 for the case of two tanks. This is similar to playing golf where it is
often necessary to use several strokes to get to the hole. With n equal mixing tanks in series
the transfer function for the effect of the disturbance becomes

Gd(s) = kdhn(s); hn(s) =
1

( τhn s+ 1)n
(5.116)

where kd = 2.5 · 106 is the gain for the mixing process, hn(s) is the transfer function of the
mixing tanks, and τh is the total residence time, Vtot/q. The magnitude of hn(s) as a function
of frequency is shown in Figure 5.24 for one to four equal tanks in series.
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Figure 5.24: Frequency responses for n tanks in series with the same total residence time τh; hn(s) =
1/( τh

n
s+ 1)n, n = 1, 2, 3, 4

From controllability Rules 1 and 5, we must at least require for acceptable disturbance
rejection that

|Gd(jωθ)| ≤ 1 ωθ , 1/θ (5.117)

where θ is the delay in the feedback loop. Thus, one purpose of the mixing tanks hn(s) is to
reduce the effect of the disturbance by a factor kd (= 2.5 · 106) at the frequency ωθ (= 0.1
[rad/s]), i.e. |hn(jωθ)| ≤ 1/kd. With τh = Vtot/q we obtain the following minimum value
for the total volume for n equal tanks in series:

Vtot = qθn
√

(kd)2/n − 1 (5.118)
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where q = 0.01 m3/s. With θ = 10 s we then £nd that the following designs have the same
controllability with respect to disturbance rejection:

No. of Total Volume
tanks volume each tank
n Vtot [m3] [m3]
1 250000 250000
2 316 158
3 40.7 13.6
4 15.9 3.98
5 9.51 1.90
6 6.96 1.16
7 5.70 0.81

With one tank we need a volume corresponding to that of a supertanker to get acceptable
controllability. The minimum total volume is obtained with 18 tanks of about 203 litres each
– giving a total volume of 3.662 m3. However, taking into account the additional cost for
extra equipment such as piping, mixing, measurements and control, we would probably select
a design with 3 or 4 tanks for this example.

Control system design. We are not quite £nished yet. The condition |Gd(jωθ)| ≤ 1 in
(5.117), which formed the basis for redesigning the process, may be optimistic because it
only ensures that we have |S| < 1/|Gd| at the crossover frequency ωB ≈ ωc ≈ ωθ. However,
from Rule 1 we also require that |S| < 1/|Gd|, or approximately |L| > |Gd|, at frequencies
lower than wc, and this may be dif£cult to achieve sinceGd(s) = kdh(s) is of order n, where
n is the number of tanks. The problem is that this requires |L| to drop steeply with frequency,
which results in a large negative phase for L, whereas for stability and performance the slope
of |L| at crossover should not be steeper than −1, approximately (see Section 2.6.2).

Thus, the control system in Figure 5.23 with a single feedback controller will not achieve
the desired performance. The solution is to install a local feedback control system on each
tank and to add base in each tank as shown in Figure 5.25. This is another plant design change
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Figure 5.25: Neutralization process with two tanks and two controllers

since it requires an additional measurement and actuator for each tank. Consider the case of
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n tanks in series. With n controllers the overall closed-loop response from a disturbance into
the £rst tank to the pH in the last tank becomes

y = Gd

n∏

i=1

(
1

1 + Li

)
d ≈ Gd

L
d, L ,

n∏

i=1

Li (5.119)

where Gd =
∏n

i=1Gi and Li = GiKi, and the approximation applies at low frequencies
where feedback is effective.

In this case, we can design each loop Li(s) with a slope of −1 and bandwidth ωc ≈ ωθ,
such that the overall loop transfer function L has slope −n and achieves |L| > |Gd| at all
frequencies lower than ωd (the size of the tanks is selected as before such that ωd ≈ ωθ).
Thus, our analysis con£rms the usual recommendation of adding base gradually and having
one pH controller for each tank (McMillan, 1984, p. 208). It seems unlikely that any other
control strategy can achieve a suf£ciently high roll-off for |L|.

In summary, this application has shown how a simple controllability analysis may be
used to make decisions on both the appropriate size of the equipment, and the selection
of actuators and measurements for control. Our conclusions are in agreement with what is
used in industry. Importantly, we arrived at these conclusions without having to design any
controllers or perform any simulations. Of course, as a £nal test, the conclusions from the
controllability analysis should be veri£ed by simulations using a nonlinear model.

Exercise 5.13 Comparison of local feedback and cascade control. Explain why a cascade control
system with two measurements (pH in each tank) and only one manipulated input (the base ¤ow into
the £rst tank) will not achieve as good a performance as the control system in Figure 5.25 where we use
local feedback with two manipulated inputs (one for each tank).

The following exercise further considers the use of buffer tanks for reducing quality
(concentration, temperature) disturbances in chemical processes.

Exercise 5.14 ∗ (a) The effect of a concentration disturbance must be reduced by a factor of 100 at the
frequency 0.5 rad/min. The disturbances should be dampened by use of buffer tanks and the objective
is to minimize the total volume. How many tanks in series should one have? What is the total residence
time?

(b) The feed to a distillation column has large variations in concentration and the use of one buffer
tank is suggested to dampen these. The effect of the feed concentration d on the product composition y
is given by (scaled variables, time in minutes)

Gd(s) = e−s/3s

That is, after a step in d the output y will, after an initial delay of 1 min, increase in a ramp-like fashion
and reach its maximum allowed value (which is 1) after another 3 minutes. Feedback control should be
used and there is an additional measurement delay of 5 minutes. What should be the residence time in
the tank?

(c) Show that in terms of minimizing the total volume for buffer tanks in series, it is optimal to have
buffer tanks of equal size.

(d) Is there any reason to have buffer tanks in parallel (they must not be of equal size because then
one may simply combine them)?

(e) What about parallel pipes in series (pure delay). Is this a good idea?

Buffer tanks are also used in chemical processes to dampen liquid ¤ow rate disturbances (or
gas pressure disturbances). This is the topic of the following exercise.
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Exercise 5.15 Let d1 = qin [m3/s] denote a ¤ow rate which acts as a disturbance to the process. We
add a buffer tank (with liquid volume V [m3]), and use a “slow” level controllerK such that the out¤ow
d2 = qout (the “new” disturbance) is smoother than the in¤ow qin (the “original” disturbance). The
idea is to increase or decrease temporarily the liquid volume in the tank to avoid sudden changes in
qout. Note that the steady-state value of qout must equal that of qin.

A material balance yields V (s) = (qin(s) − qout(s))/s and with a level controller qout(s) =
K(s)V (s) we £nd that

d2(s) =
K(s)

s+K(s)︸ ︷︷ ︸
h(s)

d1(s) (5.120)

The design of a buffer tank for a ¤ow rate disturbance then consists of two steps:
1. Design the level controller K(s) such that h(s) has the desired shape (e.g. determined by a

controllability analysis of how d2 affects the remaining process; note that we must always have
h(0) = 1).

2. Design the size of the tank (determine its volume Vmax) such that the tank does not over¤ow or go
empty for the expected disturbances in d1 = qin.

Problem statement. (a) Assume the in¤ow varies in the range q∗in ± 100% where q∗in is the nominal
value, and apply this stepwise procedure to two cases:

(i) The desired transfer function is h(s) = 1/(τs+ 1).
(ii) The desired transfer function is h(s) = 1/(τ2s+ 1)2.

(b) Explain why it is usually not recommended to have integral action in K(s).
(c) In case (ii) one could alternatively use two tanks in series with controllers designed as in (i).

Explain why this is most likely not a good solution. (Solution: The required total volume is the same,
but the cost of two smaller tanks is larger than one large tank.)

5.15.4 Additional exercises
Exercise 5.16 ∗ What information about a plant is important for controller design, and in particular,
in which frequency range is it important to know the model well? To answer this problem you may think
about the following sub-problems:

(a) Explain what information about the plant is used for Ziegler–Nichols tuning of a SISO PID
controller.

(b) Is the steady-state plant gain G(0) important for controller design? (As an example consider the
plant G(s) = 1

s+a
with |a| ≤ 1 and design a P controller K(s) = Kc such that ωc = 100. How does

the controller design and the closed-loop response depend on the steady-state gain G(0) = 1/a?)

Exercise 5.17 Let G(s) = K2e
−0.5s 1

(30s+1)(Ts+1)
, and Gd(s) = G(s)H(s) where H(s) =

K1e
−θ1s. The measurement device for the output has transfer function Gm(s) = e−θ2s. The unit

for time is seconds. The nominal parameter values are: K1 = 0.24, θ1 = 1 [s], K2 = 38, θ2 = 5 [s]
and T = 2 [s].

(a) Assume all variables have been appropriately scaled. Is the plant input–output controllable?
(b) What is the effect on controllability of changing one model parameter at a time in the following

ways?
1. θ1 is reduced to 0.1 [s].
2. θ2 is reduced to 2 [s].
3. K1 is reduced to 0.024.
4. K2 is reduced to 8.
5. T is increased to 30 [s].

Exercise 5.18 ∗ A heat exchanger is used to exchange heat between two streams: a coolant with ¤ow
rate q (1 ± 1 kg/s) is used to cool a hot stream with inlet temperature T0 (100 ± 10◦C) to the outlet
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temperature T (which should be 60±10◦C). The measurement delay for T is 3 s. The main disturbance
is on T0. The following model in terms of deviation variables is derived from heat balances:

T (s) =
8

(60s+ 1)(12s+ 1)
q(s) +

0.6(20s+ 1)

(60s+ 1)(12s+ 1)
T0(s) (5.121)

where T and T0 are in ◦C, q is in kg/s, and the unit for time is seconds. Derive the scaled model. Is
the plant controllable with feedback control? (Solution: The delay poses no problem (performance), but
the effect of the disturbance is a bit too large at high frequencies (input saturation), so the plant is not
controllable.)

5.16 Conclusion
The chapter has presented a frequency domain controllability analysis for scalar systems
applicable to both feedback and feedforward control. We summarized our £ndings in terms
of eight controllability rules; see page 206. These rules are necessary conditions (“minimum
requirements”) to achieve acceptable control performance. They are not suf£cient since
among other things they only consider one effect at a time. The rules may be used to
determine whether or not a given plant is controllable. The method has been applied to a
pH neutralization process, and it is found that the heuristic design rules given in the literature
follow directly. The key steps in the analysis are to consider disturbances and to scale the
variables properly.

The tools presented in this chapter may also be used to study the effectiveness of
adding extra manipulated inputs or extra measurements (cascade control). They may
also be generalized to multivariable plants where directionality becomes a further crucial
consideration. Interestingly, a direct generalization to decentralized control of multivariable
plants is rather straightforward and involves the CLDG and the PRGA; see page 449 in
Chapter 10.
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6

LIMITATIONS ON
PERFORMANCE IN MIMO
SYSTEMS

In this chapter, we generalize the results of Chapter 5 to MIMO systems. Most of the results on
fundamental limitations and controllability analysis for SISO systems also hold for MIMO systems with
the additional consideration of directions. Thus, we focus on results that hold exclusively for MIMO
systems or are non-trivial extensions of similar results for SISO systems. We £rst discuss fundamental
limitations on the sensitivity and complementary sensitivity functions imposed by the presence of RHP-
zeros. We then consider separately the issues of functional controllability, RHP-zeros, RHP-poles,
disturbances, input constraints and uncertainty. Finally, we summarize the main steps in a procedure
for analyzing the input–output controllability of MIMO plants.

6.1 Introduction
In a MIMO system, the plant gain, RHP-zeros, delays, RHP-poles and disturbances each
have directions associated with them. This makes it more dif£cult to consider their effects
separately, as we did in the SISO case, but we will nevertheless see that most of the SISO
results can be generalized.

We will quantify the directionality of the various effects in G and Gd by their output
directions:

• yz: output direction of a RHP-zero, G(z)uz = 0 · yz , see (4.71)
• yp: output direction of a RHP-pole, G(p)up =∞ · yp, see (4.64)
• yd: output direction of a disturbance, yd = 1

‖gd‖2 gd, see (6.42)
• ui: i’th output direction (singular vector) of the plant, Gvi = σiui, see (3.38)1

All these are l × 1 vectors where l is the number of outputs. yz and yp are £xed complex
vectors, while yd(s) and ui(s) are frequency dependent (s may here be viewed as a
generalized complex frequency; in most cases s = jω). The vectors are normalized such
that they have Euclidean length 1,

‖yz‖2 = 1, ‖yp‖2 = 1, ‖yd(s)‖2 = 1, ‖ui(s)‖2 = 1

1 Note that ui here is the i’th output singular vector, and not the i’th input.

Multivariable Feedback Control: Analysis and Design. Second Edition
S. Skogestad and I. Postlethwaite c© 2005, 2006 John Wiley & Sons, Ltd
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We may also consider the associated input directions of G. However, these directions are
usually of less interest since we are primarily concerned with the performance at the output
of the plant.

The angles between the various output directions can be quanti£ed using their inner
products: |yHz yp|, |yHz yd|, etc. The inner product gives a number between 0 and 1, and from
this we can de£ne the angle in the £rst quadrant, see (A.114). For example, the output angle
between a pole and a zero is

φ = cos−1 |yHz yp|
where cos−1 denotes arccos.

We assume throughout this chapter that the models have been scaled as outlined in
Section 1.4. The scaling procedure is the same as that for SISO systems, except that the
scaling factors Du, Dd, Dr and De are diagonal matrices with elements equal to the
maximum change in each variable ui, di, ri and ei. The control error in terms of scaled
variables is then

e = y − r = Gu+Gdd−Rr̃
where at each frequency we have ‖u(ω)‖max ≤ 1, ‖d(ω)‖max ≤ 1 and ‖r̃(ω)‖max ≤ 1, and
the control objective is to achieve ‖e(ω)‖max < 1.

Remark 1 Here ‖ · ‖max is the vector in£nity-norm: that is, the absolute value of the largest element in
the vector. This norm is sometimes denoted ‖ · ‖∞, but this is not used here to avoid confusing it with
the H∞ norm of the transfer function (where the∞ denotes the maximum over frequency rather than
the maximum over the elements of the vector).

Remark 2 As for SISO systems, we see that reference changes may be analyzed as a special case of
disturbances by replacing Gd by −R.

Remark 3 Whether various disturbances and reference changes should be considered separately or
simultaneously is a matter of design philosophy. In this chapter, we mainly consider their effects
separately, on the grounds that it is unlikely for several disturbances to attain their worst values
simultaneously. This leads to necessary conditions for acceptable performance, which involve the
elements of different matrices rather than matrix norms.

6.2 Fundamental limitations on sensitivity
6.2.1 S plus T is the identity matrix
From the identity S + T = I and (A.51), we get

|σ̄(S)− 1| ≤ σ̄(T ) ≤ σ̄(S) + 1 (6.1)

|σ̄(T )− 1| ≤ σ̄(S) ≤ σ̄(T ) + 1 (6.2)

These can be combined to get
|σ̄(S)− σ̄(T )| ≤ 1 (6.3)

Thus, the magnitudes of σ̄(S) and σ̄(T ) differ by at most 1 at a given frequency, so σ̄(S) is
large if and only if σ̄(T ) is large. For example, if σ̄(T ) is 5 at a given frequency, then σ̄(S)
must be between 4 and 6 at this frequency. The bounds (6.1) and (6.2) also show that we
cannot have both S and T small (close to 0) simultaneously.
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6.2.2 Interpolation constraints
RHP-zero. If G(s) has a RHP-zero at z with output direction yz , then for internal stability of
the feedback system the following interpolation constraints must apply:

yHz T (z) = 0; yHz S(z) = yHz (6.4)

In words, (6.4) says that T must have a RHP-zero in the same direction as G, and that S(z)
has an eigenvalue of 1 corresponding to the left eigenvector yz .

Proof of (6.4): From (4.71) there exists an output direction yz such that yHz G(z) = 0. For internal
stability, the controller cannot cancel the RHP-zero and it follows that L = GK has a RHP-zero in the
same direction, i.e. yHz L(z) = 0. Now S = (I + L)−1 is stable and has no RHP-pole at s = z. It then
follows from T = LS that yHz T (z) = 0 and yHz (I − S) = 0. 2

RHP-pole. If G(s) has a RHP-pole at p with output direction yp, then for internal stability
the following interpolation constraints apply:

S(p)yp = 0; T (p)yp = yp (6.5)

Proof of (6.5): The square matrix L(p) has a RHP-pole at s = p, and if we assume that L(s) has no
RHP-zeros at s = p then L−1(p) exists and from (4.75) there exists an output pole direction yp such
that

L−1(p)yp = 0 (6.6)
Since T is stable, it has no RHP-pole at s = p, so T (p) is £nite. It then follows, from S = TL−1, that
S(p)yp = T (p)L−1(p)yp = 0 and T (p) = (I − S(p))yp = yp. 2

Similar constraints apply to LI , SI and TI , but these are in terms of the input zero and pole
directions, uz and up.

6.2.3 Sensitivity integrals
For SISO systems we presented several integral constraints on sensitivity (the waterbed
effects). These may be generalized to MIMO systems by using the determinant or the singular
values of S, see Boyd and Barratt (1991) and Freudenberg and Looze (1988). For example,
the generalization of the Bode sensitivity integral in (5.5) may be written

∫ ∞

0

ln |detS(jω)|dω =
∑

j

∫ ∞

0

lnσj(S(jω))dω = π ·
Np∑

i=1

Re(pi) (6.7)

For a stable L(s), the integral is zero. Other generalizations are also available, see Chen
(1995), Zhou et al. (1996) and Chen (2000). However, although these integral relationships
are interesting, it seems dif£cult to derive concrete bounds on achievable performance from
them.

6.3 Fundamental limitations: bounds on peaks
Based on the interpolation constraints presented in Section 6.2.2, one may derive lower
bounds on various closed-loop transfer functions. The bounds are direct generalizations of
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those found for SISO systems, see page 172, and the comments and interpretations made for
SISO systems carry over directly if we take the directions into account. The results presented
in this section are from Section V in the paper by Chen (2000), unless otherwise stated. The
derivations of bounds of this kind go back to the work of Zames (1981).

6.3.1 Minimum peaks for S and T

In the following, MS,min and MT,min denote the lowest achievable values for ‖S‖∞ and
‖T‖∞, respectively, using any stabilizing controller K. That is, we de£ne

MS,min , min
K
‖S‖∞, MT,min , min

K
‖T‖∞

Theorem 6.1 Sensitivity and complementary sensitivity peaks. Consider a rational plant
G(s) (with no time delay). Let zi be the Nz RHP-zeros of G(s) with (unit) output zero
direction vectors yz,i. Let pi be the Np RHP-poles of G(s) with (unit) output pole direction
vectors yp,i. Furthermore, assume that zi and pi are all distinct. Then we have the following
tight lower bound on ‖S‖∞ and ‖T‖∞:

MS,min =MT,min =

√
1 + σ̄2

(
Q
−1/2
z QzpQ

−1/2
p

)
(6.8)

where the elements of the Nz ×Nz matrix Qz , Np×Np matrix Qp and Nz ×Np matrix Qzp

are given by Chen (2000) as

[Qz]ij =
yHz,iyz,j

zi + z̄j
, [Qp]ij =

yHp,iyp,j

p̄i + pj
, [Qzp]ij =

yHz,iyp,j

zi − pj
(6.9)

Note that (6.8) gives a tight bound for any number of RHP-poles and RHP-zeros.

Example 6.1 Consider the SISO plant

G(s) =
(s− 1)(s− 3)

(s− 2)(s+ 1)2

For this plant we have z1 = 1, z2 = 3, p1 = 2, and since this is a SISO
plant, all direction vectors yz and yp are 1. Since we have RHP-zeros close to the RHP-
pole we expect that control is fundamentally dif£cult. This is veri£ed from (6.8). In Mat-
lab, we write Qz = [1/2 1/4; 1/4 1/6]; Qp = [1/4]; Qpz = [-1 1]; msmin =
sqrt(1+svd(sqrtm(inv(Qp))*Qpz*sqrtm(inv(Qz)))∧2) and £ndMS,min = MT,min =
15. This also agrees with the bound (5.23) for a SISO plant with a single RHP-pole:

MS,min = MT,min =

Nz∏

j=1

|zj + p|
|zj − p| =

|1 + 2|
|1− 2| ·

|3 + 2|
|3− 2| = 3 · 5 = 15

We see from the factor yHz,jyp,i
zj−pi

in Qpz that the bound will be large if we have a RHP-pole
pi close to RHP-zero zj and with directions aligned such that yHz,jyp,i is not small.

Example 6.2 Consider the MIMO plant

Gα(s) =

[
1

s−p 0

0 1
s+3

][
cos(30o) − sin(30o)
sin(30o) cos(30o)

][ s−z
0.1s+1

0

0 s+2
0.1s+1

]
; z = 2, p = 3 (6.10)
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which is studied in more detail in Example 6.3 (page 227). The output direction vectors corresponding
to the RHP-zero at z = 2 and RHP-pole at p = 3 are, respectively,

yz =
[
0.327
0.945

]
, yp =

[
1
0

]

There is some alignment in output 1, since the RHP-zero has some effect in output 1 and the RHP-pole
has all its effect in output 1. This translates into unavoidable peaks for σ̄(S) and σ̄(T ). From (6.8) we
get MS,min = MT,min = 1.89; see Matlab code in Table 6.1.

Table 6.1: Matlab program for calculating sensitivity peak using (6.8)
% G: Has distinct and at least one RHP-zero and one RHP-pole
[ptot,ztot] = pzmap(G); % poles and zeros
p = ptot(find(ptot>0)); z = ztot(find(ztot>0)); % RHP poles and zeros
np = length(p); nz = length(z);
G = ss(G); [V,E] = eig(G.A); C = G.C*V; % output pole vectors
for i = 1:np

Yp(:,i) = C(:,i)/norm(C(:,i)); % pole directions
end
for i = 1:nz

[U,S,V] = svd(evalfr(G,z(i))); Yz(:,i) = U(:,end); % zero directions
end
Qp = (Yp’*Yp).*(1./(diag(p’)*ones(np) + ones(np)*diag(p)));
Qz = (Yz’*Yz).*(1./(diag(z)*ones(nz) + ones(nz)*diag(z’)));
Qzp = (Yz’*Yp).*(1./(diag(z)*ones(nz,np) - ....

ones(nz,np)*diag(p)));
Msmin = sqrt(1+norm(sqrtm(inv(Qz))*Qzp*sqrtm(inv(Qp)))∧2)

One RHP-pole and one RHP-zero. For a plant with one RHP-zero z and one RHP-pole
p, (6.8) gives (see e.g. Chen, 2000)

MS,min =MT,min =

√
sin2 φ+

|z + p|2
|z − p|2 cos2 φ (6.11)

where φ = cos−1 |yHz yp| is the angle between the output directions of the pole and zero. If
the pole and zero are aligned such that yz = yp and φ = 0, then (6.11) simpli£es to give the
SISO conditions in (5.23). Conversely, if the pole and zero are orthogonal to each other, then
φ = 90◦ and MS,min = MT,min = 1, and there is no additional penalty for having both a
RHP-pole and a RHP-zero.
Example 6.2 continued. For the plant in (6.10) we have yHz yp = 0.327 which gives φ =

cos−1 0.327 = 70.9o. Equation (6.11) then gives MS,min = MT,min = 1.89, which agrees with
the value obtained from (6.8).

The bound (6.8) can be extended to include weights. With no loss of generality we assume
that the weights W1(s) and W2(s) contain no RHP-poles or RHP-zeros and consider the
weighted functions W1SW2 and W1TW2.

Theorem 6.2 Weighted sensitivity and complementary sensitivity peaks. Consider a
rational plant G(s) with no time delay and no poles or zeros on the imaginary axis. Let
zi be the RHP-zeros of G(s) with (unit) output zero direction vectors yz,i. Let pi be the RHP-
poles of G(s) with (unit) output pole direction vectors yp,i. Furthermore, assume that zi and
pi are all distinct. De£ne

γS,min , inf
K
‖W1SW2‖∞, γT,min , inf

K
‖W1TW2‖∞
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Then
γS,min = λ1/2max

(
Q
−1/2
z1 (Qz2 +QH

zp2Q
−1
p2 Qzp2)Q

−1/2
z1

)
(6.12)

γT,min = λ1/2max

(
Q
−1/2
p2 (Qp1 +QH

zp1Q
−1
z1 Qzp1)Q

−1/2
p2

)
(6.13)

where λmax is the largest eigenvalue and the elements of the Q-matrices are given by

[Qz1]ij =
yHz,iW

−1
1 (zi)W

−H
1 (zj)yz,j

zi + z̄j
, [Qz2]ij =

yHz,iW2(zi)W2(zj)yz,j

zi + z̄j

[Qp1]ij =
yHp,iW

H
1 (pi)W1(pj)yp,j

p̄i + pj
, [Qp2]ij =

yHp,iW
−H
2 (pi)W

−1
2 (pj)yp,j

p̄i + pj

[Qzp1]ij =
yHz,iW

−1
1 (zi)W1(pj)yp,j

zi − pj
, [Qzp2]ij =

yHz,iW2(zi)W
−1
2 (pj)yp,j

zi − pj

For the case with a scalar weight, we have in particular the following direct generalizations
of the SISO results:

‖wPS‖∞ ≥ |wP (z)| (6.14)

‖wTT‖∞ ≥ |wT (p)| (6.15)

This shows that σ̄(S) cannot be shaped freely for a plant with a RHP-zero, and σ̄(T ) cannot
be shaped freely for a plant with a RHP-pole.

The bound for T in (6.8) can also be extended to include time delays at the plant output:

Theorem 6.3 Complementary sensitivity peak for plant with time delay. Consider a plant
with time delays in the output channels

Gθ(s) = Θ(s)G(s), Θ(s) = diag
(
e−θ1s, . . . , e−θns

)

whereG(s) is a rational transfer function matrix. Let zi be the RHP-zeros ofG(s) with (unit)
output zero direction vectors yz,i. Let pi be the RHP-poles of G(s) with (unit) output pole
direction vectors yp,i. Note that the directions are evaluated for the plant without the time
delay. Furthermore, assume that zi and pi are all distinct. Then we have the following tight
lower bound on ‖T‖∞:

MT,min = λmax

(
Q
−1/2
θ (Qp +QzpQ

−1
z QH

zp)Q
−1/2
θ

)
(6.16)

where the elements of the matrices Qz , Qp and Qzp are given in (6.9) and

[Qθ]ij =
yHp,iΘ(p̄i)Θ(pj)yp,j

p̄i + pj
(6.17)

There is no tight bound available for ‖S‖∞ for plants with time delays. However, σ̄(S)
and σ̄(T ) differ by at most 1, see (6.1), and we have

MT,min + 1 ≥MS,min ≥MT,min − 1 (6.18)

whereMT,min is given by (6.16). An application of the bound (6.16) for a SISO plant is given
in Example 5.1 (page 175).
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For a time delay plant with one RHP-zero z and one RHP-pole p, similar to (6.11), we have

MT,min =
1

‖Θ(p)yp‖2

√
sin2 φ+

|z + p|2
|z − p|2 cos2 φ (6.19)

where φ = cos−1 |yHz yp| is the angle between the output directions of the pole and zero of
G(s).

The following example illustrates that MIMO systems may be understood from the results
for SISO systems if we take directions into account.
Example 6.3 Consider the plant

Gα(s) =

[
1

s−p 0

0 1
s+3

] [
cosα − sinα
sinα cosα

]

︸ ︷︷ ︸
Uα

[
s−z

0.1s+1
0

0 s+2
0.1s+1

]
; z = 2, p = 3 (6.20)

which has for all values of α a RHP-zero at z = 2 and a RHP-pole at p = 3. For α = 0◦ the rotation
matrix Uα = I , and the plant consists of two decoupled subsystems

G0(s) =

[
s−z

(0.1s+1)(s−p) 0

0 s+2
(0.1s+1)(s+3)

]

Here the subsystem g11 has both a RHP-pole and a RHP-zero, and closed-loop performance is expected
to be poor. On the other hand, there are no particular control problems related to the subsystem g22.
Next, consider α = 90◦ for which we have

Uα =
[
0 −1
1 0

]
, and G90(s) =

[
0 − s+2

(0.1s+1)(s−p)
s−z

(0.1s+1)(s+3)
0

]

and we again have two decoupled subsystems, but this time in the off-diagonal elements. The main
difference, however, is that there is no interaction between the RHP-pole and RHP-zero in this case,
so we expect this plant to be easier to control. For intermediate values of α we do not have decoupled
subsystems, and there will be some interaction between the RHP-pole and RHP-zero.

Since in (6.20) the RHP-pole is located at the output of the plant, its output direction is £xed and we
£nd yp = [ 1 0 ]T for all values of α. On the other hand, the RHP-zero output direction changes from
[ 1 0 ]T for α = 0◦ to [ 0 1 ]T for α = 90◦. Thus, the angle φ between the pole and zero direction
also varies between 0◦ and 90◦, but φ and α are not equal. This is seen from the table below, where we
also give MS,min = MT,min, see (6.8) or (6.11), for four rotation angles, α = 0◦, 30◦, 60◦ and 90◦.

α 0◦ 30◦ 60◦ 90◦

yz

[
1
0

] [
0.33
−0.94

] [
0.11
−0.99

] [
0
1

]

φ = cos−1 |yHz yp| 0◦ 70.9◦ 83.4◦ 90◦

MS,min =MT,min 5.0 1.89 1.15 1.0
‖S‖∞ 7.00 2.60 1.59 1.98
‖T‖∞ 7.40 2.76 1.60 1.31

γmin(S/KS) 9.55 3.53 2.01 1.59

The table also shows the values of ‖S‖∞ and ‖T‖∞ obtained by anH∞ optimal S/KS design (see
page 94) using the following weights:

Wu = I; WP =

(
s/M + ω∗B

s

)
I; M = 2, ω∗B = 0.5 (6.21)
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Figure 6.1: MIMO plant (6.20) with angle φ between RHP-pole and RHP-zero. Response to step in
reference r = [1 − 1]T with H∞ controller for four different values of φ. Solid line: y1; dashed line:
y2.

The weight WP indicates that we require ‖S‖∞ less than 2, and require tight control up to a frequency
of about ω∗B = 0.5 rad/s. The minimumH∞ norm for the overall S/KS problem is given by the value
of γ in Table 6.3. The corresponding responses to a step change in the reference, r = [ 1 −1 ], are
shown in Figure 6.1.

Several things about the example are worth noting:
1. We see from the simulation for φ = α = 0◦ in Figure 6.1 that the response for y1 is very poor. This is

as expected because of the closeness of the RHP-pole and zero (z = 2, p = 3). The response for y2
is also relatively sluggish, because the H∞ design is only concerned with the worst-case response
in y1. The response for y2 may therefore be made faster, if desired.

2. For φ = α = 90o the RHP-pole and RHP-zero do not interact. From the simulation we see that y1
(solid line) has on overshoot due to the RHP-pole, whereas y2 (dashed line) has an inverse response
due to the RHP-zero.

3. The lower bound MS,min = MT,min on ‖S‖∞ and ‖T‖∞, see (6.8), is tight in the sense
that there exists a controller that achieves it. This can be con£rmed numerically by selecting
Wu = 0.01I , ω∗B = 0.01 and M = 1. Wu and ωB are small so the main objective is to
minimize the peak of S. We £nd with these weights that the H∞ designs for the four angles yield
‖S‖∞ = 5.04, 1.905, 1.155, 1.005, which are very close to MS,min.

4. The angle φ between the pole and zero is quite different from the rotation angle α at intermediate
values between 0◦ and 90◦. This is because of the in¤uence of the RHP-pole in output 1, which yields
a strong gain in this direction, and thus tends to push the zero direction towards output 2.

5. For α = 0◦ we have MS,min = MT,min = 5 so it is clearly impossible to get ‖S‖∞ less than 2,
as required by the performance weight WP . This is one reason why γmin = 9.55 is so large in this
case.

6. The H∞ optimal controller is unstable for α = 0◦ and 30◦. This is not altogether surprising,
because for α = 0◦ the plant becomes two SISO systems one of which needs an unstable controller
to stabilize it since p > z (see condition on page 150).
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6.3.2 Minimum peaks for other closed-loop transfer functions
In this section, we provide bounds on peaks for some other closed-loop transfer functions.
For motivation, we refer the reader to the discussion for SISO systems in Section 5.3.2 on
page 175. The results for MIMO systems are summarized in Table 6.3.2, where we also show
the performance and robustness reasons behind minimizing the peaks of different closed-loop
transfer functions. We frequently make use of minimum-phase and stable versions of the plant
and the disturbance models, and the details for their calculation can be found in Section A.6.

Bounds on SG. Theorem 6.2 can be used to calculate the peak value for SG with W1 = I
and W2 = Gms(s), where Gms(s) denotes the “minimum-phase, stable version” of G(s). In
particular, when the system has one RHP-zero z and one RHP-pole p, ‖SG‖∞ must satisfy

‖SG‖∞ ≥ ‖yHz Gms(s)‖
√

sin2 φ̃+
|z + p̄|2
|z − p|2 cos2 φ̃ (6.22)

where
cos φ̃ =

|yHz Gms(z)G
−1
ms(p)yp|

‖yHz Gms(z)‖2‖G−1ms(p)yp‖2
When G(s) is non-square (more inputs than outputs), the “pseudo-inverse” ofGms(s) can be
used to £nd bounds on ‖SG‖∞.

Bounds on SGd. In the general case, Gd 6= G and we also want to keep ‖SGd‖∞ small.
This case can be handled as for SG by replacing Gms by Gd,ms in (6.22), where Gd,ms(s)
denotes the “minimum-phase, stable version” of Gd(s).

Bounds on KS. Glover (1986) derived the tight bound on the transfer function KS,

‖KS‖∞ ≥ 1/σH(U(G)∗) (6.23)

where σH is the smallest Hankel singular value and U(G)∗ is the mirror image of the anti-
stable part of G (for a stable plant there is no lower bound).

A simpler bound is also available, since for any RHP-pole p, σH(U(G)∗) ≤ ‖uHp Gs(p)‖2,
where equality applies for a plant with a single real RHP-pole p. Here, up is the input pole
direction, and Gs is the “stable version” of G with its RHP-poles mirrored into the LHP, see
(5.27). This gives the bound (Havre and Skogestad, 2001)

‖KS‖∞ ≥ ‖uHp Gs(p)
−1‖2 (6.24)

which is tight for the case with a single RHP-pole.

Example 6.4 Consider the following multivariable plant:

G(s) =

[
s−z
s−p − 0.1s+1

s−p
s−z

0.1s+1
1

]
, with z = −2.5 and p = 2 (6.25)

The plant G has a RHP-pole p = 2 (plus a LHP-zero at z = −2.5 which poses no limitation). The
corresponding input and output pole directions are

up =
[

0.966
−0.258

]
, yp =

[
1
0

]
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The stable version of G(s) is given by

Gs(s) =

[
s+2.5
s+p

− 0.1s+1
s+2

s+2.5
0.1s+1

1

]

The input u resulting from measurement noise n, output disturbances dy and references r is given by
(e.g. see (2.21))

u = KS(r − dy − n)

From this it follows that we may need to bound the transfer function KS in order to avoid excessive
input signals u. However, in order to stabilize the plant we must from (6.24) have that

‖KS‖∞ ≥ ‖uHp Gs(p)
−1‖2 =

∥∥∥∥[ 0.966 −0.258 ]
[
1.125 −0.3
3.75 1

]−1∥∥∥∥
2

= 0.859

The bound is tight and agrees with the value found using (6.23); see Matlab code in Table 6.2. This
means, for example, that an input signal ‖u‖2 of magnitude 0.859 or higher is unavoidable if a
sinusoidal output disturbance of magnitude ‖dy‖2 = 1 hits the system at the “worst-case” frequency
and direction. Havre (1998) presents more details including state-space realizations for controllers that
achieve the bound.

Table 6.2: Matlab program for calculating peak value of KS for Example 6.4
% Uses Robust Control toolbox
s = tf(’s’);
g11=(s+2.5)/(s-2); g12=-(0.1*s+1)/(s-2); g21=(s+2.5)/(0.1*s+1); g22=1;
G = [g11 g12; g21 g22];
% Hankel singular value method (see (6.23))
[h1,h2] = hankelsv(G); % Hankel singular values
ksmin = 1/min(h2);
% Alternate method (see (6.24))
p=2;
gp=evalfr(G,p+0.0001); [U,S,V]=svd(gp); up=V(:,1); % crude method up
g11s=(s+2.5)/(s+2); g12s=-(0.1*s+1)/(s+2); g21s=(s+2.5)/(0.1*s+1); g22s=1;
Gs = [g11s g12s; g21s g22s];
ksmin1 = norm(up’*inv(evalfr(Gs,p)))

Exercise 6.1 Consider the plant in (6.25), but with z = 2.5 so that the plant now has a RHP-zero.
Compute lower bounds on ‖S‖∞, ‖T‖∞ and ‖KS‖∞.

Bounds on KSGd. For arbitrary disturbances the bound (6.23) can be generalized
as (Kariwala, 2004)

‖KSGd‖∞ ≥ 1/σH(U(G−1d,msG)
∗) (6.26)

where U(G−1d,msG)
∗ is the mirror image of the anti-stable part of G−1d,msG. Note that

any unstable modes in Gd must be contained in G such that they are stabilizable with
feedback control. Under the same condition, (6.24) can also be generalized to get (Havre
and Skogestad, 2001)

‖KSGd‖∞ ≥ |uHp Gs(p)
−1Gd,ms(p)| (6.27)

which is tight for a single RHP-pole p. The bounds on the peak value of KSGd for delay
systems can be found in Kariwala (2004).

Bounds on SI and TI . For multivariable systems, SI = (I + KG)−1 is different from
S = (I +GK)−1 and similarly TI is different from T . Thus, unlike SISO systems, the input
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sensitivity function SI and input complementary sensitivity function TI must be considered
separately from S and T , respectively. As shown in the previous section, the bounds on the
peak values for S and T can be calculated using Theorem 6.1. The same result also holds
for the input sensitivity SI and input complementary sensitivity function TI by replacing
the output pole and zero directions with the corresponding input pole and zero directions.
Similarly, by replacing yHp yz with uHp uz , when computing φ, (6.11) can be used to £nd tight
bounds on ‖SI‖∞ and ‖TI‖∞ for systems with one RHP-pole and one RHP-zero:

MSI ,min =MTI ,min =

√
sin2 φI +

|z + p|2
|z − p|2 cos2 φI (6.28)

where cosφI , |uHz up|.
Since TI = KG(I + KG)−1 = K(I + GK)−1G = KSG is the closed-loop transfer

function from the input disturbances to the controller output (see page 69), the bound on the
peak value for TI can be alternatively calculated as a special case of (6.26) and (6.27). Note
that, for a minimum-phase system, Gms = Gs and it follows from (6.27) that in this case
|uHp Gs(p)

−1Gd,ms(p)| = |uHp | = 1 and we have that ‖TI‖∞ ≥ 1. This bound is tight for
any number of unstable poles for minimum-phase systems (Kariwala, 2004).

For many practical systems, bounding one of S and SI (or one of T and TI ) also bounds
the other, but this is not true in general, as shown by the next example.

Example 6.5 Consider the following multivariable plant:

G(s) =

[ s−z
s−p 1

0.01(s−z)
s+10

0.01

]
(6.29)

The plant G has a RHP-pole at s = p and a RHP-zero at s = z. Since the pole appears in the (1, 1)
element and the zero only in the £rst column of G(s), we have

up =
[
1
0

]
, yp =

[
1
0

]
, uz =

[
1
0

]
, yz ≈

[
0.01
0.99

]

for all values of z and p. Note that yHp yz ≈ 0.01 and uHp uz = 1. It follows from (6.11) and (6.28)
that when p and z are located close to each other, ‖SI‖∞ and ‖TI‖∞ will be much larger than ‖S‖∞
and ‖T‖∞. For example, with p = 2 and z = 2.1, we have MS,min = MT,min ≈ 1 (achievable peak
values of ‖S‖∞ and ‖T‖∞), but from (6.28), ‖SI‖∞ and ‖TI‖∞ must be larger than 6.4.

This concludes this section on fundamental limitations. Later, in this chapter, we discuss
the control implications of these results in more detail.

6.4 Functional controllability
Consider a plant G(s) with l outputs and let r denote the normal rank of G(s). In order
to control all outputs independently we must require r = l and the plant is said to be
“functionally controllable”. This term was introduced by Rosenbrock (1970, p. 170) for
square systems. Other terms used for functional controllability are “right invertibility”,
“output realizability” and “output controllability”. We will use the following de£nition:
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De£nition 6.1 Functional controllability. An m-input l-output plant G(s) is functionally
controllable if the normal rank of G(s), denoted r, is equal to the number of outputs (r = l);
that is, if G(s) has full row rank. A plant is functionally uncontrollable if r < l.

The normal rank of G(s) is the rank of G(s) at all values of s except at a £nite number
of singularities (which are the zeros of G(s)). The minimal requirement for functional
controllability is that we have at least as many inputs as outputs, i.e. m ≥ l.

A plant is functionally uncontrollable if and only if σl(G(jω)) = 0,∀ω. As a measure
of how close a plant is to being functionally uncontrollable we may therefore consider the
minimum singular value σl(G(jω)). The only example of a SISO plant which is functionally
uncontrollable is G(s) = 0. Similarly, a MIMO plant is functionally uncontrollable if the
gain is identically zero in some output direction at all frequencies.

For strictly proper plants, G(s) = C(sI − A)−1B, we have that G(s) is functionally
uncontrollable if rank(B) < l (the system is input de£cient), or if rank(C) < l (the system
is output de£cient), or if rank(sI − A) < l (fewer states than outputs). This follows since
the rank of a product of matrices is less than or equal to the minimum rank of the individual
matrices, see (A.36).

In most cases functional uncontrollability is a structural property of the plant; that is, it
does not depend on speci£c parameter values, and it may often be evaluated from cause-and-
effect graphs. A typical example of this is when none of the inputs ui affect a particular output
yj which would be the case if one of the rows in G(s) was identically zero. Another example
is when there are fewer inputs than outputs.

If the plant is not functionally controllable, i.e. r < l, then there are l−r output directions,
denoted y0, which cannot be affected. These directions will vary with frequency, and we have
(analogous to the concept of a zero direction)

yH0 (jω)G(jω) = 0 (6.30)

From an SVD of G(jω) = UΣV H , the uncontrollable output directions y0(jω) are the
last l − r columns of U(jω). By analyzing these directions, an engineer can then decide on
whether it is acceptable to keep certain output combinations uncontrolled, or if additional
actuators are needed to increase the rank of G(s).

Example 6.6 The following plant is singular and thus not functionally controllable:

G(s) =

[
1

s+1
2

s+1
2

s+2
4

s+2

]

This is easily seen since column 2 of G(s) is two times column 1. The uncontrollable output directions
at low and high frequencies are, respectively,

y0(0) =
1√
2

[
1
−1

]
; y0(∞) =

1√
5

[
2
−1

]

6.5 Limitations imposed by time delays
As for SISO systems, time delays normally introduce limitations in MIMO systems, but there
are exceptions. As an example of a limitation, let θij denote the time delay in the ij’th element
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of G(s). Then a lower bound on the time delay for output i is given by the smallest delay in
row i of G(s), i.e.

θmin
i = min

j
θij

This bound is obvious since θmin
i is the minimum time for any input to affect output i, and

θmin
i can be regarded as a delay pinned to output i.

Holt and Morari (1985a) have derived additional bounds, but their usefulness is sometimes
limited since they assume a decoupled closed-loop response (which is usually not desirable
in terms of overall performance) and also assume in£nite power in the inputs.

Exceptions. For MIMO systems we have the surprising result that an increased time delay
may sometimes improve the achievable performance. As a simple example, consider the plant

G(s) =
[

1 1
e−θs 1

]
(6.31)

With θ = 0, the plant is singular (not functionally controllable), and controlling the two
outputs independently is clearly impossible. On the other hand, for θ > 0, effective feedback
control is possible at high frequencies, provided the bandwidth is larger than about 1/θ.
That is, for this example, control is easier the larger θ is. In words, the presence of the
delay decouples the initial (high-frequency) response, so we can obtain tight control if the
controller reacts within this initial time period. To illustrate this, we may compute the singular
values of G as a function of frequency, and note that the minimum singular value is 0 at low
frequencies, but increases with frequency and attains a maximum value of 1.41 at frequency
π/θ.

Exercise 6.2 Simulate the closed-loop response of the plant (6.31) for the setpoint changes r1 =
[
1
0

]

and r2 =
[
1
1

]
using a simple diagonal controller, K = k

s
I with kθ = 0.1, 1 and 10. Plot the responses

of both the inputs and outputs with θ = 1. Why is control much better with r2 as compared to r1?

Exercise 6.3 ∗ To illustrate further the above arguments, compute the sensitivity function S for the
plant (6.31) and K = k

s
I . Use the approximation e−θs ≈ 1 − θs to show that at low frequencies the

elements of S(s) are of magnitude 1/(kθ + 2). How large must k be to have acceptable performance
(less than 10% offset at low frequencies)? What is the corresponding bandwidth? (Answer: Need
k > 8/θ. Bandwidth is equal to k.)

Remark 1 The observant reader may have noticed that the smallest singular value of G(s) in (6.31)
drops to zero periodically at high frequencies, as e−jωθ = 1 for ωθ = 2πn, n = 0, 1, 2, . . .. This will
cause “ringing” irrespective of the bandwidth, as seen from the simulations.

Remark 2 The reader may also have noticed that G(s) in (6.31) is singular at s = 0 (even with θ
non-zero) and thus has a zero at s = 0. Therefore, a controller with integral action which cancels this
zero yields an internally unstable system (e.g. the transfer function KS contains an integrator). This
internal instability will manifest itself as integrating input signals that will eventually go to in£nity. To
“£x” these results, we may assume that the plant has an integrator in each element. Then, one of the
integrators will cancel the zero at s = 0 and the resulting steady-state gain is £nite in one direction and
in£nite in another. Alternatively, we may assume that e−θs is replaced by 0.99e−θs so that the plant is
not singular at steady-state (but it is close to singular).

Remark 3 A physical example of a model in the form of (6.31) is a distillation column where θ
represents the time for a change in liquid ¤ow at the top to reach the bottom of the column.



LIMITATIONS IN MIMO SYSTEMS 235

Exercise 6.4 Repeat Exercise 6.2 with e−θs replaced by 0.99(1− θ
2n
s)n/(1 + θ

2n
s)n (where n = 2

is the order of the Padé approximation). Also plot the elements of S(jω) as functions of frequency for
k = 0.1/θ, k = 1/θ and k = 8/θ. Notice that there is no ringing here as G(s) is singular only at
ω =∞.

6.6 Limitations imposed by RHP-zeros
RHP-zeros are common in many practical multivariable problems. The limitations they
impose are similar to those for SISO systems, although often not quite so serious because
they only apply in particular directions.

For ideal ISE optimal control (the “cheap” LQR problem), the SISO result ISE = 2/z from
Section 5.5 can be generalized. Qiu and Davison (1993) show for a MIMO plant with RHP-
zeros at zi that the ideal ISE value (the “cheap” LQR cost function) for a step disturbance,
or step reference, is directly related to

∑
i 2/zi. Thus, as for SISO systems, RHP-zeros close

to the origin imply poor control performance.
The limitations of a RHP-zero located at z may also be derived from the bound

‖wPS(s)‖∞ = max
ω
|wP (jω)| · σ̄(S(jω)) ≥ |wP (z)| (6.32)

where wP (s) is a scalar weight. All the results derived in Section 5.7.3 for SISO systems
therefore generalize if we consider the “worst” direction corresponding to the maximum
singular value, σ̄(S). For instance, by selecting the weight wP (s) such that we require
tight control at low frequencies and a peak for σ̄(S) less than 2, we derive from (5.51)
that the bandwidth (in the “worst” direction) must for a real RHP-zero satisfy ω∗B < z/2.
Alternatively, if we require tight control at high frequencies, then we must from (5.57) satisfy
ω∗B > 2z. The reader is also referred to Exercise 6.5, which gives the trade-off between the
performances of different output for plants with a RHP-zero.

Remark 1 The use of a scalar weightwP (s) in (6.32) is somewhat restrictive. However, the assumption
is less restrictive if one follows the scaling procedure in Section 1.4 and scales all outputs by their
allowed variations such that their magnitudes are of approximately equal importance.

Remark 2 Note that condition (6.32) involves the maximum singular value (which is associated
with the “worst” direction), and therefore the RHP-zero may not be a limitation in other directions.
Furthermore, we may to some extent choose the worst direction. This is discussed next.

Exercise 6.5 ∗ For a system L = GK with a single real RHP-zero z with input direction uz and a
diagonal performance weight matrix WP , show that the requirement ‖WPS‖∞ < 1 implies

∑

i

|wP,i(z)|2|uz,i|2 < 1 (6.33)

If wP,i is given by (5.50) and wP,j = 0, i 6= j (arbitrarily poor control of all outputs other than yi),
show that tight control of yi at low frequencies imposes the following limitation on ω∗B,i:

ω∗B,i < z

(
1

uz,i
− 1

M

)
(6.34)
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6.6.1 Moving the effect of a RHP-zero to a speci£c output
In MIMO systems, one can often move the deteriorating effect of a RHP-zero to a less
important output. This is possible because, although the interpolation constraint yHz T (z) = 0
imposes a certain relationship between the elements within each column of T (s), the columns
of T (s) may still be selected independently. Let us £rst consider an example to motivate the
results that follow. Most of the results in this section are from Holt and Morari (1985b) where
further extensions can also be found.
Example 3.17 continued. Consider the plant

G(s) =
1

(0.2s+ 1)(s+ 1)

[
1 1

1 + 2s 2

]

which has a RHP-zero at s = z = 0.5. This is the same plant considered on page 96, where we
performed someH∞ controller designs. The output zero direction satis£es yHz G(z) = 0 and we £nd

yz =
1√
5

[
2
−1

]
=

[
0.89
−0.45

]

Any allowable T (s) must satisfy the interpolation constraint yHz T (z) = 0 in (6.4), and this imposes
the following relationships between the column elements of T (s):

2t11(z)− t21(z) = 0; 2t12(z)− t22(z) = 0 (6.35)

We will consider reference tracking y = Tr and examine three possible choices for T : T0 diagonal
(a decoupled design), T1 with output 1 perfectly controlled, and T2 with output 2 perfectly controlled.
Of course, we cannot achieve perfect control in practice, but we make the assumption to simplify our
argument. In all three cases, we require perfect tracking at steady-state, i.e. T (0) = I .

A decoupled design has t12(s) = t21(s) = 0, and to satisfy (6.35) we then need t11(z) = 0 and
t22(z) = 0, so the RHP-zero must be contained in both diagonal elements. One possible choice, which
also satis£es T (0) = I , is

T0(s) =

[ −s+z
s+z

0

0 −s+z
s+z

]
(6.36)

For the two designs with one output perfectly controlled we choose

T1(s) =

[
1 0
β1s
s+z

−s+z
s+z

]
T2(s) =

[ −s+z
s+z

β2s
s+z

0 1

]

The basis for the last two selections is as follows. For the output which is not perfectly controlled, the
diagonal element must have a RHP-zero to satisfy (6.35), and the off-diagonal element must have an
s-term in the numerator to give T (0) = I . To satisfy (6.35), we must then require for the two designs

β1 = 4, β2 = 1

The RHP-zero has no effect on output 1 for design T1(s), and no effect on output 2 for design T2(s).
We therefore see that it is indeed possible to move the effect of the RHP-zero to a particular output.
However, we must pay for this by having to accept some interaction. We note that the magnitude of the
interaction, as expressed by βk, is largest for the case where output 1 is perfectly controlled (β1 = 4).
This is reasonable since the zero output direction yz = [ 0.89 −0.45 ]T is mainly in the direction
of output 1, so we have to “pay more” to push its effect to output 2. This was also observed in the
controller designs in Section 3.6; see Figure 3.12 on page 97.

We see from the above example that by requiring a decoupled response from r to y, as
in design T0(s) in (6.36), we have to accept that the multivariable RHP-zero appears as a
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RHP-zero in each of the diagonal elements of T (s), i.e. whereas G(s) has one RHP-zero at
s = z, T0(s) has two. In other words, requiring a decoupled response generally leads to the
introduction of additional RHP-zeros in T (s) which are not present in the plant G(s).

We also see that we can move the effect of the RHP-zero to a particular output, but we then
have to accept some interaction. This is stated more exactly in the following theorem.

Theorem 6.4 Assume that G(s) is square, functionally controllable and stable and has a
single RHP-zero at s = z and no RHP-pole at s = z. Then if the k’th element of the output
zero direction is non-zero, i.e. yzk 6= 0, it is possible to obtain “perfect” control on all
outputs j 6= k with the remaining output exhibiting no steady-state offset. Speci£cally, T can
be chosen of the form

T (s) =




1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
...

...

β1s
s+z

β2s
s+z

· · · βk−1s

s+z
−s+z
s+z

βk+1s

s+z
· · · βns

s+z

...
. . .

...
0 0 · · · 0 0 0 · · · 1




(6.37)

where
βj = −2

yzj
yzk

for j 6= k (6.38)

Proof: It is clear that (6.37) satis£es the interpolation constraint yHz T (z) = 0; see also Holt and Morari
(1985b). 2

The effect of moving completely the effect of a RHP-zero to output k is quanti£ed by (6.38).
We see that if the zero is not “naturally” aligned with this output, i.e. if |yzk| is much smaller
than 1, then the interactions will be signi£cant, in terms of yielding some βj = −2yzj/yzk
much larger than 1 in magnitude. In particular, we cannot move the effect of a RHP-zero to an
output corresponding to a zero element in yz , which occurs frequently if we have a RHP-zero
pinned to a subset of the outputs.

Exercise 6.6 ∗ Consider the plant
G(s) =

[
α 1
1

s+1
α

]
(6.39)

(a) Find the zero and its output direction. (Answer: z = 1
α2
− 1 and yz = [−α 1 ]T .)

(b) Which values of α yield a RHP-zero, and which of these values is best/worst in terms of achievable
performance? (Answer: We have a RHP-zero for |α| < 1. Best for α = 0 with zero at in£nity; if control
at steady-state is required then worst for α = 1 with zero at s = 0.)
(c) Suppose α = 0.1. Which output is the most dif£cult to control? Illustrate your conclusion using
Theorem 6.4. (Answer: Output 2 is the most dif£cult since the zero is mainly in that direction; we get
strong interaction with β = 20 if we want to control y2 perfectly.)

Exercise 6.7 Repeat the above exercise for the plant

G(s) =
1

s+ 1

[
s− α 1

(α+ 2)2 s− α

]
(6.40)
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6.7 Limitations imposed by unstable (RHP) poles
For unstable plants we need feedback for stabilization and a non-zero minimum value of
‖KS‖∞ is also unavoidable; see (6.24). More precisely, from (6.5) the presence of an
unstable pole p requires for internal stability T (p)yp = yp , where yp is the output pole
direction. As for SISO systems (see page 192) this imposes the following two limitations:

1. RHP-pole limitation on input usage. For an unstable system, the transfer function KS
(from measurement noise n or output disturbances dy to plant inputs u) must satisfy
(Havre and Skogestad, 2001)

‖KS‖∞ ≥ |G−1s (p)| (6.41)

which is tight for the case of a single real RHP-pole p. A tighter lower bound for a system
with multiple unstable poles is given by (6.23).

2. RHP-pole limitation on bandwidth. To stabilize a plant, we need to react suf£ciently fast,
and we require that σ̄(T (jω)) is about 1, or larger, up to the frequency 2|p|, approximately.

The limitation on the bandwith follows from the bound

‖wT (s)T (s)‖∞ ≥ |wT (p)|

and shows that a RHP-pole p imposes restrictions on σ̄(T ), which are identical to those
derived on |T | for SISO systems in Section 5.9.

6.8 Performance requirements imposed by disturbances
For SISO systems we found that large and “fast” disturbances require tight control and a
large bandwidth. The same results apply to MIMO systems, but again the issue of directions
is important.

De£nition 6.2 Disturbance direction. Consider a single (scalar) disturbance and let the
vector gd represent its effect on the outputs (y = gdd). The disturbance direction is de£ned
as

yd =
1

‖gd‖2
gd (6.42)

The associated disturbance condition number is de£ned as

γd(G) = σ̄(G) σ̄(G†yd) (6.43)

Here G† is the pseudo-inverse, which is G−1 for a non-singular G.

Remark. We use gd (rather than Gd) to show that we consider a single disturbance, i.e. gd is a vector.
For a plant with many disturbances gd is a column of the matrix Gd.

The disturbance condition number provides a measure of how a disturbance is aligned with
the plant. It may vary between 1 (for yd = ū) if the disturbance is in the “good” direction,
and the condition number γ(G) = σ̄(G)σ̄(G†) (for yd = u) if it is in the “bad” direction.
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Here ū and u are the output directions in which the plant has its largest and smallest gains,
respectively; see Chapter 3.

In the following, let r = 0 and assume that the disturbance has been scaled such that at
each frequency the worst-case disturbance may be selected as |d(ω)| = 1. Also assume that
the outputs have been scaled such that the performance objective is that at each frequency the
2-norm of the error should be less than 1, i.e. ‖e(ω)‖2 < 1. With feedback control e = Sgdd
and the performance objective is then satis£ed if

‖Sgd‖2 = σ̄(Sgd) < 1 ∀ω ⇔ ‖Sgd‖∞ < 1 (6.44)

For SISO systems, we used this to derive tight bounds on the sensitivity function and the
loop gain: |S| < 1/|Gd| and |1 + L| > |Gd|. A similar derivation is complicated for MIMO
systems because of directions. To see this, we can use (6.42) to get the following requirement,
which is equivalent to (6.44):

‖Syd‖2 < 1/‖gd‖2 ∀ω (6.45)

which shows that S must be less than 1/‖gd‖2 only in the direction of yd. We can also derive
bounds in terms of the singular values of S. Since gd is a vector we have from (3.42)

σ(S)‖gd‖2 ≤ ‖Sgd‖2 ≤ σ̄(S)‖gd‖2 (6.46)

Now σ(S) = 1/σ̄(I + L) and σ̄(S) = 1/σ(I + L), and we therefore have the requirement:

• For acceptable performance (‖Sgd‖2 < 1) we must at least require that σ̄(I + L) is larger
than ‖gd‖2 and we may have to require that σ(I + L) is larger than ‖gd‖2.

Plant with RHP-zero. If G(s) has a RHP-zero at s = z then the performance may be
poor when the disturbance is aligned with the output direction of this zero. To see this use
yHz S(z) = yHz and apply the maximum modulus principle to f(s) = yHz Sgd to get

‖Sgd‖∞ ≥ |yHz gd(z)| = |yHz yd| · ‖gd(z)‖2 (6.47)

To satisfy ‖Sgd‖∞ < 1, we must then for a given disturbance d at least require

|yHz gd(z)| < 1 (6.48)

where yz is the direction of the RHP-zero. This provides a generalization of the SISO
condition |Gd(z)| < 1 in (5.78). For combined disturbances, the condition is ‖yHz Gd(z)‖2 <
1.

Remark. In the above development we consider at each frequency performance in terms of ‖e‖2
(the 2-norm). However, the scaling procedure presented in Section 1.4 leads naturally to the vector
max-norm as the way to measure signals and performance. Fortunately, this difference is not too
important, and we will neglect it in the following. The reason is that for an m × 1 vector a we have
‖a‖max ≤ ‖a‖2 ≤

√
m ‖a‖max (see (A.95)), so the values of max- and 2-norms are at most a factor

of
√
m apart.

Example 6.7 Consider the following plant and disturbance models:

G(s) =
1

s+ 2

[
s− 1 4
4.5 2(s− 1)

]
, gd(s) =

6

s+ 2

[
k
1

]
, |k| ≤ 1 (6.49)
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It is assumed that the disturbance and outputs have been appropriately scaled, and the question is
whether the plant is input–output controllable, i.e. whether we can achieve ‖Sgd‖∞ < 1, for any value
of |k| ≤ 1. G(s) has a RHP-zero z = 4 and in Example 4.13 on page 140 we have already computed
the zero direction. From this we get

|yHz gd(z)| =
∣∣∣∣[ 0.83 −0.55 ] ·

[
k
1

]∣∣∣∣ = |0.83k − 0.55|

and from (6.48) we conclude that the plant is not input–output controllable if |0.83k − 0.55| > 1, i.e.
if k < −0.54. We cannot really conclude that the plant is controllable for k > −0.54 since (6.48) is
only a necessary (and not suf£cient) condition for acceptable performance, and there may also be other
factors that determine controllability, such as input constraints which are discussed next.

6.9 Limitations imposed by input constraints
Constraints on the manipulated variables can limit the ability to reject disturbances and track
references, and to stabilize the plant. As was done for SISO plants in Chapter 5, we will
consider the case of perfect control (e = 0) and then of acceptable control (‖e‖ ≤ 1). We
derive the results for disturbances, and the corresponding results for reference tracking are
obtained by replacing Gd by −R. The results in this section apply to both feedback and
feedforward control.

Remark. For MIMO systems the choice of vector norm, ‖ · ‖, to measure the vector signal magnitudes
at each frequency makes some difference. The vector max-norm (largest element) is the most natural
choice when considering input saturation and is also the most natural in terms of our scaling procedure.
However, for mathematical convenience we will also consider the vector 2-norm (Euclidean norm). In
most cases, the difference between these two norms is of little practical signi£cance.

6.9.1 Inputs for perfect control
We consider the question: can the disturbances ‖d‖ ≤ 1 be rejected perfectly (e = 0) while
maintaining ‖u‖ ≤ 1? To answer this, we must quantify the set of possible disturbances and
the set of allowed input signals. We will consider both the max-norm and 2-norm.

Max-norm and square plant. For a square plant the input needed for perfect disturbance
rejection is u = −G−1Gdd (as for SISO systems). Consider a single disturbance (gd is a
vector). Then the worst-case disturbance is |d(ω)| = 1, and we get that input saturation is
avoided (‖u‖max ≤ 1) if all elements in the vector G−1gd are less than 1 in magnitude; that
is,

‖G−1gd‖max ≤ 1,∀ω
For simultaneous disturbances (Gd is a matrix), the corresponding requirement is

‖G−1Gd‖i∞ ≤ 1,∀ω (6.50)

where ‖ · ‖i∞ is the induced max-norm (induced∞-norm, maximum row sum, see (A.106)).
However, it is usually recommended in a preliminary analysis to consider one disturbance
at a time, e.g. by plotting as a function of frequency the individual elements of the matrix
G−1Gd. This yields more information about which particular input is most likely to saturate
and which disturbance is the most problematic.
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Two-norm. We measure both the disturbance ‖d‖2 ≤ 1 and the input in terms of the 2-
norm. Assume that G has full row rank so that the outputs can be perfectly controlled. Then
the smallest inputs (‖u‖2) needed for perfect disturbance rejection are

u = −G†Gdd (6.51)

where G† = GH(GGH)−1 is the Moore–Penrose pseudo-inverse from (A.65). Then with
a single disturbance we require ‖G†gd‖2 ≤ 1. With combined disturbances we require
σ̄(G†Gd) ≤ 1; that is, the induced 2-norm is less than 1, see (A.107).

For combined reference changes, ‖r̃(ω)‖2 ≤ 1, the corresponding condition for perfect
control with ‖u‖2 ≤ 1 becomes σ̄(G†R) ≤ 1, or equivalently (see (A.63))

σ(R−1G) ≥ 1, ∀ω ≤ ωr (6.52)

where ωr is the frequency up to which reference tracking is required. Usually R is diagonal
with all elements larger than 1, and we must at least require

σ(G(jω)) ≥ 1,∀ω ≤ ωr (6.53)

or, more generally, we want σ(G(jω)) large.

6.9.2 Inputs for acceptable control
It is possible to generalize the results applicable for SISO systems in Section 5.11.2 to MIMO
systems using the singular values. The main result is summarized below and the details of the
derivation can be found in the £rst edition of this book (Skogestad and Postlethwaite, 1996).

Let r = 0 and consider the response e = Gu+Gdd to a disturbance d. We require ‖e‖ < 1
for any ‖d‖ ≤ 1 using inputs with ‖u‖ ≤ 1. We use here the max-norm, ‖ · ‖max (the vector
in£nity-norm), for the vector signals. To simplify the problem, we consider this problem
frequency by frequency and one disturbance at a time, i.e. d is a scalar and gd a vector. The
worst-case disturbance is then |d| = 1 and the problem at each frequency is to compute

Umin , min
u
‖u‖max such that ‖Gu+ gdd‖max ≤ 1, |d| = 1 (6.54)

At each frequency the SVD of the plant (which may be non-square) is G = UΣV H . We
then have that each singular value of G, σi(G), must approximately satisfy

σi(G) ≥ |uHi gd| − 1, at frequencies where |uHi gd| > 1 (6.55)

where ui is the i’th output singular vector of G, Note that (6.55) is approximate and is a
necessary condition for achieving acceptable control.

6.9.3 Inputs for stabilization
Active use of inputs is needed to stabilize an unstable plant and from (6.24) we must require
‖KS‖∞ ≥ (1/σH) ≥ ‖uHp Gs(p)

−1‖2 where KS is the transfer function from measurement
noise and output disturbances to plant inputs, i.e. u = −KS(d + n). If the required inputs
exceed their constraints then stabilization is most likely not possible.
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6.10 Limitations imposed by uncertainty
As discussed for SISO systems in Section 5.12, the presence of uncertainty requires us to
use feedback control rather than just feedforward control. With MIMO systems there is an
additional problem in that there is also uncertainty associated with the plant directionality.
The main objective of this section is to introduce some simple tools, like the RGA and
the condition number, which are useful in picking out plants for which one might expect
sensitivity to multivariable (directional) uncertainty.

Consider the actual (uncertain) plant G′ and the two-degrees of freedom controller
u′ = K(r − y′)Krr. Here K is the feedback controller and Kr the feedforward controller
for references, see Figure 2.5. For simplicity, we only consider feedforward control for
references, but the analysis may easily be extended to distrubances. The resulting control
error e′ in response to a reference change r is, see (2.28),

e′ = y′ − r = −S′S′rr (6.56)

where S = (I +′ GK)−1 is the (feedback) sensitivity function and S ′r = I − G′Kr is
the feedforward sensitivity function. Without feedback control (K = 0) we have S ′ = I ,
and without feedforward control (Kr = 0) we have S′r = I . For good performance (‖e′‖2
small) we want σ̄(S′) and σ̄(S′r) small, but this may be dif£cult with model uncertainty,
as is discussed in more detail below; see Sections 6.10.2 (feedforward control) and 6.10.4
(feedback control). We will derive upper bounds on σ̄(S ′r) and σ̄(S′), which involve the
condition numbers

γ(G) =
σ̄(G)

σ(G)
, γ∗I (G) = min

DI

γ(GDI), (6.57)

The minimized condition number γ∗I (G) may be computed using (A.75). Similarly, we state
for both feedback and feedforward control, lower bounds in terms of the RGA matrix of the
plant.

Remark. In Chapter 8, we discuss more exact methods for analyzing performance with almost any
kind of uncertainty and a given controller. This involves analyzing robust performance by use of the
structured singular value. However, in this section the treatment is kept at a more elementary level as
we look for results that depend on the plant only.

6.10.1 Input and output uncertainty
In practice, the difference between the true perturbed plantG′ and the plant modelG is caused
by a number of different sources. In this section, we focus on input uncertainty and output
uncertainty. In a multiplicative (relative) form, the output and input uncertainties (as in Figure
6.2) are given by2

Output uncertainty: G′ = (I + EO)G or EO = (G′ −G)G−1 (6.58)
Input uncertainty: G′ = G(I + EI) or EI = G−1(G′ −G) (6.59)

2 In this book we use ∆ to represent normalized uncertainty which is norm-bounded to be less than 1, whereas
E = |ε|∆ is not normalized. We often use a weight |w| = |ε| = σ̄(E) to represent the magnitude of the
uncertainty.
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In addition, we will for completeness consider additive uncertainty

G′ = G+ EA or EA = G′ −G (6.60)

although this is generally not a good uncertainty description because it is dif£cult to quantify
the magnitude of EA. If all the elements in the matrices EI , EO or EA are non-zero, then
we have full-block (“unstructured”) uncertainty. However, unstructured uncertainty is often a
poor (conservative) assumption for multivariable plants. We will therefore focus on diagonal
input and output uncertainty, where EI or EO are diagonal matrices. This uncertainty is
usually caused by uncertainty in the individual input or output channels. For example,

EI = diag{ε1, ε2, . . .} (6.61)

where εi is the relative uncertainty in input channel i. Typically, the magnitude of εi is 0.1 or
larger. It is important to stress that diagonal input and output uncertainty is always present in
real systems. Of these, we will show that diagonal input uncertainty is usually the worst for
control, because performance is measured at the plant output.

- -

? ?- ---

EI Eo

G
+

+
+

+

Figure 6.2: Plant with multiplicative input and output uncertainty

6.10.2 Effect of uncertainty on feedforward control
We consider here the effect of uncertainty when we use “perfect” (inverse based) feedforward
control. We use the feeforward controller u = Krr and assume that the plant G is invertible
so that we can select

Kr = G−1

For the nominal case with no uncertainty we then achieve perfect control with Sr = 0; that is,
e = y − r = (GKr − I)r = −Srr = 0. However, for the actual plant G′ (with uncertainty)
the control error becomes

e′ = (G′G−1 − I)r = −S′rr
and we get for the three sources of uncertainty

Output uncertainty: − S′r = EO (6.62)
Input uncertainty: − S′r = GEIG

−1 (6.63)
Additive uncertainty: − S′r = EAG

−1 (6.64)

For feedforward control to be effective (at a given frequency) we must require σ̄(S ′r) ≤ 1. We
derive the following upper bounds for the three sources of uncertainty:

Output uncertainty: σ̄(S′r) = σ̄(EO) (6.65)
Input uncertainty: σ̄(S′r) ≤ σ̄(EI) γ(G) (6.66)
Additive uncertainty: σ̄(S′r) ≤ σ̄(EA)/σ(G) (6.67)
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where we have used σ̄(G−1) = 1/σ(G) and introduced the condition number γ(G) =
σ̄(G)/σ(G). The bounds are tight (i.e. equality can always be achieved) if we assume that
any “full-block” uncertainty EO, EI or EA of a given magnitude is allowed. For output
uncertainty, (6.62) is identical to the result that can be derived for SISO systems (see
page 204), and we must require for effective use of feeforward control that the relative output
uncertainty is less than 1. For input uncertainty, the norm of the matrix GEIG

−1 can be a
factor γ(G) larger than the norm of EI , and for a large γ(G) we must require that the relative
input uncertainty is much less than 1. However, inequalities (6.66) and (6.67) are generally
conservative because it is not likely in practice than any full-block uncertainty of a given
magnitude is possible.

Diagonal input uncertainty. We will therefore focus on diagonal input uncertainty, which
always occurs in practice, and which may severely limit multivariable performance with
feedforward control. In particular, we will show that

• Feedforward control with diagonal input uncertainty is acceptable for plants with a small
minimized input condition number γ∗I (G), see (6.68), but should be avoided for plants with
large RGA elements, see (6.70).

With diagonal input uncertainty (6.61) we may write EI = DIEID
−1
I and −S′r =

(GDI)EI(GDI)
−1 where the diagonal matrix DI is free to be chosen. We may use this

degree of freedom to make the bound on σ̄(S ′r) less conservative. We have (for all diagonal
EI )

σ̄(S′r) = σ̄(GEIG
−1) ≤ σ̄(EI)γ

∗
I (G) (6.68)

This shows that we have insensitivity to diagonal input uncertainty if the minimized input
condition number is small. To be able to say “if and only if” we would need (6.68) to be tight
(at least within some factor); that is, there should always exists a “worst-case” diagonal EI

that makes σ̄(S′r) reasonably close to the upper bound. Although this seems likely in most
cases, it has not been proved to hold generally. Fortunately, we have an RGA condition that
works in the opposite direction. With diagonal input uncertainty, the diagonal elements of
GEIG

−1 are from (A.81) directly given by the corresponding row elements of the RGA

[GEIG
−1 ]ii =

n∑

j=1

λij(G)εj (6.69)

The norm of a matrix is always larger than its elements, and by allowing any diagonal input
uncertainty satisfying |εi| ≤ σ̄(EI) we may select the worst-case combination of εi such that
the row-sum is maximized (see remark on page 246). We then have (for some “worst-case”
diagonal EI )

σ̄(S′r) = σ̄(GEIG
−1) ≥ σ̄(EI)‖Λ‖i∞ (6.70)

where ‖Λ‖i∞ is the induced∞-norm (maximum row sum) of the RGA. The RGA matrix is
easy to compute and independent of both input and output scalings, which make the use of
condition (6.70) particularly attractive. Since diagonal input uncertainty is always present, we
conclude from (6.63) and (6.70) that if the plant has large RGA elements then performance
with feedforward control will be poor. The reverse statement is not true; that is, if the RGA
has small elements we cannot conclude that the plant is insensitive to input uncertainty.
This follows because we cannot from the RGA say anything about the magnitude of the
off-diagonal elements of GEIG

−1; see also Example 6.10.
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Example 6.8 Inverse-based control of distillation process. For the distillation process in (3.93) we
have

G(s) =
1

75s+ 1

[
87.8 −86.4
108.2 −109.6

]
, Λ(G) =

[
35.1 −34.1
−34.1 35.1

]
(6.71)

and γ(G) = γ∗I (G) = 141.7. The RGA elements are large so we know that inverse-based feedforward
control is sensitive to diagonal input uncertainty. With EI = diag{ε1, ε2} we get, for all frequencies,

GEIG
−1 =

[
35.1ε1 − 34.1ε2 −27.7ε1 + 27.7ε2
43.2ε1 − 43.2ε2 −34.1ε1 + 35.1ε2

]
(6.72)

The elements in the matrix GEIG−1 are largest when ε1 and ε2 have opposite signs. With a 20% error
in each input channel, we may select ε1 = 0.2 and ε2 = −0.2 and £nd

GEIG
−1 =

[
13.8 −11.1
17.2 −13.8

]
(6.73)

Thus with an “ideal” feedforward controller and 20% input uncertainty, we get from (6.63) that the
relative tracking error at all frequencies, including steady-state, may exceed 1000%. This demonstrates
the need for feedback control. However, applying feedback control is also dif£cult for this plant as seen
in Example 6.11.

The following example demonstrates that a large plant condition number, γ(G), does not
necessarily imply sensitivity to uncertainty even with an inverse-based controller.

Example 6.9 Inverse-based control of distillation process, DV -model. In this example we
consider the following distillation model given by Skogestad et al. (1988) (it is the same system as
studied above but with the DV- rather than the LV-con£guration for the lower control levels, see
Example 10.8):

G =
1

75s+ 1

[
−87.8 1.4
−108.2 −1.4

]
, Λ(G) =

[
0.448 0.552
0.552 0.448

]
(6.74)

We have that ‖Λ(G(jω))‖i∞ = 1, γ(G) ≈ 70.76 and γ∗I (G) ≈ 1.11 at all frequencies. The condition
number is large, but nevertheless there is no sensitivity to diagonal input uncertainty, because γ∗I (G) is
small. This applies to ideal inverse-based feedforward control, see (6.68), as well as to inverse-based
feedback control, see (6.92) below.

Example 6.10 For a 2× 2 plant with diagonal input uncertainty we generally have

GEIG
−1 =

[
λ11ε1 + λ12ε2 − g12

g22
λ11(ε1 − ε2)

g21
g11

λ11(ε1 − ε2) λ21ε1 + λ22ε2

]
(6.75)

For example, condsider a triangular plant with g12 = 0 and with a large |g21|/|g11|,

G =
[
1 0
10 1

]

Is inverse-based feedforward control sensitive to uncertainty for this plant? Λ = I , which is small, so
the lower bound (6.70) in terms of the RGA is inconclusive. The minimized input condition number for
this triangular plant is γ∗I = 2|g21|/|g11| = 20, which is large, so the upper bound (6.68) in terms
of γ∗I is also inconclusive. However, the system is indeed sensitive to diagonal input uncertainty, since
from (6.75) the 2, 1 element of GEIG−1 is (g21/g11)(ε1 − ε2). For example, with 20% diagonal input
uncertainty we may select ε1 = 0.2 and ε2 = −0.2 and the 2, 1 element becomes 10(0.2 + 0.2) = 4

which is much larger than 1, and feedforward control is expected to yield poor performance with
uncertainty. This motivates the use of feedback control for this plant.
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Remark. Worst-case uncertainty. It is useful to know which combinations of input errors give poor
performance. For an inverse-based controller (feedforward or feedback), a good indicator results if we
consider GEIG−1, where EI = diag{εk}. If all εk have the same magnitude |wI | = σ̄(EI), then
the largest possible magnitude of any diagonal element in GEIG

−1 is given by |wI | · ‖Λ(G)‖i∞. To
obtain this value one may select the phase of each εk such that ∠εk = −∠λik, where i denotes the
row of Λ(G) with the largest elements. Also, if Λ(G) is real (e.g. at steady-state), the signs of the εk’s
should be the opposite from those in the row of Λ(G) with the largest elements.

6.10.3 Uncertainty and the bene£ts of feedback
To illustrate the bene£ts of feedback control in reducing the sensitivity to uncertainty, we
consider the effect of output uncertainty on reference tracking. As a basis for comparison we
£rst consider feedforward control.

Feedforward control. Let the nominal transfer function with feedforward control be
y = Trr where Tr = GKr and Kr denotes the feedforward controller. Ideally, Tr = I .
With model error T ′r = G′Kr, and the change in response is y′ − y = (T ′r − Tr)r where

T ′r − Tr = (G′G−1 − I)Tr = EOTr (6.76)

Thus, y′−y = EOTrr = EOy, and with feedforward control the relative control error caused
by the uncertainty is equal to the relative output uncertainty.

Feedback control. With one degree-of-freedom feedback control the nominal transfer
function is y = Tr where T = L(I + L)−1 is the complementary sensitivity function.
Ideally, T = I . The change in response with model error is y′ − y = (T ′ − T )r where from
(A.152)

T ′ − T = S′EOT (6.77)
Thus, y′ − y = S′EOTr = S′EOy, and we see that
• with feedback control the effect of the uncertainty is reduced by a factor S ′ compared to

that with feedforward control.
Thus, feedback control is much less sensitive to uncertainty than feedforward control at
frequencies where feedback is effective and the elements in S ′ are small. However, the
opposite may be true in the crossover frequency range where S ′ may have elements larger
than 1; see Section 6.10.4.

Remark 1 For square plants, EO = (G′ −G)G−1 and (6.77) becomes

∆T · T−1 = S′ ·∆G ·G−1 (6.78)

where ∆T = T ′ − T and ∆G = G′ − G. Equation (6.78) provides a generalization of Bode’s
differential relationship (2.24) for SISO systems. To see this, consider a SISO system and let ∆G→ 0.
Then S′ → S and we have from (6.78)

dT

T
= S

dG

G
(6.79)

Remark 2 Alternative expressions showing the bene£ts of feedback control are derived by introducing
the inverse output multiplicative uncertainty G′ = (I − EiO)

−1G. We then get (Horowitz and
Shaked, 1975)

Feedforward control: T ′r − Tr = EiOT
′
r (6.80)

Feedback control: T ′ − T = SEiOT
′ (6.81)

(Simple proof for square plants: switch G and G′ in (6.76) and (6.77) and use EiO = (G′ −G)G′−1.)
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Remark 3 Another form of (6.77) is (Zames, 1981)

T ′ − T = S′(L′ − L)S (6.82)

Conclusion. From (6.77), (6.81) and (6.82) we see that with feedback control T ′−T is small
at frequencies where feedback is effective (i.e. S and S ′ are small). This is usually at low
frequencies. At higher frequencies we have for real systems that L is small, so T is small,
and again T ′−T is small. Thus with feedback, uncertainty only has a signi£cant effect in the
crossover region where S and T both have norms around 1.

6.10.4 Effect of uncertainty on feedback sensitivity peak
We demonstrated above how feedback may reduce the effect of uncertainty, but we also
pointed out that uncertainty may pose limitations on achievable performance, especially at
crossover frequencies. The objective in the following is to investigate how the magnitude of
the sensitivity, σ̄(S′), is affected by multiplicative output uncertainty and multiplicative input
uncertainty given by (6.58) and (6.59), respectively. The bounds are in terms of the plant
condition numbers, see (6.57), and the controller condition numbers

γ(K) =
σ̄(K)

σ(K)
, γ∗O(K) = min

DO

γ(DOK) (6.83)

The minimized condition number γ∗O(K) may be computed using (A.76). The following
factorizations of S′ in terms of the nominal sensitivity S (see Appendix A.7) form the basis
for the development:

Output uncertainty: S′ = S(I + EOT )
−1 (6.84)

Input uncertainty: S′ = S(I +GEIG
−1T )−1 = SG(I + EITI)

−1G−1 (6.85)
S′ = (I + TK−1EIK)−1S = K−1(I + TIEI)

−1KS (6.86)

We assume that G and G′ are stable. We also assume closed-loop stability, so that both S and
S′ are stable. We then get that (I +EOT )

−1 and (I +EITI)
−1 are stable. In most cases, we

assume that the magnitude of the multiplicative (relative) uncertainty at each frequency can
be bounded in terms of its singular value

σ̄(EI) ≤ |wI |, σ̄(EO) ≤ |wO| (6.87)

where wI(s) and wO(s) are scalar weights. Typically the uncertainty bound, |wI | or |wO|, is
0.2 at low frequencies and exceeds 1 at higher frequencies.

We £rst state some upper bounds on σ̄(S ′). These are based on identities (6.84)–(6.86) and
singular value inequalities (see Appendix A.3.4) of the kind

σ̄((I + EITI)
−1) = 1

σ(I+EITI)
≤ 1

1−σ̄(EITI)
≤ 1

1−σ̄(EI)σ̄(TI)
≤ 1

1−|wI |σ̄(TI)

Of course these inequalities only apply if we assume σ̄(EITI) < 1, σ̄(EI)σ̄(TI) < 1 and
|wI |σ̄(TI) < 1. For simplicity, we will not state these assumptions each time.
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Upper bound on σ̄(S′) for output uncertainty
From (6.84), we derive

σ̄(S′) ≤ σ̄(S)σ̄((I + EOT )
−1) ≤ σ̄(S)

1− |wO|σ̄(T )
(6.88)

From (6.88), we see that output uncertainty, be it diagonal or full block, poses no particular
problem when performance is measured at the plant output. That is, if we have a reasonable
stability margin (‖(I + EOT )

−1‖∞ is not too much larger than 1), then the nominal and
perturbed sensitivities do not differ very much.

Upper bounds on σ̄(S′) for input uncertainty
General case (full-block or diagonal input uncertainty and any controller). From (6.85) and
(6.86), we derive

σ̄(S′) ≤ γ(G)σ̄(S)σ̄((I + EITI)
−1) ≤ γ(G)

σ̄(S)

1− |wI |σ̄(TI)
(6.89)

σ̄(S′) ≤ γ(K)σ̄(S)σ̄((I + TIEI)
−1) ≤ γ(K)

σ̄(S)

1− |wI |σ̄(TI)
(6.90)

From (6.89), we see that for a plant with a small condition number, γ(G) ≈ 1, the system
is insensitive to input uncertainty, irrespective of the controller. From (6.90), we have the
important result that if we use a “round” controller, meaning that γ(K) is close to 1, then the
sensitivity function is not sensitive to input uncertainty. In many cases, (6.89) and (6.90) are
not very useful because they yield unnecessarily large upper bounds.

Diagonal input uncertainty (any controller). From the £rst identity in (6.85) we get
S′ = S(I + (GDI)EI(GDI)

−1T )−1 and we derive, by singular value inequalities,

σ̄(S′) ≤ σ̄(S)

1− γ∗I (G)|wI |σ̄(T )
(6.91)

σ̄(S′) ≤ σ̄(S)

1− γ∗O(K)|wI |σ̄(T )
(6.92)

From (6.91), the system is insensitive to diagonal input uncertainty if γ∗I (G) is small,
irrespective of the controller. Similarly, from (6.92) the system is insensitive to diagonal input
uncertainty if γ∗O(K) is small, irrespective of the plant. Note that γ∗O(K) = 1 for a diagonal
controller (decentralized control), so (6.92) shows that diagonal uncertainty poses no problem
with decentralized control. On the other hand, with an inverse-based (decoupling) controller
of the form K = DG−1 where D is diagonal, we have γ∗O(K) = γ∗I (G), so decoupling
control may be sensitive to diagonal input uncertainty for plants with a large γ∗I (G).

Lower bound on σ̄(S′) for input uncertainty (including diagonal input uncertainty)
Above we derived upper bounds on σ̄(S ′); we will next derive a lower bound. A lower bound
is useful because it allows us to make de£nite conclusions about when the plant is not input–
output controllable. Importantly, the bound applies also to the special (and common) case of
diagonal input uncertainty.
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Theorem 6.5 Input uncertainty and inverse-based control. Consider a controllerK(s) =
l(s)G−1(s) which results in a nominally decoupled response with sensitivity S = s · I and
complementary sensitivity T = t · I where t(s) = 1 − s(s). Suppose the plant has diagonal
input uncertainty EI of relative magnitude |wI(jω)| in each input channel. Then there exists
a combination of input uncertainties (i.e., exists a diagonal ∆I ) such that at each frequency

σ̄(S′) ≥ σ̄(S)

(
1 +

|wIt|
1 + |wIt|

‖Λ(G)‖i∞
)

(6.93)

where ‖Λ(G)‖i∞ is the maximum row sum of the RGA and σ̄(S) = |s|.

The proof is given below. From (6.93), we see that with an inverse-based controller the worst-
case sensitivity will be much larger than the nominal at frequencies where the plant has large
RGA elements. At frequencies where control is effective (σ̄(S) is small and |t| ≈ 1), this
implies that control is not as good as expected, but it may still be acceptable. However,
at crossover frequencies, where σ̄(S) and |t| = |1 − s| are both close to 1, we £nd that
σ̄(S′) in (6.93) may become much larger than 1 if the plant has large RGA elements at these
frequencies. The bound (6.93) applies to diagonal input uncertainty and therefore also to
full-block input uncertainty (since it is a lower bound).

Proof of Theorem 6.5: (From Skogestad and Havre (1996) and Gjøsæter (1995).) Write the sensitivity
function as

S′ = (I +G′K)−1 = SG (I + EITI)
−1

︸ ︷︷ ︸
D

G−1, EI = diag{εk}, S = sI (6.94)

Since D is a diagonal matrix, we have from (6.69) that the diagonal elements of S ′ are given in terms
of the RGA of the plant G as

s′ii = s

n∑

k=1

λikdk; dk =
1

1 + tεk
; Λ = G× (G−1)T (6.95)

(Note that s here is a scalar sensitivity function and not the Laplace variable.) The singular value of a
matrix is larger than any of its elements, so σ̄(S ′) ≥ maxi |s′ii|, and the objective in the following is to
choose a combination of input errors εk such that the worst-case |s′ii| is as large as possible. Consider a
given output i and write each term in the sum in (6.95) as

λikdk =
λik

1 + tεk
= λik − λiktεk

1 + tεk
(6.96)

We choose all εk to have the same magnitude |wI(jω)|, so we have εk(jω) = |wI |ej∠εk . We also
assume that |tεk| < 1 at all frequencies3, so that the phase of 1 + tεk lies between −90◦ and 90◦. It is
then always possible to select ∠εk (the phase of εk) such that the last term in (6.96) is real and negative,
and we have at each frequency, with these choices for εk,

s′ii
s

=

n∑

k=1

λikdk = 1 +

n∑

k=1

|λik| · |tεk|
|1 + tεk|

≥ 1 +

n∑

k=1

|λik| · |wIt|
1 + |wIt|

= 1 +
|wIt|

1 + |wIt|
n∑

k=1

|λik| (6.97)

3 The assumption |tεk| < 1 is not included in the theorem since it is actually needed for robust stability. If it does
not hold we may have σ̄(S′) in£nite for some allowed uncertainty, and (6.93) clearly holds.
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where the £rst equality makes use of the fact that the row elements of the RGA sum to 1 (
∑n

k=1 λik =
1). The inequality follows since |εk| = |wI | and |1 + tεk| ≤ 1 + |tεk| = 1 + |wIt|. This derivation
holds for any i (but only for one at a time), and (6.93) follows by selecting i to maximize

∑n
k=1 |λik|

(the maximum row sum of the RGA of G). 2

We next consider three examples. In the £rst, we consider a plant where both the RGA
and γ∗I (G) are large. In the second, they are both small. In the third, the RGA is small, but
γ∗I is large. The £rst and third are sensitive to diagonal input uncertainty, whereas the second
(where γ∗I is small) is insensitive.

Example 6.11 Feedback control of distillation process. Consider again the distillation process
G(s) in (6.71) which we on page 245 found to be sensitive to diagonal input uncertainty with
feedforward control. For this plant we have ‖Λ(G(jω))‖i∞ = 69.1 and γ(G) ≈ γ∗I (G) ≈ 141.7
at all frequencies.

1. Inverse-based feedback controller. Consider the controller K(s) = (0.7/s)G−1(s) correspond-
ing to the nominal sensitivity function

S(s) =
s

s+ 0.7
I

The nominal response is excellent, but we found from simulations in Figure 3.14 that the closed-loop
response with 20% input gain uncertainty was extremely poor (we used ε1 = 0.2 and ε2 = −0.2). The
poor response is easily explained from the lower RGA bound on σ̄(S ′) in (6.93). With the inverse-based
controller we have l(s) = k/s, which has a nominal phase margin of PM = 90◦, and from (2.50) we
have, at frequency ωc, that |s(jωc)| = |t(jωc)| = 1/

√
2 = 0.707. With |wI | = 0.2, we then get from

(6.93) that
σ̄(S′(jωc)) ≥ 0.707

(
1 +

0.707 · 0.2 · 69.1
1.14

)
= 0.707 · 9.56 = 6.76 (6.98)

(This is close to the peak value in (6.93) of 6.81 at frequency 0.79 rad/min.) Thus, we have that with
20% input uncertainty we may have ‖S ′‖∞ ≥ 6.81 and this explains the observed poor closed-
loop performance. For comparison, the actual worst-case peak value of σ̄(S ′), with the inverse-based
controller, is 14.5 (computed numerically using skewed-µ as discussed below). This is close to the value
obtained with the uncertainty EI = diag{ε1, ε2} = diag{0.2,−0.2},

‖S′‖∞ =

∥∥∥∥∥

(
I +

0.7

s
G
[
1.2

0.8

]
G−1

)−1∥∥∥∥∥
∞

= 14.5

for which the peak occurs at 0.69 rad/min. The difference between the values 6.81 and 14.5 illustrates
that the bound in terms of the RGA is generally not tight, but it is nevertheless very useful.

2. Diagonal (decentralized) feedback controller. Consider the controller

Kdiag(s) =
k2(τs+ 1)

s

[
1 0
0 −1

]
, k2 = 2.4 · 10−2 [min−1]

The peak value for the upper bound on σ̄(S ′) in (6.92) is 1.26, so we are guaranteed ‖S ′‖∞ ≤ 1.26,
even with 20% gain uncertainty. For comparison, the actual peak in the perturbed sensitivity function
with EI = diag{0.2,−0.2} is ‖S′‖∞ = 1.05. Of course, the problem with the simple diagonal
controller is that (although it is robust) even nominal performance is poor.

Remark. Relationship with the structured singular value: skewed-µ. To analyze exactly the worst-
case sensitivity with a given uncertainty |wI | we may compute skewed-µ (µs). With reference to

Section 8.11, this involves computing µ∆̃(N) with ∆̃ = diag(∆I ,∆P ) andN =

[
wITI wIKS
SG/µs S/µs

]

and varying µs until µ(N) = 1. The worst-case performance at a given frequency is then σ̄(S ′) =
µs(N).
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Example 6.12 Consider the plant
G(s) =

[
1 100
0 1

]

for which at all frequencies Λ(G) = I , γ(G) = 104, γ∗(G) = 1.00 and γ∗I (G) = 200. The RGA
matrix is the identity, but since g12/g11 = 100 we expect from (6.75) that this plant will be sensitive to
diagonal input uncertainty if we use inverse-based feedback control, K = c

s
G−1. This is con£rmed if

we compute the worst-case sensitivity function S ′ for G′ = G(I + wI∆I) where ∆I is diagonal and
|wI | = 0.2. We £nd by computing skewed-µ, µs(N1), that the peak of σ̄(S′) is ‖S′‖∞ = 20.43.

Note that the peak is independent of the controller gain c in this case since G(s) is a constant matrix.
Also note that with full-block (“unstructured”) input uncertainty (∆I is a full matrix) the worst-case
sensitivity is ‖S′‖∞ = 1021.7.

Conclusions on input uncertainty and feedback control
Let us summarize the above £ndings. The following statements apply to the frequency range
around crossover. By “small’, we mean about 2 or smaller. By “large” we mean about 10 or
larger.

1. Condition number γ(G) or γ(K) small: robust performance to both diagonal and full-
block input uncertainty; see (6.89) and (6.90).

2. Minimized condition numbers γ∗I (G) or γ∗O(K) small: robust performance to diagonal
input uncertainty; see (6.91) and (6.92). Note that a diagonal controller (decentralized
control) always has γ∗O(K) = 1.

3. RGA(G) has large elements: inverse-based controller is not robust to diagonal input
uncertainty; see (6.93). Since diagonal input uncertainty is unavoidable in practice, the rule
is never to use a decoupling controller for a plant with large RGA elements. Furthermore, a
diagonal controller will most likely yield poor nominal performance for a plant with large
RGA elements, so we conclude that plants with large RGA elements are fundamentally
dif£cult to control.

4. γ∗I (G) is large while at the same time RGA(G) has small elements: cannot make any
de£nite conclusion about the sensitivity to input uncertainty based on the bounds in
this section. However, as seen in Examples 6.10 and 6.12, we may expect sensitivity to
diagonal input uncertainty with inverse-based feedforward or feedback control.

6.10.5 Element-by-element uncertainty
Element-by-element uncertainty assumes independent uncertainty in the individual elements
ofG. This kind of uncertainty description may be questionable from a physical point of view,
but it is nevertheless popular. Interestingly, the RGA matrix is a direct measure of sensitivity
to element-by-element uncertainty as matrices with large RGA values become singular for
small relative errors in the elements.

Theorem 6.6 Consider a complex matrix G and let λij denote the ij’th element in the RGA
matrix of G. The matrix G becomes singular if we make a relative change −1/λij in its ij’th
element; that is, if a single element in G is perturbed from gij to gpij = gij(1− 1

λij
).

The theorem is due to Yu and Luyben (1987). Our proof in Appendix A.4 is from Hovd and
Skogestad (1992).
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Example 6.13 The matrix G in (6.71) is non-singular. The 1, 2 element of the RGA is λ12(G) =
−34.1. Thus, the matrix G becomes singular if g12 is perturbed from −86.4 to

gp12 = −86.4(1− 1/(−34.1)) = −88.9 (6.99)

The above theorem is an important algebraic property of the RGA, but it also has important
implications for improved control:

1. Identi£cation. Models of multivariable plants, G(s), are often obtained by identifying
one element at a time, e.g. using step responses. From Theorem 6.6 it is clear that this simple
identi£cation procedure will most likely give meaningless results (e.g. the wrong sign of the
steady-state RGA) if there are large RGA elements within the bandwidth where the model is
intended to be used.

2. RHP-zeros. Consider a plant with transfer function matrix G(s). If the relative
uncertainty in an element at a given frequency is larger than |1/λij(jω)| then the plant may
be singular at this frequency, implying that the uncertainty allows for a RHP-zero on the jω-
axis. This is of course detrimental to performance in terms of both feedforward and feedback
control.

Remark. Theorem 6.6 seems to “prove” that plants with large RGA elements are fundamentally dif£cult
to control. However, although the statement may be true (see the conclusions on page 251 based on
diagonal input uncertainty, which is always present), we cannot draw this conclusion from Theorem 6.6.
This is because the assumption of element-by-element uncertainty is often unrealistic from a physical
point of view, since the elements are usually coupled in some way. For example, this is the case for the
distillation column process, where the elements are coupled due to an underlying physical constraint in
such a way that the model (6.71) never becomes singular, even for large changes in the transfer function
matrix elements.

6.10.6 Steady-state condition for integral control
Feedback control reduces the sensitivity to model uncertainty at frequencies where the loop
gains are large. With integral action in the controller we can achieve zero steady-state control
error, even with large model errors, provided the sign of the plant, as expressed by detG(0),
does not change. The statement applies for stable plants, or more generally for cases where
the number of unstable poles in the plant does not change. The conditions are stated more
exactly in the following theorem by Hovd and Skogestad (1994).

Theorem 6.7 Let the number of open-loop unstable poles (excluding poles at s = 0) of
G(s)K(s) and G′(s)K(s) be P and P ′, respectively. Assume that the controller K is such
that GK has integral action in all channels, and that the transfer functions GK and G′K
are strictly proper. Then if

detG′(0)/detG(0)

{
< 0 for P − P ′ even, including zero
> 0 for P − P ′ odd (6.100)

at least one of the following instabilities will occur: (a) The negative feedback closed-loop
system with loop gain GK is unstable. (b) The negative feedback closed-loop system with
loop gain G′K is unstable.

Proof: For stability of both (I+GK)−1 and (I+G′K)−1 we have from Lemma A.5 in Appendix A.7.3
that det(I +EOT (s)) needs to encircle the origin P − P ′ times as s traverses the Nyquist D-contour.
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Here T (0) = I because of the requirement for integral action in all channels of GK. Also, since GK
and G′K are strictly proper, EOT is strictly proper, and hence EO(s)T (s) → 0 as s → ∞. Thus, the
map of det(I +EOT (s)) starts at detG′(0)/ detG(0) (for s = 0) and ends at 1 (for s =∞). A more
careful analysis of the Nyquist plot of det(I+EOT (s)) reveals that the number of encirclements of the
origin will be even for detG′(0)/ detG(0) > 0, and odd for detG′(0)/detG(0) < 0. Thus, if this
parity (odd or even) does not match that of P − P ′ we will get instability, and the theorem follows. 2

Example 6.14 Suppose the true model of a plant is given by G(s), and that by careful identi£cation
we obtain a model G1(s),

G =
1

75s+ 1

[
87.8 −86.4
108.2 −109.6

]
, G1(s) =

1

75s+ 1

[
87 −88
109 −108

]

At £rst glance, the identi£ed model seems very good, but it is actually useless for control purposes since
detG1(0) has the wrong sign; detG(0) = −274.4 and detG1(0) = 196 (also the RGA elements
have the wrong sign; the 1, 1 element in the RGA is −47.9 instead of +35.1). From Theorem 6.7 we
then get that any controller with integral action designed based on the model G1 will yield instability
when applied to the plant G.

6.11 MIMO input–output controllability
We now summarize the main £ndings of this chapter in an analysis procedure for input–
output controllability of a MIMO plant. The presence of directions in MIMO systems makes
it more dif£cult to give a precise description of the procedure in terms of a set of rules as was
done in the SISO case.

6.11.1 Controllability analysis procedure
The following procedure assumes that we have made a decision on the plant inputs and plant
outputs (manipulations and measurements), and we want to analyze the model G to £nd out
what control performance can be expected.

The procedure can also be used to assist in control structure design (the selection of inputs,
outputs and control con£guration), but it must then be repeated for each G corresponding to
each candidate set of inputs and outputs. In some cases, the number of possibilities is so large
that such an approach becomes prohibitive. Some pre-screening is then required, e.g. based
on physical insight or by analyzing the “large” model, Gall, with all the candidate inputs and
outputs included. This is brie¤y discussed in Section 10.4.

A typical MIMO controllability analysis may proceed as follows:

1. Scale all variables (inputs u, outputs y, disturbances d, references, r) to obtain a scaled
model, y = G(s)u+Gd(s)d, r = Rr̃; see Section 1.4.

2. Obtain a minimal realization.
3. Check functional controllability. To be able to control the outputs independently, we £rst

need at least as many inputs u as outputs y. Second, we need the rank ofG(s) to be equal to
the number of outputs, l, i.e. the minimum singular value ofG(jω), σ(G) = σl(G), should
be non-zero (except at possible jω-axis zeros). If the plant is not functionally controllable
then compute the output direction where the plant has no gain, see (6.30), to obtain insight
into the source of the problem.
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4. Compute the poles. For RHP (unstable) poles obtain their locations and associated
directions; see (6.5). “Fast” RHP-poles far from the origin are bad.

5. Compute the zeros. For RHP-zeros obtain their locations and associated directions. Look
for zeros pinned into certain outputs. “Small” RHP-zeros (close to the origin) are bad if
tight performance at low frequencies is desired.

6. Calculate the bounds on different closed-loop transfer functions using the formulae
summarized in Table 6.3.2. A large peak (À 1) for any of S, T,KS, SGd,KSGd, SI
and TI (including Gd = G) indicates poor closed-loop performance or poor robustness
against uncertainty. Note that the peaks of KS,SGd,KSGd depend on the scaling of the
plant and disturbance models.

7. Obtain the frequency response G(jω) and compute the RGA matrix, Λ = G × (G†)T .
Plants with large RGA elements at crossover frequencies are dif£cult to control and should
be avoided. For more details about the use of the RGA see Section 3.3.6, page 81.

8. From now on scaling is critical. Compute the singular values of G(jω) and plot them as a
function of frequency. Also consider the associated input and output singular vectors.

9. The minimum singular value, σ(G(jω)), is a particularly useful controllability measure.
It should generally be as large as possible at frequencies where control is needed. If
σ(G(jω)) < 1 then we cannot (at frequency ω) make independent output changes of
unit magnitude by using inputs of unit magnitude.

10. For disturbances, consider the elements of the matrix Gd. At frequencies where one or
more elements is larger than 1, we need control. We get more information by considering
one disturbance at a time (the columns gd of Gd). We must require for each disturbance
that S is less than 1/‖gd‖2 in the disturbance direction yd, i.e. ‖Syd‖2 ≤ 1/‖gd‖2; see
(6.45). Thus, we must at least require σ(S) ≤ 1/‖gd‖2 and we may have to require
σ̄(S) ≤ 1/‖gd‖2; see (6.46).

Remark. If feedforward control is already used, then one may instead analyze Ĝd(s) = GKdGmd+
Gd where Kd denotes the feedforward controller, see (5.101).

11. Disturbances and input saturation:
First step. Consider the input magnitudes needed for perfect control by computing the

elements in the matrix G†Gd. If all elements are less than 1 at all frequencies then
input saturation is not expected to be a problem. If some elements of G†Gd are
larger than 1, then perfect control (e = 0) cannot be achieved at this frequency,
but “acceptable” control (‖e‖2 < 1) may be possible, and this may be tested in the
second step.

Second step. Check condition (6.55): that is, consider the elements of UHGd and make
sure that the elements in the i’th row are smaller than σi(G) + 1, at all frequencies.

12. Are the requirements compatible? Look at disturbances, RHP-poles and RHP-zeros
and their associated locations and directions. For example, we must require for each
disturbance and each RHP-zero that |yHz gd(z)| ≤ 1; see (6.47). For combined RHP-zeros
and RHP-poles see (6.8).

13. Uncertainty. If the condition number γ(G) is small then we expect no particular problems
with uncertainty. If the RGA elements are large, we expect strong sensitivity to uncertainty.
For a more detailed analysis see the conclusion on page 251.

14. If decentralized control (diagonal controller) is of interest see the summary on page 449.
15. The use of the condition number and RGA are summarized separately in Section 3.3.6,

page 81.
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A controllability analysis may also be used to obtain initial performance weights for
controller design. After a controller design one may analyze the controller by plotting, for
example, its elements, singular values, RGA and condition number as a function of frequency.

6.11.2 Plant design changes
If a plant is not input–output controllable, then it must somehow be modi£ed. Some possible
modi£cations are listed below.

Controlled outputs. Identify the output(s) which cannot be controlled satisfactorily.
Should these outputs really be controlled? Can the speci£cations for these be relaxed?

Manipulated inputs. If undesirable input constraints are encountered then consider
replacing or moving actuators. For example, this could mean replacing a control valve with a
larger one, or moving it closer to the controlled output.

If there are RHP-zeros which cause control problems then the zeros may often be
eliminated by adding another input (possibly resulting in a non-square plant). This may not
be possible if the zero is pinned to a particular output.

Extra measurements. If there are RHP-zeros that cause control problems, then these zeros
may often be eliminated by adding extra measurements (i.e. add outputs with no associated
control objective). If the effect of disturbances, or uncertainty, is large, and the dynamics of
the plant are such that acceptable control cannot be achieved, then consider adding “fast local
loops” based on extra measurements which are located close to the inputs and disturbances;
see Section 10.6.4 and the example on page 216.

Disturbances. If the effect of disturbances is too large, then see whether the disturbance
itself may be reduced. This may involve adding extra equipment to dampen the disturbances,
such as a buffer tank in a chemical process or a spring in a mechanical system. In other cases,
this may involve improving or changing the control of another part of the system, e.g. we
may have a disturbance which is actually the manipulated input in another part of the system.

Plant dynamics and time delays. In most cases, controllability is improved by making
the plant dynamics faster and by reducing time delays. An exception to this is a strongly
interactive plant, where an increased dynamic lag or time delay may be helpful if it somehow
“delays” the effect of the interactions; see (6.31). Another more obvious exception is for
feedforward control of a measured disturbance, where a delay for the disturbance’s effect on
the outputs is an advantage.

Example 6.15 Removing zeros by adding inputs. Consider a stable 2× 2 plant

G1(s) =
1

(s+ 2)2

[
s+ 1 s+ 3
1 2

]

which has a RHP-zero at s = 1 which limits achievable performance. The zero is not pinned to a
particular output, so it will most likely disappear if we add a third manipulated input. Suppose the new
plant is

G2(s) =
1

(s+ 2)2

[
s+ 1 s+ 3 s+ 6
1 2 3

]

which indeed has no zeros. It is interesting to note that each of the three individual 2× 2 sub-plants of
G2(s) has a RHP-zero (located at s = 1, s = 1.5 and s = 3, respectively).
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6.11.3 Additional exercises
The reader will be better prepared for some of these exercises following an initial reading of
Chapter 10 on decentralized control. In all cases the variables are assumed to be scaled as
outlined in Section 1.4.

Exercise 6.8 ∗ Analyze input–output controllability for

G(s) =
1

s2 + 100

[
1

0.01s+1
1

s+0.1
s+1

1

]

Compute the zeros and poles, plot the RGA as a function of frequency, etc.

Exercise 6.9 Analyze input–output controllability for

G(s) =
1

(τs+ 1)(τs+ 1 + 2α)

[
τs+ 1 + α α

α τs+ 1 + α

]

where τ = 100; consider two cases: (a) α = 20, and (b) α = 2.
Remark. This is a simple “two-mixing-tank” model of a heat exchanger where u =

[
T1in
T2in

]
,

y =
[
T1out
T2out

]
and α is the number of heat transfer units.

Exercise 6.10 ∗ Let

A =
[
−10 0
0 −1

]
, B = I, C =

[
10 1.1
10 0

]
, D =

[
0 0
0 1

]

(a) Perform a controllability analysis of G(s).
(b) Let ẋ = Ax + Bu + d and consider a unit disturbance d = [ z1 z2 ]

T . Which direction (value
of z1/z2) gives a disturbance that is most dif£cult to reject (consider both RHP-zeros and input
saturation)?
(c) Discuss decentralized control of the plant. How would you pair the variables?

Exercise 6.11 Consider the following two plants. Do you expect any control problems? Could
decentralized or inverse-based control be used? What pairing would you use for decentralized control?

Ga(s) =
1

1.25(s+ 1)(s+ 20)

[
s− 1 s
−42 s− 20

]

Gb(s) =
1

(s2 + 0.1)

[
1 0.1(s− 1)

10(s+ 0.1)/s (s+ 0.1)/s

]

Exercise 6.12 ∗ Order the following three plants in terms of their expected ease of controllability:

G1(s) =
[
100 95
100 100

]
, G2(s) =

[
100e−s 95e−s

100 100

]
, G3(s) =

[
100 95e−s

100 100

]

Remember to consider also the sensitivity to input gain uncertainty.

Exercise 6.13 Analyze input–output controllability for

G(s) =

[
5000s

(5000s+1)(2s+1)
2(−5s+1)
100s+1

3
5s+1

3
5s+1

]
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Exercise 6.14 ∗ Analyze input–output controllability for

G(s) =
[
100 102
100 100

]
, gd1(s) =

[
10
s+1
10
s+1

]
; gd2 =

[
1

s+1
−1
s+1

]

Which disturbance is the worst?

Exercise 6.15 (a) Analyze input–output controllability for the following three plants each of which
has two inputs and one output: G(s) = (g1(s) g2(s))

(i) g1(s) = g2(s) =
s−2
s+2

.
(ii) g1(s) = s−2

s+2
, g2(s) =

s−2.1
s+2.1

.
(iii) g1(s) = s−2

s+2
, g2(s) =

s−20
s+20

.
(b) Design controllers and perform closed-loop simulations of reference tracking to complement your

analysis. Consider also the input magnitudes.

Exercise 6.16 ∗ Find the poles and zeros and analyze input–output controllability for

G(s) =
[
c+ (1/s) 1/s

1/s c+ (1/s)

]

Here c is a constant, e.g. c = 1. (A similar model form is encountered for distillation columns controlled
with the DB-con£guration. In this case the physical reason for the model being singular at steady-state
is that the sum of the two manipulated inputs is £xed at steady-state, D +B = F .)

Exercise 6.17 Controllability of an FCC process. Consider the following 3×3 model of a ¤uidized
catalytic cracking (FCC) process:

[
y1
y2
y3

]
= G(s)

[
u1
u2
u3

]
; f(s) =

1

(18.8s+ 1)(75.8s+ 1)

G(s) = f(s)

[
16.8(920s2 + 32.4s+ 1) 30.5(52.1s+ 1) 4.30(7.28s+ 1)
−16.7(75.5s+ 1) 31.0(75.8s+ 1)(1.58s+ 1) −1.41(74.6s+ 1)
1.27(−939s+ 1) 54.1(57.3s+ 1) 5.40

]

Acceptable control of this 3×3 plant can be achieved with partial control of two outputs with input 3 in
manual (not used). That is, we have a 2× 2 control problem. Consider three options for the controlled
outputs:

Y1 =
[
y1
y2

]
; Y2 =

[
y2
y3

]
; Y3 =

[
y1

y2 − y3

]

In all three cases, the inputs are u1 and u2. Assume that the third input is a disturbance (d = u3).
(a) Based on the zeros of the three 2 × 2 plants, G1(s), G2(s) and G3(s), which choice of outputs

do you prefer? Which seems to be the worst?
It may be useful to know that the zero polynomials
a 5.75 · 107s4 + 3.92 · 107s3 + 3.85 · 106s2 + 1.22 · 105s+ 1.03 · 103
b 4.44 · 106s3 − 1.05 · 106s2 − 8.61 · 104s− 9.43 · 102
c 5.75 · 107s4 − 8.75 · 106s3 − 5.66 · 105s2 + 6.35 · 103s+ 1.60 · 102

have the following roots:
a −0.570 −0.0529 −0.0451 −0.0132
b 0.303 −0.0532 −0.0132
c 0.199 −0.0532 0.0200 −0.0132
(b) For the preferred choice of outputs in (a) do a more detailed analysis of the expected control

performance (compute poles and zeros, sketch RGA11, comment on possible problems with input
constraints (assume the inputs and outputs have been properly scaled), discuss the effect of the
disturbance, etc.). What type of controller would you use? What pairing would you use for decentralized
control?

(c) Discuss why the 3× 3 plant may be dif£cult to control.
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Remark. This is a model of a ¤uidized catalytic cracking (FCC) reactor where u = (Fs Fa kc)
T

represents the circulation, air¤ow and feed composition, and y = (T1 Tcy Trg)
T represents three

temperatures. G1(s) is called the Hicks control structure and G3(s) the conventional structure. More
details are found in Hovd and Skogestad (1993).

6.12 Conclusion
We have found that most of the insights into the performance limitations of SISO systems
developed in Chapter 5 carry over to MIMO systems. For RHP-zeros, RHP-poles and
disturbances, the issue of directions usually makes the limitations less severe for MIMO
than for SISO systems. However, the situation is usually the opposite with model uncertainty
because for MIMO systems there is also uncertainty associated with plant directionality. This
is an issue which is unique to MIMO systems.

We summarized on page 253 the main steps involved in an analysis of input–output
controllability of MIMO plants.



7

UNCERTAINTY AND
ROBUSTNESS FOR SISO
SYSTEMS

In this chapter, we show how to represent uncertainty by real or complex perturbations. We also
analyze robust stability (RS) and robust performance (RP) for SISO systems using elementary methods.
Chapter 8 is devoted to a more general analysis and controller design for uncertain systems using the
structured singular value.

7.1 Introduction to robustness
A control system is robust if it is insensitive to differences between the actual system and the
model of the system which was used to design the controller. These differences are referred
to as model/plant mismatch or simply model uncertainty. The key idea in the H∞ robust
control paradigm we use is to check whether the design speci£cations are satis£ed even for
the “worst-case” uncertainty.

Our approach is then as follows:

1. Determine the uncertainty set: £nd a mathematical representation of the model uncertainty
(“clarify what we know about what we don’t know”).

2. Check robust stability (RS): determine whether the system remains stable for all plants in
the uncertainty set.

3. Check robust performance (RP): if RS is satis£ed, determine whether the performance
speci£cations are met for all plants in the uncertainty set.

This approach may not always achieve optimal performance. In particular, if the worst-case
plant rarely or never occurs, other approaches, such as optimizing some average performance
or using adaptive control, may yield better performance. Nevertheless, the linear uncertainty
descriptions presented in this book are very useful in many practical situations.

It should also be appreciated that model uncertainty is not the only concern when it comes
to robustness. Other considerations include sensor and actuator failures, physical constraints,
changes in control objectives, the opening and closing of loops, etc. Furthermore, if a control
design is based on an optimization, then robustness problems may also be caused by the
mathematical objective function not properly describing the real control problem. Also, the
numerical design algorithms themselves may not be robust. However, when we refer to

Multivariable Feedback Control: Analysis and Design. Second Edition
S. Skogestad and I. Postlethwaite c© 2005, 2006 John Wiley & Sons, Ltd
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robustness in this book, we mean robustness with respect to model uncertainty, and assume
that a £xed (linear) controller is used.

To account for model uncertainty we will assume that the dynamic behaviour of a plant
is described not by a single linear time-invariant model but by a set Π of possible linear
time-invariant models, sometimes denoted as the “uncertainty set”. We adopt the following
notation:

Π – a set of possible perturbed plant models.

G(s) ∈ Π – nominal plant model (with no uncertainty).

Gp(s) ∈ Π and G′(s) ∈ Π – particular perturbed plant models.

SometimesGp is used rather than Π to denote the uncertainty set, whereasG′ always refers to
a particular uncertain plant. The subscript p stands for perturbed or possible or Π (take your
pick). This should not be confused with the subscript capital P , e.g. in wP , which denotes
performance.

We will use a “norm-bounded uncertainty description” where the set Π is generated by
allowingH∞ norm-bounded stable perturbations to the nominal plantG(s). This corresponds
to a continuous description of the model uncertainty, and there will be an in£nite number of
possible plants Gp in the set Π. We let E denote a perturbation which is not normalized, and
let ∆ denote a normalized perturbation withH∞ norm less than 1.

Remark. Another strategy for dealing with model uncertainty is to approximate its effect on the
feedback system by adding £ctitious disturbances or noise. For example, this is the only way of handling
model uncertainty within the so-called LQG approach to optimal control (see Chapter 9). Is this an
acceptable strategy? In general, the answer is no. This is easily illustrated for linear systems where
the addition of disturbances does not affect system stability, whereas model uncertainty combined with
feedback may easily create instability.

For example, consider a plant with a nominal model y = Gu+Gdd, and let the perturbed plant model
be Gp = G+E where E represents additive model uncertainty. Then the output of the perturbed plant
is

y = Gpu+Gdd = Gu+ d1 + d2 (7.1)
where y is different from what we ideally expect (namely Gu) for two reasons:
1. Uncertainty in the model (d1 = Eu)
2. Signal uncertainty (d2 = Gdd)
In LQG control we set wd = d1+ d2 where wd is assumed to be an independent variable such as white
noise. Then in the design problem we may make wd large by selecting appropriate weighting functions,
but its presence will never cause instability. However, in reality wd = Eu+ d2, so wd depends on the
signal u and this may cause instability in the presence of feedback when u depends on y. Speci£cally,
the closed-loop system (I + (G+E)K)−1 may be unstable for some E 6= 0. In conclusion, it may be
important to take explicitly into account model uncertainty when studying feedback control.

We will next discuss some sources of model uncertainty and outline how to represent them
mathematically.

7.2 Representing uncertainty
Uncertainty in the plant model may have several origins:
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1. There are always parameters in the linear model which are only known approximately or
are simply in error.

2. The parameters in the linear model may vary due to nonlinearities or changes in the
operating conditions.

3. Measurement devices have imperfections. This may even give rise to uncertainty on the
manipulated inputs, since the actual input is often measured and adjusted in a cascade
manner. For example, this is often the case with valves where a ¤ow controller is often
used. In other cases, limited valve resolution may cause input uncertainty.

4. At high frequencies even the structure and the model order are unknown, and the
uncertainty will always exceed 100% at some frequency.

5. Even when a very detailed model is available we may choose to work with a simpler
(low-order) nominal model and represent the neglected dynamics as “uncertainty”.

6. Finally, the controller implemented may differ from the one obtained by solving the
synthesis problem. In this case, one may include uncertainty to allow for controller order
reduction and implementation inaccuracies.

The various sources of model uncertainty mentioned above may be grouped into two main
classes:

1. Parametric (real) uncertainty. Here the structure of the model (including the order) is
known, but some of the parameters are uncertain.

2. Dynamic (frequency-dependent) uncertainty. Here the model is in error because of
missing dynamics, usually at high frequencies, either through deliberate neglect or because
of a lack of understanding of the physical process. Any model of a real system will contain
this source of uncertainty.

Parametric uncertainty is quanti£ed by assuming that each uncertain parameter is bounded
within some region [αmin, αmax]. That is, we have parameter sets of the form

αp = ᾱ(1 + rα∆)

where ᾱ is the mean parameter value, rα = (αmax − αmin)/(αmax + αmin) is the relative
uncertainty in the parameter, and ∆ is any real scalar satisfying |∆| ≤ 1.

Dynamic uncertainty is somewhat less precise and thus more dif£cult to quantify, but it
appears that the frequency domain is particularly well suited for this class. This leads to
complex perturbations which we normalize such that ‖∆‖∞ ≤ 1. In this chapter, we will
deal mainly with this class of perturbations.

- -

? - --

wI ∆I

G

Gp

+
+

Figure 7.1: Plant with multiplicative uncertainty
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In many cases, we prefer to lump the various sources of dynamic uncertainty into a
multiplicative uncertainty of the form

ΠI : Gp(s) = G(s)(1 + wI(s)∆I(s)); |∆I(jω)| ≤ 1 ∀ω︸ ︷︷ ︸
‖∆I‖∞≤1

(7.2)

which may be represented by the block diagram in Figure 7.1. In (7.2), ∆I(s) is any stable
transfer function which at each frequency is less than or equal to 1 magnitude. Some examples
of allowable ∆I(s)’s withH∞ norm less than 1, ‖∆I‖∞ ≤ 1, are

s− z
s+ z

,
1

τs+ 1
,

1

(5s+ 1)3
,

0.1

s2 + 0.1s+ 1

The subscript I denotes “input”, but for SISO systems it doesn’t matter whether we consider
the perturbation at the input or output of the plant, since

G(1 + wI∆I) = (1 + wO∆O)G with ∆I(s) = ∆O(s) and wI(s) = wO(s)

Another uncertainty form, which is better suited for representing pole uncertainty, is the
inverse multiplicative uncertainty

ΠiI : Gp(s) = G(s)(1 + wiI(s)∆iI(s))
−1; |∆iI(jω)| ≤ 1 ∀ω (7.3)

Even with a stable ∆iI(s) this form allows for uncertainty in the location of an unstable pole,
and it also allows for poles crossing between the left- and right-half planes.

Parametric uncertainty is sometimes called structured uncertainty as it models the
uncertainty in a structured manner. Analogously, lumped dynamics uncertainty is sometimes
called unstructured uncertainty. However, one should be careful about using these terms
because there can be several levels of structure, especially for MIMO systems.

Remark. Alternative approaches for describing uncertainty and the resulting performance may be
considered. One approach for parametric uncertainty is to assume a probabilistic (e.g. normal)
distribution of the parameters, and to consider the “average” response. This stochastic uncertainty is,
however, dif£cult to analyze exactly.

Another approach is the multi-model approach in which one considers a £nite set of alternative
models. A problem with the multi-model approach is that it is not clear how to pick the set of models
such that they represent the limiting (“worst-case”) plants.

In this book, we will use a combination of parametric (real) uncertainty and dynamic
(frequency-dependent) uncertainty. These sources can be handled within theH∞ framework
by allowing the perturbations to be real or complex, respectively.

7.3 Parametric uncertainty
Parametric uncertainty may be represented in the H∞ framework, if we restrict the
perturbations ∆ to be real. Here we provide a few simple examples to illustrate this approach.

Example 7.1 Gain uncertainty. Let the set of possible plants be

Gp(s) = kpG0(s); kmin ≤ kp ≤ kmax (7.4)
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where kp is an uncertain gain and G0(s) is a transfer function with no uncertainty. By writing

kp = k̄(1 + rk∆), k̄ ,
kmin + kmax

2
, rk ,

(kmax − kmin)/2

k̄
, (7.5)

where rk is the relative magnitude of the gain uncertainty and k̄ is the average gain, (7.4) may be
rewritten as multiplicative uncertainty

Gp(s) = k̄G0(s)︸ ︷︷ ︸
G(s)

(1 + rk∆), |∆| ≤ 1 (7.6)

where ∆ is a real scalar and G(s) is the nominal plant. We see that the uncertainty in (7.6) is in the
form of (7.2) with a constant multiplicative weight wI(s) = rk. The uncertainty description in (7.6)
can also handle cases where the gain changes sign (kmin < 0 and kmax > 0) corresponding to rk > 1.
The usefulness of this approach is rather limited, however, since it is impossible to get any bene£t from
control for a plant where we can have Gp = 0, at least with a linear controller.

Example 7.2 Time constant uncertainty. Consider a set of plants, with an uncertain time constant,
given by

Gp(s) =
1

τps+ 1
G0(s); τmin ≤ τp ≤ τmax (7.7)

By writing τp = τ̄(1 + rτ∆), similar to (7.5) with |∆| < 1, the model set (7.7) can be rewritten as

Gp(s) =
G0

1 + τ̄ s+ rτ τ̄ s∆
=

G0

1 + τ̄ s︸ ︷︷ ︸
G(s)

1

1 + wiI(s)∆
; wiI(s) =

rτ τ̄ s

1 + τ̄ s
(7.8)

which is in the inverse multiplicative form of (7.3). Note that it does not make physical sense for τp
to change sign, because a value τp = 0− corresponds to a pole at in£nity in the RHP, and the
corresponding plant would be impossible to stabilize. To represent cases in which a pole may cross
between the half planes, one should instead consider parametric uncertainty in the pole itself, 1/(s+p),
as described in (7.9).

Example 7.3 Pole uncertainty. Consider uncertainty in the parameter a in a state-space model,
ẏ = ay + bu, corresponding to the uncertain transfer function Gp(s) = b/(s − ap). More generally,
consider the following set of plants:

Gp(s) =
1

s− ap
G0(s); amin ≤ ap ≤ amax (7.9)

If amin and amax have different signs then this means that the plant can change from stable to unstable
with the pole crossing through the origin (which happens in some applications). This set of plants can
be written as

Gp =
G0(s)

s− ā(1 + ra∆)
; −1 ≤ ∆ ≤ 1 (7.10)

which can be exactly described by inverse multiplicative uncertainty as in (7.59) with nominal model
G = G0(s)/(s− ā) and

wiI(s) =
raā

s− ā
(7.11)

The magnitude of the weight wiI(s) is equal to ra at low frequencies. If ra is larger than 1 then the
plant can be both stable and unstable.
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Example 7.4 Parametric zero uncertainty. Consider zero uncertainty in the “time constant” form,
as in

Gp(s) = (1 + τps)G0(s); τmin ≤ τp ≤ τmax (7.12)
where the remaining dynamics G0(s) are as usual assumed to have no uncertainty. For example, let
−1 ≤ τp ≤ 3. Then the possible zeros zp = −1/τp cross from the LHP to the RHP through in£nity:
zp ≤ −1/3 (in LHP) and zp ≥ 1 (in RHP). The set of plants in (7.12) may be written as multiplicative
(relative) uncertainty with

wI(s) = rτ τ̄ s/(1 + τ̄ s) (7.13)
The magnitude |wI(jω)| is small at low frequencies, and approaches rτ (the relative uncertainty in τ )
at high frequencies. For cases with rτ > 1 we allow the zero to cross from the LHP to the RHP (through
in£nity).

Exercise 7.1 Parametric zero uncertainty in zero form. Consider the following alternative form of
parametric zero uncertainty:

Gp(s) = (s+ zp)G0(s); zmin ≤ zp ≤ zmax (7.14)

which caters for zeros crossing from the LHP to the RHP through the origin (corresponding to a sign
change in the steady-state gain). Show that the resulting multiplicative weight is wI(s) = rz z̄/(s+ z̄)
and explain why the set of plants given by (7.14) is entirely different from that with the zero uncertainty
in “time constant” form in (7.12). Explain what the implications are for control if rz > 1.

The above parametric uncertainty descriptions are mainly included to gain insight.
A general procedure for handling parametric uncertainty, more suited for numerical
calculations, is given by Packard (1988). Consider an uncertain state-space model

ẋ = Apx+Bpu (7.15)
y = Cpx+Dpu (7.16)

or equivalently
Gp(s) = Cp(sI −Ap)

−1Bp +Dp (7.17)
Assume that the underlying cause for the uncertainty is uncertainty in some real parameters
δ1, δ2, . . . (these could be temperature, mass, volume, etc.), and assume in the simplest case
that the state-space matrices depend linearly on these parameters, i.e.

Ap = A+
∑

δiAi, Bp = B +
∑

δiBi, Cp = C +
∑

δiCi, Dp = D +
∑

δiDi (7.18)

whereA,B,C andD model the nominal system. This description has multiple perturbations,
so it cannot be represented by a single perturbation, but it should be fairly clear that we can
separate out the perturbations affecting A,B,C and D, and then collect them in a large
diagonal matrix ∆ with the real δi’s along its diagonal. Some of the δi’s may have to be
repeated. Also, note that seemingly nonlinear parameter dependencies may be rewritten in
our standard linear block diagram form; for example, we can handle δ21 (which would need
δ1 repeated), α+w1δ1δ2

1+w2δ2
, etc. This is illustrated next by an example.

Example 7.5 Assume that the linearization of a nonlinear model results in a model y = Cu,
where C = δ2 and |δ| ≤ 1 in some uncertain parameter. This may be written as an upper linear
fractional transformation,Fu(M,∆), as in (A.159). To see this, de£ne the following auxiliary variables,
y = z1, z1 = δx1, x1 = z2, z2 = δx2 and x2 = u. Then, arrange these variables such that
[x1 x2 y ]T = M · [ z1 z2 u ]T and [ z1 z2 ]

T = ∆ · [x1 x2 ]
T to get the desired result, where

M =

[
0 1 0
0 0 1
1 0 0

]
and ∆ =

[
δ 0
0 δ

]
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Table 7.1: Matlab program for representing repeated parametric uncertainty
% Uses Robust Control toolbox
k = ureal(’k’,0.5,’Range’,[0.4 0.6]); % Uncertain parameter
alpha = ureal(’alpha’,1,’Range’,[0.8 1.2]);
A = [-(1+k) 0; 1 -(1+k)];
B = [(1/k -1), -1]’;
C = [0 alpha];
Gp = ss(A,B,C,0);
% Use lftdata to obtain the interconnection matrix of Figure 3.23

The above may seem complicated. In practice, it is not, as it can be done automatically with
available software. For example, in Table 7.1, we show how to generate the LFT realization
for the following uncertain plant:

ẋ =
[
−(1 + k) 0

1 −(1 + k)

]
x+

[
1−k
k−1

]
u

y = [ 1 α ]x

where k = 0.5 + 0.1 · δ1, |δ1| ≤ 1 and α = 1 + 0.2 · δ2 with |δ2| ≤ 1.

7.4 Representing uncertainty in the frequency domain
In terms of quantifying uncertainty arising from unmodelled dynamics, the frequency domain
approach (H∞) does not seem to have much competition (when compared with other norms).
In fact, Owen and Zames (1992) make the following observation:

The design of feedback controllers in the presence of non-parametric and
unstructured uncertainty . . . is the raison d’être for H∞ feedback optimization,
for if disturbances and plant models are clearly parameterized thenH∞ methods
seem to offer no clear advantages over more conventional state-space and
parametric methods.

Parametric uncertainty is also often represented by complex perturbations. This has the
advantage of simplifying analysis and especially controller synthesis. For example, we may
simply replace the real perturbation,−1 ≤ ∆ ≤ 1, by a complex perturbation with |∆(jω)| ≤
1. This is of course conservative as it introduces possible plants that are not present in the
original set. However, if there are several real perturbations, then the conservatism is often
reduced by lumping these perturbations into a single complex perturbation. The reason for
this is that with several uncertain parameters the true uncertainty region is often quite “disc-
shaped”, and may be more accurately represented by a single complex perturbation. This is
illustrated below.

7.4.1 Uncertainty regions
To illustrate how parametric uncertainty translates into frequency domain uncertainty,
consider in Figure 7.2 the Nyquist plots (or regions) generated by the following set of plants:

Gp(s) =
k

τs+ 1
e−θs, 2 ≤ k, θ, τ ≤ 3 (7.19)
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Step 1. At each frequency, a region of complex numbers Gp(jω) is generated by varying
the three parameters in the ranges given by (7.19), see Figure 7.2. In general, these
uncertainty regions have complicated shapes and complex mathematical descriptions,
and are cumbersome to deal with in the context of control system design.

Step 2. We therefore approximate such complex regions as discs (circles) as shown in
Figure 7.3, resulting in a (complex) additive uncertainty description as discussed next.
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Figure 7.2: Uncertainty regions of the Nyquist plot at given frequencies. Data from (7.19).
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Figure 7.3: Disc approximation (solid line) of the original uncertainty region (dashed line). Plot
corresponds to ω = 0.2 in Figure 7.2.

Remark 1 There is no conservatism introduced in the £rst step when we go from a parametric
uncertainty description as in (7.19) to an uncertainty region description as in Figure 7.2. This is
somewhat surprising since the uncertainty regions in Figure 7.2 seem to allow for more uncertainty. For
example, they allow for “jumps” in Gp(jω) from one frequency to the next (e.g. from one corner of a
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region to another). Nevertheless, we derive frequency-by-frequency necessary and suf£cient conditions
for robust stability based on uncertainty regions in this and the next chapter. Thus, the only conservatism
is in the second step where we approximate the original uncertainty region by a larger disc-shaped region
as shown in Figure 7.3.

Remark 2 Exact methods do exist (using complex region mapping, e.g. see Laughlin et al. (1986))
which avoid the second conservative step. However, as already mentioned these methods are rather
complex, and although they may be used in analysis, at least for simple systems, they are not really
suitable for controller synthesis and will not be pursued further in this book.

Remark 3 From Figure 7.3 we see that the radius of the disc may be reduced by moving the centre
(selecting another nominal model). This is discussed in Section 7.4.4.

7.4.2 Representing uncertainty regions by complex perturbations

+

+

+
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Figure 7.4: Disc-shaped uncertainty regions generated by complex additive uncertainty, Gp = G +
wA∆

We will use disc-shaped regions to represent uncertainty regions as illustrated by the
Nyquist plots in Figures 7.3 and 7.4. These disc-shaped regions may be generated by additive
complex norm-bounded perturbations (additive uncertainty) around a nominal plant G

ΠA : Gp(s) = G(s) + wA(s)∆A(s); |∆A(jω)| ≤ 1 ∀ω (7.20)

where ∆A(s) is any stable transfer function which at each frequency is no larger than
1 in magnitude. How is this possible? If we consider all possible ∆A’s, then at each
frequency ∆A(jω) “generates” a disc-shaped region with radius 1 centred at 0, so G(jω) +
wA(jω)∆A(jω) generates at each frequency a disc-shaped region of radius |wA(jω)| centred
at G(jω) as shown in Figure 7.4.

In most cases wA(s) is a rational transfer function (although this need not always be the
case).

One may also view wA(s) as a weight which is introduced in order to normalize the
perturbation to be less than 1 in magnitude at each frequency. Thus only the magnitude of
the weight matters, and in order to avoid unnecessary problems we always choose wA(s) to
be stable and minimum-phase (this applies to all weights used in this book).
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Figure 7.5: The set of possible plants includes the origin at frequencies where |wA(jω)| ≥ |G(jω)|,
or equivalently |wI(jω)| ≥ 1

The disc-shaped regions may alternatively be represented by a multiplicative uncertainty
description as in (7.2),

ΠI : Gp(s) = G(s)(1 + wI(s)∆I(s)); |∆I(jω)| ≤ 1,∀ω (7.21)

By comparing (7.20) and (7.21) we see that for SISO systems the additive and multiplicative
uncertainty descriptions are equivalent if at each frequency

|wI(jω)| = |wA(jω)|/|G(jω)| (7.22)

However, multiplicative (relative) weights are often preferred because their numerical value is
more informative. At frequencies where |wI(jω)| > 1 the uncertainty exceeds 100% and the
Nyquist curve may pass through the origin. This follows since, as illustrated in Figure 7.5, the
radius of the discs in the Nyquist plot, |wA(jω)| = |G(jω)wI(jω)|, then exceeds the distance
from G(jω) to the origin. At these frequencies we do not know the phase of the plant, and
we allow for zeros crossing from the LHP to the RHP. To see this, consider a frequency ω0
where |wI(jω0)| ≥ 1. Then there exists a |∆I | ≤ 1 such that Gp(jω0) = 0 in (7.21); that
is, there exists a possible plant with zeros at s = ±jω0. For this plant at frequency ω0 the
input has no effect on the output, so control has no effect. It then follows that tight control is
not possible at frequencies where |wI(jω)| ≥ 1 (this condition is derived more rigorously in
(7.43)).

7.4.3 Obtaining the weight for complex uncertainty
Consider a set Π of possible plants resulting, for example, from parametric uncertainty as in
(7.19). We now want to describe this set of plants by a single (lumped) complex perturbation,
∆A or ∆I . This complex (disc-shaped) uncertainty description may be generated as follows:
1. Select a nominal model G(s).
2. Additive uncertainty. At each frequency £nd the smallest radius lA(ω) which includes all

the possible plants Π:
lA(ω) = max

GP∈Π
|Gp(jω)−G(jω)| (7.23)

If we want a rational transfer function weight, wA(s) (which may not be the case if we
only want to do analysis), then it must be chosen to cover the set, so

|wA(jω)| ≥ lA(ω) ∀ω (7.24)
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Usually wA(s) is of low order to simplify the controller design. Furthermore, an
objective of frequency domain uncertainty is usually to represent uncertainty in a simple
straightforward manner.

3. Multiplicative (relative) uncertainty. This is often the preferred uncertainty form, and we
have

lI(ω) = max
Gp∈Π

∣∣∣∣
Gp(jω)−G(jω)

G(jω)

∣∣∣∣ (7.25)

with a rational weight
|wI(jω)| ≥ lI(ω),∀ω (7.26)

Example 7.6 Multiplicative weight for parametric uncertainty. Consider again the set of plants
with parametric uncertainty given in (7.19)

Π : Gp(s) =
k

τs+ 1
e−θs, 2 ≤ k, θ, τ ≤ 3 (7.27)

We want to represent this set using multiplicative uncertainty with a rational weight wI(s). To simplify
subsequent controller design we select a delay-free nominal model

G(s) =
k̄

τ̄ s+ 1
=

2.5

2.5s+ 1
(7.28)

To obtain lI(ω) in (7.25), one may use the Matlab Robust Control toolbox command usample, which
gives the speci£ed number of random plants from the uncertain set of plants. However, this command
does not handle the uncertainty in time delay, thus we consider three values (2, 2.5 and 3) for each
of the three parameters (k, θ, τ ). (This is not, in general, guaranteed to yield the worst case as the
worst case may be at the interior of the intervals.) The corresponding relative errors |(Gp−G)/G| are
shown as functions of frequency for the 33 = 27 resulting Gp’s in Figure 7.6. The curve for lI(ω) must
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Figure 7.6: Relative errors for 27 combinations of k, τ and θ with delay-free nominal plant (dotted
lines). Solid line: £rst-order weight |wI1| in (7.29). Dashed line: third-order weight |wI | in (7.30).

at each frequency lie above all the dotted lines, and we £nd that lI(ω) is 0.2 at low frequencies and 2.5
at high frequencies. To derive wI(s) we £rst try a simple £rst-order weight that matches this limiting
behaviour:

wI1(s) =
Ts+ 0.2

(T/2.5)s+ 1
, T = 4 (7.29)

As seen from the solid line in Figure 7.6, this weight gives a good £t of lI(ω), except around ω = 1
where |wI1(jω)| is slightly too small, and so this weight does not include all possible plants. To change
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this so that |wI(jω)| ≥ lI(ω) at all frequencies, we can multiply wI1 by a correction factor to lift the
gain slightly at ω = 1. The following works well:

wI(s) = ωI1(s)
s2 + 1.6s+ 1

s2 + 1.4s+ 1
(7.30)

as is seen from the dashed line in Figure 7.6. The magnitude of the weight crosses 1 at about ω = 0.26.
This seems reasonable since we have neglected the delay in our nominal model, which by itself yields
100% uncertainty at a frequency of about 1/θmax = 0.33 (see Figure 7.8(a) below).

An uncertainty description for the same parametric uncertainty, but with a mean-value
nominal model (with delay), is given in Exercise 7.8. Parametric gain and delay uncertainty
(without time constant uncertainty) are discussed further on page 272.

Remark. Pole uncertainty. In the example we represented pole (time constant) uncertainty by a
multiplicative perturbation, ∆I . We may even do this for unstable plants, provided the poles do not
shift between the half planes and one allows ∆I(s) to be unstable. However, if the pole uncertainty
is large, and in particular if poles can cross from the LHP to the RHP, then one should use an inverse
(“feedback”) uncertainty representation as in (7.3).

7.4.4 Choice of nominal model
With parametric uncertainty represented as complex perturbations there are three main
options for the choice of nominal model:

1. A simpli£ed model, e.g. a low-order, delay-free model.
2. A model of mean parameter values, G(s) = Ḡ(s).
3. The central plant obtained from a Nyquist plot (yielding the smallest discs).
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Figure 7.7: Nyquist plot of Gp(jω) at frequency ω = 0.5 (dashed region) showing complex disc
approximations using three options for the nominal model:
1. Simpli£ed nominal model with no time delay
2. Mean parameter values
3. Nominal model corresponding to the smallest radius



SISO UNCERTAINTY AND ROBUSTNESS 271

Option 1 usually yields the largest uncertainty region, but the model is simple and this
facilitates controller design in later stages. Option 2 is probably the most straightforward
choice. Option 3 yields the smallest region, but in this case a signi£cant effort may be required
to obtain the nominal model, which is usually not a rational transfer function and a rational
approximation could be of very high order.

Example 7.7 Consider again the uncertainty set (7.27) used in Example 7.6. The nominal models
selected for options 1 and 2 are

G1(s) =
k̄

τ̄ s+ 1
, G2(s) =

k̄

τ̄ s+ 1
e−θ̄s

For option 3 the nominal model is not rational. The Nyquist plot of the three resulting discs at frequency
ω = 0.5 are shown in Figure 7.7.

Remark. A similar example was studied by Wang et al. (1994), who obtained the best controller designs
with option 1, although the uncertainty region is clearly much larger in this case. The reason for this is
that the “worst-case region” in the Nyquist plot in Figure 7.7 corresponds quite closely to those plants
with the most negative phase (at coordinates approximately equal to (−1.5,−1.5)). Thus, the additional
plants included in the largest region (option 1) are generally easier to control and do not really matter
when evaluating the worst-case plant with respect to stability or performance. In conclusion, at least for
SISO plants, we £nd that for plants with an uncertain time delay, it is simplest and sometimes best (!)
to use a delay-free nominal model, and to represent the nominal delay as additional uncertainty.

The choice of nominal model is only an issue since we are lumping several sources of
parametric uncertainty into a single complex perturbation. Of course, if we use a parametric
uncertainty description, based on multiple real perturbations, then we should always use the
mean parameter values in the nominal model.

7.4.5 Neglected dynamics represented as uncertainty
We saw above that one advantage of frequency domain uncertainty descriptions is that one
can choose to work with a simple nominal model, and represent neglected dynamics as
uncertainty. We will now consider this in a little more detail. Consider a set of plants

Gp(s) = G0(s)f(s)

where G0(s) is £xed (and certain). We want to neglect the term f(s) (which may be £xed or
may be an uncertain set Πf ), and represent Gp by multiplicative uncertainty with a nominal
model G = G0. From (7.25) we get that the magnitude of the relative uncertainty caused by
neglecting the dynamics in f(s) is

lI(ω) = max
Gp

∣∣∣∣
Gp −G
G

∣∣∣∣ = max
f(s)∈Πf

|f(jω)− 1| (7.31)

Three examples illustrate the procedure.
1. Neglected delay. Let f(s) = e−θps, where 0 ≤ θp ≤ θmax. We want to represent

Gp = G0(s)e
−θps by a delay-free plant G0(s) and multiplicative uncertainty. Let us £rst

consider the maximum delay, for which the relative error |1−e−jωθmax | is shown as a function
of frequency in Figure 7.8(a). The relative uncertainty crosses 1 in magnitude at a frequency
of about 1/θmax, reaches 2 at frequency π/θmax (since at this frequency ejωθmax = −1), and



272 MULTIVARIABLE FEEDBACK CONTROL

oscillates between 0 and 2 at higher frequencies (which corresponds to the Nyquist plot of
e−jωθmax going around and around the unit circle). Similar curves are generated for smaller
values of the delay, and they also oscillate between 0 and 2 but at even higher frequencies.
It then follows that if we consider all θ ∈ [0, θmax] then the relative error bound is 2 at
frequencies above π/θmax, and we have

lI(ω) =

{
|1− e−jωθmax | ω < π/θmax

2 ω ≥ π/θmax
(7.32)

Rational approximations of (7.32) are given in (7.36) and (7.37) with rk = 0.
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Figure 7.8: Multiplicative uncertainty resulting from neglected dynamics

2. Neglected lag. Let f(s) = 1/(τps+1), where 0 ≤ τp ≤ τmax. In this case the resulting
lI(ω), which is shown in Figure 7.8(b), can be represented by a rational transfer function with
|wI(jω)| = lI(ω) where

wI(s) = 1− 1

τmaxs+ 1
=

τmaxs

τmaxs+ 1

This weight approaches 1 at high frequencies, and the low-frequency asymptote crosses 1 at
frequency 1/τmax.

3. Multiplicative weight for gain and delay uncertainty. Consider the following set of
plants:

Gp(s) = kpe
−θpsG0(s); kp ∈ [kmin, kmax], θp ∈ [θmin, θmax] (7.33)

which we want to represent by multiplicative uncertainty and a delay-free nominal model,
G(s) = k̄G0(s), where k̄ = kmin+kmax

2 and rk = (kmax−kmin)/2

k̄
. Lundström (1994) derived

the following exact expression for the relative uncertainty weight:

lI(ω) =

{ √
r2k + 2(1 + rk)(1− cos (θmaxω)) for ω < π/θmax

2 + rk for ω ≥ π/θmax
(7.34)

where rk is the relative uncertainty in the gain. This bound is irrational. To derive a rational
weight we £rst approximate the delay by a £rst-order Pad é approximation to get

kmaxe
−θmaxs − k̄ ≈ k̄(1 + rk)

1− θmax
2 s

1 + θmax
2 s
− k̄ = k̄

−
(
1 + rk

2

)
θmaxs+ rk

θmax
2 s+ 1

(7.35)



SISO UNCERTAINTY AND ROBUSTNESS 273

Since only the magnitude matters this may be represented by the following £rst-order weight:

wI(s) =
(1 + rk

2 )θmaxs+ rk
θmax
2 s+ 1

(7.36)

However, as seen from Figure 7.9, by comparing the dashed line (representing wI ) with
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Figure 7.9: Multiplicative weight for gain and delay uncertainty in (7.33) (with θmax = 1, rk = 0.2)

the solid line (representing lI ), this weight wI is somewhat optimistic (too small), especially
around frequencies 1/θmax. To make sure that |wI(jω)| ≥ lI(ω) at all frequencies we apply
a correction factor and get a third-order weight

wI(s) =
(1 + rk

2 )θmaxs+ rk
θmax
2 s+ 1

·
(
θmax
2.363

)2
s2 + 2 · 0.838 · θmax2.363s+ 1

(
θmax
2.363

)2
s2 + 2 · 0.685 · θmax2.363s+ 1

(7.37)

The improved weight wI(s) in (7.37) is not shown in Figure 7.9, but it would be almost
indistinguishable from the exact bound given by the solid curve. In practical applications, it
is suggested that one starts with a simple weight as in (7.36), and if it later appears important
to eke out a little extra performance then one should try a higher-order weight as in (7.37).
Example 7.8 Consider the set Gp(s) = kpe

−θpsG0(s) with 2 ≤ kp ≤ 3 and 2 ≤ θp ≤ 3.
We approximate this with a nominal delay-free plant G = k̄G0 = 2.5G0 and relative uncertainty.
The simple £rst-order weight in (7.36), wI(s) = 3.3s+0.2

1.5s+1
, is somewhat optimistic. To cover all the

uncertainty we may use (7.37), wI(s) = 3.3s+0.2
1.5s+1

· 1.612s2+2.128s+1
1.612s2+1.739s+1

.

7.4.6 Unmodelled dynamics uncertainty
Although we have spent a considerable amount of time on modelling uncertainty and deriving
weights, we have not yet addressed the most important reason for using frequency domain
(H∞) uncertainty descriptions and complex perturbations, namely the incorporation of
unmodelled dynamics. Of course, unmodelled dynamics is close to neglected dynamics which
we have just discussed, but it is not quite the same. In unmodelled dynamics we also include
unknown dynamics of unknown or even in£nite order. To represent unmodelled dynamics we
usually use a simple multiplicative weight of the form

wI(s) =
τs+ r0

(τ/r∞)s+ 1
(7.38)
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where r0 is the relative uncertainty at steady-state, 1/τ is (approximately) the frequency at
which the relative uncertainty reaches 100%, and r∞ is the magnitude of the weight at high
frequency (typically, r∞ ≥ 2). Based on the above examples and discussions it is hoped
that the reader has now accumulated the necessary insight to select reasonable values for the
parameters r0, r∞ and τ for a speci£c application. The following exercise provides further
support and gives a good review of the main ideas.

Exercise 7.2 ∗ Suppose that the nominal model of a plant is

G(s) =
1

s+ 1

and the uncertainty in the model is parameterized by multiplicative uncertainty with the weight

wI(s) =
0.125s+ 0.25

(0.125/4)s+ 1

Call the resulting set Π. Now £nd the extreme parameter values in each of the plants (a)–(g) below so
that each plant belongs to the set Π. All parameters are assumed to be positive. One approach is to plot
lI(ω) = |G−1G′ − 1| in (7.25) for each G′ (Ga, Gb, etc.) and adjust the parameter in question until
lI just touches |wI(jω)|.

(a) Neglected delay: Find the largest θ for Ga = Ge−θs (Answer: 0.13).
(b) Neglected lag: Find the largest τ for Gb = G 1

τs+1
(Answer: 0.15).

(c) Uncertain pole: Find the range of a for Gc =
1

s+a
(Answer: 0.8 to 1.33).

(d) Uncertain pole (time constant form): Find the range of T for Gd = 1
Ts+1

(Answer: 0.7 to 1.5).
(e) Neglected resonance: Find the range of ζ for Ge = G 1

(s/70)2+2ζ(s/70)+1
(Answer: 0.02 to 0.8).

(f) Neglected dynamics: Find the largest integer m for Gf = G
(

1
0.01s+1

)m
(Answer: 13).

(g) Neglected RHP-zero: Find the largest τz forGg = G−τzs+1
τzs+1

(Answer: 0.07). These results imply
that a control system which meets given stability and performance requirements for all plants in Π is
also guaranteed to satisfy the same requirements for the above plants Ga, Gb, . . . , Gg .

(h) Repeat all of the above with a new nominal plant G = 1/(s − 1) (and with everything else the
same except Gd = 1/(Ts− 1)) (Answers: same as above).

Exercise 7.3 Repeat Exercise 7.2 with a new weight,

wI(s) =
s+ 0.3

(1/3)s+ 1

We end this section with a couple of remarks on uncertainty modelling:

1. We can usually get away with just one source of complex uncertainty for SISO systems.
2. With anH∞ uncertainty description, it is possible to represent time delays (corresponding

to an in£nite-dimensional plant) and unmodelled dynamics of in£nite order, using a
nominal model and associated weights of £nite order.

7.5 SISO robust stability
We have so far discussed how to represent the uncertainty mathematically. In this section, we
derive conditions which will ensure that the system remains stable for all perturbations in the
uncertainty set, and then in the subsequent section we study robust performance.
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Figure 7.10: Feedback system with multiplicative uncertainty

7.5.1 RS with multiplicative uncertainty
We want to determine the stability of the uncertain feedback system in Figure 7.10 when
there is multiplicative (relative) uncertainty of magnitude |wI(jω)|. With uncertainty the loop
transfer function becomes

Lp = GpK = GK(1 + wI∆I) = L+ wIL∆I , |∆I(jω)| ≤ 1,∀ω (7.39)

As always, we assume (by design) stability of the nominal closed-loop system (i.e. with
∆I = 0). For simplicity, we also assume that the loop transfer function Lp is stable. We now
use the Nyquist stability condition to test for RS of the closed-loop system. We have

RS
def⇔ System stable ∀Lp

⇔ Lp should not encircle the point − 1, ∀Lp (7.40)
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Figure 7.11: Nyquist plot of Lp for RS

1. Graphical derivation of RS condition. Consider the Nyquist plot of Lp as shown in
Figure 7.11. Convince yourself that |−1−L| = |1 + L| is the distance from the point −1 to
the centre of the disc representing Lp, and that |wIL| is the radius of the disc. Encirclements
are avoided if none of the discs cover −1, and we get from Figure 7.11

RS ⇔ |wIL| < |1 + L|, ∀ω (7.41)
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⇔
∣∣∣∣
wIL

1 + L

∣∣∣∣ < 1, ∀ω ⇔ |wIT | < 1, ∀ω (7.42)

def⇔ ‖wIT‖∞ < 1 (7.43)

Note that for SISO systems wI = wO and T = TI = GK(1 + GK)−1, so the condition
could equivalently be written in terms of wITI or wOT . Thus, the requirement of RS for the
case with multiplicative uncertainty gives an upper bound on the complementary sensitivity:

RS⇔ |T | < 1/|wI |, ∀ω (7.44)

We see that we have to detune the system (i.e. make T small) at frequencies where the relative
uncertainty |wI | exceeds 1 in magnitude. Condition (7.44) is exact (necessary and suf£cient)
provided there exist uncertain plants such that at each frequency all perturbations satisfying
|∆(jω)| ≤ 1 are possible. If this is not the case, then (7.44) is only suf£cient for RS, e.g. this
is the case if the perturbation is restricted to be real, as for the parametric gain uncertainty in
(7.6).

Remark. Unstable plants. The stability condition (7.43) also applies to the case when L and Lp are
unstable as long as the number of RHP-poles remains the same for each plant in the uncertainty set.
This follows since the nominal closed-loop system is assumed stable, so we must make sure that the
perturbation does not change the number of encirclements, and (7.43) is the condition which guarantees
this.

2. Algebraic derivation of RS condition. Since Lp is assumed stable, and the nominal
closed loop is stable, the nominal loop transfer function L(jω) does not encircle −1.
Therefore, since the set of plants is norm-bounded, it then follows that if some Lp1 in the
uncertainty set encircles −1, then there must be another Lp2 in the uncertainty set which
goes exactly through −1 at some frequency. Thus,

RS ⇔ |1 + Lp| 6= 0, ∀Lp,∀ω (7.45)
⇔ |1 + Lp| > 0, ∀Lp,∀ω (7.46)
⇔ |1 + L+ wIL∆I | > 0, ∀|∆I | ≤ 1,∀ω (7.47)

At each frequency the last condition is most easily violated (the worst case) when the complex
number ∆I(jω) is selected with |∆I(jω)| = 1 and with phase such that the terms (1 + L)
and wIL∆I have opposite signs (point in the opposite direction). Thus

RS⇔ |1 + L| − |wIL| > 0, ∀ω ⇔ |wIT | < 1, ∀ω (7.48)

and we have rederived (7.43).
3. M∆-structure derivation of RS condition. This derivation is a preview of a general

analysis presented in the next chapter. The reader should not be too concerned if he or she
does not fully understand the details at this point. The derivation is based on applying the
Nyquist stability condition to an alternative “loop transfer function” M∆ rather than Lp. The
argument goes as follows. Notice that the only source of instability in Figure 7.10 is the new
feedback loop created by ∆I . If the nominal (∆I = 0) feedback system is stable then the
stability of the system in Figure 7.10 is equivalent to stability of the system in Figure 7.12,
where ∆ = ∆I and

M = wIK(1 +GK)−1G = wIT (7.49)
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Figure 7.12: M∆-structure

is the transfer function from the output of ∆I to the input of ∆I . We now apply the Nyquist
stability condition to the system in Figure 7.12. We assume that ∆ and M = wIT are stable;
the former implies that G and Gp must have the same unstable poles, the latter is equivalent
to assuming nominal stability of the closed-loop system. The Nyquist stability condition then
determines RS if and only if the “loop transfer function” M∆ does not encircle−1 for all ∆.
Thus,

RS ⇔ |1 +M∆| > 0, ∀ω,∀|∆| ≤ 1 (7.50)

The last condition is most easily violated (the worst case) when ∆ is selected at each
frequency such that |∆| = 1 and the terms M∆ and 1 have opposite signs (point in the
opposite direction). We therefore get

RS ⇔ 1− |M(jω)| > 0, ∀ω (7.51)
⇔ |M(jω)| < 1, ∀ω (7.52)

which is the same as (7.43) and (7.48) since M = wIT . The M∆-structure provides a very
general way of handling robust stability, and we will discuss this at length in the next chapter
where we will see that (7.52) is essentially a clever application of the small-gain theorem
where we avoid the usual conservatism since any phase in M∆ is allowed.

Example 7.9 Consider the following nominal plant and PI controller:

G(s) =
3(−2s+ 1)

(5s+ 1)(10s+ 1)
K(s) = Kc

12.7s+ 1

12.7s

Recall that this is the inverse response process from Chapter 2. Initially, we select Kc = Kc1 = 1.13
as suggested by the Ziegler–Nichols tuning rule. It results in a nominally stable closed-loop system.
Suppose that one “extreme” uncertain plant is

G′(s) = 4(−3s+ 1)/(4s+ 1)2 (7.53)

For this plant the relative error |(G′ −G)/G| is 0.33 at low frequencies; it is 1 at about 0.1 rad/s, and
it is 5.25 at high frequencies. Based on this and (7.38) we choose the following uncertainty weight:

wI(s) =
10s+ 0.33

(10/5.25)s+ 1

which closely matches this relative error. We now want to evaluate whether the system remains stable
for all possible plants as given by Gp = G(1 + wI∆I), where ∆I(s) is any perturbation satisfying
‖∆‖∞ ≤ 1. From (7.44), we have the following necessary and suf£cient condition for robust stability:
|T | < 1/|wI | ∀ω. This condition is easy to check. Based on the nominal plant (7.53) and the given
controller K1 (with gain Kc1 = 1.13), we compute T1 = GK1/(1+GK1) as a function of frequency.
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Figure 7.13: Checking robust stability with multiplicative uncertainty

From Figure 7.13, we see that |T1| exceeds |wI | over a wide frequency range, so from (7.44), we
conclude that the system is not robustly stable.

From Figure 7.13, we notice that the worst-case frequency is ω = 0.26, where |T1| is a factor of
1/0.13 = 7.7 larger than wI (see also Matlab code in Table 7.2, where we get Smarg1 = 0.13). In
other words, reducing the uncertainty weight wI by a factor 7.7 would give stability.

With the given uncertain plant, we need to reduce the controller gain to achieve robust stability. By
trial and error, we £nd that reducing the gain to Kc2 = 0.31 just achieves RS, as is seen from the curve
for T2 = GK2/(1 +GK2) in Figure 7.13.

Table 7.2: Matlab program for describing plant
with complex uncertainty and analyzing RS

% Uses Robust Control toolbox
G = 3*tf([-2 1],conv([5 1],[10 1]));
Wi = tf([10 0.33],[10/5.25 1]); % Uncertainty weight
Delta = ultidyn(’Delta’, [1 1]); % Dynamic uncertainty
Gp = G * (1 + Wi*Delta);
K = tf([12.7 1],[12.7 0]);
L1 = Gp*1.13*K; % Ziegler-Nichols Controller
T1 = feedback(L1,1);
[Smarg1,Dstab1,Report1] = robuststab(T1) % Stability margins
L2 = Gp*1.13*K; % Detuned Controller
T2 = feedback(Gp*0.31*K,1);
[Smarg2,Dstab2,Report2] = robuststab(T2)

Remark. For the “extreme” plant G′(s) in (7.53), we £nd as expected that the closed-loop system is
unstable with Kc1 = 1.13. However, with Kc2 = 0.31 the system is stable with reasonable margins
(and not at the limit of instability as one might have expected); we can increase the gain by almost
a factor of 2 to Kc = 0.58 before we get instability. This illustrates that condition (7.44) is only a
suf£cient condition for stability, and a violation of this bound does not imply instability for a speci£c
plantG′. However, withKc2 = 0.31 there does exist another allowed complex ∆I and a corresponding
Gp = G(1 + wI∆I) that yields T2p =

GpK2
1+GpK2

on the limit of instability. Such a ∆I may be
identi£ed numerically, e.g. using Matlab as shown in Table 7.2 (where the worst-case ∆I is contained
in Dstab2.Delta).
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7.5.2 Comparison with gain margin
By what factor, kmax, can we multiply the loop gain, L0 = G0K, before we get instability?
In other words, given

Lp = kpL0; kp ∈ [1, kmax] (7.54)
£nd the largest value of kmax such that the closed-loop system is stable.

1. Exact condition. The exact value of kmax (which is obtained with ∆ real in (7.56)) is
the gain margin (GM) from classical control. We have (recall (2.40))

kmax,1 = GM =
1

|L0(jω180)|
(7.55)

where ω180 is the frequency where ∠L0 = −180◦.
2. Conservative condition using complex perturbation. Alternatively, represent the gain

uncertainty as complex multiplicative uncertainty,

Lp = kpL0 = k̄L0(1 + rk∆) (7.56)

where
k̄ =

kmax + 1

2
, rk =

kmax − 1

kmax + 1
(7.57)

Note that the nominal L = k̄L0 is not £xed, but depends on kmax. The RS condition
‖wIT‖∞ < 1 (which is derived for complex ∆) with wI = rk then gives

∥∥∥∥rk
k̄L0

1 + k̄L0

∥∥∥∥
∞
< 1 (7.58)

Here both rk and k̄ depend on kmax, and (7.58) must be solved iteratively to £nd kmax,2.
Condition (7.58) would be exact if ∆ were complex, but since it is not we expect kmax,2 to
be somewhat smaller than GM.

Example 7.10 To check this numerically consider a system with L0 = 1
s
−s+2
s+2

. We £nd ω180 = 2
[rad/s] and |L0(jω180)| = 0.5, and the exact factor by which we can increase the loop gain is, from
(7.55), kmax,1 = GM = 2. On the other hand, use of (7.58) yields kmax,2 = 1.78, which as expected
is less than GM = 2. This illustrates the conservatism involved in replacing a real perturbation by a
complex one.

Exercise 7.4 ∗ Represent the gain uncertainty in (7.54) as multiplicative complex uncertainty with
nominal model G = G0 (rather than G = k̄G0 used above).

(a) Find wI and use the RS condition ‖wIT‖∞ < 1 to £nd kmax,3. Note that no iteration is needed
in this case since the nominal model and thus T = T0 is independent of kmax.

(b) One expects kmax,3 to be even more conservative than kmax,2 since this uncertainty description
is not even tight when ∆ is real. Show that this is indeed the case using the numerical values from
Example 7.10.

7.5.3 RS with inverse multiplicative uncertainty
We will derive a corresponding RS condition for a feedback system with inverse
multiplicative uncertainty (see Figure 7.14) in which

Gp = G(1 + wiI(s)∆iI)
−1 (7.59)
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Figure 7.14: Feedback system with inverse multiplicative uncertainty

Algebraic derivation. Assume for simplicity that the loop transfer function Lp is stable, and
assume stability of the nominal closed-loop system. RS is then guaranteed if encirclements
by Lp(jω) of the point −1 are avoided, and since Lp is in a norm-bounded set we have

RS ⇔ |1 + Lp| > 0, ∀Lp,∀ω (7.60)
⇔ |1 + L(1 + wiI∆iI)

−1| > 0, ∀|∆iI | ≤ 1,∀ω (7.61)
⇔ |1 + wiI∆iI + L| > 0, ∀|∆iI | ≤ 1,∀ω (7.62)

The last condition is most easily violated (the worst case) when ∆iI is selected at each
frequency such that |∆iI | = 1 and the terms 1 + L and wiI∆iI have opposite signs (point in
the opposite direction). Thus

RS ⇔ |1 + L| − |wiI | > 0, ∀ω (7.63)
⇔ |wiIS| < 1, ∀ω (7.64)

Remark. In this derivation we have assumed that Lp is stable, but this is not necessary as one may
show by deriving the condition using the M∆-structure. Actually, the RS condition (7.64) applies even
when the number of RHP-poles of Gp can change.

Control implications. From (7.64) we £nd that the requirement of RS for the case with
inverse multiplicative uncertainty gives an upper bound on the sensitivity,

RS ⇔ |S| < 1/|wiI |, ∀ω (7.65)

We see that we need tight control and have to make S small at frequencies where the
uncertainty is large and |wiI | exceeds 1 in magnitude. This may be somewhat surprising
since we intuitively expect to have to detune the system (and make S ≈ 1) when we have
uncertainty, while this condition tells us to do the opposite. The reason is that this uncertainty
represents pole uncertainty, and at frequencies where |wiI | exceeds 1 we allow for poles
crossing from the LHP to the RHP (Gp becoming unstable), and we then know that we need
feedback (|S| < 1) in order to stabilize the system.

However, |S| < 1 may not always be possible. In particular, assume that the plant has a
RHP-zero at s = z. Then we have the interpolation constraint S(z) = 1 and we must as a
prerequisite for RS, ‖wiIS‖∞ < 1, require that wiI(z) ≤ 1 (recall the maximum modulus
theorem, see (5.20)). Thus, we cannot have large pole uncertainty with |wiI(jω)| > 1 (and
hence the possibility of instability) at frequencies where the plant has a RHP-zero. This is
consistent with the results we obtained in Section 5.3.2 (page 179).
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7.6 SISO robust performance
7.6.1 SISO nominal performance in the Nyquist plot
Consider performance in terms of the weighted sensitivity function as discussed in
Section 2.8.2. The condition for nominal performance (NP) is then

NP ⇔ |wPS| < 1 ∀ω ⇔ |wP | < |1 + L| ∀ω (7.66)

Now |1 + L| represents at each frequency the distance of L(jω) from the point −1 in the
Nyquist plot, so L(jω) must be at least a distance of |wP (jω)| from −1. This is illustrated
graphically in Figure 7.15, where we see that for NP, L(jω) must stay outside a disc of radius
|wP (jω)| centred on −1.
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Figure 7.15: Nyquist plot of NP condition |wP | < |1 + L|

7.6.2 Robust performance
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Figure 7.16: Diagram for RP with multiplicative uncertainty

For robust performance we require the performance condition (7.66) to be satis£ed for all
possible plants, i.e. including the worst-case uncertainty:

RP
def⇔ |wPSp| < 1 ∀Sp,∀ω (7.67)
⇔ |wP | < |1 + Lp| ∀Lp,∀ω (7.68)

This corresponds to requiring |ŷ/d| < 1 ∀∆I in Figure 7.16, where we consider
multiplicative uncertainty, and the set of possible loop transfer functions is

Lp = GpK = L(1 + wI∆I) = L+ wIL∆I (7.69)
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1. Graphical derivation of RP condition. Condition (7.68) is illustrated graphically by
the Nyquist plot in Figure 7.17. For RP we must require that all possible Lp(jω) stay outside
a disc of radius |wP (jω)| centred on −1. Since Lp at each frequency stays within a disc of
radius wIL centred on L, we see from Figure 7.17 that the condition for RP is that the two
discs, with radii |wP | and |wIL|, do not overlap. Since their centres are located a distance
|1 + L| apart, the RP condition becomes

RP ⇔ |wP |+ |wIL| < |1 + L|, ∀ω (7.70)
⇔ |wP (1 + L)−1|+ |wIL(1 + L)−1| < 1, ∀ω (7.71)

or in other words
RP ⇔ maxω (|wPS|+ |wIT |) < 1 (7.72)
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Figure 7.17: Nyquist plot of RP condition |wP | < |1 + Lp|

2. Algebraic derivation of RP condition. From the de£nition in (7.67) we have that RP is
satis£ed if the worst-case (maximum) weighted sensitivity at each frequency is less than 1,

RP ⇔ max
Sp
|wPSp| < 1, ∀ω (7.73)

(strictly speaking, max should be replaced by sup, the supremum). The perturbed sensitivity
is Sp = (I + Lp)

−1 = 1/(1 + L + wIL∆I), and the worst-case (maximum) is obtained
at each frequency by selecting |∆I | = 1 such that the terms (1 + L) and wIL∆I (which are
complex numbers) point in opposite directions. We get

max
Sp
|wPSp| =

|wP |
|1 + L| − |wIL|

=
|wPS|

1− |wIT |
(7.74)

and by substituting (7.74) into (7.73) we rederive the RP condition in (7.72).

Remarks on RP condition (7.72).
1. The RP condition (7.72) is closely approximated by the following mixed sensitivity H∞ condition:

∥∥∥∥
wPS
wIT

∥∥∥∥
∞

= max
ω

√
|wPS|2 + |wIT |2 < 1 (7.75)

To be more precise, we £nd from (A.96) that condition (7.75) is within a factor of at most
√
2 to

condition (7.72). This means that for SISO systems we can closely approximate the RP condition
in terms of an H∞ problem, so there is little need to make use of the structured singular value.
However, we will see in the next chapter that the situation can be very different for MIMO systems.
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2. The RP condition (7.72) can be used to derive bounds on the loop shape |L|. At a given frequency
we have that |wPS|+ |wIT | < 1 (RP) is satis£ed if (see Exercise 7.5)

|L| > 1 + |wP |
1− |wI |

(at frequencies where |wI | < 1) (7.76)

or if
|L| < 1− |wP |

1 + |wI |
(at frequencies where |wP | < 1) (7.77)

Conditions (7.76) and (7.77) may be combined over different frequency ranges. Condition (7.76)
is most useful at low frequencies where generally |wI | < 1 and |wP | > 1 (tight performance
requirement) and we need |L| large. Conversely, condition (7.77) is most useful at high frequencies
where generally |wI | > 1 (more than 100% uncertainty), |wP | < 1 and we need L small. The
loop-shaping conditions (7.76) and (7.77) may in the general case be obtained numerically from
µ-conditions as outlined in Remark 13 on page 311. This is discussed by Braatz et al. (1996) who
derived bounds also in terms of S and T , and furthermore derived necessary bounds for RP in
addition to the suf£cient bounds in (7.76) and (7.77); see also Exercise 7.6.

3. The term µ(NRP) = |wPS| + |wIT | in (7.72) is the structured singular value (µ) for RP for this
particular problem; see (8.129). We will discuss µ in much more detail in the next chapter.

4. The structured singular value µ is not equal to the worst-case weighted sensitivity, maxSp |wPSp|,
given in (7.74) (although many people seem to think it is). The worst-case weighted sensitivity is
equal to skewed-µ (µs) with £xed uncertainty; see Section 8.10.3. Thus, in summary we have for
this particular RP problem:

µ = |wPS|+ |wIT |, µs =
|wPS|

1− |wIT |
(7.78)

Note that µ and µs are closely related since µ ≤ 1 if and only if µs ≤ 1.

Exercise 7.5 Derive the loop-shaping bounds in (7.76) and (7.77) which are suf£cient for |wPS| +
|wIT | < 1 (RP). (Hint: Start from the RP condition in the form |wP | + |wIL| < |1 + L| and use the
facts that |1 + L| ≥ 1− |L| and |1 + L| ≥ |L| − 1.)

Exercise 7.6 ∗ Also derive, from |wPS|+ |wIT | < 1, the following necessary bounds for RP (which
must be satis£ed):

|L| > |wP | − 1

1− |wI |
(for |wP | > 1 and |wI | < 1)

|L| < 1− |wP |
|wI | − 1

(for |wP | < 1 and |wI | > 1)

(Hint: Use |1 + L| ≤ 1 + |L|.)

Example 7.11 RP problem. Consider RP of the SISO system in Figure 7.18, for which we have

RP
def⇔
∣∣∣∣
ŷ

d

∣∣∣∣ < 1, ∀|∆u| ≤ 1, ∀ω; wP (s) = 0.25 +
0.1

s
; wu(s) = ru

s

s+ 1
(7.79)

(a) Derive a condition for RP.
(b) For what values of ru is it impossible to satisfy the RP condition?
(c) Let ru = 0.5. Consider two cases for the nominal loop transfer function: (1) GK1(s) = 0.5/s

and (2) GK2(s) =
0.5
s

1−s
1+s

. For each system, sketch the magnitudes of S and its performance bound as
a function of frequency. Does each system satisfy RP?
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Figure 7.18: Diagram for RP in Example 7.11

Solution. (a) The requirement for RP is |wPSp| < 1, ∀Sp, ∀ω, where the possible sensitivities are
given by

Sp =
1

1 +GK + wu∆u
=

S

1 + wu∆uS
(7.80)

The condition for RP then becomes

RP ⇔
∣∣∣∣

wPS

1 + wu∆uS

∣∣∣∣ < 1, ∀∆u, ∀ω (7.81)

A simple analysis shows that the worst case corresponds to selecting ∆u with magnitude 1 such that
the term wu∆uS is purely real and negative, and hence we have

RP ⇔ |wPS| < 1− |wuS|, ∀ω (7.82)
⇔ |wPS|+ |wuS| < 1, ∀ω (7.83)

⇔ |S(jw)| < 1

|wP (jw)|+ |wu(jw)|
, ∀ω (7.84)

(b) Since any real system is strictly proper we have |S| = 1 at high frequencies and therefore we
must require |wu(jω)| + |wP (jω)| < 1 as ω → ∞. With the weights in (7.79) this is equivalent to
ru + 0.25 < 1. Therefore, we must at least require ru < 0.75 for RP, so RP cannot be satis£ed if
ru ≥ 0.75.
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Figure 7.19: RP test

(c) Design S1 yields RP, while S2 does not. This is seen by checking the RP condition (7.84)
graphically as shown in Figure 7.19: |S1| has a peak of 1 while |S2| has a peak of about 2.45. These
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£ndings can also be con£rmed using the Matlab commands shown in Table 7.3. We also note that
Pmargunc1.UpperBound = 1.335, which implies that the design S1 will have RP, even if we
increase the uncertainty (wu) and performance requirements (wP ) by a factor of 1.335. For design
S2, the corresponding performance margin (Pmargunc2.UpperBound) is 0.7, which occurs at the
frequency ω = 0.801. This implies that the uncertainty and performance requirements must be reduced
by the factor 0.7 at frequency 0.801 to achieve RP.

Table 7.3: Matlab program for RP analysis
% Uses Robust Control toolbox
L1 = tf(0.5,[1 0]);
L2 = L1*tf([-1 1],[1 1]);
Wu = 0.5*tf([1 0],[1 1]); % Weights
Wp = 0.25+tf(0.1,[1 10e-6]); % Pole shifted for

% numerical reasons
Delta = ultidyn(’Delta’,[1 1]); % Dynamic uncertainty
S1 = inv(1+L1+Delta*Wu);
% Pmarg.Upperbound > 1 indicates Robust Performance
[Pmarg1,Pmargunc1,Report1] = robustperf(Wp*S1)
S2 = inv(1+L2+Delta*Wu);
[Pmarg2,Pmargunc2,Report2] = robustperf(Wp*S2)

7.6.3 The relationship between NP, RS and RP
Consider a SISO system with multiplicative uncertainty, and assume that the closed-loop is
nominally stable (NS). The conditions for nominal performance (NP), robust stability (RS)
and robust performance (RP) can then be summarized as follows:

NP ⇔ |wPS| < 1,∀ω (7.85)
RS ⇔ |wIT | < 1,∀ω (7.86)
RP ⇔ |wPS|+ |wIT | < 1,∀ω (7.87)

From this we see that a prerequisite for RP is that we satisfy NP and RS. This applies in
general, both for SISO and MIMO systems and for any uncertainty. In addition, for SISO
systems, if we satisfy both RS and NP, then we have at each frequency

|wPS|+ |wIT | ≤ 2max{|wPS|, |wIT |} < 2 (7.88)

It then follows that, within a factor of at most 2, we will automatically get RP when the
subobjectives of NP and RS are satis£ed. Thus, RP is not a “big issue” for SISO systems, and
this is probably the main reason why there is little discussion about RP in the classical control
literature. On the other hand, as we will see in the next chapter, for MIMO systems we may
get very poor RP even though the subobjectives of NP and RS are individually satis£ed.

To satisfy RS we generally want T small, whereas to satisfy NP we generally want
S small. However, we cannot make both S and T small at the same frequency because
of the identity S + T = 1. This has implications for RP, since |wP ||S| + |wI ||T | ≥
min{|wP |, |wI |}(|S|+ |T |), where |S|+ |T | ≥ |S+T | = 1, and we derive at each frequency

|wPS|+ |wIT | ≥ min{|wP |, |wI |} (7.89)

We conclude that we cannot have both |wP | > 1 (i.e. good performance) and |wI | > 1
(i.e. more than 100% uncertainty) at the same frequency. One explanation for this is that at
frequencies where |wI | > 1 the uncertainty will allow for RHP-zeros, and we know that we
cannot have tight performance in the presence of RHP-zeros.
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7.6.4 The similarity between RS and RP
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Figure 7.20: (a) RP with multiplicative uncertainty
(b) RS with combined multiplicative and inverse multiplicative uncertainty

RP may be viewed as a special case of RS (with multiple perturbations). To see this consider
the following two cases as illustrated in Figure 7.20:
1. RP with multiplicative uncertainty
2. RS with combined multiplicative and inverse multiplicative uncertainty
As usual the uncertain perturbations are normalized such that ‖∆1‖∞ ≤ 1 and ‖∆2‖∞ ≤ 1.
Since we use the H∞ norm to de£ne both uncertainty and performance and since the
weights in Figure 7.20(a) and (b) are the same, the tests for RP and RS in cases (a) and
(b), respectively, are identical. This may be argued from the block diagrams, or by simply
evaluating the conditions for the two cases as shown below.
1. The condition for RP with multiplicative uncertainty was derived in (7.72), but with w1

replaced by wP and with w2 replaced by wI . We found that

RP ⇔ |w1S|+ |w2T | < 1, ∀ω (7.90)

2. We will now derive the RS condition for the case where Lp is stable (this assumption
may be relaxed if the more general M∆-structure is used, see (8.128)). We want the
system to be closed-loop stable for all possible ∆1 and ∆2. RS is equivalent to avoiding
encirclements of −1 by the Nyquist plot of Lp. That is, the distance between Lp and −1
must be larger than zero, i.e. |1 + Lp| > 0, and therefore

RS ⇔ |1 + Lp| > 0 ∀Lp,∀ω (7.91)
⇔ |1 + L(1 + w2∆2)(1− w1∆1)

−1| > 0, ∀∆1,∀∆2,∀ω (7.92)
⇔ |1 + L+ Lw2∆2 − w1∆1| > 0, ∀∆1,∀∆2,∀ω (7.93)
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Here the worst case is obtained when we choose ∆1 and ∆2 with magnitudes 1 such that
the terms Lw2∆2 and w1∆1 are in the opposite direction of the term 1 + L. We get

RS ⇔ |1 + L| − |Lw2| − |w1| > 0, ∀ω (7.94)
⇔ |w1S|+ |w2T | < 1, ∀ω (7.95)

which is the same condition as found for RP.

7.7 Additional exercises
Exercise 7.7 ∗ Consider a “true” plant

G′(s) =
3e−0.1s

(2s+ 1)(0.1s+ 1)2

(a) Derive and sketch the additive uncertainty weight when the nominal model isG(s) = 3/(2s+1).
(b) Derive the corresponding robust stability condition.
(c) Apply this test for the controller K(s) = k/s and £nd the values of k that yield stability. Is this

condition tight?

Exercise 7.8 Uncertainty weight for a £rst-order model with delay. Laughlin et al. (1987)
considered the following parametric uncertainty description:

Gp(s) =
kp

τps+ 1
e−θps; kp ∈ [kmin, kmax], τp ∈ [τmin, τmax], θp ∈ [θmin, θmax] (7.96)

where all parameters are assumed positive. They chose the mean parameter values as (k̄, θ̄, τ̄ ) giving
the nominal model

G(s) = Ḡ(s) ,
k̄

τ̄ s+ 1
e−θ̄s (7.97)

and suggested use of the following multiplicative uncertainty weight:

wIL(s) =
kmax

k̄
· τ̄ s+ 1

τmins+ 1
· Ts+ 1

−Ts+ 1
− 1; T =

θmax − θmin

4
(7.98)

(a) Show that the resulting stable and minimum-phase weight corresponding to the uncertainty
description in (7.27) is

wIL(s) = (1.25s2 + 1.55s+ 0.2)/(2s+ 1)(0.25s+ 1) (7.99)

Note that this weight cannot be compared with (7.29) or (7.30) since the nominal plant is different.
(b) Plot the magnitude ofwIL as a function of frequency. Find the frequency where the weight crosses

1 in magnitude, and compare this with 1/θmax. Comment on your answer.
(c) Find lI(jω) using (7.25) and compare with |wIL|. Does the weight (7.99) and the uncertainty

model (7.2) include all possible plants? (Answer: No, not quite around frequency ω = 5.)

Exercise 7.9 ∗ Consider again the system in Figure 7.18. What kind of uncertainty might wu and ∆u

represent?

Exercise 7.10 Neglected dynamics. Assume we have derived the following detailed model:

Gdetail(s) =
3(−0.5s+ 1)

(2s+ 1)(0.1s+ 1)2
(7.100)

and we want to use the simpli£ed nominal model G(s) = 3/(2s + 1) with multiplicative uncertainty.
Plot lI(ω) and approximate it by a rational transfer function wI(s).
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Exercise 7.11 ∗ Parametric gain uncertainty. We showed in Example 7.1 how to represent scalar
parametric gain uncertainty Gp(s) = kpG0(s) where

kmin ≤ kp ≤ kmax (7.101)

as multiplicative uncertaintyGp = G(1+wI∆I) with nominal modelG(s) = k̄G0(s) and uncertainty
weight wI = rk = (kmax − kmin)/(kmax + kmin). ∆I here is a real scalar, −1 ≤ ∆I ≤ 1.
Alternatively, we can represent gain uncertainty as inverse multiplicative uncertainty:

ΠiI : Gp(s) = G(s)(1 + wiI(s)∆iI)
−1; −1 ≤ ∆iI ≤ 1 (7.102)

with wiI = rk and G(s) = kiG where

ki = 2
kminkmax

kmax + kmin
(7.103)

(a) Derive (7.102) and (7.103). (Hint: The gain variation in (7.101) can be written exactly as
kp = ki/(1− rk∆).)

(b) Show that the form in (7.102) does not allow for kp = 0.
(c) Discuss why (b) may be a possible advantage.

Exercise 7.12 The model of an industrial robot arm is as follows:

G(s) =
250(as2 + 0.0001s+ 100)

s(as2 + 0.0001(500a+ 1)s+ 100(500a+ 1))

where a ∈ [0.0002, 0.002]. Sketch the Bode plot for the two extreme values of a. What kind of control
performance do you expect? Discuss how you may best represent this uncertainty.

7.8 Conclusion
In this chapter we have shown how model uncertainty for SISO systems can be represented
in the frequency domain using complex norm-bounded perturbations, ‖∆‖∞ ≤ 1. At the
end of the chapter we also discussed how to represent parametric uncertainty using real
perturbations.

We showed that the requirement of robust stability for the case of multiplicative complex
uncertainty imposes an upper bound on the allowed complementary sensitivity, |wIT | <
1,∀ω. Similarly, the inverse multiplicative uncertainty imposes an upper bound on the
sensitivity, |wiIS| < 1,∀ω. We also derived a condition for robust performance with
multiplicative uncertainty, |wPS|+ |wIT | < 1,∀ω.

The approach in this chapter was rather elementary, and to extend the results to MIMO
systems and to more complex uncertainty descriptions we need to make use of the structured
singular value, µ. This is the theme of the next chapter, where we £nd that |wIT | and
|wiIS| are the structured singular values for evaluating robust stability for the two sources of
uncertainty in question, whereas |wPS|+|wIT | is the structured singular value for evaluating
robust performance with multiplicative uncertainty.
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ROBUST STABILITY AND
PERFORMANCE ANALYSIS
FOR MIMO SYSTEMS

The objective of this chapter is to present a general method for analyzing robust stability and robust
performance of MIMO systems with multiple perturbations. Our main analysis tool will be the
structured singular value, µ. We also show how the “optimal” robust controller, in terms of minimizing
µ, can be designed using DK-iteration. This involves solving a sequence of scaledH∞ problems.

8.1 General control con£guration with uncertainty
For useful notation and an introduction to model uncertainty, the reader is referred to
Sections 7.1 and 7.2. The starting point for our robustness analysis is a system representation
in which the uncertain perturbations are “pulled out” into a block-diagonal matrix,

∆ = diag{∆i} =




∆1

. . .
∆i

. . .




(8.1)

where each ∆i represents a speci£c source of uncertainty, e.g. input uncertainty, ∆I , or
parametric uncertainty, δi, where δi is real. If we also pull out the controller K, we get
the generalized plant P , as shown in Figure 8.1. This form is useful for controller synthesis.
Alternatively, if the controller is given and we want to analyze the uncertain system, we use
the N∆-structure in Figure 8.2.

In Section 3.8.8, we discussed how to £nd P and N for cases without uncertainty. The
procedure with uncertainty is similar and is demonstrated by examples below; see Section 8.3.
To illustrate the main idea, consider Figure 8.4 where it is shown how to pull out the
perturbation blocks to form ∆ and the nominal system N . As shown in (3.123), N is related
to P and K by a lower LFT

N = Fl(P,K) , P11 + P12K(I − P22K)−1P21 (8.2)

Similarly, the uncertain closed-loop transfer function from w to z, z = Fw, is related to N
and ∆ by an upper LFT (see (3.124)),

F = Fu(N,∆) , N22 +N21∆(I −N11∆)−1N12 (8.3)

Multivariable Feedback Control: Analysis and Design. Second Edition
S. Skogestad and I. Postlethwaite c© 2005, 2006 John Wiley & Sons, Ltd
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Figure 8.1: General control con£guration (for controller synthesis)
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Figure 8.2: N∆-structure for robust performance analysis

To analyze robust stability of F , we can then rearrange the system into the M∆-structure
of Figure 8.3 where M = N11 is the transfer function from the output to the input of the
perturbations.

8.2 Representing uncertainty
As usual, each individual perturbation is assumed to be stable and is normalized,

σ̄(∆i(jω)) ≤ 1 ∀ω (8.4)

For a complex scalar perturbation we have |δi(jω)| ≤ 1, ∀ω, and for a real scalar perturbation
−1 ≤ δi ≤ 1. Since from (A.49) the maximum singular value of a block-diagonal matrix is

¾

-

∆

M

y∆u∆

Figure 8.3: M∆-structure for robust stability analysis
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Figure 8.4: Rearranging an uncertain system into the N∆-structure
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equal to the largest of the maximum singular values of the individual blocks, it then follows
for ∆ = diag{∆i} that

σ̄(∆i(jω)) ≤ 1 ∀ω, ∀i ⇔ ‖∆‖∞ ≤ 1 (8.5)

Note that ∆ has structure, and therefore in the robustness analysis we do not want to allow all
∆ such that (8.5) is satis£ed. Only the subset which has the block-diagonal structure in (8.1)
should be considered. In some cases the blocks in ∆ may be repeated or may be real; that
is, we have additional structure. For example, as shown in Example 7.5, repetition is often
needed to handle parametric uncertainty.

Remark. The assumption of a stable ∆ may be relaxed, but then the resulting robust stability and
performance conditions will be harder to derive and more complex to state. Furthermore, if we use a
suitable form for the uncertainty and allow for multiple perturbations, then we can always generate the
desired class of plants with stable perturbations, so assuming ∆ stable is not really a restriction.

8.2.1 Differences between SISO and MIMO systems
The main difference between SISO and MIMO systems is the concept of directions which
is only relevant in the latter. As a consequence MIMO systems may experience much larger
sensitivity to uncertainty than SISO systems. The following example illustrates for MIMO
systems that it is sometimes critical to represent the coupling between uncertainty in different
transfer function elements.

Example 8.1 Coupling between transfer function elements. Consider a distillation process where
at steady-state

G =
[
87.8 −86.4
108.2 −109.6

]
, Λ = RGA(G) =

[
35.1 −34.1
−34.1 35.1

]
(8.6)

From the large RGA elements we know that G becomes singular for small relative changes in the
individual elements. For example, from (6.99) we know that perturbing the 1, 2 element from −86.4
to −88.9 makes G singular. Since variations in the steady-state gains of ±50% or more may occur
during operation of the distillation process, this seems to indicate that independent control of both
outputs is impossible. However, this conclusion is incorrect since, for a distillation process, G never
becomes singular. This is because the transfer function elements are coupled due to underlying physical
constraints (e.g. the material balance). Speci£cally, for the distillation process a more reasonable
description of the gain uncertainty is (Skogestad et al., 1988)

Gp = G+ w
[

δ −δ
−δ δ

]
, |δ| ≤ 1 (8.7)

where w in this case is a real constant, e.g. w = 50. For the numerical data above, detGp = detG
irrespective of δ, so Gp is never singular for this uncertainty. (Note that detGp = detG is not
generally true for the uncertainty description given in (8.7).)

Exercise 8.1 ∗ The uncertain plant in (8.7) may be represented in the additive uncertainty form
Gp = G+W2∆AW1 where ∆A = δ is a single scalar perturbation. Find W1 and W2.

8.2.2 Parametric uncertainty
The representation of parametric uncertainty, as discussed in Chapter 7 for SISO systems,
carries straight over to MIMO systems. However, the inclusion of parametric uncertainty may
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be more important for MIMO plants because it offers a simple method of representing the
coupling between uncertain transfer function elements. For example, the simple uncertainty
description used in (8.7) originated from a parametric uncertainty description of the
distillation process.

8.2.3 Unstructured uncertainty
Unstructured perturbations are often used to get a simple uncertainty model. We de£ne
unstructured uncertainty as the use of a “full” complex perturbation matrix ∆, usually with
dimensions compatible with those of the plant, where at each frequency any ∆(jω) satisfying
σ̄(∆(jω)) ≤ 1 is allowed.

--

- -

?-

-

- -

?- -

- -

- -

?-

- - -

¾¾

?

- - -

¾¾

?

- - -

¾¾

?

wA ∆A

G
+

+

wI ∆I

G
+

+

G

wO ∆O

+
+

+
+

wiA ∆iA

G

+
+

wiI ∆iI

G

G
+

+

wiO ∆iO

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8.5: (a) Additive uncertainty, (b) multiplicative input uncertainty, (c) multiplicative output
uncertainty, (d) inverse additive uncertainty, (e) inverse multiplicative input uncertainty, (f) inverse
multiplicative output uncertainty

Six common forms of unstructured uncertainty are shown in Figure 8.5. In Figure 8.5(a),
(b) and (c) are shown three feedforward forms: additive uncertainty, multiplicative input
uncertainty and multiplicative output uncertainty given by

ΠA : Gp = G+ EA; Ea = wA∆a (8.8)
ΠI : Gp = G(I + EI); EI = wI∆I (8.9)
ΠO : Gp = (I + EO)G; EO = wO∆O (8.10)

In Figure 8.5(d), (e) and (f) are shown three feedback or inverse forms: inverse additive
uncertainty, inverse multiplicative input uncertainty and inverse multiplicative output
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uncertainty given by

ΠiA : Gp = G(I − EiAG)
−1; EiA = wiA∆iA (8.11)

ΠiI : Gp = G(I − EiI)
−1; EiI = wiI∆iI (8.12)

ΠiO : Gp = (I − EiO)
−1G; EiO = wiO∆iO (8.13)

The negative sign in front of the E’s does not really matter here since we assume that ∆ can
have any sign. ∆ denotes the normalized perturbation and E the “actual” perturbation. We
have used scalar weights w, so E = w∆ = ∆w, but sometimes one may want to use matrix
weights, E =W2∆W1, where W1 and W2 are given transfer function matrices.

Another common form of unstructured uncertainty is coprime factor uncertainty discussed
later in Section 8.6.2.

Remark. In practice, one can have several perturbations which themselves are unstructured. For
example, we may have ∆I at the input and ∆O at the output, which may be combined into a larger
perturbation, ∆ = diag{∆I ,∆O}. However, this ∆ is a block-diagonal matrix and is therefore no
longer truly unstructured.

Lumping uncertainty into a single perturbation
For SISO systems, we usually lump multiple sources of uncertainty into a single complex
perturbation, often in multiplicative form. This may also be done for MIMO systems, but
then it makes a difference whether the perturbation is at the input or the output.

Since output uncertainty is frequently less restrictive than input uncertainty in terms of
control performance (see Section 6.10.4), we £rst attempt to lump the uncertainty at the
output. For example, a set of plants Π may be represented by multiplicative output uncertainty
with a scalar weight wO(s) using

Gp = (I + wO∆O)G, ‖∆O‖∞ ≤ 1 (8.14)

where, similar to (7.25),

lO(ω) = max
Gp∈Π

σ̄
(
(Gp −G)G−1(jω)

)
; |wO(jω)| ≥ lO(ω) ∀ω (8.15)

(and we can use the pseudo-inverse if G is singular). If the resulting uncertainty weight is
reasonable (i.e. it must at least be less than 1 in the frequency range where we want control),
and the subsequent analysis shows that robust stability and performance may be achieved,
then this lumping of uncertainty at the output is £ne. If this is not the case, then one may
try to lump the uncertainty at the input instead, using multiplicative input uncertainty with a
scalar weight,

Gp = G(I + wI∆I), ‖∆I‖∞ ≤ 1 (8.16)
where, similar to (7.25),

lI(ω) = max
Gp∈Π

σ̄
(
G−1(Gp −G)(jω)

)
; |wI(jω)| ≥ lI(ω) ∀ω (8.17)

However, in many cases this approach of lumping uncertainty either at the output or the
input does not work well. This is because one cannot in general shift a perturbation from one
location in the plant (say at the input) to another location (say the output) without introducing
candidate plants which were not present in the original set. In particular, one should be careful
when the plant is ill-conditioned. This is discussed next.
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Moving uncertainty from the input to the output
For a scalar plant, we haveGp = G(1+wI∆I) = (1+wO∆O)G and we may simply “move”
the multiplicative uncertainty from the input to the output without changing the value of the
weight, i.e. wI = wO. However, for multivariable plants we usually need to multiply by the
condition number γ(G) as is shown next.

Suppose the true uncertainty is represented as unstructured input uncertainty (EI is a full
matrix) in the form

Gp = G(I + EI) (8.18)

Then from (8.17), the magnitude of multiplicative input uncertainty is

lI(ω) = max
EI

σ̄(G−1(Gp −G)) = max
EI

σ̄(EI) (8.19)

On the other hand, if we want to represent (8.18) as multiplicative output uncertainty, then
from (8.15)

lO(ω) = max
EI

σ̄((Gp −G)G−1) = max
EI

σ̄(GEIG
−1) (8.20)

which is much larger than lI(ω) if the condition number of the plant is large. To see this,
write EI = wI∆I where we allow any ∆I(jω) satisfying σ̄(∆I(jω)) ≤ 1,∀ω. Then at a
given frequency

lO(ω) = |wI |max
∆I

σ̄(G∆IG
−1) = |wI(jω)| γ(G(jω)) (8.21)

Proof of (8.21): Write at each frequency G = UΣV H and G−1 = ŨΣ̃Ṽ H . Select ∆I = V ŨH (which
is a unitary matrix with all singular values equal to 1). Then σ̄(G∆IG

−1) = σ̄(UΣΣ̃V H) = σ̄(ΣΣ̃) =
σ̄(G)σ̄(G−1) = γ(G). 2

Example 8.2 Assume the relative input uncertainty is 10%, i.e. wI = 0.1, and the condition number
of the plant is 141.7. Then we must select lO = wO = 0.1 · 141.7 = 14.2 in order to represent this as
multiplicative output uncertainty (this is larger than 1 and therefore not useful for controller design).

Also for diagonal uncertainty (EI diagonal) we may have a similar situation. For example,
if the plant has large RGA elements then the elements in GEIG

−1 will be much larger than
those of EI , see (A.81), making it impractical to move the uncertainty from the input to the
output.

Example 8.3 Let Π be the set of plants generated by the additive uncertainty in (8.7) with w = 10
(corresponding to about 10% uncertainty in each element). Then from (8.7) one plant G′ in this set
(corresponding to δ = 1) has

G′ = G+
[

10 −10
−10 10

]
(8.22)

for which we have lI = σ̄(G−1(G′ − G)) = 14.3. Therefore, to represent G′ in terms of input
uncertainty we would need a relative uncertainty of more than 1400%. This would imply that the plant
could become singular at steady-state and thus impossible to control, which we know is incorrect.
Fortunately, we can instead represent this additive uncertainty as multiplicative output uncertainty
(which is also generally preferable for a subsequent controller design) with lO = σ̄((G′ −G)G−1) =
0.10. Therefore output uncertainty works well for this particular example.
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Conclusion. Ideally, we would like to lump several sources of uncertainty into a single
perturbation to get a simple uncertainty description. Often an unstructured multiplicative
output perturbation is used. However, from the above discussion we have learnt that we should
be careful about doing this, at least for plants with a large condition number. In such cases
we may have to represent the uncertainty as it occurs physically (at the input, in the elements,
etc.) thereby generating several perturbations. For uncertainty associated with unstable plant
poles, we should use one of the inverse forms in Figure 8.5.

¾

-

- -

H11 H12

H21 H22

∆

yu

Figure 8.6: Uncertain plant, y = Gpu, represented by LFT, see (8.23)

Exercise 8.2 A fairly general way of representing an uncertain plant Gp is in terms of a linear
fractional transformation (LFT) of ∆ as shown in Figure 8.6. Here

Gp = Fu

([
H11 H12

H21 H22

]
,∆

)
= H22 +H21∆(I −H11∆)−1H12 (8.23)

where G = H22 is the nominal plant model. Obtain H for each of the six uncertainty forms in
(8.8)–(8.13) using E = W2∆W1. (Hint for the inverse forms: (I −W1∆W2)

−1 = I +W1∆(I −
W2W1∆)−1W2, see (3.7)–(3.9).)

Exercise 8.3 ∗ Obtain H in Figure 8.6 for the uncertain plant in Figure 7.20(b).

8.2.4 Diagonal uncertainty
By “diagonal uncertainty” we mean that the perturbation is a complex diagonal matrix

∆(s) = diag{δi(s)}; |δi(jω)| ≤ 1,∀ω,∀i (8.24)

(usually of the same size as the plant). For example, this is the case if ∆ is diagonal
in any of the six uncertainty forms in Figure 8.5. Diagonal uncertainty usually arises
from a consideration of uncertainty or neglected dynamics in the individual input channels
(actuators) or in the individual output channels (sensors). This type of diagonal uncertainty
is always present, and since it has a scalar origin it may be represented using the methods
presented in Chapter 7.

To make this clearer, let us consider uncertainty in the input channels. With each input
ui there is associated a separate physical system (ampli£er, signal converter, actuator, valve,
etc.) which based on the controller output signal, ui, generates a physical plant input mi

mi = hi(s)ui (8.25)
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The scalar transfer function hi(s) is often absorbed into the plant model G(s), but for
representing the uncertainty it is important to notice that it originates at the input. We can
represent this actuator uncertainty as multiplicative (relative) uncertainty given by

hpi(s) = hi(s)(1 + wIi(s)δi(s)); |δi(jω)| ≤ 1,∀ω (8.26)

which after combining all input channels results in diagonal input uncertainty for the plant

Gp(s) = G(I +WI∆I); ∆I = diag{δi},WI = diag{wIi} (8.27)

Normally we would represent the uncertainty in each input or output channel using a simple
weight in the form given in (7.38), namely

w(s) =
τs+ r0

(τ/r∞)s+ 1
(8.28)

where r0 is the relative uncertainty at steady-state, 1/τ is (approximately) the frequency
where the relative uncertainty reaches 100%, and r∞ is the magnitude of the weight at higher
frequencies. Typically, the uncertainty |w|, associated with each input, is at least 10% at
steady-state (r0 ≥ 0.1), and it increases at higher frequencies to account for neglected or
uncertain dynamics (typically, r∞ ≥ 2).

Remark 1 The diagonal uncertainty in (8.27) originates from independent scalar uncertainty in each
input channel. If we choose to represent this as unstructured input uncertainty (∆I is a full matrix) then
we must realize that this will introduce non-physical couplings at the input to the plant, resulting in a
set of plants which is too large, and the resulting robustness analysis may be conservative (meaning that
we may incorrectly conclude that the system may not meet its speci£cations).

Remark 2 The claim is often made that one can easily reduce the static input gain uncertainty to
signi£cantly less than 10%, but this is not true in most cases. Consider again (8.25). A commonly
suggested method to reduce the uncertainty is to measure the actual input (mi) and employ local
feedback (cascade control) to readjust ui. As a simple example, consider a bathroom shower, in which
the input variables are the ¤ows of hot and cold water. One can then imagine measuring these ¤ows
and using cascade control so that each ¤ow can be adjusted more accurately. However, even in this case
there will be uncertainty related to the accuracy of each measurement. Note that it is not the absolute
measurement error that yields problems, but rather the error in the sensitivity of the measurement with
respect to changes (i.e. the “gain” of the sensor). For example, assume that the nominal ¤ow in our
shower is 1 l/min and we want to increase it to 1.1 l/min; that is, in terms of deviation variables we want
u = 0.1 [l/min]. Suppose the vendor guarantees that the measurement error is less than 1%. But, even
with this small absolute error, the actual ¤ow rate may have increased from 0.99 l/min (measured value
of 1 l/min is 1% higher) to 1.11 l/min (measured value of 1.1 l/min is 1% lower), corresponding to a
change u′ = 0.12 [l/min], and an input gain uncertainty of 20%.

In conclusion, diagonal input uncertainty, as given in (8.27), should always be considered
because:

1. It is always present and a system which is sensitive to this uncertainty will not work in
practice.

2. It often restricts achievable performance with multivariable control.
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8.3 Obtaining P , N and M

We will now illustrate, by way of an example, how to obtain the interconnection matrices P ,
N and M in a given situation.

6
? ----?

--

--
+
+

+
+

WP
z

w

G

u∆
∆I

y∆
WI

K uv
-

Figure 8.7: System with multiplicative input uncertainty and performance measured at the output

Example 8.4 System with input uncertainty. Consider a feedback system with multiplicative input
uncertainty ∆I as shown in Figure 8.7. Here WI is a normalization weight for the uncertainty and
WP is a performance weight. We want to derive the generalized plant P in Figure 8.1 which has inputs
[u∆ w u ]T and outputs [ y∆ z v ]T . By writing down the equations (e.g. see Example 3.18) or
simply by inspecting Figure 8.7 (remember to break the loop before and after K) we get

P =

[
0 0 WI

WPG WP WPG
−G −I −G

]
(8.29)

It is recommended that the reader carefully derives P (as instructed in Exercise 8.4). Note that the
transfer function from u∆ to y∆ (upper left element in P ) is 0 because u∆ has no direct effect on y∆
(except through K). Next, we want to derive the matrix N corresponding to Figure 8.2. First, partition
P to be compatible with K, i.e.

P11 =
[

0 0
WPG WP

]
, P12 =

[
WI

WPG

]
(8.30)

P21 = [−G −I ], P22 = −G (8.31)
and then £nd N = Fl(P,K) using (8.2). We get (see Exercise 8.6)

N =
[
−WIKG(I +KG)−1 −WIK(I +GK)−1

WPG(I +KG)−1 WP (I +GK)−1

]
(8.32)

Alternatively, we can derive N directly from Figure 8.7 by evaluating the closed-loop transfer function
from inputs

[
u∆
w

]
to outputs

[
y∆
z

]
(without breaking the loop before and after K). For example, to

deriveN12, which is the transfer function fromw to y∆, we start at the output (y∆) and move backwards
to the input (w) using the MIMO rule in Section 3.2 (we £rst meet WI , then −K and we then exit the
feedback loop and get the term (I +GK)−1).

The upper left block, N11, in (8.32) is the transfer function from u∆ to y∆. This is the transfer
function M needed in Figure 8.3 for evaluating robust stability. Thus, we have M = −WIKG(I +
KG)−1 = −WITI .

Remark. Of course, derivingN from P is straightforward using available software. For example, in the
Matlab Robust Control toolbox we can evaluateN = Fl(P,K) using the command N=lft(P,K), and
with a speci£c ∆ the perturbed transfer function Fu(N,∆) from w to z is obtained with the command
F=lft(delta,N).
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Exercise 8.4 ∗ Show in detail how P in (8.29) is derived.

Exercise 8.5 For the system in Figure 8.7 we see easily from the block diagram that the uncertain
transfer function from w to z is F = WP (I + G(I + WI∆I)K)−1. Show that this is identical to
Fu(N,∆) evaluated using (8.35), where from (8.32), we have N11 = −WITI , N12 = −WIKS,
N21 = WPSG and N22 = WPS.

Exercise 8.6 ∗ Derive N in (8.32) from P in (8.29) using the lower LFT in (8.2). You will note that
the algebra is quite tedious, and that it is much simpler to derive N directly from the block diagram as
described above.

Exercise 8.7 Derive P and N for the case when the multiplicative uncertainty is at the output rather
than the input.

Exercise 8.8 ∗ Find P for the uncertain system in Figure 7.18.

Exercise 8.9 Find P for the uncertain plant Gp in (8.23) when w = r and z = y − r.

Exercise 8.10 ∗ Find the interconnection matrix N for the uncertain system in Figure 7.18. What is
M?

Exercise 8.11 Find the transfer function M = N11 for studying robust stability for the uncertain
plant Gp in (8.23).

K G

W1I ∆I W2I W1O ∆O W2O

- - - -

- - -

?

- - -

?
6-

+
+

+
+

Figure 8.8: System with input and output multiplicative uncertainty

Exercise 8.12 ∗ M∆-structure for combined input and output uncertainties. Consider the block
diagram in Figure 8.8 where we have both input and output multiplicative uncertainty blocks. The set
of possible plants is given by

Gp = (I +W2O∆OW1O)G(I +W2I∆IW1I) (8.33)

where ‖∆I‖∞ ≤ 1 and ‖∆O‖∞ ≤ 1. Collect the perturbations into ∆ = diag{∆I ,∆O} and re-
arrange Figure 8.8 into the M∆-structure in Figure 8.3. Show that

M =
[
W1I 0
0 W1O

][
−TI −KS
SG −T

][
W2I 0
0 W2O

]
(8.34)

8.4 De£nitions of robust stability and robust performance
We have discussed how to represent an uncertain set of plants in terms of the N∆-structure
in Figure 8.2. The next step is to check whether we have stability and acceptable performance
for all plants in the set:
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1. Robust stability (RS) analysis: with a given controllerK we determine whether the system
remains stable for all plants in the uncertainty set.

2. Robust performance (RP) analysis: if RS is satis£ed, we determine how “large” the transfer
function from exogenous inputs w to outputs z may be for all plants in the uncertainty set.

Before proceeding, we need to de£ne performance more precisely. In Figure 8.2,w represents
the exogenous inputs (normalized disturbances and references), and z the exogenous outputs
(normalized errors). We have z = F (∆)w, where from (8.3)

F = Fu(N,∆) , N22 +N21∆(I −N11∆)−1N12 (8.35)

We will use the H∞ norm to de£ne performance and require for RP that ‖F (∆)‖∞ ≤ 1 for
all allowed ∆’s. A typical choice is F = wPSp (the weighted sensitivity function), wherewP

is the performance weight (capital P for performance) and Sp represents the set of perturbed
sensitivity functions (lower-case p for perturbed).

In terms of the N∆-structure in Figure 8.2, our requirements for stability and performance
can then be summarized as follows:

NS
def⇔ N is internally stable (8.36)

NP
def⇔ ‖N22‖∞ < 1; and NS (8.37)

RS
def⇔ F = Fu(N,∆) is stable ∀∆, ‖∆‖∞ ≤ 1; and NS (8.38)

RP
def⇔ ‖F‖∞ < 1, ∀∆, ‖∆‖∞ ≤ 1; and NS (8.39)

These de£nitions of RS and RP are useful only if we can test them in an ef£cient manner;
that is, without having to search through the in£nite set of allowable perturbations ∆. We will
show how this can be done by introducing the structured singular value, µ, as our analysis
tool. At the end of the chapter we also discuss how to synthesize controllers such that we
have “optimal robust performance” by minimizing µ over the set of stabilizing controllers.

Remark 1 Important. As a prerequisite for nominal performance (NP), robust stability (RS) and
robust performance (RP), we must £rst satisfy nominal stability (NS). This is because the frequency-
by-frequency conditions can also be satis£ed for unstable systems.

Remark 2 Convention for inequalities. In this book, we use the convention that the perturbations are
bounded such that they are less than or equal to 1. This results in a stability condition with a strict
inequality: for example, RS ∀‖∆‖∞ ≤ 1 if ‖M‖∞ < 1. (We could alternatively have bounded the
uncertainty with a strict inequality, yielding the equivalent condition RS ∀‖∆‖∞ < 1 if ‖M‖∞ ≤ 1.)

Remark 3 Allowed perturbations. For simplicity below, we will use the shorthand notation

∀∆ and max
∆

(8.40)

to mean “for all ∆’s in the set of allowed perturbations”, and “maximizing over all ∆’s in the set of
allowed perturbations”. By allowed perturbations we mean that the H∞ norm of ∆ is less than or
equal to 1, ‖∆‖∞ ≤ 1, and that ∆ has a speci£ed block-diagonal structure where certain blocks may
be restricted to be real. To be mathematically exact, we should replace ∆ in (8.40) by ∆ ∈ B∆, where

B∆ = {∆ ∈∆ : ‖∆‖∞ ≤ 1}
is the set of unity norm-bounded perturbations with a given structure∆. The allowed structure should
also be de£ned, for example, by

∆ = {diag [δ1Ir1, . . . , δSIrS ,∆1, . . . ,∆F ] : δi ∈ R,∆j ∈ Cmj×mj}
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where in this case S denotes the number of real scalars (some of which may be repeated), and F the
number of complex blocks. This gets rather involved. Fortunately, this amount of detail is rarely required
as it is usually clear what we mean by “for all allowed perturbations” or “∀∆”.

8.5 Robust stability of the M∆-structure
Consider the uncertain N∆-system in Figure 8.2 for which the transfer function from w to z
is, as in (8.35), given by

Fu(N,∆) = N22 +N21∆(I −N11∆)−1N12 (8.41)

Suppose that the system is nominally stable (with ∆ = 0); that is, N is stable (which means
that the whole of N , and not only N22, must be stable). We also assume that ∆ is stable. We
then see directly from (8.41) that the only possible source of instability is the feedback term
(I − N11∆)−1. Thus, when we have nominal stability (NS), the stability of the system in
Figure 8.2 is equivalent to the stability of the M∆-structure in Figure 8.3 where M = N11.

We thus need to derive conditions for checking the stability of the M∆-structure. The next
theorem follows from the generalized Nyquist Theorem 4.9. It applies toH∞ norm-bounded
∆-perturbations, but as can be seen from the statement it also applies to any other convex set
of perturbations (e.g. sets with other structures or sets bounded by different norms).

Theorem 8.1 Determinant stability condition (real or complex perturbations). Assume
that the nominal system M(s) and the perturbations ∆(s) are stable. Consider the convex
set of perturbations ∆, such that if ∆′ is an allowed perturbation then so is c∆′ where c is
any real scalar such that |c| ≤ 1. Then the M∆-system in Figure 8.3 is stable for all allowed
perturbations (we have RS) if and only if

Nyquist plot of det (I −M∆(s)) does not encircle the origin, ∀∆ (8.42)

⇔ det (I −M∆(jω)) 6= 0, ∀ω,∀∆ (8.43)

⇔ λi(M∆) 6= 1, ∀i,∀ω,∀∆ (8.44)

Proof: Condition (8.42) is simply the generalized Nyquist theorem (page 152) applied to a positive
feedback system with a stable loop transfer function M∆.

(8.42) ⇒ (8.43): This is obvious since by “encirclement of the origin” we also include the origin
itself.

(8.42) ⇐ (8.43) is proved by proving that not(8.42) ⇒ not(8.43). First note that with ∆ = 0,
det(I − M∆) = 1 at all frequencies. Assume there exists a perturbation ∆′ such that the image
of det(I −M∆′(s)) encircles the origin as s traverses the Nyquist D-contour. Because the Nyquist
contour and its map are closed, there then exists another perturbation in the set, ∆′′ = ε∆′, with
ε ∈ [0, 1], and an ω′ such that det(I −M∆′′(jω′)) = 0.

(8.44) is equivalent to (8.43) since det(I − A) =
∏
i λi(I − A) and λi(I − A) = 1− λi(A) (see

Appendix A.2.1). 2

The following is a special case of Theorem 8.1 which applies to complex perturbations.

Theorem 8.2 Spectral radius condition for complex perturbations. Assume that the
nominal system M(s) and the perturbations ∆(s) are stable. Consider the class of
perturbations, ∆, such that if ∆′ is an allowed perturbation then so is c∆′ where c is any
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complex scalar such that |c| ≤ 1. Then the M∆-system in Figure 8.3 is stable for all allowed
perturbations (we have RS) if and only if

ρ(M∆(jω)) < 1, ∀ω,∀∆ (8.45)

or equivalently
RS ⇔ max

∆
ρ(M∆(jω)) < 1, ∀ω (8.46)

Proof: (8.45)⇒ (8.43) (⇔ RS) is “obvious”: it follows from the de£nition of the spectral radius ρ, and
applies also to real ∆’s.

(8.43)⇒ (8.45) is proved by proving that not(8.45)⇒ not(8.43). Assume there exists a perturbation
∆′ such that ρ(M∆′) = 1 at some frequency. Then |λi(M∆′)| = 1 for some eigenvalue i, and there
always exists another perturbation in the set, ∆′′ = c∆′, where c is a complex scalar with |c| = 1,
such that λi(M∆′′) = +1 (real and positive) and therefore det(I −M∆′′) =

∏
i λi(I −M∆′′) =∏

i(1− λi(M∆′′)) = 0. Finally, the equivalence between (8.45) and (8.46) is simply the de£nition of
max∆. 2

Remark 1 The proof of (8.45) relies on adjusting the phase of λi(Mc∆′) using the complex scalar c
and thus requires the perturbation to be complex.

Remark 2 In words, Theorem 8.2 tells us that we have stability if and only if the spectral radius ofM∆
is less than 1 at all frequencies and for all allowed perturbations, ∆. The main problem here is of course
that we have to test the condition for an in£nite set of ∆’s, and this is dif£cult to check numerically.

Remark 3 Theorem 8.1, which applies to both real and complex perturbations, forms the basis for the
general de£nition of the structured singular value in (8.76).

8.6 Robust stability for complex unstructured uncertainty
In this section, we consider the special case where ∆(s) is allowed to be any (full) complex
transfer function matrix satisfying ‖∆‖∞ ≤ 1. This is often referred to as unstructured
uncertainty or as full-block complex perturbation uncertainty.

Lemma 8.3 Let ∆ be the set of all complex matrices such that σ̄(∆) ≤ 1. Then the following
holds:

max
∆

ρ(M∆) = max
∆

σ̄(M∆) = max
∆

σ̄(∆)σ̄(M) = σ̄(M) (8.47)

Proof: In general, the spectral radius (ρ) provides a lower bound on the spectral norm (σ̄) (see (A.117)),
and we have

max
∆

ρ(M∆) ≤ max
∆

σ̄(M∆) ≤ max
∆

σ̄(∆)σ̄(M) = σ̄(M) (8.48)

where the second inequality in (8.48) follows since σ̄(AB) ≤ σ̄(A)σ̄(B). Now, we need to show
that we actually have equality. This will be the case if for any M there exists an allowed ∆′ such that
ρ(M∆′) = σ̄(M). Such a ∆′ does indeed exist if we allow ∆′ to be a full matrix such that all directions
in ∆′ are allowed. Select ∆′ = V UH where U and V are matrices of the left and right singular vectors
of M = UΣV H . Then σ̄(∆′) = 1 and ρ(M∆′) = ρ(UΣV HV UH) = ρ(UΣUH) = ρ(Σ) = σ̄(M).
The second to last equality follows since UH = U−1 and the eigenvalues are invariant under similarity
transformations. 2
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Lemma 8.3 together with Theorem 8.2 directly yield the following theorem:

Theorem 8.4 RS for unstructured (“full”) perturbations. Assume that the nominal system
M(s) is stable (NS) and that the perturbations ∆(s) are stable. Then the M∆-system in
Figure 8.3 is stable for all perturbations ∆ satisfying ‖∆‖∞ ≤ 1 (i.e. we have RS) if and
only if

σ̄(M(jω)) < 1 ∀w ⇔ ‖M‖∞ < 1 (8.49)

Remark 1 Condition (8.49) may be rewritten as

RS⇔ σ̄(M(jω)) σ̄(∆(jω)) < 1, ∀ω,∀∆, (8.50)

The suf£ciency of (8.50) (⇐) also follows directly from the small-gain theorem by choosing L = M∆.
The small-gain theorem applies to any operator norm satisfying ‖AB‖ ≤ ‖A‖ · ‖B‖.

Remark 2 An important reason for using the H∞ norm to analyze robust stability is that the stability
condition in (8.50) is both necessary and suf£cient. In contrast, use of theH2 norm, e.g. a condition like
‖M‖2 < 1, yields neither necessary nor suf£cient conditions for stability. We do not get suf£ciency
since theH2 norm does not in general satisfy ‖AB‖ ≤ ‖A‖ · ‖B‖; see e.g. Example 4.21.

8.6.1 Application of the unstructured RS condition
We will now present necessary and suf£cient conditions for RS for each of the six single
unstructured perturbations in Figure 8.5. with

E =W2∆W1, ‖∆‖∞ ≤ 1 (8.51)

To derive the matrix M , we simply “isolate” the perturbation, and determine the transfer
function matrix

M =W1M0W2 (8.52)

from the output to the input of the perturbation, where M0 for each of the six cases
(disregarding some negative signs which do not affect the subsequent robustness condition)
is given by

Gp = G+ EA : M0 = K(I +GK)−1 = KS (8.53)
Gp = G(I + EI) : M0 = K(I +GK)−1G = TI (8.54)
Gp = (I + EO)G : M0 = GK(I +GK)−1 = T (8.55)

Gp = G(I − EiAG)
−1 : M0 = (I +GK)−1G = SG (8.56)

Gp = G(I − EiI)
−1 : M0 = (I +KG)−1 = SI (8.57)

Gp = (I − EiO)
−1G : M0 = (I +GK)−1 = S (8.58)

For example, (8.54) and (8.55) follow from the diagonal elements in the M -matrix in (8.34),
and the others are derived in a similar fashion. Note that the sign of M0 does not matter as it
may be absorbed into ∆. Theorem 8.4 then yields

RS ⇔ ‖W1M0W2(jω)‖∞ < 1 (8.59)
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For instance, from (8.54) and (8.59) we get for multiplicative input uncertainty with a scalar
weight:

RS ∀Gp = G(I + wI∆I), ‖∆I‖∞ ≤ 1 ⇔ ‖wITI‖∞ < 1 (8.60)
Note that the SISO condition (7.43) follows as a special case of (8.60). Similarly (7.64)
follows as a special case of the inverse multiplicative output uncertainty in (8.58):

RS ∀Gp = (I − wiO∆iO)
−1G, ‖∆iO‖∞ ≤ 1 ⇔ ‖wiOS‖∞ < 1 (8.61)

In general, the unstructured uncertainty descriptions in terms of a single perturbation are not
“tight” (in the sense that at each frequency all complex perturbations satisfying σ̄(∆(jω)) ≤
1 may not occur in practice). Thus, the above RS conditions are often conservative. In order
to get tighter conditions we must use a tighter uncertainty description in terms of a block-
diagonal ∆.

8.6.2 RS for coprime factor uncertainty

- -?
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+
+
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M−1
lNl

−K

Figure 8.9: Coprime uncertainty

Robust stability bounds in terms of the H∞ norm (RS ⇔ ‖M‖∞ < 1) are in general
only tight when there is a single full perturbation block. An “exception” to this is when the
uncertainty blocks enter or exit from the same location in the block diagram, because they
can then be stacked on top of each other or side by side, in an overall ∆ which is then a full
matrix. If we norm-bound the combined (stacked) uncertainty, we then get a tight condition
for RS in terms of ‖M‖∞.

One important uncertainty description that falls into this category is the coprime
uncertainty description shown in Figure 8.9, for which the set of plants is

Gp = (Ml +∆M )−1(Nl +∆N ), ‖ [ ∆N ∆M ] ‖∞ ≤ ε (8.62)
where G = M−1

l Nl is a left coprime factorization of the nominal plant, see (4.20). This
uncertainty description is surprisingly general: it allows both zeros and poles to cross into
the RHP, and has proved to be very useful in applications (McFarlane and Glover, 1990).
Since we have no weights on the perturbations, it is reasonable to use a normalized coprime
factorization of the nominal plant; see (4.25). In any case, to test for RS we can rearrange the
block diagram to match the M∆-structure in Figure 8.3 with

∆ = [∆N ∆M ] ; M = −
[
K
I

]
(I +GK)−1M−1

l (8.63)
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We then get from Theorem 8.4

RS ∀‖∆N ∆M ‖∞ ≤ ε ⇔ ‖M‖∞ < 1/ε (8.64)

The above RS result is central to the H∞ loop-shaping design procedure discussed in
Chapter 9.

The coprime uncertainty description provides a good “generic” uncertainty description
for cases where we do not use any speci£c a priori uncertainty information. Note that the
uncertainty magnitude is ε, so it is not normalized to be less than 1 in this case. This is
because this uncertainty description is most often used in a controller design procedure where
the objective is to maximize the magnitude of the uncertainty (ε) such that RS is maintained.

Remark. In (8.62) we bound the combined (stacked) uncertainty, ‖[ ∆N ∆M ]‖∞ ≤ ε, which is not
quite the same as bounding the individual blocks, ‖∆N‖∞ ≤ ε and ‖∆M‖∞ ≤ ε. However, from
(A.46) we see that these two approaches differ at most by a factor of

√
2, so it is not an important issue

from a practical point of view.

Exercise 8.13 ∗ Consider combined multiplicative and inverse multiplicative uncertainty at the output,
Gp = (I −∆iOWiO)

−1(I +∆OWO)G, where we choose to norm-bound the combined uncertainty,
‖[ ∆iO ∆O ]‖∞ ≤ 1. Draw a block diagram of the uncertain plant, and derive a necessary and
suf£cient condition for RS of the closed-loop system.

8.7 Robust stability with structured uncertainty:
motivation

- -

¾¾¾

-

D D−1

DD−1 M

∆1

∆2. . .

SAME UNCERTAINTY

NEW M : DMD−1

Figure 8.10: Use of block-diagonal scalings, ∆D = D∆

Consider now the presence of structured uncertainty, where ∆ = diag{∆i} is block diagonal.
To test for RS we rearrange the system into the M∆-structure and we have from (8.49)

RS if σ̄(M(jω)) < 1,∀ω (8.65)

We have written “if” here rather than “if and only if” since this condition is only suf£cient
for RS when ∆ has “no structure” (full-block uncertainty). The question is whether we can
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take advantage of the fact that ∆ = diag{∆i} is structured to obtain an RS condition which
is tighter than (8.65). One idea is to make use of the fact that stability must be independent of
scaling. To this effect, we introduce the block-diagonal scaling matrix

D = diag{diIi} (8.66)

where di is a scalar and Ii is an identity matrix of the same dimension as the i’th perturbation
block, ∆i. Now we rescale the inputs and outputs to M and ∆ by inserting the matrices
D and D−1 on both sides as shown in Figure 8.10. This clearly has no effect on stability.
Next, note that with the chosen form for the scalings, we have for each perturbation block
∆i = di∆id

−1
i ; that is, we have ∆ = D∆D−1. This means that (8.65) must also apply if we

replace M by DMD−1 (see Figure 8.10), and we have

RS if σ̄(DMD−1) < 1,∀ω (8.67)

This applies for any D in (8.66), and therefore the “most improved” (least conservative) RS
condition is obtained by minimizing at each frequency the scaled singular value, and we have

RS if minD(ω)∈D σ̄(D(ω)M(jω)D(ω)−1) < 1,∀ω (8.68)

where D is the set of block-diagonal matrices whose structure is compatible to that of ∆, i.e.
∆D = D∆. We will return with more examples of this compatibility later. Note that when
∆ is a full matrix, we must select D = dI and we have σ̄(DMD−1) = σ̄(M), and so as
expected (8.68) is identical to (8.65). However, when ∆ has structure, we get more degrees
of freedom in D, and σ̄(DMD−1) may be signi£cantly smaller than σ̄(M).

Remark 1 Historically, the RS condition in (8.68) directly motivated the introduction of the structured
singular value, µ(M), discussed in detail in the next section. As one might guess, we have that
µ(M) ≤ minD σ̄(DMD−1). In fact, for block-diagonal complex perturbations we generally have
that µ(M) is very close to minD σ̄(DMD−1).

Remark 2 Other norms. Condition (8.68) is essentially a scaled version of the small-gain theorem.
Thus, a similar condition applies when we use other matrix norms. The M∆-structure in Figure 8.3 is
stable for all block-diagonal ∆’s which satisfy ‖∆(jω)‖ ≤ 1, ∀w if

min
D(ω)∈D

‖D(ω)M(jω)D(ω)−1‖ < 1, ∀ω (8.69)

where D as before is compatible with the block structure of ∆. Any matrix norm may be used; for
example, the Frobenius norm, ‖M‖F , or any induced matrix norm such as ‖M‖i1 (maximum column
sum), ‖M‖i∞ (maximum row sum), or ‖M‖i2 = σ̄(M), which is the one we will use. Although in
some cases it may be convenient to use other norms, we usually prefer σ̄ because for this norm we get
a necessary and suf£cient RS condition.

8.8 The structured singular value
The structured singular value (denoted Mu, mu, SSV or µ) is a function which provides
a generalization of the singular value, σ̄, and the spectral radius, ρ. We will use µ to get
necessary and suf£cient conditions for RS and also for RP. How is µ de£ned? A simple
statement is:
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Find the smallest structured ∆ (measured in terms of σ̄(∆)) which makes the matrix I−M∆
singular; then µ(M) = 1/σ̄(∆).

Mathematically,

µ(M)−1 , min
∆
{σ̄(∆)|det(I −M∆) = 0 for structured ∆} (8.70)

Clearly, µ(M) depends not only on M but also on the allowed structure for ∆. This is
sometimes shown explicitly by using the notation µ∆(M).

Remark. For the case where ∆ is “unstructured” (a full matrix), the smallest ∆ which yields singularity
has σ̄(∆) = 1/σ̄(M), and we have µ(M) = σ̄(M). A particular smallest ∆ which achieves this is
∆ = 1

σ1
v1u

H
1 .

Example 8.5 Full perturbation (∆ is unstructured). Consider

M =
[

2 2
−1 −1

]
=

[
0.894 0.447
−0.447 0.894

][
3.162 0
0 0

][
0.707 −0.707
0.707 0.707

]H
(8.71)

The perturbation

∆ =
1

σ1
v1u

H
1 =

1

3.162

[
0.707
0.707

]
[ 0.894 −0.447 ] =

[
0.200 −0.100
0.200 −0.100

]
(8.72)

with σ̄(∆) = 1/σ̄(M) = 1/3.162 = 0.316 makes det(I −M∆) = 0. Thus µ(M) = 3.162 when ∆
is a full matrix.

Note that the perturbation ∆ in (8.72) is a full matrix. If we restrict ∆ to be diagonal then we
need a larger perturbation to make det(I −M∆) = 0. This is illustrated next.

Example 8.5 continued. Diagonal perturbation (∆ is structured). For the matrix M in (8.71), the
smallest diagonal ∆ which makes det(I −M∆) = 0 is

∆ =
1

3

[
1 0
0 −1

]
(8.73)

with σ̄(∆) = 0.333. Thus µ(M) = 3 when ∆ is a diagonal matrix.

The above example shows that µ depends on the structure of ∆. The following example
demonstrates that µ also depends on whether the perturbation is real or complex.

Example 8.6 µ of a scalar. If M is a scalar then in most cases µ(M) = |M |. This follows from
(8.70) by selecting |∆| = 1/|M | such that (1 −M∆) = 0. However, this requires that we can select
the phase of ∆ such that M∆ is real, which is impossible when ∆ is real and M has an imaginary
component, so in this case µ(M) = 0. In summary, we have for a scalar M

∆ complex : µ(M) = |M | (8.74)

∆ real : µ(M) =

{
|M | for realM

0 otherwise
(8.75)

The de£nition of µ in (8.70) involves varying σ̄(∆). However, we prefer to normalize ∆ such
that σ̄(∆) ≤ 1. We can do this by scaling ∆ by a factor km, and looking for the smallest km
which makes the matrix I − kmM∆ singular, and µ is then the reciprocal of this smallest
km, i.e. µ = 1/km. This results in the following alternative de£nition of µ.
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De£nition 8.1 Structured singular value. Let M be a given complex matrix and let ∆ =
diag{∆i} denote a set of complex matrices with σ̄(∆) ≤ 1 and with a given block-diagonal
structure (in which some of the blocks may be repeated and some may be restricted to be
real). The real non-negative function µ(M), called the structured singular value, is de£ned
by

µ(M) ,
1

min{km|det(I − kmM∆) = 0 for structured ∆, σ̄(∆) ≤ 1} (8.76)

If no such structured ∆ exists then µ(M) = 0.

A value of µ = 1 means that there exists a perturbation with σ̄(∆) = 1 which is just large
enough to make I −M∆ singular. A larger value of µ is “bad” as it means that a smaller
perturbation makes I −M∆ singular, whereas a smaller value of µ is “good”.

Exercise 8.14 Find µ for the uncertain system in Figure 7.20(b).

8.8.1 Remarks on the de£nition of µ
1. The structured singular value was introduced by Doyle (1982). At the same time (in fact, in the same

issue of the same journal) Safonov (1982) introduced the Multivariable Stability Margin km for a
diagonally perturbed system as the inverse of µ: that is, km(M) = µ(M)−1. In many respects,
this is a more natural de£nition of a robustness margin. However, µ(M) has a number of other
advantages, such as providing a generalization of the spectral radius, ρ(M), and the spectral norm,
σ̄(M).

2. The ∆ corresponding to the smallest km in (8.76) will always have σ̄(∆) = 1, since if det(I −
k′mM∆′) = 0 for some ∆′ with σ̄(∆′) = c < 1, then 1/k′m cannot be the structured singular
value of M , since there exists a smaller scalar km = k′mc such that det(I − kmM∆) = 0 where
∆ = 1

c
∆′ and σ̄(∆) = 1.

3. Note that with km = 0 we obtain I−kmM∆ = I which is clearly non-singular. Thus, one possible
way to obtain µ numerically is to start with km = 0, and gradually increase km until we £rst £nd
an allowed ∆ with σ̄(∆) = 1 such that (I − kmM∆) is singular (this value of km is then 1/µ).
By “allowed” we mean that ∆ must have the speci£ed block-diagonal structure and that some of the
blocks may have to be real.

4. The sequence of M and ∆ in the de£nition of µ does not matter. This follows from the identity
(A.12) which yields

det(I − kmM∆) = det(I − km∆M) (8.77)
5. In most cases M and ∆ are square, but this need not be the case. If they are non-square, then we

make use of (8.77) and work with either M∆ or ∆M (whichever has the lowest dimension).

The remainder of this section deals with the properties and computation of µ. Readers who
are primarily interested in the practical use of µ may skip most of this material.

8.8.2 Properties of µ for real and complex ∆
Two properties of µ which hold for both real and complex perturbations ∆ are:

1. µ(αM) = |α|µ(M) for any real scalar α.
2. Let ∆ = diag{∆1,∆2} be a block-diagonal perturbation (in which ∆1 and ∆2 may have

additional structure) and let M be partitioned accordingly. Then

µ∆(M) ≥ max{µ∆1(M11), µ∆2(M22)} (8.78)



MIMO ROBUST STABILITY AND PERFORMANCE 309

Proof: Consider det(I − 1
µ
M∆) where µ = µ∆(M) and use Schur’s formula in (A.14) with

A11 = I − 1
µ
M11∆1 and A22 = I − 1

µ
M22∆2. 2

In words, (8.78) simply says that robustness with respect to two perturbations taken
together is at least as bad as for the worst perturbation considered alone. This agrees with
our intuition that we cannot improve RS by including another uncertain perturbation.

In addition, the upper bounds given below for complex perturbations, e.g. µ∆(M) ≤
minD∈D σ̄(DMD−1) in (8.87), also hold for real or mixed real/complex perturbations ∆.
This follows because complex perturbations include real perturbations as a special case.
However, the lower bounds, e.g. µ(M) ≥ ρ(M) in (8.82), generally hold only for complex
perturbations.

8.8.3 µ for complex ∆
When all the blocks in ∆ are complex, µmay be computed relatively easily. This is discussed
below and in more detail in the survey paper by Packard and Doyle (1993). The results are
mainly based on the following result, which may be viewed as another de£nition of µ that
applies for complex ∆ only.

Lemma 8.5 For complex perturbations ∆ with σ̄(∆) ≤ 1:

µ(M) = max∆,σ̄(∆)≤1 ρ(M∆) (8.79)

Proof: The lemma follows directly from the de£nition of µ and the equivalence between (8.43) and
(8.46). 2

Properties of µ for complex perturbations
Most of the properties below follow easily from (8.79).

1. µ(αM) = |α|µ(M) for any (complex) scalar α.
2. For a repeated scalar complex perturbation we have

∆ = δI (δ is a complex scalar) : µ(M) = ρ(M) (8.80)

Proof: Follows directly from (8.79) since there are no degrees of freedom for the maximization. 2

3. For a full-block complex perturbation we have from (8.79) and (8.47)

∆ full matrix : µ(M) = σ̄(M) (8.81)

4. µ for complex perturbations is bounded by the spectral radius and the singular value
(spectral norm):

ρ(M) ≤ µ(M) ≤ σ̄(M) (8.82)

This follows from (8.80) and (8.81), since selecting ∆ = δI gives the fewest degrees of
freedom for the optimization in (8.79), whereas selecting ∆ full gives the most degrees of
freedom.
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5. Consider any unitary matrix U with the same structure as ∆. Then

µ(MU) = µ(M) = µ(UM) (8.83)

Proof: Follows from (8.79) by writing MU∆ = M∆′ where σ̄(∆′) = σ̄(U∆) = σ̄(∆), and so U
may always be absorbed into ∆. 2

6. Consider any matrix D which commutes with ∆: that is, ∆D = D∆. Then

µ(DM) = µ(MD) and µ(DMD−1) = µ(M) (8.84)

Proof: µ(DM) = µ(MD) follows from

µ∆(DM) = max
∆

ρ(DM∆) = max
∆

ρ(M∆D) = max
∆

ρ(MD∆) = µ∆(MD) (8.85)

The £rst equality is (8.79). The second equality applies since ρ(AB) = ρ(BA) (by the eigenvalue
properties in the Appendix). The key step is the third equality which applies only when D∆ = ∆D.
The fourth equality again follows from (8.79). 2

7. Improved lower bound. De£ne U as the set of all unitary matrices U with the same
block-diagonal structure as ∆. Then for complex ∆

µ(M) = maxU∈U ρ(MU) (8.86)

Proof: The proof of this important result is given by Doyle (1982) and Packard and Doyle (1993). It
follows from a generalization of the maximum modulus theorem for rational functions. 2

The result (8.86) is motivated by combining (8.83) and (8.82) to yield

µ(M) ≥ max
U∈U

ρ(MU)

The surprise is that this is always an equality. Unfortunately, the optimization in (8.86) is
not convex and so it may be dif£cult to use in calculating µ numerically.

8. Improved upper bound. De£ne D to be the set of matrices D which commute with ∆
(i.e. satisfy D∆ = ∆D). Then it follows from (8.84) and (8.82) that

µ(M) ≤ minD∈D σ̄(DMD−1) (8.87)

This optimization is convex in D, i.e. has only one minimum, the global minimum;
see Example 12.4 for the formulation of the optimization problem. It may be shown
(Doyle, 1982) that the inequality is in fact an equality if there are three or fewer blocks
in ∆. Furthermore, numerical evidence suggests that the bound is tight (within a few per
cent) for four blocks or more; the worst known example to us has an upper bound which
is about 15% larger than µ (Balas et al., 1993).

Some examples of D’s which commute with ∆ are

∆ = δI : D = full matrix (8.88)
∆ = full matrix : D = dI (8.89)

∆ =

[
∆1(full) 0

0 ∆2(full)

]
: D =

[
d1I 0
0 d2I

]
(8.90)

∆ = diag{∆1(full), δ2I, δ3, δ4} : D = diag{d1I,D2(full), d3, d4} (8.91)

In short, we see that the structures of ∆ and D are “opposites”.
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9. Without affecting the optimization in (8.87), we may assume the blocks in D to be
Hermitian positive de£nite, i.e. Di = DH

i > 0, and for scalars di > 0 (Packard and
Doyle, 1993).

10. One can always simplify the optimization in (8.87) by £xing one of the scalar blocks in
D equal to 1. For example, let D = diag{d1, d2, . . . , dn}, then one may without loss of
generality set dn = 1.

Proof: Let D′ = 1
dn
D and note that σ̄(DMD−1) = σ̄(D′MD′−1). 2

Similarly, for cases where ∆ has one or more scalar blocks, one may simplify the
optimization in (8.86) by £xing one of the corresponding unitary scalars in U equal to
1. This follows from Property 1 with |c| = 1.

11. The following property is useful for £nding µ(AB) when ∆ has a structure similar to that
of A or B:

µ∆(AB) ≤ σ̄(A)µ∆A(B) (8.92)

µ∆(AB) ≤ σ̄(B)µB∆(A) (8.93)

Here the subscript “∆A” denotes the structure of the matrix ∆A, and “B∆” denotes the
structure of B∆.

Proof: The proof is from Skogestad and Morari (1988a). We use the fact that µ(AB) =
max∆ ρ(∆AB) = max∆ ρ(V B)σ̄(A) where V = ∆A/σ̄(A). When we maximize over ∆, V
generates a certain set of matrices with σ̄(V ) ≤ 1. Let us extend this set by maximizing over
all matrices V with σ̄(V ) ≤ 1 and with the same structure as ∆A. We then get µ(AB) ≤
maxV ρ(V B)σ̄(A) = µV (B)σ̄(A). 2

Some special cases of (8.92):
(a) If A is a full matrix then the structure of ∆A is a full matrix, and we simply get

µ(AB) ≤ σ̄(A)σ̄(B) (which is not a very exciting result since we always have
µ(AB) ≤ σ̄(AB) ≤ σ̄(A)σ̄(B)).

(b) If ∆ has the same structure as A (e.g. they are both diagonal) then

µ∆(AB) ≤ σ̄(A)µ∆(B) (8.94)

Note: (8.94) is stated incorrectly in Doyle (1982) since it is not speci£ed that ∆ must have the
same structure as A; see also Exercise 8.20 (page 313).

(c) If ∆ = δI (i.e. ∆ consists of repeated scalars), we get the spectral radius inequality
ρ(AB) ≤ σ̄(A)µA(B). A useful special case of this is

ρ(M∆) ≤ σ̄(∆)µ∆(M) (8.95)

12. A generalization of (8.92) and (8.93) is

µ∆(ARB) ≤ σ̄(R)µ2
∆̃

[
0 A
B 0

]
(8.96)

where ∆̃ = diag{∆, R}. The result is proved by Skogestad and Morari (1988a).
13. The following is a further generalization of these bounds. Assume that M is an LFT of

R: M = N11 + N12R(I − N22R)
−1N21. The problem is to £nd an upper bound on R,
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σ̄(R) ≤ c, which guarantees that µ∆(M) < 1 when µ∆(N11) < 1. Skogestad and Morari
(1988a) show that the best upper bound is the c which solves

µ∆̃

[
N11 N12

cN21 cN22

]
= 1 (8.97)

where ∆̃ = diag{∆, R}, and c is easily computed using skewed-µ. Given the µ-condition
µ∆(M) < 1 (for RS or RP), (8.97) may be used to derive a suf£cient loop-shaping bound
on a transfer function of interest, e.g. R may be S, T , L, L−1 or K.

Remark. In the above we have used minD . To be mathematically correct, we should have used infD
because the set of allowed D’s is not bounded and therefore the exact minimum may not be achieved
(although we may get arbitrarily close). The use of max∆ (rather than sup∆) is mathematically correct
since the set ∆ is closed (with σ̄(∆) ≤ 1).

Example 8.7 Let
M =

[
a a
b b

]
(8.98)

and ∆ be complex 2× 2 matrices. Then

µ(M) =





ρ(M) = |a+ b| for ∆ = δI
|a|+ |b| for ∆ = diag{δ1, δ2}
σ̄(M) =

√
2|a|2 + 2|b|2 for ∆ a full matrix

(8.99)

Proof: For ∆ = δI , µ(M) = ρ(M) and ρ(M) = |a + b| since M is singular and its non-zero
eigenvalue is λ1(M) = tr(M) = a + b. For ∆ full, µ(M) = σ̄(M) and σ̄(M) =

√
2|a|2 + 2|b|2

since M is singular and its non-zero singular value is σ̄(M) = ‖M‖F , see (A.127). For a diagonal ∆,
it is interesting to consider three different proofs of the result µ(M) = |a|+ |b|:

(a) A direct calculation based on the de£nition of µ.
(b) Use of the lower “bound” in (8.86) (which is always exact).
(c) Use of the upper bound in (8.87) (which is exact here since we have only two blocks).
We will use approach (a) here and leave (b) and (c) for Exercise 8.15. We have

M∆ =
[
a a
b b

][
δ1

δ2

]
=

[
a
b

]
[ δ1 δ2 ] = M̃∆̃

From (8.77) we then get

det(I −M∆) = det(I − ∆̃M̃) = 1− [ δ1 δ2 ]

[
a
b

]
= 1− aδ1 − bδ2

The smallest δ1 and δ2 which make this matrix singular, i.e. 1 − aδ1 − bδ2 = 0, are obtained when
|δ1| = |δ2| = |δ| and the phases of δ1 and δ2 are adjusted such that 1− |a| · |δ| − |b| · |δ| = 0. We get
|δ| = 1/(|a|+ |b|), and from (8.70) we have that µ = 1/|δ| = |a|+ |b|. 2

Exercise 8.15 ∗ (continued from Example 8.7). (b) For M in (8.98) and a diagonal ∆ show that
µ(M) = |a| + |b| using the lower “bound” µ(M) = maxU ρ(MU) (which is always exact). (Hint:
Use U = diag{ejφ, 1} (the blocks in U are unitary scalars, and we may £x one of them equal to 1).)

(c) For M in (8.98) and a diagonal ∆ show that µ(M) = |a| + |b| using the upper bound
µ(M) ≤ minD σ̄(DMD−1) (which is exact in this case since D has two “blocks”).

Solution: Use D = diag{d, 1}. Since DMD−1 is a singular matrix we have from (A.37) that

σ̄(DMD−1) = σ̄
[

a da
1
d
b b

]
=
√
|a|2 + |da|2 + |b/d|2 + |b|2 (8.100)

which we want to minimize with respect to d. The solution is d =
√
|b|/|a| which gives µ(M) =√

|a|2 + 2|ab|+ |b|2 = |a|+ |b|.
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Exercise 8.16 Let c be a complex scalar. Show that for

∆ = diag{∆1,∆2} : µ
[
M11 M12

M21 M22

]
= µ

[
M11 cM12
1
c
M21 M22

]
(8.101)

Example 8.8 Let M be a partitioned matrix with both diagonal blocks equal to zero. Then

µ
[
0 A
B 0

]

︸ ︷︷ ︸
M

=





ρ(M) =
√
ρ(AB) for ∆ = δI√

σ̄(A)σ̄(B) for ∆ = diag{∆1,∆2},∆i full
σ̄(M) = max{σ̄(A), σ̄(B)} for ∆ a full matrix

(8.102)

Proof: From the de£nition of eigenvalues and Schur’s formula (A.14) we get λi(M) =
√
λi(AB) and

ρ(M) =
√
ρ(AB) follows. For block-diagonal ∆, µ(M) =

√
σ̄(A)σ̄(B) follows in a similar way

using µ(M) = max∆ ρ(M∆) = max∆1,∆2 ρ(A∆2B∆1), and then realizing that we can always
select ∆1 and ∆2 such that ρ(A∆2B∆1) = σ̄(A)σ̄(B) (recall (8.47)). σ̄(M) = max{σ̄(A), σ̄(B)}
follows since σ̄(M) =

√
ρ(MHM) where MHM = diag{BHB,AHA}. 2

Exercise 8.17 Let M be a complex 3× 3 matrix and ∆ = diag{δ1, δ2, δ3}. Prove that

M =

[
a a a
b b b
c c c

]
, µ(M) = |a|+ |b|+ |c|

Exercise 8.18 ∗ Let a, b, c and d be complex scalars. Show that for

∆ = diag{δ1, δ2} : µ
[
ab ad
bc cd

]
= µ

[
ab ab
cd cd

]
= |ab|+ |cd| (8.103)

Does this hold when ∆ is scalar times identity, or when ∆ is full? (Answers: No and No.)

Exercise 8.19 Assume A and B are square matrices. Show by a counterexample that σ̄(AB) is not
in general equal to σ̄(BA). Under what conditions is µ(AB) = µ(BA)? (Hint: Recall (8.84).)

Exercise 8.20 ∗ If (8.94) were true for any structure of ∆ then it would imply ρ(AB) ≤ σ̄(A)ρ(B).
Show by a counterexample that this is not true.

8.9 Robust stability with structured uncertainty
Consider stability of the M∆-structure in Figure 8.3 for the case where ∆ is a set of norm-
bounded block-diagonal perturbations. From the determinant stability condition in (8.43)
which applies to both complex and real perturbations we get

RS ⇔ det(I −M∆(jω)) 6= 0, ∀ω,∀∆, σ̄(∆(jω)) ≤ 1 ∀ω (8.104)

A problem with (8.104) is that it is only a “yes/no” condition. To £nd the factor km by which
the system is robustly stable, we scale the uncertainty ∆ by km, and look for the smallest km
which yields “borderline instability”, namely

det(I − kmM∆) = 0 (8.105)

From the de£nition of µ in (8.76) this value is km = 1/µ(M), and we obtain the following
necessary and suf£cient condition for robust stability.
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Theorem 8.6 RS for block-diagonal perturbations (real or complex). Assume that the
nominal system M and the perturbations ∆ are stable. Then the M∆-system in Figure 8.3 is
stable for all allowed perturbations with σ̄(∆) ≤ 1,∀ω, if and only if

µ(M(jω)) < 1, ∀ω (8.106)

Proof: µ(M) < 1 ⇔ km > 1, so if µ(M) < 1 at all frequencies the required perturbation ∆ to make
det(I−M∆) = 0 is larger than 1, and the system is stable. On the other hand, µ(M) = 1⇔ km = 1,
so if µ(M) = 1 at some frequency there does exist a perturbation with σ̄(∆) = 1 such that
det(I −M∆) = 0 at this frequency, and the system is unstable. 2

Condition (8.106) for RS may be rewritten as

RS ⇔ µ(M(jω)) σ̄(∆(jω)) < 1, ∀ω (8.107)

which may be interpreted as a “generalized small-gain theorem” that also takes into account
the structure of ∆.

One may argue whether Theorem 8.6 is really a theorem, or a restatement of the de£nition
of µ. In either case, we see from (8.106) that it is trivial to check for RS provided we can
compute µ.

Let us consider two examples that illustrate how we use µ to check for RS with structured
uncertainty. In the £rst example, the structure of the uncertainty is important, and an analysis
based on theH∞ norm leads to the incorrect conclusion that the system is not robustly stable.
In the second example the structure makes no difference.

Example 8.9 RS with diagonal input uncertainty. Consider RS of the feedback system in
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Figure 8.11: RS for diagonal input uncertainty is guaranteed since µ∆I
(TI) < 1/|wI |, ∀ω. The use of

unstructured uncertainty and σ̄(TI) is conservative.

Figure 8.7 for the case when the multiplicative input uncertainty is diagonal. A nominal 2×2 plant and
the controller (which represents PI control of a distillation process using the DV-con£guration) is given
by

G(s) =
1

τs+ 1

[
−87.8 1.4
−108.2 −1.4

]
; K(s) =

1 + τs

s

[
−0.0015 0

0 −0.075

]
(8.108)

(time in minutes). The controller results in a nominally stable system with acceptable performance.
Assume there is complex multiplicative uncertainty in each manipulated input of magnitude

wI(s) =
s+ 0.2

0.5s+ 1
(8.109)
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This implies a relative uncertainty of up to 20% in the low-frequency range, which increases at high
frequencies, reaching a value of 1 (100% uncertainty) at about 1 rad/min. The increase with frequency
allows for various neglected dynamics associated with the actuator and valve. The uncertainty may be
represented as multiplicative input uncertainty as shown in Figure 8.7 where ∆I is a diagonal complex
matrix and the weight is WI = wII where wI(s) is a scalar. On rearranging the block diagram to
match the M∆-structure in Figure 8.3 we get M = wIKG(I +KG)−1 = wITI (recall (8.32)), and
the RS condition µ(M) < 1 in Theorem 8.6 yields

RS⇔ µ∆I
(TI) <

1

|wI(jω)|
∀ω, ∆I =

[
δ1

δ2

]
(8.110)

This condition is shown graphically in Figure 8.11 and is seen to be satis£ed at all frequencies, so the
system is robustly stable. Also in Figure 8.11, σ̄(TI) can be seen to be larger than 1/|wI(jω)| over a
wide frequency range. This shows that the system would be unstable for full-block input uncertainty (∆I

full). However, full-block uncertainty is not reasonable for this plant, and therefore we conclude that
the use of the singular value is conservative in this case. This demonstrates the need for the structured
singular value.

Exercise 8.21 Consider the same example and check for RS with full-block multiplicative output
uncertainty of the same magnitude. (Solution: RS is satis£ed.)

Example 8.10 RS of spinning satellite. Recall Motivating example no. 1 from Section 3.7.1 with the
plant G(s) given in (3.88) and the controller K = I . We want to study how sensitive this design is to
multiplicative input uncertainty.

In this case TI = T , so for RS there is no difference between multiplicative input and multiplicative
output uncertainty. In Figure 8.12, we plot µ(T ) as a function of frequency. We £nd for this case
that µ(T ) = σ̄(T ) irrespective of the structure of the complex multiplicative perturbation (full-block,
diagonal or repeated complex scalar). Since µ(T ) crosses 1 at about 10 rad/s, we can tolerate more than
100% uncertainty at frequencies above 10 rad/s. At low frequencies µ(T ) is about 10, so to guarantee
RS we can at most tolerate 10% (complex) uncertainty at low frequencies. This con£rms the results
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Figure 8.12: µ-plot for spinning satellite

from Section 3.7.1, where we found that real perturbations δ1 = 0.1 and δ2 = −0.1 yield instability.
Thus, the use of complex rather than real perturbations is not conservative in this case, at least for ∆I

diagonal.
However, with repeated scalar perturbations (i.e. the uncertainty in each channel is identical) there

is a difference between real and complex perturbations. With repeated real perturbations, available
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software (e.g. using the command mussv with blk = [-2 0] in the Robust Control toolbox in
Matlab) yields a peak µ-value of 1, so we can tolerate a perturbation δ1 = δ2 of magnitude 1
before getting instability. (This is con£rmed by considering the characteristic polynomial in (3.92),
from which we see that δ1 = δ2 = −1 yields instability.) On the other hand, with complex repeated
perturbations, we have that µ(T ) = ρ(T ) is 10 at low frequencies, so instability may occur with a
(non-physical) complex δ1 = δ2 of magnitude 0.1. (Indeed, from (3.92) we see that the non-physical
constant perturbation δ1 = δ2 = j0.1 yields instability.)

8.9.1 What do µ 6= 1 and skewed-µ mean?
A value of µ = 1.1 for RS means that all the uncertainty blocks must be decreased in
magnitude by a factor 1.1 in order to guarantee stability.

But if we want to keep some of the uncertainty blocks £xed, how large can one particular
source of uncertainty be before we get instability? We de£ne this value as 1/µs, where µs is
called skewed-µ. We may view µs(M) as a generalization of µ(M).

For example, let ∆ = diag{∆1,∆2} and assume we have £xed ‖∆1‖ ≤ 1 and we want to
£nd how large ∆2 can be before we get instability. The solution is to select

Km =

[
I 0
0 kmI

]
(8.111)

and look at each frequency for the smallest value of km which makes det(I−KmM∆) = 0,
and we have that skewed-µ is

µs(M) , 1/km

Note that to compute skewed-µ we must £rst de£ne which part of the perturbations is to be
constant. µs(M) is always further from 1 than µ(M) is, i.e. µs ≥ µ for µ > 1, µs = µ for
µ = 1, and µs ≤ µ for µ < 1. In practice, with available software to compute µ, we obtain
µs by iterating on km until µ(KmM) = 1 where Km may be as in (8.111). This iteration is
straightforward since µ increases uniformly with km.

8.10 Robust performance
Robust performance (RP) means that the performance objective is satis£ed for all possible
plants in the uncertainty set, even the worst-case plant. We showed in Chapter 7 that for
a SISO system with an H∞ performance objective, the RP condition is identical to an RS
condition with an additional perturbation block (!).

This also holds for MIMO systems, as illustrated by the stepwise derivation in Figure 8.13.
Step B is the key step and the reader is advised to study this carefully in the treatment below.
Note that the block ∆P (where capital P denotes Performance) is always a full matrix. It is a
£ctitious uncertainty block representing theH∞ performance speci£cation.

8.10.1 Testing RP using µ
To test for RP, we £rst “pull out” the uncertain perturbations and rearrange the uncertain
system into the N∆-form of Figure 8.2. Our RP requirement, as given in (8.39), is that
the H∞ norm of the transfer function F = Fu(N,∆) remains less than 1 for all allowed
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perturbations. This may be tested exactly by computing µ(N) as stated in the following
theorem.

Theorem 8.7 Robust performance. Rearrange the uncertain system into the N∆-structure
of Figure 8.13. Assume NS such that N is (internally) stable. Then

RP
def⇔ ‖F‖∞ = ‖Fu(N,∆)‖∞ < 1, ∀‖∆‖∞ ≤ 1 (8.112)

⇔ µ∆̂(N(jω)) < 1, ∀w (8.113)

where µ is computed with respect to the structure

∆̂ =

[
∆ 0
0 ∆P

]
(8.114)

and ∆P is a full complex perturbation with the same dimensions as F T .

Below we prove the theorem in two alternative ways, but £rst a few remarks:

1. Condition (8.113) allows us to test if ‖F‖∞ < 1 for all possible ∆’s without having to test each ∆
individually. Essentially, µ is de£ned such that it directly addresses the worst case.

2. The µ-condition for RP involves the enlarged perturbation ∆̂ = diag{∆,∆P }. Here ∆, which itself
may be a block-diagonal matrix, represents the true uncertainty, whereas ∆P is a full complex matrix
stemming from theH∞ norm performance speci£cation. For example, for the nominal system (with
∆ = 0) we get from (8.81) that σ̄(N22) = µ∆P

(N22), and we see that ∆P must be a full matrix.
3. Since ∆̂ always has structure, the use of the H∞ norm, ‖N‖∞ < 1, is generally conservative for

RP.
4. From (8.78) we have that

µ∆̂(N)︸ ︷︷ ︸
RP

≥ max{µ∆(N11)︸ ︷︷ ︸
RS

, µ∆P
(N22)︸ ︷︷ ︸
NP

} (8.115)

where as just noted µ∆P
(N22) = σ̄(N22). Condition (8.115) implies that RS (µ∆(N11) < 1) and

NP (σ̄(N22) < 1) are automatically satis£ed when RP (µ(N) < 1) is satis£ed. However, note
that NS (stability of N ) is not guaranteed by (8.113) and must be tested separately. (Beware! It is
a common mistake to get a design with apparently great RP, but which is not nominally stable and
thus is actually robustly unstable.)

5. For a generalization of Theorem 8.7 see the main loop theorem of Packard and Doyle (1993); see
also Zhou et al. (1996).

Block diagram proof of Theorem 8.7
In the following, let F = Fu(N,∆) denote the perturbed closed-loop system for which we want to test
RP. The theorem is proved by the equivalence between the various block diagrams in Figure 8.13.

Step A. This is simply the de£nition of RP: ‖F‖∞ < 1.
Step B (the key step). Recall £rst from Theorem 8.4 that stability of the M∆-structure in Figure 8.3,

where ∆ is a full complex matrix, is equivalent to ‖M‖∞ < 1. From this theorem, we get that the RP
condition ‖F‖∞ < 1 is equivalent to RS of the F∆P -structure, where ∆P is a full complex matrix.

Step C. Introduce F = Fu(N,∆) from Figure 8.2.
Step D. Collect ∆ and ∆P into the block-diagonal matrix ∆̂. Then the original RP problem is

equivalent to RS of the N∆̂-structure which from Theorem 8.6 is equivalent to µ∆̂(N) < 1. 2
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Figure 8.13: RP as a special case of structured RS
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Algebraic proof of Theorem 8.7
The de£nition of µ gives at each frequency

µ∆̂(N(jω)) < 1⇔ det(I −N(jω)∆̂(jω)) 6= 0, ∀∆̂, σ̄(∆̂(jω)) ≤ 1

By Schur’s formula in (A.14) we have

det(I −N∆̂) = det

[
I −N11∆ −N12∆P

−N21∆ I −N22∆p

]

= det(I −N11∆) · det [I −N22∆P −N21∆(I −N11∆)−1N12∆P ]

= det(I −N11∆) · det[I − (N22 +N21∆(I −N11∆)−1N12)∆P ]

= det(I −N11∆) · det(I − Fu(N,∆)∆P )

Since this expression should not be zero, both terms must be non-zero at each frequency, i.e.

det(I −N11∆) 6= 0 ∀∆ ⇔ µ∆(N11) < 1, ∀ω (RS)

and for all ∆

det(I − F∆P ) 6= 0 ∀∆P ⇔ µ∆P
(F ) < 1⇔ σ̄(F ) < 1, ∀ω (RP de£nition)

Theorem 8.7 is proved by reading the above lines in the opposite direction. Note that it is not necessary
to test for RS separately as it follows as a special case of the RP requirement. 2

8.10.2 Summary of µ-conditions for NP, RS and RP
First, we rearrange the uncertain system into theN∆-structure of Figure 8.2, where the block-
diagonal perturbations satisfy ‖∆‖∞ ≤ 1. Then we introduce

F = Fu(N,∆) = N22 +N21∆(I −N11∆)−1N12

and let the performance requirement (RP) be ‖F‖∞ ≤ 1 for all allowable perturbations. It
then follows that

NS ⇔ N (internally) stable (8.116)
NP ⇔ σ̄(N22) = µ∆P

< 1, ∀ω, and NS (8.117)
RS ⇔ µ∆(N11) < 1, ∀ω, and NS (8.118)

RP ⇔ µ∆̂(N) < 1, ∀ω, ∆̂ =

[
∆ 0
0 ∆P

]
, and NS (8.119)

Here ∆ is a block-diagonal matrix (its detailed structure depends on the uncertainty
we are representing), whereas ∆P is always a full complex matrix representing the H∞
performance speci£cation. ∆P does not need to be a square matrix. Note that nominal NS
must be tested separately in all cases.

Although the structured singular value is not a norm, it is sometimes convenient to refer
to the peak µ-value as the “∆-norm”. For a stable rational transfer matrix H(s), with an
associated block structure ∆, we therefore de£ne

‖H(s)‖∆ , max
ω

µ∆(H(jω))

For a nominally stable system we then have

NP⇔ ‖N22‖∞ < 1, RS⇔ ‖N11‖∆ < 1, RP⇔ ‖N‖∆̂ < 1
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8.10.3 Worst-case performance and skewed-µ
Assume we have a system for which the peak µ-value for RP is 1.1. What does this mean? The
de£nition of µ tells us that our RP requirement would be satis£ed exactly if we reduced both
the performance requirement and the uncertainty by a factor of 1.1. So µ does not directly
give us the worst-case performance, i.e. max∆ σ̄(F (∆)), as one might have expected.

To £nd the worst-case weighted performance for a given uncertainty, one needs to keep the
magnitude of the perturbations £xed (σ̄(∆) ≤ 1); that is, we must compute skewed-µ of N
as discussed in Section 8.9.1. We have, in this case,

max
σ̄(∆)≤1

σ̄(Fu(N,∆)(jω)) = µs(N(jω)) (8.120)

To £nd µs numerically, we scale the performance part ofN by a factor km = 1/µs and iterate
on km until µ = 1. That is, at each frequency skewed-µ is the value µs(N) which solves

µ(KmN) = 1, Km =

[
I 0
0 1/µs

]
(8.121)

Note that µ underestimates how bad or good the actual worst-case performance is. This
follows because µs(N) is always further from 1 than µ(N).

Remark. The corresponding worst-case perturbation may be obtained as follows. First compute
the worst-case performance at each frequency using skewed-µ. At the frequency where µs(N)
has its peak, we may extract the corresponding worst-case perturbation generated by the software,
and then £nd a stable, all-pass transfer function that matches this. In the Matlab Robust Control
toolbox, the single command robustperf combines these steps: [perfmarg,perfmargunc]
= robustperf(lft(Delta,N));.

8.11 Application: robust performance with input
uncertainty

We will now consider in some detail the case of multiplicative input uncertainty with
performance de£ned in terms of weighted sensitivity, as illustrated in Figure 8.14. The
performance requirement is then

RP
def⇔ ‖wP (I +GpK)−1‖∞ < 1, ∀Gp (8.122)

where the set of plants is given by

Gp = G(I + wI∆I), ‖∆I‖∞ ≤ 1 (8.123)

Here wP (s) and wI(s) are scalar weights, so the performance objective is the same for all
the outputs, and the uncertainty is the same for all inputs. We will mostly assume that ∆I

is diagonal, but we will also consider the case when ∆I is a full matrix. This problem
is excellent for illustrating the robustness analysis of uncertain multivariable systems. It
should be noted, however, that although the problem setup in (8.122) and (8.123) is £ne
for analyzing a given controller, it is less suitable for controller synthesis. For example, the
problem formulation does not penalize directly the outputs from the controller.

In this section, we will:
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Figure 8.14: RP of system with input uncertainty

1. Find the interconnection matrix N for this problem.
2. Consider the SISO case, so that useful connections can be made with results from the

previous chapter.
3. Consider a multivariable distillation process for which we have already seen from

simulations in Chapter 3 that a decoupling controller is sensitive to small errors in the
input gains. We will £nd that µ for RP is indeed much larger than 1 for this decoupling
controller.

4. Find some simple bounds on µ for this problem and discuss the role of the condition
number.

5. Make comparisons with the case where the uncertainty is located at the output.

8.11.1 Interconnection matrix
On rearranging the system into the N∆-structure, as shown in Figure 8.14, we get, as in
(8.32),

N =

[
wITI wIKS
wPSG wPS

]
(8.124)

where TI = KG(I+KG)−1, S = (I+GK)−1. For simplicity we have omitted the negative
signs in the 1,1 and 1,2 blocks of N , since µ(N) = µ(UN) with unitary U =

[
−I 0
0 I

]
; see

(8.83).
For a given controller K we can now test for NS, NP, RS and RP using (8.116)–(8.119)

with
∆̂ =

[
∆I 0
0 ∆P

]

Here ∆ = ∆I may be a full or diagonal matrix (depending on the physical situation), whereas
the £ctitious perturbation matrix ∆P , representing the H∞ performance speci£cation, is
always a full matrix.
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8.11.2 RP with input uncertainty for SISO system
For a SISO system N in (8.124) is a 2 × 2 matrix and ∆I and ∆P are scalars. In this case
conditions (8.116)–(8.119) become

NS ⇔ N internally stable⇔ S, SG, KS and TI are stable (8.125)
NP ⇔ σ̄(N22) = |wPS| < 1, ∀ω (8.126)
RS ⇔ µ∆(N11) = |wITI | < 1, ∀ω (8.127)
RP ⇔ µ∆̂(N) = |wPS|+ |wITI | < 1, ∀ω (8.128)

where the RP condition (8.128) follows from (8.103); that is,

µ(N) = µ

[
wITI wIKS
wPSG wPS

]
= µ

[
wITI wITI
wPS wPS

]
= |wITI |+ |wPS| (8.129)

where we have used TI = KSG. For SISO systems, TI = T and we see that (8.128) is
identical to (7.72), which was derived in Chapter 7 using a simple graphical argument based
on the Nyquist plot of L = GK.

RP optimization, in terms of weighted sensitivity with multiplicative uncertainty for a SISO
system, thus involves minimizing the peak value of µ(N) = |wIT | + |wPS|. This may be
solved usingDK-iteration as outlined later in Section 8.12. A closely related problem, which
is easier to solve both mathematically and numerically, is to minimize the peak value (H∞
norm) of the mixed sensitivity matrix

Nmix =

[
wPS
wIT

]
(8.130)

From (A.96) we get that at each frequency µ(N) = |wIT |+ |wPS| differs from σ̄(Nmix) =√
|wIT |2 + |wPS|2 by at most a factor

√
2; recall (7.75). Thus, minimizing ‖Nmix‖∞ is

close to optimizing RP in terms of µ(N).

8.11.3 RP for 2× 2 distillation process
Consider again the distillation process example from Chapter 3 (Motivating example no. 2)
and the corresponding inverse-based controller:

G(s) =
1

75s+ 1

[
87.8 −86.4
108.2 −109.6

]
; K(s) =

0.7

s
G(s)−1 (8.131)

The controller provides a nominally decoupled system with

L = lI, S = εI and T = tI (8.132)

where

l =
0.7

s
, ε =

1

1 + l
=

s

s+ 0.7
, t = 1− ε = 0.7

s+ 0.7
=

1

1.43s+ 1

We have used ε for the nominal sensitivity in each loop to distinguish it from the Laplace
variable s. Recall from Figure 3.14 that this controller gave an excellent nominal response,
but that the response with 20% gain uncertainty in each input channel was extremely poor. We
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will now con£rm these £ndings by a µ-analysis. To this effect we use the following weights
for uncertainty and performance:

wI(s) =
s+ 0.2

0.5s+ 1
; wP (s) =

s/2 + 0.05

s
(8.133)

With reference to (7.36) we see that the weight wI(s) may approximately represent a 20%
gain error and a neglected time delay of 0.9 min. |wI(jω)| levels off at 2 (200% uncertainty)
at high frequencies. With reference to (2.105) we see that the performance weight wP (s)
speci£es integral action, a closed-loop bandwidth of about 0.05 [rad/min] (which is relatively
slow in the presence of an allowed time delay of 0.9 min) and a maximum peak for σ̄(S) of
MS = 2.

We now test for NS, NP, RS and RP. Note that ∆I is a diagonal matrix in this example.
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Figure 8.15: µ-plots for distillation process with decoupling controller

NS With G and K as given in (8.131) we £nd that S, SG, KS and TI are stable, so the
system is nominally stable.

NP With the decoupling controller we have

σ̄(N22) = σ̄(wPS) =

∣∣∣∣
s/2 + 0.05

s+ 0.7

∣∣∣∣

and we see from the dashed-dot line in Figure 8.15 that the NP condition is easily
satis£ed: σ̄(wPS) is small at low frequencies (0.05/0.7 = 0.07 at ω = 0) and
approaches 1/2 = 0.5 at high frequencies.

RS Since in this casewITI = wIT is a scalar times the identity matrix, we have, independent
of the structure of ∆I , that

µ∆I
(wITI) = |wIt| =

∣∣∣∣0.2
5s+ 1

(0.5s+ 1)(1.43s+ 1)

∣∣∣∣

and we see from the dashed line in Figure 8.15 that RS is easily satis£ed. The peak
value of µ∆I

(M) over frequency is ‖M‖∆I
= 0.53. This means that we may increase

the uncertainty by a factor of 1/0.53 = 1.89 before the worst-case uncertainty yields
instability. That is, we can tolerate about 38% gain uncertainty and a time delay of
about 1.7 min before we get instability.
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RP Although our system has good robustness margins (RS easily satis£ed) and excellent NP
we know from the simulations in Figure 3.14 that RP is poor. This is con£rmed by the
µ-curve for RP in Figure 8.15 which was computed numerically using µ∆̂(N) with N
as in (8.124), ∆̂ = diag{∆I ,∆P } and ∆I = diag{δ1, δ2}. The peak value is close to
6, meaning that even with six times less uncertainty, the weighted sensitivity will be
about six times larger than we require. The peak of the actual worst-case weighted
sensitivity with uncertainty blocks of magnitude 1, which may be computed using
skewed-µ, is for comparison 44.93.

The Matlab Robust Control toolbox commands to generate Figure 8.15 are given in Table 8.1.

In general, µ with unstructured uncertainty (∆I full) is larger than µ with structured
uncertainty (∆I diagonal). However, for our particular plant and controller in (8.131) it
appears from numerical calculations, and by use of (8.136) below, that they are the same.
Of course, this is not generally true, as is con£rmed in the following exercise.
Exercise 8.22 ∗ Consider the plant G(s) in (8.108) which is ill-conditioned with γ(G) = 70.8 at all
frequencies (but note that the RGA elements of G are all about 0.5). With an inverse-based controller
K(s) = 0.7

s
G(s)−1, compute µ for RP with both diagonal and full-block input uncertainty using the

weights in (8.133). The value of µ is much smaller in the former case.

8.11.4 RP and the condition number
In this subsection, we consider the relationship between µ for RP and the condition number
of the plant or of the controller. We consider unstructured multiplicative input uncertainty
(i.e. ∆I is a full matrix) and performance measured in terms of weighted sensitivity.

Any controller. Let N be given as in (8.124). Then
RP︷ ︸︸ ︷

µ∆̃(N) ≤ [

RS︷ ︸︸ ︷
σ̄(wITI)+

NP︷ ︸︸ ︷
σ̄(wPS)](1 +

√
k) (8.134)

where k is the condition number of either the plant or the controller (the smallest one should
be used):

k = γ(G) or k = γ(K) (8.135)
Proof of (8.134): Since ∆I is a full matrix, (8.87) yields

µ(N) = min
d

σ̄

[
N11 dN12

d−1N21 N22

]

where from (A.47)

σ̄

[
wITI dwIKS

d−1wPSG wPS

]
≤ σ̄(wITI

[
I dG−1

]
) + σ̄(wPS

[
d−1G I

]
)

≤ σ̄(wITI) σ̄(I dG−1)︸ ︷︷ ︸
≤1+|d|σ̄(G−1)

+σ̄(wPS) σ̄(d
−1G I)︸ ︷︷ ︸

≤1+|d−1|σ̄(G)

and selecting d =
√

σ̄(G)

σ̄(G−1)
=
√
γ(G) gives

µ(N) ≤ [σ̄(wITI) + σ̄(wPS)] (1 +
√
γ(G))

A similar derivation may be performed using SG = K−1TI to derive the same expression but with
γ(K) instead of γ(G). 2
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Table 8.1: Matlab program for µ-analysis (generates Figure 8.15)
% Uses the Robust Control toolbox
G0=[87.8 -86.4; 108.2 -109.6];
G=tf([1],[75 1])*G0;
G=minreal(ss(G));
%
% Inverse-based controller
%
Kinv=0.7*tf([75 1],[1 1e-5])*inv(G0);
%
% Weights
%
Wp=0.5*tf([10 1],[10 1e-5])*eye(2);
Wi=tf([1 0.2],[0.5 1])*eye(2);
%
% Generalized plant P
%
systemnames = ’G Wp Wi’;
inputvar = ’[ydel(2); w(2) ; u(2)]’;
outputvar = ’[Wi ; Wp ; -G-w]’;
input to G = ’[u+ydel]’;
input to Wp = ’[G+w]’;
input to Wi = ’[u]’;
sysoutname = ’P’;
cleanupsysic= ’yes’; sysic;
%
N=lft(P,Kinv);
omega = logspace(-3,3,61); Nf=frd(N,omega);
%
% mu for RP
%
blk=[1 1; 1 1; 2 2];
[mubnds,muinfo]=mussv(Nf,blk,’c’);
muRP=mubnds(:,1); [muRPinf,muRPw] = norm(muRP,inf); % (ans = 5.7726)
%
% Worst case weighted sensitivity
%
delta = [ultidyn(’del1’,[1 1]) 0;0 ultidyn(’del2’,[1 1])];
Np = lft(delta,N); %Perturbed model
opt = wcgopt(’ABadThreshold’,100);
Npw = wcgain(Np,opt); % (ans = 44.98 for
% delta = 1)
% mu for RS
%
Nrs=Nf(1:2,1:2); % Picking out WiTi
[mubnds,muinfo]=mussv(Nrs,[1 1; 1 1],’c’);
muRS=mubnds(:,1); [muRSinf,muRSw]=norm(muRS,inf) % (ans = 0.5242)
%
% mu for NS (=max. singular value of Nnp)
%
Nnp=Nf(3:4,3:4); % Picking out wP*Si
[mubnds,muinfo]=mussv(Nnp,[1 1;1 1],’c’);
muNS=mubnds(:,1); [muNSinf,muNSw]=norm(muNS,inf) % (ans = 0.500)
bodemag(muRP,’’,muRS,’--’,muNS,’-.’,omega)
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From (8.134) we see that with a “round” controller, i.e. one with γ(K) = 1, there is less
sensitivity to uncertainty (but it may be dif£cult to achieve NP in this case). On the other
hand, we would expect µ for RP to be large if we used an inverse-based controller for a plant
with a large condition number, since then γ(K) = γ(G) is large. This is con£rmed by (8.136)
below.
Example 8.11 For the distillation process studied above, we have γ(G) = γ(K) = 141.7
at all frequencies, and at frequency w = 1 rad/min the upper bound given by (8.134) becomes
(0.52 + 0.41)(1 +

√
141.7) = 13.1. This is higher than the actual value of µ(N) which is 5.56,

which illustrates that the bound in (8.134) is generally not tight.

Inverse-based controller. With an inverse-based controller (resulting in the nominal
decoupled system (8.132)) and unstructured input uncertainty, it is possible to derive an
analytic expression for µ for RP with N as in (8.124):

µ∆̃(N) =

√
|wP ε|2 + |wIt|2 + |wP ε| · |wIt|

(
γ(G) +

1

γ(G)

)
(8.136)

where ε is the nominal sensitivity and γ(G) is the condition number of the plant. We see that
for plants with a large condition number, µ for RP increases approximately in proportion to√
γ(G).

Proof of (8.136): The proof originates from Stein and Doyle (1991). The upper µ-bound in (8.87) with
D = diag{dI, I} yields

µ(N) = min
d

σ̄
[

wI tI wI t(dG)−1

wP ε(dG) wP εI

]
= min

d
σ̄
[

wI tI wI t(dΣ)
−1

wP ε(dΣ) wP εI

]

= min
d

max
i

σ̄
[

wI t wI t(dσi)
−1

wP ε(dσi) wP ε

]

= min
d

max
i

√
|wP ε|2 + |wIt|2 + |wP εdσi|2 + |wIt(dσi)−1|2

We have used here the SVD of G = UΣV H at each frequency, and the fact that σ̄ is unitary invariant.
σi denotes the i’th singular value of G. The expression is minimized by selecting at each frequency
d = |wIt|/(|wP ε|σ̄(G)σ(G)), see (8.100), and hence the desired result. For more details see Zhou
et al. (1996, pp. 293–295). 2

Example 8.12 For the distillation column example studied above, we have at frequency ω = 1
rad/min, |wP ε| = 0.41 and |wIt| = 0.52, and since γ(G) = 141.7 at all frequencies, (8.136) yields
µ(N) =

√
0.17 + 0.27 + 30.51 = 5.56 which agrees with the plot in Figure 8.15.

Worst-case performance (any controller)
We next derive relationships between worst-case performance and the condition number.
Suppose that at each frequency the worst-case sensitivity is σ̄(S ′). We then have that the
worst-case weighted sensitivity is equal to skewed-µ:

max
Sp

σ̄(wPSp) = σ̄(wPS
′) = µs(N)

Now, recall that in Section 6.10.4 we derived a number of upper bounds on σ̄(S ′), and
referring back to (6.89) we £nd

σ̄(S′) ≤ γ(G) σ̄(S)

1− σ̄(wITI)
(8.137)
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A similar bound involving γ(K) applies. We then have

µs(N) = σ̄(wPS
′) ≤ k σ̄(wPS)

1− σ̄(wITI)
(8.138)

where k as before denotes the condition number of either the plant or the controller
(preferably the smallest). Equation (8.138) holds for any controller and for any structure of
the uncertainty (including ∆I unstructured).

Remark 1 In Section 6.10.4, we derived tighter upper bounds for cases when ∆I is restricted to be
diagonal and when we have a decoupling controller. In (6.93), we also derived a lower bound in terms
of the RGA.

Remark 2 Since µs = µ when µ = 1, we may, from (8.134), (8.138) and expressions similar to (6.91)
and (6.92), derive the following suf£cient (conservative) tests for RP (µ(N) < 1) with unstructured
input uncertainty (any controller):

RP ⇐ [σ̄(wPS) + σ̄(wITI)](1 +
√
k) < 1, ∀ω

RP ⇐ kσ̄(wPS) + σ̄(wITI) < 1, ∀ω
RP ⇐ σ̄(wPS) + kσ̄(wIT ) < 1, ∀ω

where k denotes the condition number of either the plant or the controller (the smallest being the most
useful).

Example 8.13 For the distillation process, the upper bound given by (8.138) at ω = 1 rad/min is
141.7 · 0.41/(1 − 0.52) = 121. This is higher than the actual peak value of µs = maxSp σ̄(wPSp),
which as found earlier is 44.9 (at frequency 1.2 rad/min), and demonstrates that these bounds are not
generally tight.

8.11.5 Comparison with output uncertainty
Consider output multiplicative uncertainty of magnitude wO(jω). In this case, we get the
interconnection matrix

N =

[
wOT wOT
wPS wPS

]
(8.139)

and for any structure of the uncertainty µ(N) is bounded as follows:

σ̄

[
wOT
wPS

]
≤

RP︷ ︸︸ ︷
µ(N) ≤

√
2 σ̄

RS︷ ︸︸ ︷[
wOT
wPS

]

︸ ︷︷ ︸
NP

(8.140)

This follows since the uncertainty and performance blocks both enter at the output (see
Section 8.6.2) and from (A.46) the difference between bounding the combined perturbations,
σ̄ [ ∆O ∆P ], and individual perturbations, σ̄(∆O) and σ̄(∆P ), is at most a factor of√
2. Thus, in this case we “automatically” achieve RP (at least within

√
2) if we have

satis£ed separately the subobjectives of NP and RS. This con£rms our £ndings from Section
6.10.4 that multiplicative output uncertainty poses no particular problem for performance.
It also implies that for practical purposes we may optimize RP with output uncertainty by
minimizing theH∞ norm of the stacked matrix

[
wOT
wPS

]
.



328 MULTIVARIABLE FEEDBACK CONTROL

Exercise 8.23 Consider the RP problem with weighted sensitivity and multiplicative output
uncertainty. Derive the interconnection matrix N for (1) the conventional case with ∆̂ =
diag{∆,∆P }, and (2) the stacked case when ∆̂ = [∆ ∆P ]. Use this to prove (8.140).

8.12 µ-synthesis and DK-iteration
The structured singular value µ is a very powerful tool for the analysis of RP with a given
controller. However, one may also seek to £nd the controller that minimizes a given µ-
condition: this is the µ-synthesis problem.

8.12.1 DK-iteration
At present there is no direct method to synthesize a µ-optimal controller. However, for
complex perturbations a method known as DK-iteration is available. It combines H∞
synthesis and µ-analysis, and often yields good results. The starting point is the upper bound
(8.87) on µ in terms of the scaled singular value

µ(N) ≤ min
D∈D

σ̄(DND−1)

The idea is to £nd the controller that minimizes the peak value over frequency of this upper
bound, namely

min
K

(min
D∈D

‖DN(K)D−1‖∞) (8.141)

by alternating between minimizing ‖DN(K)D−1‖∞ with respect to either K or D (while
holding the other £xed). To start the iterations, one selects an initial stable rational transfer
matrix D(s) with appropriate structure. The identity matrix is often a good initial choice for
D provided the system has been reasonably scaled for performance. The DK-iteration then
proceeds as follows:

1. K-step. Synthesize an H∞ controller for the scaled problem, minK ‖DN(K)D−1‖∞
with £xed D(s).

2. D-step. Find D(jω) to minimize at each frequency σ̄(DND−1(jω)) with £xed N .
3. Fit the magnitude of each element of D(jω) to a stable and minimum-phase transfer

function D(s) and go to step 1.

The iteration may continue until satisfactory performance is achieved, ‖DND−1‖∞ < 1, or
until theH∞ norm no longer decreases. One fundamental problem with this approach is that
although each of the minimization steps (K-step and D-step) are convex, joint convexity is
not guaranteed. Therefore, the iterations may converge to a local optimum. However, practical
experience suggests that the method works well in most cases.

The order of the controller resulting from each iteration is equal to the number of states
in the plant G(s) plus the number of states in the weights plus twice the number of states in
D(s). For most cases, the true µ-optimal controller is not rational, and will thus be of in£nite
order, but because we use a £nite-orderD(s) to approximate theD-scales, we get a controller
of £nite (but often high) order. The true µ-optimal controller would have a ¤at µ-curve (as a
function of frequency), except at in£nite frequency where µ generally has to approach a £xed
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value independent of the controller (because L(j∞) = 0 for real systems). However, with a
£nite-order controller we will generally not be able (and it may not be desirable) to extend
the ¤atness to in£nite frequencies.

The DK-iteration depends heavily on optimal solutions for steps 1 and 2, and also on
good £ts in step 3, preferably by a transfer function of low order. One reason for preferring
a low-order £t is that this reduces the order of the H∞ problem, which usually improves the
numerical properties of the H∞ optimization (step 1) and also yields a controller of lower
order. In some cases the iterations converge slowly, and it may be dif£cult to judge whether
the iterations are converging or not. One may even experience the µ-value increasing. This
may be caused by numerical problems or inaccuracies (e.g. the upper bound µ-value in step
2 being higher than the H∞ norm obtained in step 1), or by a poor £t of the D-scales. In
any case, if the iterations converge slowly, then one may consider going back to the initial
problem and rescaling the inputs and outputs.

In the K-step (step 1) where theH∞ controller is synthesized, it is often desirable to use a
slightly suboptimal controller (e.g. with anH∞ norm, γ, which is 5% higher than the optimal
value, γmin). This yields a blend of H∞ and H2 optimality with a controller which usually
has a steeper high-frequency roll-off than theH∞ optimal controller.

8.12.2 Adjusting the performance weight
Recall that if µ at a given frequency is different from 1, then the interpretation is that at this
frequency we can tolerate 1/µ-times more uncertainty and satisfy our performance objective
with a margin of 1/µ. In µ-synthesis, the designer will usually adjust some parameter(s)
in the performance or uncertainty weights until the peak µ-value is close to 1. Sometimes
the uncertainty is £xed, and we effectively optimize worst-case performance by adjusting a
parameter in the performance weight. For example, consider the performance weight

wP (s) =
s/M + ω∗B
s+ ω∗BA

(8.142)

where we want to keep M constant and £nd the highest achievable bandwidth frequency ω ∗B .
The optimization problem becomes

max |ω∗B | such that µ(N) < 1,∀ω (8.143)

where N , the interconnection matrix for the RP problem, depends on ω∗B . This may be
implemented as an outer loop around the DK-iteration.

8.12.3 Fixed structure controller
Sometimes it is desirable to £nd a low-order controller with a given structure, e.g. a
decentralized PID controller. This may be achieved by numerical optimization where µ is
minimized with respect to the controller parameters. The problem here is that the optimization
is not generally convex in the parameters. Sometimes it helps to switch the optimization
between minimizing the peak of µ (i.e. ‖µ‖∞) and minimizing the integral square deviation
of µ away from k (i.e. ‖µ(jω) − k‖2) where k usually is close to 1. The latter is an attempt
to “¤atten out” µ.
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8.12.4 Example: µ-synthesis with DK-iteration
We will consider again the case of multiplicative input uncertainty and performance de£ned
in terms of weighted sensitivity, as discussed in detail in Section 8.11. We noted there that
this setup is £ne for analysis, but less suitable for controller synthesis, as it does not explicitly
penalize the outputs from the controller. Nevertheless we will use it here as an example of
µ-synthesis because of its simplicity. The resulting controller will have very large gains at
high frequencies and should not be used directly for implementation. In practice, one can add
extra roll-off to the controller (which should work well because the system should be robust
with respect to uncertain high-frequency dynamics), or one may consider a more complicated
problem setup (see Section 13.4).

With this caution in mind, we proceed with the problem description. Again, we use the
model of the simpli£ed distillation process

G(s) =
1

75s+ 1

[
87.8 −86.4
108.2 −109.6

]
(8.144)

The uncertainty weightwII and performance weightwP I are given in (8.133), and are shown
graphically in Figure 8.16. The objective is to minimize the peak value of µ∆̃(N), where N
is given in (8.124) and ∆̃ = diag{∆I ,∆P }. We will consider diagonal input uncertainty
(which is always present in any real problem), so ∆I is a 2 × 2 diagonal matrix. ∆P is a
full 2 × 2 matrix representing the performance speci£cation. Note that we have only three
complex uncertainty blocks, so µ(N) is equal to the upper bound minD σ̄(DND

−1) in this
case.

We will now use DK-iteration in an attempt to obtain the µ-optimal controller for this
example. The appropriate commands for the Matlab Robust Control toolbox are listed in
Table 8.2. The Matlab Robust Control toolbox contains commands that “automate” the DK-
iteration (listed at the bottom of Table 8.2), but we use a “manual” approach here, as this
yields more insight.
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Figure 8.16: Uncertainty and performance weights. Notice that there is a frequency range (“window”)
where both weights are less than 1 in magnitude.

First the generalized plant P as given in (8.29) is constructed. It includes the plant model,
the uncertainty weight and the performance weight, but not the controller which is to be
designed (note that N = Fl(P,K)). Then the block structure is de£ned; it consists of two
1 × 1 blocks to represent ∆I and a 2 × 2 block to represent ∆P . The scaling matrix D for
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Table 8.2: Matlab program to perform DK-iteration
% Uses the Robust Control toolbox
G0 = [87.8 -86.4; 108.2 -109.6]; % Distillation
dyn = tf(1,[75 1]); G=dyn*eye(2)*G0; % process.
%
% Weights.
%
Wp = 0.5*tf([10 1],[10 1.e-5])*eye(2); % Approximated
Wi = tf([1 0.2],[0.5 1])*eye(2); % integrator.
%
% Generalized plant P. %
systemnames = ’G Wp Wi’;
inputvar = ’[udel(2); w(2) ; u(2)]’;
outputvar = ’[Wi; Wp; -G-w]’;
input to G = ’[u+udel]’;
input to Wp = ’[G+w]’; input to Wi = ’[u]’;
sysoutname = ’P’; cleanupsysic = ’yes’;
sysic;
P = minreal(ss(P));
%
% Initialize.
%
omega = logspace(-3,3,61);
blk = [1 1; 1 1; 2 2];
nmeas = 2; nu = 2; d0 = 1;
D = append(d0,d0,tf(eye(2)),tf(eye(2))); % Initial scaling.
%
% START ITERATION.
%
% STEP 1: Find H-infinity optimal controller
% with given scalings:
%
[K,Nsc,gamma,info] = hinfsyn(D*P*inv(D),nmeas,nu,....

’method’,’lmi’,’Tolgam’,1e-3);
Nf = frd(lft(P,K),omega);
%
% STEP 2: Compute mu using upper bound:
%
[mubnds,Info] = mussv(Nf,blk,’c’);
bodemag(mubnds(1,1),omega);
murp = norm(mubnds(1,1),inf,1e-6);
%
% STEP 3: Fit resulting D-scales:
%
[dsysl,dsysr] = mussvunwrap(Info);
dsysl = dsysl/dsysl(3,3);
d1 = fitfrd(genphase(dsysl(1,1)),4); % Choose 4th order.
%
% GOTO STEP 1 (unless satisfied with murp).
%
% Alternatively use automatic software
%
% Delta = [ultidyn(’D 1’,[1 1]) 0;0 ultidyn(’D 2’,[1 1])]; % Diagonal uncertainty.
% Punc = lft(Delta,P);
% opt = dkitopt(’FrequencyVector’,omega);
% [K,clp,bnd,dkinfo] = dksyn(Punc,nmeas,nu,opt);
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DND−1 then has the structure D = diag{d1, d2, d3I2} where I2 is a 2× 2 identity matrix,
and we may set d3 = 1. As initial scalings we select d01 = d02 = 1. P is then scaled with
the matrix diag{D, I2} where I2 is associated with the inputs and outputs from the controller
(we do not want to scale the controller).

Iteration no. 1. Step 1: With the initial scalings, D0 = I , the H∞ software (see Table 8.2)
produced a £ve-state controller with anH∞ norm of γ = 1.1798. Step 2: The upper µ-bound
gave the µ-curve shown as curve “Iter. 1” in Figure 8.17, corresponding to a peak value of
µ=1.1798. Step 3: The frequency-dependent d1(ω) and d2(ω) from step 2 were each £tted
using a fourth-order transfer function. d1(w) and the £tted fourth-order transfer function
(dotted line) are shown in Figure 8.18 and labelled “Iter. 1”. The £t is very good, except
at higher frequencies. At low frequencies, it is hard to distinguish the two curves. d2 is not
shown because it was found that d1 ≈ d2 (indicating that the worst-case full-block ∆I is in
fact diagonal).

Iteration no. 2. Step 1: With the 8-state scaling D1(s) the H∞ software gave a 21-state
controller and ‖D1N(D1)−1‖∞ = 1.0274. Step 2: This controller gave a peak value of µ
of 1.0272. Step 3: The resulting scalings D2 were only slightly changed from the previous
iteration as can be seen from d21(ω) labelled “Iter. 2” in Figure 8.18.

Iteration no. 3. Step 1: With the scalings D2(s) the H∞ norm was only slightly reduced
from 1.0274 to 1.0208. Since the improvement was small and since the value was very close
to the desired value of 1, it was decided to stop the iterations. The resulting controller with
21 states (denoted K3 in the following) gives a peak µ-value of 1.0205.
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Figure 8.17: Change in µ during DK-iteration

Analysis of µ-“optimal” controller K3

The £nal µ-curves for NP, RS and RP with controller K3 are shown in Figure 8.19. The
objectives of RS and NP are easily satis£ed. Furthermore, the peak µ-value of 1.0205 with
controller K3 is only slightly above 1, so the performance speci£cation σ̄(wPSp) < 1 is
almost satis£ed for all possible plants. To con£rm this we considered the nominal plant and
six perturbed plants

G′i(s) = G(s)EIi(s)
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Figure 8.18: Change in D-scale d1 during DK-iteration

10−3 10−2 10−1 100 101 102 103
0

0.2

0.4

0.6

0.8

1

PSfrag replacements

RPRPRP

NP

RS

Frequency [rad/min]

µ

Figure 8.19: µ-plots with µ-“optimal” controller K3

where EIi = I + wI∆I is a diagonal transfer function matrix representing input uncertainty
(with nominal EI0 = I). Recall that the uncertainty weight is

wI(s) =
s+ 0.2

0.5s+ 1

which is 0.2 in magnitude at low frequencies. Thus, the following input gain perturbations
are allowable:

EI1 =
[
1.2 0
0 1.2

]
, EI2 =

[
0.8 0
0 1.2

]
, EI3 =

[
1.2 0
0 0.8

]
, EI4 =

[
0.8 0
0 0.8

]

These perturbations do not make use of the fact that wI(s) increases with frequency. Two
allowed dynamic perturbations for the diagonal elements in wI∆I are

ε1(s) =
−s+ 0.2

0.5s+ 1
, ε2(s) = −

s+ 0.2

0.5s+ 1

corresponding to elements in EIi of

f1(s) = 1 + ε1(s) = 1.2
−0.417s+ 1

0.5s+ 1
, f2(s) = 1 + ε2(s) = 0.8

−0.633s+ 1

0.5s+ 1
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Figure 8.20: Perturbed sensitivity functions σ̄(S ′) using µ-“optimal” controllerK3. Dotted lines: plants
G′i, i = 1, 6. Solid line: nominal plant G. Dashed line: inverse of performance weight.
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Figure 8.21: Setpoint response for µ-“optimal” controller K3. Solid line: nominal plant. Dashed line:
uncertain plant G′3.

so let us also consider

EI5 =
[
f1(s) 0
0 f1(s)

]
, EI6 =

[
f2(s) 0
0 f1(s)

]

The maximum singular value of the sensitivity, σ̄(S ′i), is shown in Figure 8.20 for the nominal
and six perturbed plants, and is seen to be almost below the bound 1/|wI(jω)| for all seven
cases (i = 0, 6) illustrating that RP is almost satis£ed. The sensitivity for the nominal plant
is shown by the solid line, and the others with dotted lines. At low frequencies the worst-case
corresponds closely to a plant with gains 1.2 and 0.8, such as G′2, G′3 or G′6. Overall, the
worst case of these six plants seems to be G′6 = GEI6, which has σ̄(S′) close to the bound at
low frequencies, and has a peak of about 2.003 (above the allowed bound of 2) at 3.5 rad/min.

To £nd the “true” worst-case performance and plant we used the Matlab Robust Control
toolbox command robustperf as explained in Section 8.10.3 on page 320. This gives a
worst-case performance of maxSp ‖wPSp‖∞ = 1.0205, and the sensitivity function for the
corresponding worst-case plant G′wc(s) = G(s)(I + wI(s)∆wc(s)) found with the software
has a peak value of σ̄(Sp) of about 1.0979 at 0.02 rad/min. It may seem surprising that ‖Sp‖∞
is much smaller than the sensitivity peak for the perturbed plants considered earlier; however,
note that G′wc(s) is the worst-case plant with respect to the peak value of ‖wPSp‖∞ and not
‖Sp‖∞.
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Remark. The “worst-case” plant is not unique, and there are many plants which yield a worst-case
performance of maxSp ‖wPSp‖∞ = 1.037. For example, it is likely that we could £nd plants which
were more consistently “worse” at all frequencies than the one shown by the dotted lines in Figure 8.20.

The time responses of y1 and y2 to a £ltered setpoint change in y1, r1 = 1/(5s + 1), are
shown in Figure 8.21 both for the nominal case (solid line) and for 20% input gain uncertainty
(dashed line) using the plant G′3 = GE3 (which we know is one of the worst plants). The
responses are interactive, but show no strong sensitivity to the uncertainty. The responses with
uncertainty are seen to be much better than those with the inverse-based controller studied
earlier and shown in Figure 3.14.

Remarks on the µ-synthesis example.
1. By trial and error, and many long nights, Petter Lundström was able to reduce the peak µ-value for

RP for this problem down to about µopt = 0.974 (Lundström, 1994). The resulting design produces
the curves labelled optimal in Figures 8.17 and 8.18. The corresponding controller, Kopt, may be
synthesized usingH∞ synthesis with the following third-order D-scales:

d1(s) = d2(s) = 2
(0.001s+ 1)(s+ 0.25)(s+ 0.054)

((s+ 0.67)2 + 0.562)(s+ 0.013)
, d3 = 1 (8.145)

2. Note that the optimal controller Kopt for this problem has an SVD form. That is, let G = UΣV H ,
then Kopt = V KsU

H where Ks is a diagonal matrix. This arises because in this example U and V
are constant matrices. For more details see Hovd (1992) and Hovd et al. (1997).

3. For this particular plant it appears that the worst-case full-block input uncertainty is a diagonal
perturbation, so we might as well have used a full matrix for ∆I . But this does not hold in general.

4. The H∞ software may encounter numerical problems if P (s) has poles on the jω-axis. This is the
reason why in the Matlab code we have moved the integrators (in the performance weights) slightly
into the LHP

5. The initial choice of scalingD = I gave a good design for this plant with anH∞ norm of about 1.18.
This scaling worked well because the inputs and outputs had been scaled to be of unit magnitude.
For a comparison, consider the original model in Skogestad et al. (1988) which was in terms of
unscaled physical variables:

Gunscaled(s) =
1

75s+ 1

[
0.878 −0.864
1.082 −1.096

]
(8.146)

Equation (8.146) has all its elements 100 times smaller than in the scaled model (8.144). Therefore,
using this model should give the same optimal µ-value but with controller gains 100 times larger.
However, starting the DK-iteration with D = I works very poorly in this case. The £rst iteration
yields anH∞ norm of 14.9 (step 1) resulting in a peak µ-value of 5.2 (step 2). Subsequent iterations
yield with third- and fourth-order £ts of the D-scales the following peak µ-values: 2.92, 2.22, 1.87,
1.67, 1.58, 1.53, 1.49, 1.46, 1.44, 1.42. At this point (after 11 iterations) the µ-plot is fairly ¤at up
to 10 [rad/min] and one may be tempted to stop the iterations. However, we are still far away from
the optimal value which we know is less than 1. This demonstrates the importance of good initial
D-scales, which is related to scaling the plant model properly.

6. We used the stepwise procedure for DK-iteration primarily for insight. Matlab Robust Control
toolbox command dksyn provides an automated version of this procedure, which is shown at the
bottom of Table 8.2. For the distillation process example, dksyn yields a 26-state controller with a
µ value of 1.094 in four iterations, which is inferior compared to the “manual” stepwise procedure.

Exercise 8.24 ∗ Explain why the optimal µ-value would not change if in the model (8.144) we changed
the time constant of 75 [min] to another value. Note that the µ-iteration itself would be affected.
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8.13 Further remarks on µ

8.13.1 Further justi£cation for the upper bound on µ

For complex perturbations, the scaled singular value σ̄(DND−1) is a tight upper bound
on µ(N) in most cases, and minimizing the upper bound ‖DND−1‖∞ forms the basis for
the DK-iteration. However, ‖DND−1‖∞ is also of interest in its own right. The reason
for this is that when all uncertainty blocks are full and complex, the upper bound provides
a necessary and suf£cient condition for robustness to arbitrary-slow time-varying linear
uncertainty (Poolla and Tikku, 1995). On the other hand, the use of µ assumes the uncertain
perturbations to be time invariant. In some cases, it can be argued that slowly time-varying
uncertainty is more useful than constant perturbations, and therefore that it is better to
minimize ‖DND−1‖∞ instead of µ(N). In addition, by considering how D(ω) varies with
frequency, one can £nd bounds on the allowed time variations in the perturbations.

Another interesting fact is that the use of constant D-scales (D is not allowed to vary
with frequency) provides a necessary and suf£cient condition for robustness to arbitrary-fast
time-varying linear uncertainty (Shamma, 1994). It may be argued that such perturbations
are unlikely in a practical situation. Nevertheless, we see that if we can get an acceptable
controller design using constant D-scales, then we know that this controller will work very
well even for rapid changes in the plant model. Another advantage of constant D-scales
is that the computation of µ is then straightforward and may be solved using LMIs, see
Example 12.4.

8.13.2 Real perturbations and the mixed µ-problem
We have not discussed in any detail the analysis and design problems which arise with real
or, more importantly, mixed real and complex perturbations.

The current algorithms, implemented in the Matlab µ-toolbox, employ a generalization of
the upper bound σ̄(DMD−1), where in addition to D-matrices, which exploit the block-
diagonal structure of the perturbations, there are G-matrices, which exploit the structure of
the real perturbations. The G-matrices (which should not be confused with the plant transfer
function G(s)) have real diagonal elements at locations where ∆ is real and have zeros
elsewhere. The algorithm in the µ-toolbox makes use of the following result from Young et al.
(1992): if there exist a β > 0, aD and aG with the appropriate block-diagonal structure such
that

σ̄

(
(I +G2)−

1
4

(
1

β
DMD−1 − jG

)
(I +G2)−

1
4

)
≤ 1 (8.147)

then µ(M) ≤ β. For more details, the reader is referred to Young (1993).
There is also a corresponding DGK-iteration procedure for synthesis (Young, 1994). The

practical implementation of this algorithm is, however, dif£cult, and a very high-order £t
may be required for the G-scales. An alternative approach which involves solving a series of
scaled DK-iterations is given by Tøffner-Clausen et al. (1995).

8.13.3 Computational complexity
It has been established that the computational complexity of computing µ has a combinatoric
(non-polynomial or “NP-hard”) growth with the number of parameters involved (Braatz
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et al., 1994), even for purely complex perturbations (Toker and Ozbay, 1998).
This does not mean, however, that practical algorithms are not possible, and we have

described practical algorithms for computing upper bounds of µ for cases with complex,
real or mixed real/complex perturbations.

As mentioned on page 310, the upper bound σ̄(DMD−1) for complex perturbations is
generally tight, whereas the present upper bounds for mixed perturbations (see (8.147)) may
be arbitrarily conservative.

There also exist a number of lower bounds for computing µ. Most of these involve
generating a perturbation which makes I −M∆ singular, see e.g. Young and Doyle (1997).

8.13.4 Discrete case
It is also possible to use µ for analyzing RP of discrete time systems (Packard and
Doyle, 1993). Consider a discrete time system

xk+1 = Axk +Buk, yk = Cxk +Duk

The corresponding discrete transfer function matrix from u to y isN(z) = C(zI−A)−1B+
D. First, note that theH∞ norm of a discrete transfer function is

‖N‖∞ , max
|z|≥1

σ̄(C(zI −A)−1B +D)

This follows since evaluation on the jω-axis in the continuous case is equivalent to the unit
circle (|z| = 1) in the discrete case. Second, note that N(z) may be written as an LFT in
terms of 1/z,

N(z) = C(zI −A)−1B +D = Fu

(
H,

1

z
I

)
; H =

[
A B
C D

]
(8.148)

Thus, by introducing δz = 1/z and ∆z = δzI we have from the main loop theorem of
Packard and Doyle (1993) (which generalizes Theorem 8.7) that ‖N‖∞ < 1 (NP) if and only
if

µ∆̂(H) < 1, ∆̂ = diag{∆z,∆P } (8.149)

where ∆z is a matrix of repeated complex scalars, representing the discrete “frequencies”,
and ∆P is a full complex matrix, representing the singular value performance speci£cation.
Thus, we see that the search over frequencies in the frequency domain is avoided, but at the
expense of a complicated µ-calculation. The condition in (8.149) is also referred to as the
state-space µ-test.

Condition (8.149) only considers nominal performance (NP). However, note that in this
case nominal stability (NS) follows as a special case (and thus does not need to be tested
separately), since when µ∆̂(H) ≤ 1 (NP) we have from (8.78) that µ∆z

(A) = ρ(A) < 1,
which is the well-known stability condition for discrete systems.

We can also generalize the treatment to consider RS and RP. In particular, since the
state-space matrices are contained explicitly in H in (8.148), it follows that the discrete
time formulation is convenient if we want to consider parametric uncertainty in the state-
space matrices. This is discussed by Packard and Doyle (1993). However, this results in real
perturbations, and the resulting µ-problem which involves repeated complex perturbations
(from the evaluation of z on the unit circle), a full-block complex perturbation (from the
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performance speci£cation), and real perturbations (from the uncertainty), is dif£cult to solve
numerically both for analysis and in particular for synthesis. For this reason the discrete time
formulation is little used in practical applications.

8.14 Conclusion
In this chapter and the last we have discussed how to represent uncertainty and how to analyze
its effect on stability (RS) and performance (RP) using the structured singular value µ as our
main tool.

To analyze robust stability (RS) of an uncertain system we make use of the M∆-structure
(Figure 8.3) where M represents the transfer function for the “new” feedback part generated
by the uncertainty. From the small-gain theorem,

RS ⇐ σ̄(M) < 1 ∀ω (8.150)

which is tight (necessary and suf£cient) for the special case where at each frequency any
complex ∆ satisfying σ̄(∆) ≤ 1 is allowed. More generally, the tight condition is

RS ⇔ µ(M) < 1 ∀ω (8.151)

where µ(M) is the structured singular value µ(M). The calculation of µ makes use of the
fact that ∆ has a given block-diagonal structure, where certain blocks may also be real (e.g.
to handle parametric uncertainty).

We de£ned robust performance (RP) as ‖Fu(N,∆)‖∞ < 1 for all allowed ∆’s. Since we
used theH∞ norm in both the representation of uncertainty and the de£nition of performance,
we found that RP could be viewed as a special case of RS, and we derived

RP ⇔ µ(N) < 1 ∀ω (8.152)

where µ is computed with respect to the block-diagonal structure diag{∆,∆P }. Here ∆
represents the uncertainty and ∆P is a £ctitious full uncertainty block representing the H∞
performance bound.

It should be noted that there are two main approaches to getting a robust design:

1. We aim to make the system robust to some “general” class of uncertainty which we do
not explicitly model. For SISO systems the classical gain and phase margins and the peaks
of S and T provide useful general robustness measures. For MIMO systems, normalized
coprime factor uncertainty provides a good general class of uncertainty, and the associated
Glover–McFarlane H∞ loop-shaping design procedure, see Chapter 9, has proved itself
very useful in applications.

2. We explicitly model and quantify the uncertainty in the plant and aim to make the
system robust to this speci£c uncertainty. This second approach has been the focus of the
preceding two chapters. Potentially, it yields better designs, but it may require a much
larger effort in terms of uncertainty modelling, especially if parametric uncertainty is
considered. Analysis and, in particular, synthesis using µ can be very involved.

In applications, it is therefore recommended to start with the £rst approach, at least for
design. The robust stability and performance are then analyzed in simulations and using the
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structured singular value; for example, by considering £rst simple sources of uncertainty
such as multiplicative input uncertainty. One then iterates between design and analysis until
a satisfactory solution is obtained.

Practical µ-analysis
We end the chapter by providing a few recommendations on how to use the structured singular
value µ in practice.

1. Because of the effort involved in deriving detailed uncertainty descriptions, and the
subsequent complexity in synthesizing controllers, the rule is to “start simple” with a
crude uncertainty description, and then to see whether the performance speci£cations can
be met. Only if they can’t, should one consider more detailed uncertainty descriptions such
as parametric uncertainty (with real perturbations).

2. The use of µ implies a worst-case analysis, so one should be careful about including too
many sources of uncertainty, noise and disturbances – otherwise it becomes very unlikely
for the worst case to occur, and the resulting analysis and design may be unnecessarily
conservative.

3. There is always uncertainty with respect to the inputs and outputs, so it is generally “safe”
to include diagonal input and output uncertainty. The relative (multiplicative) form is very
convenient in this case.

4. µ is most commonly used for analysis. If µ is used for synthesis, then we recommend that
you keep the uncertainty £xed and adjust the parameters in the performance weight until
µ is close to 1.
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9

CONTROLLER DESIGN

In this chapter, we present practical procedures for multivariable controller design which are relatively
straightforward to apply and which, in our opinion, have an important role to play in industrial control.

For industrial systems which are either SISO or loosely coupled, the classical loop-shaping approach
to control system design as described in Section 2.6 has been successfully applied. But for truly
multivariable systems it has only been in the last two decades, or so, that reliable generalizations of
this classical approach have emerged.

9.1 Trade-offs in MIMO feedback design
The shaping of multivariable transfer functions is based on the idea that a satisfactory
de£nition of gain (range of gain) for a matrix transfer function is given by the singular
values of the transfer function. By multivariable transfer function shaping, therefore, we mean
the shaping of singular values of appropriately speci£ed transfer functions such as the loop
transfer function or possibly one or more closed-loop transfer functions. This methodology
for controller design is central to the practical procedures described in this chapter.

In February 1981, the IEEE Transactions on Automatic Control published a Special Issue
on Linear Multivariable Control Systems, the £rst six papers of which were on the use of
singular values in the analysis and design of multivariable feedback systems. The paper
by Doyle and Stein (1981) was particularly in¤uential: it was primarily concerned with
the fundamental question of how to achieve the bene£ts of feedback in the presence of
unstructured uncertainty, and through the use of singular values it showed how the classical
loop-shaping ideas of feedback design could be generalized to multivariable systems. To see
how this was done, consider the one degree-of-freedom con£guration shown in Figure 9.1.
The plant G and controller K interconnection is driven by reference commands r, output
disturbances d and measurement noise n. y are the outputs to be controlled, and u are the
control signals. In terms of the sensitivity function S = (I + GK)−1 and the closed-
loop transfer function T = GK(I + GK)−1 = I − S, we have the following important
relationships:

y(s) = T (s)r(s) + S(s)d(s)− T (s)n(s) (9.1)
u(s) = K(s)S(s) [r(s)− n(s)− d(s)] (9.2)

These relationships determine several closed-loop objectives, in addition to the requirement
that K stabilizes G, namely:

Multivariable Feedback Control: Analysis and Design. Second Edition
S. Skogestad and I. Postlethwaite c© 2005, 2006 John Wiley & Sons, Ltd
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Figure 9.1: One degree-of-freedom feedback con£guration

1. For disturbance rejection make σ̄(S) small.
2. For noise attenuation make σ̄(T ) small.
3. For reference tracking make σ̄(T ) ≈ σ(T ) ≈ 1.
4. For input usage (control energy) reduction make σ̄(KS) small.

If the unstructured uncertainty in the plant modelG is represented by an additive perturbation,
i.e. Gp = G+∆, then from (8.53), a further closed-loop objective is:

5. For robust stability in the presence of an additive perturbation make σ̄(KS) small.

Alternatively, if the uncertainty is modelled by a multiplicative output perturbation such that
Gp = (I +∆)G, then from (8.55), we have:

6. For robust stability in the presence of a multiplicative output perturbation make σ̄(T )
small.

The closed-loop requirements 1 to 6 cannot all be satis£ed simultaneously. Feedback design
is therefore a trade-off over frequency of con¤icting objectives. This is not always as dif£cult
as it sounds because the frequency ranges over which the objectives are important can be
quite different. For example, disturbance rejection is typically a low-frequency requirement,
while noise mitigation is often only relevant at higher frequencies.

In classical loop shaping, it is the magnitude of the open-loop transfer function L = GK
which is shaped, whereas the above design requirements are all in terms of closed-loop
transfer functions. However, recall from (3.51) that

σ(L)− 1 ≤ 1

σ̄(S)
≤ σ(L) + 1 (9.3)

from which we see that σ̄(S) ≈ 1/σ(L) at frequencies where σ(L) is much larger than 1.
It also follows that at the bandwidth frequency (where 1/σ̄(S(jωB)) =

√
2 = 1.41), we

have σ(L(jωB)) between 0.41 and 2.41. Furthermore, from T = L(I + L)−1 it follows that
σ̄(T ) ≈ σ̄(L) at frequencies where σ̄(L) is small. Thus, over speci£ed frequency ranges, it
is relatively easy to approximate the closed-loop requirements by the following open-loop
objectives:

1. For disturbance rejection make σ(GK) large; valid for frequencies at which σ(GK)À 1.
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Figure 9.2: Design trade-offs for the multivariable loop transfer function GK

2. For noise attenuation make σ̄(GK) small; valid for frequencies at which σ̄(GK)¿ 1.
3. For reference tracking make σ(GK) large; valid for frequencies at which σ(GK)À 1.
4. For input usage (control energy) reduction make σ̄(K) small; valid for frequencies at

which σ̄(GK)¿ 1.
5. For robust stability to an additive perturbation make σ̄(K) small; valid for frequencies at

which σ̄(GK)¿ 1.
6. For robust stability to a multiplicative output perturbation make σ̄(GK) small; valid for

frequencies at which σ̄(GK)¿ 1.

Typically, the open-loop requirements 1 and 3 are valid and important at low frequencies,
0 ≤ ω ≤ ωl ≤ ωB , while 2, 4, 5 and 6 are conditions which are valid and important at
high frequencies, ωB ≤ ωh ≤ ω ≤ ∞, as illustrated in Figure 9.2. From this we see that
at frequencies where we want high gains (at low frequencies) the “worst-case” direction is
related to σ(GK), whereas at frequencies where we want low gains (at high frequencies) the
“worst-case” direction is related to σ̄(GK).

Exercise 9.1 ∗ Show that the closed-loop objectives 1 to 6 can be approximated by the open-loop
objectives 1 to 6 at the speci£ed frequency ranges.

From Figure 9.2, it follows that the control engineer must design K so that σ̄(GK) and
σ(GK) avoid the shaded regions. That is, for good performance, σ(GK) must be made to
lie above a performance boundary for all ω up to ωl, and for robust stability σ̄(GK) must
be forced below a robustness boundary for all ω above ωh. To shape the singular values of
GK by selecting K is a relatively easy task, but to do this in a way which also guarantees
closed-loop stability is in general dif£cult. Closed-loop stability cannot be determined from
open-loop singular values.

For SISO systems, it is clear from Bode’s work (1945) that closed-loop stability is closely
related to open-loop gain and phase near the crossover frequency ωc, where |GK(jωc)| = 1.
In particular, the roll-off rate from high to low gain at crossover is limited by phase
requirements for stability, and in practice this corresponds to a roll-off rate less than
40 dB/decade (slope −2 on log–log plot); see Section 2.6.2. An immediate consequence
of this is that there is a lower limit to the difference between ωh and ωl in Figure 9.2.

For MIMO systems a similar gain–phase relationship holds in the crossover frequency
region, but this is in terms of the eigenvalues of GK and results in a limit on the roll-off rate
of the magnitude of the eigenvalues of GK, not the singular values (Doyle and Stein, 1981).
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The stability constraint is therefore even more dif£cult to handle in multivariable loop shaping
than it is in classical loop shaping. To overcome this dif£culty Doyle and Stein (1981)
proposed that the loop shaping should be done with a controller that was already known
to guarantee stability. They suggested that an LQG controller could be used in which the
regulator part is designed using a “sensitivity recovery” procedure of Kwakernaak (1969) to
give desirable properties (gain and phase margins) in GK. They also gave a dual “robustness
recovery” procedure for designing the £lter in an LQG controller to give desirable properties
in KG. Recall that KG is not in general equal to GK, which implies that stability margins
vary from one break point to another in a multivariable system. Both of these loop transfer
recovery (LTR) procedures are discussed below after £rst describing traditional LQG control.

9.2 LQG control
Optimal control, building on the optimal £ltering work of Wiener in the 1940’s, reached
maturity in the 1960’s with what we now call linear quadratic Gaussian or LQG control.
Its development coincided with large research programmes and considerable funding in
the United States and the former Soviet Union on space-related problems. These were
problems, such as rocket manoeuvring with minimum fuel consumption, which could be
well de£ned and easily formulated as optimization problems. Aerospace engineers were
particularly successful at applying LQG, but when other control engineers attempted to use
LQG on everyday industrial problems a different story emerged. Accurate plant models
were frequently not available and the assumption of white noise disturbances was not
always relevant or meaningful to practising control engineers. As a result LQG designs were
sometimes not robust enough to be used in practice. In this section, we will describe the
LQG problem and its solution, we will discuss its robustness properties, and we will describe
procedures for improving robustness. Many textbooks consider this topic in far greater detail;
we recommend Anderson and Moore (1989) and Kwakernaak and Sivan (1972).

9.2.1 Traditional LQG and LQR problems
In traditional LQG control, it is assumed that the plant dynamics are linear and known, and
that the measurement noise inputs and disturbance signals (process noise) are stochastic with
known statistical properties. That is, we have a plant model

ẋ = Ax+Bu+ wd (9.4)
y = Cx+Du+ wn (9.5)

where for simplicity we set D = 0 (see Remark 2 on page 347). wd and wn are the
disturbance (process noise) and measurement noise respectively, which are usually assumed
to be uncorrelated zero-mean Gaussian stochastic processes with constant power spectral
density matrices W and V respectively. That is, wd and wn are white noise processes with
covariances

E
{
wd(t)wd(τ)

T
}

= Wδ(t− τ) (9.6)
E
{
wn(t)wn(τ)

T
}

= V δ(t− τ) (9.7)
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and

E
{
wd(t)wn(τ)

T
}
= 0, E

{
wn(t)wd(τ)

T
}
= 0 (9.8)

where E is the expectation operator and δ(t− τ) is a delta function.
The LQG control problem is to £nd the optimal control u(t) which minimizes

J = E

{
lim

T→∞

1

T

∫ T

0

[
xTQx+ uTRu

]
dt

}
(9.9)

where Q and R are appropriately chosen constant weighting matrices (design parameters)
such that Q = QT ≥ 0 and R = RT > 0. The name LQG arises from the use of a Linear
model, an integral Quadratic cost function, and Gaussian white noise processes to model
disturbance signals and noise.

The solution to the LQG problem, known as the separation theorem or certainty
equivalence principle, is surprisingly simple and elegant. It consists of £rst determining the
optimal controller for a deterministic linear quadratic regulator (LQR) problem: namely, the
above LQG problem without wd and wn. It happens that the solution to this problem can be
written in terms of the simple state feedback law

u(t) = −Krx(t) (9.10)

where Kr is a constant matrix which is easy to compute and is clearly independent of W and
V , the statistical properties of the plant noise. Note that (9.10) requires that x is measured
and available for feedback, which is not generally the case. This dif£culty is overcome by the
next step, where we £nd an optimal estimate x̂ of the state x, so that E

{
[x− x̂]T [x− x̂]

}

is minimized. The optimal state estimate is given by a Kalman £lter and is independent of Q
and R. The required solution to the LQG problem is then found by replacing x by x̂, to give
u(t) = −Krx̂(t). We therefore see that the LQG problem and its solution can be separated
into two distinct parts, as illustrated in Figure 9.3.
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Figure 9.3: The separation theorem
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Figure 9.4: The LQG controller and noisy plant

We will now give the equations necessary to £nd the optimal state feedback matrix Kr and
the Kalman £lter.

Optimal state feedback. The LQR problem, where all the states are known, is the
deterministic initial value problem: given the system ẋ = Ax + Bu with a non-zero initial
state x(0), £nd the input signal u(t) which takes the system to the zero state (x = 0) in an
optimal manner, i.e. by minimizing the deterministic cost

Jr =

∫ ∞

0

(x(t)TQx(t) + u(t)TRu(t))dt (9.11)

The optimal solution (for any initial state) is u(t) = −Krx(t), where

Kr = R−1BTX (9.12)

and X = XT ≥ 0 is the unique positive semi-de£nite solution of the algebraic Riccati
equation

ATX +XA−XBR−1BTX +Q = 0 (9.13)
Kalman £lter. The Kalman £lter has the structure of an ordinary state estimator or

observer, as shown in Figure 9.4, with
˙̂x = Ax̂+Bu+Kf (y − Cx̂) (9.14)

The optimal choice of Kf , which minimizes E
{
[x− x̂]T [x− x̂]

}
, is given by

Kf = Y CTV −1 (9.15)

where Y = Y T ≥ 0 is the unique positive semi-de£nite solution of the algebraic Riccati
equation

Y AT +AY − Y CTV −1CY +W = 0 (9.16)
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LQG: combined optimal state estimation and optimal state feedback. The LQG control
problem is to minimize J in (9.9). The structure of the LQG controller is illustrated in
Figure 9.4; its transfer function, from y to u (i.e. assuming positive feedback), is easily shown
to be given by

KLQG(s)
s
=

[
A−BKr −KfC Kf

−Kr 0

]

=

[
A−BR−1BTX − Y CTV −1C Y CTV −1

−R−1BTX 0

]
(9.17)

It has the same degree (number of poles) as the plant.

Remark 1 The optimal gain matrices Kf and Kr exist, and the LQG-controlled system is internally
stable, provided the systems with state-space realizations (A,B,Q 1

2 ) and (A,W
1
2 , C) are stabilizable

and detectable.

Remark 2 If the plant model is bi-proper, with a non-zero D-term in (9.5), then the Kalman £lter
equation (9.14) has the extra term −KfDu on the right hand side, and the A-matrix of the LQG
controller in (9.17) has the extra term +KfDKr .

Exercise 9.2 For the plant and LQG controller arrangement of Figure 9.4, show that the closed-loop
dynamics are described by

d

dt

[
x

x− x̂

]
=

[
A−BKr BKr

0 A−KfC

] [
x

x− x̂

]
+

[
I 0
I −Kf

] [
wd
wn

]

This shows that the closed-loop poles are simply the union of the poles of the deterministic LQR system
(eigenvalues of A − BKr) and the poles of the Kalman £lter (eigenvalues of A −KfC). It is exactly
as we would have expected from the separation theorem.
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Figure 9.5: LQG controller with integral action and reference input

For the LQG controller, as shown in Figure 9.4, it is not easy to see where to position
the reference input r, and how integral action may be included, if desired. One strategy is
illustrated in Figure 9.5. Here the control error r − y is integrated and the regulator Kr is
designed for the plant augmented with the integrator states.

Example 9.1 LQG design with integral action for inverse response process. The standard LQG
design procedure does not give a controller with integral action, so we will use the setup in Figure 9.5
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and augment the plant G(s) with an integrator before designing the state feedback regulator. The plant
is the SISO inverse response process G(s) = 3(−2s+1)

(5s+1)(10s+1)
in (2.31), which was studied extensively

in Chapter 2. For the objective function J =
∫
(xTQx + uTRu)dt, we choose Q such that only the

integrated state y − r is weighted, and we choose the input weight R = 1. (Only the ratio between
Q and R matters and reducing R yields a faster response.) The Kalman £lter is set up so that we do
not estimate the integrated states. For the noise weights we select W = wI (process noise directly on
the states) with w = 1, and we choose V = 1 (measurement noise). (Only the ratio between w and V
matters and reducing V yields a faster response.) The Matlab £le in Table 9.1 was used to design the
LQG controller. The resulting closed-loop response is shown in Figure 9.6. The response is good and
very similar to the loop-shaping design in Figure 2.20 (page 45).

Table 9.1: Matlab commands to generate LQG controller in Example 9.1
% Uses the Control toolbox
G = tf(3*[-2 1],conv([5 1],[10 1])); % inverse response process
[a,b,c,d] = ssdata(G);
% Model dimensions:
p = size(c,1); % no. of outputs (y)
[n,m] = size(b); % no. of states and inputs (u)
Znm=zeros(n,m); Zmm=zeros(m,m);
Znn=zeros(n,n); Zmn=zeros(m,n);
% 1) Design state feedback regulator
A = [a Znm;-c Zmm]; B = [b;-d]; % augment plant with integrators
Q=[Znn Znm;Zmn eye(m,m)]; % weight on integrated error
R=eye(m); % input weight
Kr=lqr(A,B,Q,R); % optimal state-feedback regulator
Krp=Kr(1:m,1:n);Kri=Kr(1:m,n+1:n+m); % extract integrator and state feedbacks
% 2) Design Kalman filter % don’t estimate integrator states
Bnoise = eye(n); % process noise model (Gd)
W = eye(n); V = 1*eye(m); % process and measurement noise weight
Estss = ss(a,[b Bnoise],c,[0 0 0]);
[Kess, Ke] = kalman(Estss,W,V); % Kalman filter gain
% 3) Form overall controller
Ac=[Zmm Zmn;-b*Kri a-b*Krp-Ke*c]; % integrators included
Bcr = [eye(m); Znm]; Bcy = [-eye(m); Ke];
Cc = [-Kri -Krp]; Dcr = Zmm; Dcy = Zmm;
Klqg2 = ss(Ac,[Bcr Bcy],Cc,[Dcr Dcy]); % Final 2-DOF controller from [r y]’ to u
Klqg = ss(Ac,-Bcy,Cc,-Dcy); % Feedback part of controller from -y to u
% Simulation
sys1 = feedback(G*Klqg,1); step(sys1,50); % 1-DOF simulation
sys = feedback(G*Klqg2,1,2,1,+1); % 2-DOF simulation
sys2 = sys*[1; 0]; hold; step(sys2,50);
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Figure 9.6: LQG design (Klqg2 in Table 9.1) for inverse response process. Closed-loop response to
unit step in reference r.

Remark. We just noted the similarity between the responses in Figure 9.6 (LQG) and Figure 2.20
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(loop shaping). However, note that the loop-shaping controller is a one degree-of-freedom controller,
whereas the LQG controller is actually a two degrees-of-freedom controller (Klqg2 in Table 9.1). As
seen from Figure 9.5, the reference change is not sent directly to the Kalman £lter and this avoids the
“derivative or proportional kick”. For our speci£c example, the step response (not shown) of the one
degree-of-freedom LQG controller u = KLQG(r − y) (Klqg in Table 9.1) is signi£cantly worse with
an overshoot in y of about 40%. This large overshoot translates into much poorer robustness margins
for LQG than the loop-shaping design; see Exercise 9.4. Also, the disturbance rejection is poorer for
the LQG design.

Exercise 9.3 Derive the equations used in the Matlab £le in Table 9.1.

Exercise 9.4 Compare the robustness of the loop-shaping and LQG designs in Examples 2.8 and 9.1,
respectively, by computing the gain and phase margins (GM and PM) and the sensitivity peaks (MS and
MT ). (Note that robustness is given by the feedback loop, and is thus the same for the LQG controllers
Klqg and Klqg2 de£ned in Table 9.1.)

Solution: GM PM MS MT

Loop-shaping 2.92 53.9◦ 1.11 1.75
LQG 1.83 37.4◦ 1.63 2.39

9.2.2 Robustness properties
For an LQG-controlled system with a combined Kalman £lter and LQR control law there
are no guaranteed stability margins. This was brought starkly to the attention of the control
community by Doyle (1978) (in a paper entitled “Guaranteed Margins for LQG Regulators”
with a very compact abstract which simply states “There are none”). He showed, by example,
that there exist LQG combinations with arbitrarily small-gain margins.

However, for an LQR-controlled system (i.e. assuming all the states are available and no
stochastic inputs) it is well known (Kalman, 1964; Safonov and Athans, 1977) that, if the
weight R is chosen to be diagonal, the sensitivity function S = (I + Kr (sI −A)−1B)−1

satis£es the Kalman inequality
σ̄ (S(jω)) ≤ 1, ∀w (9.18)

From this it can be shown that the system will have a gain margin equal to in£nity, a gain
reduction margin (lower gain margin) equal to 0.5, and a (minimum) phase margin of 60◦ in
each plant input control channel. This means that in the LQR-controlled system u = −Krx,
a complex perturbation diag

{
kie

jθi
}

can be introduced at the plant inputs without causing
instability provided

(i) θi = 0 and 0.5 ≤ ki ≤ ∞, i = 1, 2, . . . ,m

or

(ii) ki = 1 and |θi| ≤ 60◦, i = 1, 2, . . . ,m

where m is the number of plant inputs. For a single-input plant, the above shows that the
Nyquist diagram of the open-loop regulator transfer function Kr(sI − A)−1B will always
lie outside the unit circle with centre −1. This was £rst shown by Kalman (1964), and is
illustrated in Example 9.2 below.

Example 9.2 LQR design of a £rst-order process. Consider a £rst-order processG(s) = 1/(s−a)
with the state-space realization

ẋ(t) = ax(t) + u(t), y(t) = x(t)
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so that the state is directly measured. For a non-zero initial state the cost function to be minimized is

Jr =

∫ ∞

0

(x2 +Ru2)dt

The algebraic Riccati equation (9.13) becomes (A = a, B = 1, Q = 1)

aX +Xa−XR−1X + 1 = 0 ⇔ X2 − 2aRX −R = 0

which, since X ≥ 0, gives X = aR +
√

(aR)2 +R. The optimal control is given by u = −Krx
where from (9.12)

Kr = X/R = a+
√
a2 + 1/R

and we get the closed-loop system

ẋ = ax+ u = −
√
a2 + 1/R x

The closed-loop pole is located at s = −
√
a2 + 1/R < 0. Thus, the root locus for the optimal closed-

loop pole with respect to R starts at s = −|a| for R = ∞ (in£nite weight on the input) and moves to
−∞ along the real axis as R approaches zero. Note that the root locus is identical for stable (a < 0)
and unstable (a > 0) plants G(s) with the same value of |a|. In particular, for a > 0 we see that the
minimum input energy needed to stabilize the plant (corresponding to R = ∞) is obtained with the
input u = −2|a|x, which moves the pole from s = a to its mirror image at s = −a.

For R small (“cheap control”) the gain crossover frequency of the loop transfer function L =
GKr = Kr/(s − a) is given approximately by ωc ≈

√
1/R. Note also that L(jω) has a

roll-off of −1 (−20 dB/decade) at high frequencies, which is a general property of LQR designs.
Furthermore, the Nyquist plot of L(jω) avoids the unit disc centred on the critical point −1, i.e.
|S(jω)| = 1/|1 + L(jω)| ≤ 1 at all frequencies. This is obvious for the stable plant with a < 0
since Kr > 0 and then the phase of L(jω) varies from 0◦ (at zero frequency) to −90◦ (at in£nite
frequency). The surprise is that it is also true for the unstable plant with a > 0 even though the phase
of L(jω) varies from −180◦ to −90◦.

Consider now the Kalman £lter shown earlier in Figure 9.4. Notice that it is itself a feedback
system. Arguments dual to those employed for the LQR-controlled system can then be used
to show that, if the power spectral density matrix V is chosen to be diagonal, then at the
input to the Kalman gain matrix Kf there will be an in£nite gain margin, a gain reduction
margin of 0.5 and a minimum-phase margin of 60◦. Consequently, for a single-output plant,
the Nyquist diagram of the open-loop £lter transfer function C(sI−A)−1Kf will lie outside
the unit circle with centre at −1.

An LQR-controlled system has good stability margins at the plant inputs, and a Kalman
£lter has good stability margins at the inputs to Kf , so why are there no guarantees for LQG
control? To answer this, consider the LQG controller arrangement shown in Figure 9.7. The
loop transfer functions associated with the labelled points 1 to 4 are respectively

L1(s) = Kr

[
Φ(s)−1 +BKr +KfC

]−1
KfCΦ(s)B

= −KLQG(s)G(s) (9.19)
L2(s) = −G(s)KLQG(s) (9.20)
L3(s) = KrΦ(s)B (regulator transfer function) (9.21)
L4(s) = CΦ(s)Kf (£lter transfer function) (9.22)

where
Φ(s)

4
= (sI −A)−1 (9.23)

KLQG(s) is as in (9.17) and G(s) = CΦ(s)B is the plant model.
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Figure 9.7: LQG-controlled plant

Remark. L3(s) and L4(s) are surprisingly simple. For L3(s) the reason is that after opening the loop
at point 3 the error dynamics (point 4) of the Kalman £lter are not excited by the plant inputs; in fact
they are uncontrollable from u.

Exercise 9.5 Derive the expressions for L1(s), L2(s), L3(s) and L4(s), and explain why L4(s) (like
L3(s)) has such a simple form.

At points 3 and 4 we have the guaranteed robustness properties of the LQR system and
the Kalman £lter respectively. But at the actual input and output of the plant (points 1
and 2) where we are most interested in achieving good stability margins, we have complex
transfer functions which in general give no guarantees of satisfactory robustness properties.
Notice also that points 3 and 4 are effectively inside the LQG controller which has to be
implemented, most likely as software, and so we have good stability margins where they are
not really needed and no guarantees where they are.

Fortunately, for a minimum-phase plant procedures developed by Kwakernaak (1969) and
Doyle and Stein (1979; 1981) show how, by a suitable choice of parameters, either L1(s) can
be made to tend asymptotically to L3(s) or L2(s) can be made to approach L4(s). These
procedures are considered next.

9.2.3 Loop transfer recovery (LTR) procedures
For full details of the recovery procedures, we refer the reader to the original communications
(Kwakernaak, 1969; Doyle and Stein, 1979; Doyle and Stein, 1981) or to the tutorial paper
by Stein and Athans (1987). We will only give an outline of the major steps here, since we
will argue later that the procedures are somewhat limited for practical control system design.
For a more recent appraisal of LTR, we recommend the Special Issue of the International
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Journal of Robust and Nonlinear Control, edited by Niemann and Stoustrup (1995).
The LQG loop transfer function L2(s) can be made to approach CΦ(s)Kf , with its

guaranteed stability margins, if Kr in the LQR problem is designed to be large using the
sensitivity recovery procedure of Kwakernaak (1969). It is necessary to assume that the plant
model G(s) is minimum-phase and that it has at least as many inputs as outputs.

Alternatively, the LQG loop transfer function L1(s) can be made to approach KrΦ(s)B
by designing Kf in the Kalman £lter to be large using the robustness recovery procedure
of Doyle and Stein (1979). Again, it is necessary to assume that the plant model G(s) is
minimum-phase, but this time it must have at least as many outputs as inputs.

The procedures are dual and therefore we will only consider recovering robustness at the
plant output. That is, we aim to make L2(s) = G(s)KLQG(s) approximately equal to the
Kalman £lter transfer function CΦ(s)Kf .

First, we design a Kalman £lter whose transfer function CΦ(s)Kf is desirable. This is
done, in an iterative fashion, by choosing the power spectral density matrices W and V so
that the minimum singular value of CΦ(s)Kf is large enough at low frequencies for good
performance and its maximum singular value is small enough at high frequencies for robust
stability, as discussed in Section 9.1. Notice that W and V are being used here as design
parameters and their associated stochastic processes are considered to be £ctitious. In tuning
W and V we should be careful to choose V as diagonal and W = (BS)(BS)T , where S is
a scaling matrix which can be used to balance, raise, or lower the singular values. When the
singular values of CΦ(s)Kf are thought to be satisfactory, loop transfer recovery is achieved
by designing Kr in an LQR problem with Q = CTC and R = ρI , where ρ is a scalar. As ρ
tends to zero G(s)KLQG tends to the desired loop transfer function CΦ(s)Kf .

Much has been written on the use of LTR procedures in multivariable control system
design. But as methods for multivariable loop shaping they are limited in their applicability
and sometimes dif£cult to use. Their main limitation is to minimum-phase plants. This is
because the recovery procedures work by cancelling the plant zeros, and a cancelled non-
minimum-phase zero would lead to instability. The cancellation of lightly damped zeros is
also of concern because of undesirable oscillations at these modes during transients. A further
disadvantage is that the limiting process (ρ → 0) which brings about full recovery also
introduces high gains which may cause problems with unmodelled dynamics. Because of the
above disadvantages, the recovery procedures are not usually taken to their limits (ρ→ 0) to
achieve full recovery, but rather a set of designs is obtained (for small ρ) and an acceptable
design is selected. The result is a somewhat ad-hoc design procedure in which the singular
values of a loop transfer function, G(s)KLQG(s) or KLQG(s)G(s), are indirectly shaped. A
more direct and intuitively appealing method for multivariable loop shaping will be given in
Section 9.4.

9.3 H2 and H∞ control
Motivated by the shortcomings of LQG control, there was a signi£cant shift in the 1980’s
towardsH∞ optimization for robust control. This development originated from the in¤uential
work of Zames (1981), although an earlier use ofH∞ optimization in an engineering context
can be found in Helton (1976). Zames argued that the poor robustness properties of LQG
could be attributed to the integral criterion in terms of the H2 norm, and he also criticized
the representation of uncertain disturbances by white noise processes as often unrealistic.
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As the H∞ theory developed, however, the two approaches of H2 and H∞ control were
seen to be more closely related than originally thought, particularly in the solution process;
see for example Glover and Doyle (1988) and Doyle et al. (1989). In this section, we will
begin with a general control problem formulation into which we can cast all H2 and H∞
optimizations of practical interest. The general H2 and H∞ problems will be described
along with some speci£c and typical control problems. It is not our intention to describe
in detail the mathematical solutions, since ef£cient, commercial software for solving such
problems is readily available. Rather we seek to provide an understanding of some useful
problem formulations, which might then be used by the reader, or modi£ed to suit his or her
application.

9.3.1 General control problem formulation
There are many ways in which feedback design problems can be cast as H2 and H∞
optimization problems. It is very useful therefore to have a standard problem formulation into
which any particular problem may be manipulated. Such a general formulation is afforded by
the general con£guration shown in Figure 9.8 and discussed earlier in Chapter 3. The system

- -

¾

-
w z

vu

P

K

Figure 9.8: General control con£guration

of Figure 9.8 is described by
[
z
v

]
= P (s)

[
w
u

]
=

[
P11(s) P12(s)
P21(s) P22(s)

] [
w
u

]
(9.24)

u = K(s)v (9.25)

with a state-space realization of the generalized plant P given by

P
s
=




A B1 B2

C1 D11 D12

C2 D21 D22


 (9.26)

The signals are: u the control variables, v the measured variables, w the exogenous signals
such as disturbances wd and commands r, and z the so-called “error” signals which are to be
minimized in some sense to meet the control objectives. As shown in (3.114) the closed-loop
transfer function from w to z is given by the linear fractional transformation

z = Fl(P,K)w (9.27)

where
Fl(P,K) = P11 + P12K(I − P22K)−1P21 (9.28)
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H2 and H∞ control involve the minimization of the H2 and H∞ norms of Fl(P,K)
respectively. We will consider each of them in turn.

First some remarks about the algorithms used to solve such problems. The most general,
widely available and widely used algorithms for H2 and H∞ control problems are based
on the state-space solutions in Glover and Doyle (1988) and Doyle et al. (1989). It is worth
mentioning again that the similarities betweenH2 andH∞ theory are most clearly evident in
the aforementioned algorithms. For example, both H2 and H∞ require the solutions to two
Riccati equations, they both give controllers of state dimension equal to that of the generalized
plant P , and they both exhibit a separation structure in the controller already seen in LQG
control. An algorithm forH∞ control problems is summarized in Section 9.3.4.

The following assumptions are typically made inH2 andH∞ problems:

(A1) (A,B2, C2) is stabilizable and detectable.

(A2) D12 and D21 have full rank.

(A3)
[
A− jωI B2

C1 D12

]
has full column rank for all ω.

(A4)
[
A− jωI B1

C2 D21

]
has full row rank for all ω.

(A5) D11 = 0 and D22 = 0.

Assumption (A1) is required for the existence of stabilizing controllers K, and assumption
(A2) is suf£cient to ensure the controllers are proper and hence realizable. Assumptions
(A3) and (A4) ensure that the optimal controller does not try to cancel poles or zeros
on the imaginary axis which would result in closed-loop instability. Assumption (A5) is
conventional in H2 control. D11 = 0 makes P11 strictly proper. Recall that H2 is the
set of strictly proper stable transfer functions. The assumption D22 = 0 simpli£es the
formulae in the H2 algorithms and is made without loss of generality, since a substitution
KD = K(I + D22K)−1 gives the controller, when D22 6= 0 (Zhou et al., 1996, p. 317).
In H∞, neither D11 = 0, nor D22 = 0, are required but they do signi£cantly simplify the
algorithm formulae. If they are not zero, an equivalent H∞ problem can be constructed in
which they are; see Safonov et al. (1989) and Green and Limebeer (1995). For simplicity, it
is also sometimes assumed that D12 and D21 are given by

(A6) D12 =

[
0
I

]
and D21 =

[
0 I

]
.

This can be achieved, without loss of generality, by a scaling of u and v and a unitary
transformation of w and z; see for example Maciejowski (1989). In addition, for simplicity
of exposition, the following additional assumptions are sometimes made:

(A7) DT
12C1 = 0 and B1D

T
21 = 0.

(A8) (A,B1) is stabilizable and (A,C1) is detectable.

Assumption (A7) is common inH2 control, e.g. in LQG where there are no cross-terms in the
cost function (DT

12C1 = 0), and the process noise and measurement noise are uncorrelated
(B1D

T
21 = 0). Notice that if (A7) holds then (A3) and (A4) may be replaced by (A8).
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Whilst the above assumptions may appear daunting, most sensibly posed control problems
will meet them. Therefore, if the software (e.g. the Robust Control toolbox of Matlab)
complains, then it probably means that your control problem is not well formulated and you
should think again.

Lastly, it should be said thatH∞ algorithms, in general, £nd a suboptimal controller. That
is, for a speci£ed γ a stabilizing controller is found for which ‖F l(P,K)‖∞ < γ. If an
optimal controller is required then the algorithm can be used iteratively, reducing γ until the
minimum is reached within a given tolerance. In general, to £nd an optimal H∞ controller
is numerically and theoretically complicated. This contrasts signi£cantly with H2 theory, in
which the optimal controller is unique and can be found from the solution of just two Riccati
equations.

9.3.2 H2 optimal control
The standard H2 optimal control problem is to £nd a stabilizing controller K which
minimizes

‖F (s)‖2 =

√
1

2π

∫ ∞

−∞
tr [F (jω)F (jω)H ] dω; F

4
= Fl(P,K) (9.29)

For a particular problem the generalized plant P will include the plant model, the
interconnection structure, and the designer-speci£ed weighting functions. This is illustrated
for the LQG problem in the next subsection.

As discussed in Section 4.10.1 and noted in Tables A.1 and A.2 on page 540, the H2

norm can be given different deterministic interpretations. It also has the following stochastic
interpretation. Suppose in the general control con£guration that the exogenous input w is
white noise of unit intensity. That is,

E
{
w(t)w(τ)T

}
= Iδ(t− τ) (9.30)

The expected power in the error signal z is then given by

E

{
lim

T→∞

1

2T

∫ T

−T

z(t)T z(t)dt

}
(9.31)

= tr E
{
z(t)z(t)T

}

=
1

2π

∫ ∞

−∞
tr
[
F (jω)F (jω)H

]
dω

(by Parseval’s theorem)
= ‖F‖22 = ‖Fl(P,K)‖22 (9.32)

Thus, by minimizing theH2 norm, the output (or error) power of the generalized system, due
to a unit intensity white noise input, is minimized; we are minimizing the root-mean-square
(rms) value of z.
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9.3.3 LQG: a specialH2 optimal controller
An important special case of H2 optimal control is the LQG problem described in Section
9.2.1. For the stochastic system

ẋ = Ax+Bu+ wd (9.33)
y = Cx+ wn (9.34)

where
E

{[
wd(t)
wn(t)

]
[wd(τ)

T wn(τ)
T ]

}
=

[
W 0
0 V

]
δ(t− τ) (9.35)

The LQG problem is to £nd u = K(s)y such that

J = E

{
lim

T→∞

1

T

∫ T

0

[
xTQx+ uTRu

]
dt

}
(9.36)

is minimized with Q = QT ≥ 0 and R = RT > 0.
This problem can be cast as anH2 optimization in the general framework in the following

manner. De£ne an error signal z as

z =

[
Q
1
2 0
0 R

1
2

] [
x
u

]
(9.37)

and represent the stochastic inputs wd, wn as
[
wd

wn

]
=

[
W

1
2 0

0 V
1
2

]
w (9.38)

where w is a white noise process of unit intensity. Then the LQG cost function is

J = E

{
lim

T→∞

1

T

∫ T

0

z(t)T z(t)dt

}
= ‖Fl(P,K)‖22 (9.39)

where
z(s) = Fl(P,K)w(s) (9.40)

and the generalized plant P is given by

P =

[
P11 P12
P21 P22

]
s
=




A W
1
2 0 B

Q
1
2 0 0 0

0 0 0 R
1
2

C 0
- - - - - - - - - - - - - - - - -

V
1
2 0


 (9.41)

The above formulation of the LQG problem is illustrated in the general setting in Figure 9.9.
With the standard assumptions for the LQG problem, application of the general H2

formulae (Doyle et al., 1989) to this formulation gives the familiar LQG optimal controller
as in (9.17).
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Figure 9.9: The LQG problem formulated in the general control con£guration

9.3.4 H∞ optimal control
With reference to the general control con£guration of Figure 9.8, the standard H∞ optimal
control problem is to £nd all stabilizing controllers K which minimize

‖Fl(P,K)‖∞ = max
ω

σ̄(Fl(P,K)(jω)) (9.42)

As discussed in Section 4.10.2 the H∞ norm has several interpretations in terms of
performance. One is that it minimizes the peak of the maximum singular value of
Fl(P (jω),K(jω)). It also has a time domain interpretation as the induced (worst-case) 2-
norm. Let z = Fl(P,K)w, then

‖Fl(P,K)‖∞ = max
w(t)6=0

‖z(t)‖2
‖w(t)‖2

(9.43)

where ‖z(t)‖2 =
√∫∞

0

∑
i |zi(t)|2dt is the 2-norm of the vector signal.

In practice, it is usually not necessary to obtain an optimal controller for theH∞ problem,
and it is often computationally (and theoretically) simpler to design a suboptimal one (i.e.
one close to the optimal ones in the sense of the H∞ norm). Let γmin be the minimum value
of ‖Fl(P,K)‖∞ over all stabilizing controllersK. Then theH∞ suboptimal control problem
is: given a γ > γmin, £nd all stabilizing controllers K such that

‖Fl(P,K)‖∞ < γ

This can be solved ef£ciently using the algorithm of Doyle et al. (1989), and by reducing γ
iteratively, an optimal solution is approached. The algorithm is summarized below with all
the simplifying assumptions.

General H∞ algorithm. For the general control con£guration of Figure 9.8 described
by (9.24)–(9.26), with assumptions (A1) to (A8) in Section 9.3.1, there exists a stabilizing
controller K(s) such that ‖Fl(P,K)‖∞ < γ if and only if

(i) X∞ ≥ 0 is a solution to the algebraic Riccati equation

ATX∞ +X∞A+ CT
1 C1 +X∞(γ−2B1B

T
1 −B2B

T
2 )X∞ = 0 (9.44)
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such that Re λi
[
A+ (γ−2B1B

T
1 −B2B

T
2 )X∞

]
< 0, ∀i; and

(ii) Y∞ ≥ 0 is a solution to the algebraic Riccati equation

AY∞ + Y∞A
T +B1B

T
1 + Y∞(γ−2CT

1 C1 − CT
2 C2)Y∞ = 0 (9.45)

such that Re λi
[
A+ Y∞(γ−2CT

1 C1 − CT
2 C2)

]
< 0, ∀i; and

(iii) ρ(X∞Y∞) < γ2

All such controllers are then given by K = Fl(Kc, Q) where

Kc(s)
s
=




A∞ −Z∞L∞ Z∞B2

F∞ 0 I
−C2 I 0


 (9.46)

F∞ = −BT
2 X∞, L∞ = −Y∞CT

2 , Z∞ = (I − γ−2Y∞X∞)−1 (9.47)

A∞ = A+ γ−2B1B
T
1 X∞ +B2F∞ + Z∞L∞C2 (9.48)

and Q(s) is any stable proper transfer function such that ‖Q‖∞ < γ. For Q(s) = 0, we get

K(s) = Kc11(s) = −F∞(sI −A∞)−1Z∞L∞ (9.49)

This is called the “central” controller and has the same number of states as the generalized
plant P (s). The central controller can be separated into a state estimator (observer) of the
form

˙̂x = Ax̂+B1 γ
−2BT

1 X∞x̂︸ ︷︷ ︸
ŵworst

+B2u+ Z∞L∞(C2x̂− y) (9.50)

and a state feedback
u = F∞x̂ (9.51)

Upon comparing the observer in (9.50) with the Kalman £lter in (9.14) we see that it contains
an additional termB1ŵworst, where ŵworst can be interpreted as an estimate of the worst-case
disturbance (exogenous input). Note that for the special case of H∞ loop shaping this extra
term is not present. This is discussed in Section 9.4.4.
γ-iteration. If we desire a controller that achieves γmin, to within a speci£ed tolerance,

then we can perform a bisection on γ until its value is suf£ciently accurate. The above result
provides a test for each value of γ to determine whether it is less than γmin or greater than
γmin.

Given all the assumptions (A1) to (A8), the above is the most simple form of the general
H∞ algorithm. For the more general situation, where some of the assumptions are relaxed,
the reader is referred to the original source (Glover and Doyle, 1988). In practice, we would
expect a user to have access to commercial software such as Matlab and its toolboxes.

In Section 2.8, we distinguished between two methodologies for H∞ controller design:
the transfer function shaping approach and the signal-based approach. In the former, H∞
optimization is used to shape the singular values of speci£ed transfer functions over
frequency. The maximum singular values are relatively easy to shape by forcing them to
lie below user-de£ned bounds, thereby ensuring desirable bandwidths and roll-off rates. In
the signal-based approach, we seek to minimize the energy in certain error signals given a set
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of exogenous input signals. The latter might include the outputs of perturbations representing
uncertainty, as well as the usual disturbances, noise and command signals. Both of these two
approaches will be considered again in the remainder of this section. In each case we will
examine a particular problem and formulate it in the general control con£guration.

A dif£culty that sometimes arises withH∞ control is the selection of weights such that the
H∞ optimal controller provides a good trade-off between con¤icting objectives in various
frequency ranges. Thus, for practical designs it is sometimes recommended to perform only
a few iterations of the H∞ algorithm. The justi£cation for this is that the initial design, after
one iteration, is similar to an H2 design which does trade off over various frequency ranges.
Therefore stopping the iterations before the optimal value is achieved gives the design anH2

¤avour which may be desirable.

9.3.5 Mixed-sensitivityH∞ control
Mixed-sensitivity is the name given to transfer function shaping problems in which the
sensitivity function S = (I + GK)−1 is shaped along with one or more other closed-loop
transfer functions such as KS or the complementary sensitivity function T = I − S. Earlier
in this chapter, by examining a typical one degree-of-freedom con£guration, Figure 9.1, we
saw quite clearly the importance of S, KS and T .

Suppose, therefore, that we have a regulation problem in which we want to reject a
disturbance d entering at the plant output and it is assumed that the measurement noise is
relatively insigni£cant. Tracking is not an issue and therefore for this problem it makes sense
to shape the closed-loop transfer functions S and KS in a one degree-of-freedom setting.
Recall that S is the transfer function between d and the output, and KS the transfer function
between d and the control signals. It is important to include KS as a mechanism for limiting
the size and bandwidth of the controller, and hence the control energy used. The size of KS
is also important for robust stability with respect to uncertainty modelled as additive plant
perturbations; see (8.53) on page 303.

The disturbance d is typically a low-frequency signal, and therefore it will be successfully
rejected if the maximum singular value of S is made small over the same low frequencies.
To do this we could select a scalar low-pass £lter w1(s) with a bandwidth equal to that of
the disturbance, and then £nd a stabilizing controller that minimizes ‖w1S‖∞. This cost
function alone is not very practical. It focuses on just one closed-loop transfer function and
for plants without RHP-zeros the optimal controller has in£nite gains. In the presence of a
non-minimum-phase zero, the stability requirement will indirectly limit the controller gains,
but it is far more useful in practice to minimize

∥∥∥∥
[
w1S
w2KS

]∥∥∥∥
∞

(9.52)

where w2(s) is a scalar high-pass £lter with a crossover frequency approximately equal to
that of the desired closed-loop bandwidth.

In general, the scalar weighting functions w1(s) and w2(s) can be replaced by matrices
W1(s) andW2(s). This can be useful for systems with channels of quite different bandwidths
when diagonal weights are recommended, but anything more complicated is usually not worth
the effort.

Remark. Note that we have outlined here an alternative way of selecting the weights from that in
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Example 2.17 and Section 3.5.7. There W1 = WP was selected with a crossover frequency equal to
that of the desired closed-loop bandwidth and W2 = Wu was selected as a constant, usually Wu = I .

To see how this mixed-sensitivity problem can be formulated in the general setting, we
can imagine the disturbance d as a single exogenous input and de£ne an error signal
z = [ zT1 zT2 ]

T , where z1 = W1y and z2 = −W2u, as illustrated in Figure 9.10. It is
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Figure 9.10: S/KS mixed-sensitivity optimization in standard form (regulation)

not dif£cult from Figure 9.10 to show that z1 = W1Sw and z2 = W2KSw as required, and
to determine the elements of the generalized plant P as

P11 =

[
W1

0

]
P12 =

[
W1G
−W2

]

P21 = −I P22 = −G
(9.53)

where the partitioning is such that


z1
z2- - -
v


 =

[
P11 P12
P21 P22

] [
w
u

]
(9.54)

and
Fl(P,K) =

[
W1S
W2KS

]
(9.55)

Another interpretation can be put on the S/KS mixed-sensitivity optimization as shown in
the standard control con£guration of Figure 9.11. Here we consider a tracking problem. The
exogenous input is a reference command r, and the error signals are z1 = −W1e =W1(r−y)
and z2 = W2u. As in the regulation problem of Figure 9.10, we have in this tracking
problem z1 =W1Sw and z2 =W2KSw. An example of the use of S/KS mixed-sensitivity
minimization is given in Chapter 13, where it is used to design a rotorcraft control law. In this
helicopter problem, you will see that the exogenous input w is passed through a weight W3

before it impinges on the system. W3 is chosen to weight the input signal and not directly
to shape S or KS. This signal-based approach to weight selection is the topic of the next
subsection.
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Figure 9.11: S/KS mixed-sensitivity minimization in standard form (tracking)

Another useful mixed-sensitivity optimization problem, again in a one degree-of-freedom
setting, is to £nd a stabilizing controller which minimizes

∥∥∥∥
[
W1S
W2T

]∥∥∥∥
∞

(9.56)

The ability to shape T is desirable for tracking problems and noise attenuation. It is
also important for robust stability with respect to multiplicative perturbations at the plant
output. The S/T mixed-sensitivity minimization problem can be put into the standard control
con£guration as shown in Figure 9.12. The elements of the corresponding generalized plant
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Figure 9.12: S/T mixed-sensitivity optimization in standard form

P are
P11 =

[
W1

0

]
P12 =

[
−W1G
W2G

]

P21 = I P22 = −G
(9.57)
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Exercise 9.6 ∗ For the cost function ∥∥∥∥∥∥




W1S
W2T
W3KS



∥∥∥∥∥∥
∞

(9.58)

formulate a standard problem, draw the corresponding control con£guration and give expressions for
the generalized plant P .

The shaping of closed-loop transfer functions as described above with the “stacked” cost
functions becomes dif£cult with more than two functions. With two, the process is relatively
easy. The bandwidth requirements on each are usually complementary and simple, stable,
low-pass and high-pass £lters are suf£cient to carry out the required shaping and trade-offs.
We stress that the weights Wi in mixed-sensitivity H∞ optimal control must all be stable. If
they are not, assumption (A1) in Section 9.3.1 is not satis£ed, and the generalH∞ algorithm
is not applicable. Therefore if we wish, for example, to emphasize the minimization of S
at low frequencies by weighting with a term including integral action, we would have to
approximate 1

s by 1
s+ε , where ε ¿ 1. This is exactly what was done in Example 2.17.

Similarly one might be interested in weightingKS with a non-proper weight to ensure thatK
is small outside the system bandwidth. But the standard assumptions preclude such a weight.
The trick here is to replace a non-proper term such as (1+ τ1s) by (1+ τ1s)/(1+ τ2s) where
τ2 ¿ τ1. A useful discussion of the tricks involved in using “unstable” and “non-proper”
weights inH∞ control can be found in Meinsma (1995).

For more complex problems, information might be given about several exogenous signals
in addition to a variety of signals to be minimized and classes of plant perturbations to be
robust against. In this case, the mixed-sensitivity approach is not general enough and we are
forced to look at more advanced techniques such as the signal-based approach considered
next.

9.3.6 Signal-basedH∞ control
The signal-based approach to controller design is very general and is appropriate
for multivariable problems in which several objectives must be taken into account
simultaneously. In this approach, we de£ne the plant and possibly the model uncertainty,
we de£ne the class of external signals affecting the system and we de£ne the norm of the
error signals we want to keep small. The focus of attention has moved to the size of signals
and away from the size and bandwidth of selected closed-loop transfer functions.

Weights are used to describe the expected or known frequency content of exogenous signals
and the desired frequency content of error signals. Weights are also used if a perturbation is
used to model uncertainty, as in Figure 9.13, whereG is the nominal model,W is a weighting
function that captures the relative model £delity over frequency, and ∆ represents unmodelled
dynamics usually normalized via W so that ‖∆‖∞ < 1; see Chapter 8 for more details. As
in mixed-sensitivity H∞ control, the weights in signal-based H∞ control need to be stable
and proper for the generalH∞ algorithm to be applicable.

LQG control is a simple example of the signal-based approach, in which the exogenous
signals are assumed to be stochastic (or alternatively impulses in a deterministic setting) and
the error signals are measured in terms of the 2-norm. As we have already seen, the weightsQ
and R are constant, but LQG can be generalized to include frequency-dependent weights on
the signals leading to what is sometimes called Wiener–Hopf design, or simplyH2 control.

When we consider a system’s response to persistent sinusoidal signals of varying
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Figure 9.13: Multiplicative dynamic uncertainty model

frequency, or when we consider the induced 2-norm between the exogenous input signals
and the error signals, we are required to minimize the H∞ norm. In the absence of model
uncertainty, there does not appear to be an overwhelming case for using theH∞ norm rather
than the more traditional H2 norm. However, when uncertainty is addressed, as it always
should be, H∞ is clearly the more natural approach using component uncertainty models as
in Figure 9.13.
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Figure 9.14: A signal-basedH∞ control problem

A typical problem using the signal-based approach to H∞ control is illustrated in the
interconnection diagram of Figure 9.14. G and Gd are nominal models of the plant and
disturbance dynamics, and K is the controller to be designed. The weights Wd, Wi and Wn

may be constant or dynamic and describe the relative importance and/or frequency content
of the disturbances, setpoints and noise signals. The weight Wref is a desired closed-loop
transfer function between the weighted setpoint rs and the actual output y. The weights We

and Wu re¤ect the desired frequency content of the error (y− yref) and the control signals u,
respectively. The problem can be cast as a standard H∞ optimization in the general control
con£guration by de£ning

w =



d
r
n


 z =

[
z1
z2

]

v =

[
rs
ym

]
u = u

(9.59)

in the general setting of Figure 9.8.
Suppose we now introduce a multiplicative dynamic uncertainty model at the input to

the plant as shown in Figure 9.15. The problem we now want to solve is: £nd a stabilizing
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controller K such that the H∞ norm of the transfer function between w and z is less than
1 for all ∆, where ‖∆‖∞ < 1. We have assumed in this statement that the signal weights
have normalized the 2-norm of the exogenous input signals to unity. This problem is a non-
standard H∞ optimization. It is a robust performance problem for which the µ-synthesis
procedure, outlined in Chapter 8, can be applied. Mathematically, we require the structured
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Figure 9.15: AnH∞ robust performance problem

singular value
µ(M(jω)) < 1,∀ω (9.60)

where M is the transfer function matrix between



d
r
n
δ


 and



z1
z2
ε


 (9.61)

and the associated block-diagonal perturbation has two blocks: a £ctitious performance block
between [ dT rT nT ]

T and [ zT1 zT2 ]
T , and an uncertainty block ∆ between u∆ and y∆.

Whilst the structured singular value is a useful analysis tool for assessing designs, µ-synthesis
is sometimes dif£cult to use and often too complex for the practical problem at hand. In its full
generality, the µ-synthesis problem has not yet been solved mathematically; where solutions
exist the controllers tend to be of very high order; the algorithms may not always converge;
and design problems are sometimes dif£cult to formulate directly.

For many industrial control problems, a design procedure is required which offers more
¤exibility than mixed-sensitivity H∞ control, but is not as complicated as µ-synthesis. For
simplicity, it should be based on classical loop-shaping ideas and it should not be limited in
its applications like LTR procedures. In the next section, we present such a controller design
procedure.

9.4 H∞ loop-shaping design
The loop-shaping design procedure described in this section is based on H∞ robust
stabilization combined with classical loop shaping, as proposed by McFarlane and Glover
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(1990). It is essentially a two-stage design process. First, the open-loop plant is augmented
by pre- and post-compensators to give a desired shape to the singular values of the open-loop
frequency response. This could be based on an initial controller design. Then the resulting
shaped plant (initial loop shape) is robustly stabilized (“robusti£ed”) with respect to the quite
general class of coprime factor uncertainty usingH∞ optimization.

An important advantage is that no problem-dependent uncertainty modelling, or weight
selection, is required in this second step.

We will begin the section with a description of theH∞ robust stabilization problem (Glover
and McFarlane, 1989). This is a particularly nice problem because it does not require γ-
iteration for its solution, and explicit formulae for the corresponding controllers are available.
The formulae are relatively simple and so will be presented in full.

Following this, a step-by-step procedure for H∞ loop-shaping design is presented. This
systematic procedure has its origin in the PhD thesis of Hyde (1991) and has since been
successfully applied to several industrial problems. The procedure synthesizes what is in
effect a single degree-of-freedom controller. This can be a limitation if there are stringent
requirements on command following. However, as shown by Limebeer et al. (1993), the
procedure can be extended by introducing a second degree of freedom in the controller
and formulating a standard H∞ optimization problem which allows one to trade off robust
stabilization against closed-loop model matching. We will describe this two degrees-of-
freedom extension and further show that such controllers have a special observer-based
structure which can be taken advantage of in controller implementation.

9.4.1 Robust stabilization
For multivariable systems, classical gain and phase margins are unreliable indicators of robust
stability when de£ned for each channel (or loop), taken one at a time, because simultaneous
perturbations in more than one loop are not then catered for; see the spinning satellite
example in Chapter 3 (page 98). More general perturbations like diag{ki} and diag

{
ejθi

}
,

as discussed in Section 9.2.2, are required to capture the uncertainty, but even these are
limited. It is now common practice, as seen in Chapter 8, to model uncertainty by stable norm-
bounded dynamic (complex) matrix perturbations. With a single perturbation, the associated
robustness test is in terms of the maximum singular value of a closed-loop transfer function.
Use of a single stable perturbation, however, restricts the plant and perturbed plant models
to have either the same number of unstable poles or the same number of unstable (RHP)
zeros. To overcome this, two stable perturbations can be used, one on each of the factors
in a coprime factorization of the plant, as shown in Section 8.6.2. Although this uncertainty
description seems unrealistic and less intuitive than the others, it is in fact quite general, and
for our purposes it leads to a very usefulH∞ robust stabilization problem. Before presenting
the problem, we will £rst recall the uncertainty model given in (8.62).

We will consider the stabilization of a plant G which has a normalized left coprime
factorization (as discussed in Section 4.1.5)

G =M−1N (9.62)

where we have dropped the subscript from M and N for simplicity. A perturbed plant model
Gp can then be written as

Gp = (M +∆M )−1(N +∆N ) (9.63)
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Figure 9.16:H∞ robust stabilization problem

where ∆M , ∆N are stable unknown transfer functions which represent the uncertainty in
the nominal plant model G. The objective of robust stabilization it to stabilize not only the
nominal model G, but a family of perturbed plants de£ned by

Gp =
{
(M +∆M )−1(N +∆N ) : ‖[ ∆N ∆M ]‖∞ < ε

}
(9.64)

where ε > 0 is then the stability margin. To maximize this stability margin is the problem of
robust stabilization of normalized coprime factor plant descriptions as introduced and solved
by Glover and McFarlane (1989).

For the perturbed feedback system of Figure 9.16, as already derived in (8.64), the stability
property is robust if and only if the nominal feedback system is stable and

γK ,

∥∥∥∥
[
K
I

]
(I −GK)−1M−1

∥∥∥∥
∞
≤ 1

ε
(9.65)

Notice that γK is the H∞ norm from φ to
[
u
y

]
and (I − GK)−1 is the sensitivity function

for this positive feedback arrangement.
The lowest achievable value of γK and the corresponding maximum stability margin ε are

given by Glover and McFarlane (1989) as

γmin = ε−1max =
{
1− ‖[N M ]‖2H

}− 12
= (1 + ρ(XZ))

1
2 (9.66)

where ‖ · ‖H denotes Hankel norm, ρ denotes the spectral radius (maximum eigenvalue),
and for a minimal state-space realization (A,B,C,D) of G, Z is the unique positive de£nite
solution to the algebraic Riccati equation

(A−BS−1DTC)Z + Z(A−BS−1DTC)T − ZCTR−1CZ +BS−1BT = 0 (9.67)

where
R = I +DDT , S = I +DTD

and X is the unique positive de£nite solution of the following algebraic Riccati equation:

(A−BS−1DTC)TX +X(A−BS−1DTC)−XBS−1BTX + CTR−1C = 0 (9.68)

Notice that the formulae simplify considerably for a strictly proper plant, i.e. when D = 0.
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A controller (the “central” controller in McFarlane and Glover (1990)) which guarantees
that ∥∥∥∥

[
K
I

]
(I −GK)−1M−1

∥∥∥∥
∞
≤ γ (9.69)

for a speci£ed γ > γmin, is given by

K
s
=

[
A+BF + γ2(LT )−1ZCT (C +DF ) γ2(LT )−1ZCT

BTX −DT

]
(9.70)

F = −S−1(DTC +BTX) (9.71)
L = (1− γ2)I +XZ (9.72)

The Matlab function coprimeunc, listed in Table 9.2, can be used to generate the controller
in (9.70). It is important to emphasize that since we can compute γmin from (9.66) we get
an explicit solution by solving just two Riccati equations (care) and avoid the γ-iteration
needed to solve the generalH∞ problem.

Table 9.2: Matlab function to generate theH∞ controller in (9.70)
% Uses Control toolbox
function [Ac,Bc,Cc,Dc,gammin]=coprimeunc(a,b,c,d,gamrel)
%
% Finds the controller which optimally ‘‘robustifies’’ a given shaped plant
% in terms of tolerating maximum coprime uncertainty.
%
% INPUTS:
% a,b,c,d: State-space description of (shaped) plant.
% gamrel: gamma used is gamrel*gammin (typical gamrel=1.1)
%
% OUTPUTS:
% Ac,Bc,Cc,Dc: "Robustifying" controller (positive feedback).
%
S = eye(size(d’*d))+d’*d;
R = eye(size(d*d’))+d*d’;
Rinv = inv(R);Sinv=inv(S);
A1 = (a-b*Sinv*d’*c); R1 = S; B1 = b; Q1 = c’*Rinv*c;
[X,XAMP,G] = care(A1,B1,Q1,R1);
A2 = A1’; Q2 = b*Sinv*b’; B2 = c’; R2 = R;
[Z,ZAMP,G] = care(A2,B2,Q2,R2);
% optimal gamma
XZ = X*Z; gammin = sqrt(1+max(eig(XZ)))
% Use higher gamma
gam = gamrel*gammin; gam2 = gam*gam; gamconst = (1-gam2)*eye(size(XZ));
Lc = gamconst + XZ; Li = inv(Lc’); Fc = -Sinv*(d’*c+b’*X);
Ac = a + b*Fc + gam2*Li*Z*c’*(c+d*Fc);
Bc = gam2*Li*Z*c’;
Cc = b’*X;
Dc = -d’;

Remark 1 An example of the use of coprimeunc is given in Example 9.3 below.

Remark 2 Notice that, if γ = γmin in (9.70), then L = −ρ(XZ)I +XZ, which is singular, and thus
(9.70) cannot be implemented. If for some unusual reason the truly optimal controller is required, then
this problem can be resolved using a descriptor system approach, the details of which can be found in
Safonov et al. (1989).

Remark 3 Alternatively, from Glover and McFarlane (1989), all controllers achieving γ = γmin are
given by K = UV −1, where U and V are stable, (U, V ) is a right coprime factorization of K, and
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U, V satisfy ∥∥∥∥
[
−N∗
M∗

]
+

[
U
V

]∥∥∥∥
∞

= ‖[N M ]‖H (9.73)

The determination of U and V is a Nehari extension problem: that is, a problem in which an unstable
transfer function R(s) is approximated by a stable transfer function Q(s), such that ‖R + Q‖∞ is
minimized, the minimum being ‖R∗‖H . A solution to this problem is given in Glover (1984).

Exercise 9.7 Formulate the H∞ robust stabilization problem in the general control con£guration
of Figure 9.8, and determine a transfer function expression and a state-space realization for the
generalized plant P .

9.4.2 A systematicH∞ loop-shaping design procedure
Robust stabilization alone is not much use in practice because the designer is not able to
specify any performance requirements. To do this McFarlane and Glover (1990) proposed
pre- and post-compensating the plant to shape the open-loop singular values prior to robust
stabilization of the “shaped” plant.

IfW1 andW2 are the pre- and post-compensators respectively, then the shaped plant (initial
loop shape) Gs is given by

Gs =W2GW1 (9.74)

as shown in Figure 9.17. The controller Ks is synthesized by solving the robust stabilization

¾

- - -
Gs

W1 G W2

Ks

Figure 9.17: The shaped plant and controller

problem of section 9.4.1 for the shaped plant Gs with a normalized left coprime factorization
Gs = M−1

s Ns. The feedback controller for the plant G is then K = W1KsW2. The above
procedure contains all the essential ingredients of classical loop shaping, and can easily be
implemented using the formulae already presented and reliable algorithms in, for example,
Matlab.

We £rst present a simple SISO example, whereW2 = 1, and we selectW1 to get acceptable
disturbance rejection. We will afterwards present a systematic procedure for selecting the
weights W1 and W2.

Example 9.3 Glover–McFarlane H∞ loop shaping for the disturbance process. Consider the
disturbance process in (2.62) which was studied in detail in Chapter 2:

G(s) =
200

10s+ 1

1

(0.05s+ 1)2
, Gd(s) =

100

10s+ 1
(9.75)

We want as good disturbance rejection as possible, and the gain crossover frequency wc for the £nal
design should be about 10 rad/s.
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Figure 9.18: Glover–McFarlane loop-shaping design for the disturbance process. Dashed line: initial
“shaped” design, Gs. Solid line: “robusti£ed” design, GsKs.

In Example 2.10 we argued that for acceptable disturbance rejection with minimum input usage, the
loop shape (“shaped plant”) |Gs| = |GW1| should be similar to |Gd|, so |W1| = |G−1Gd| is desired.
Then after neglecting the high-frequency dynamics in G(s) this yields an initial weight W1 = 0.5. To
improve the performance at low frequencies we add integral action, and we also add a phase-advance
term s+ 2 to reduce the slope for L from −2 at lower frequencies to about −1 at crossover. Finally, to
make the response a little faster we multiply the gain by a factor 2 to get the weight

W1 =
s+ 2

s
(9.76)

This yields a shaped plantGs = GW1 with a gain crossover frequency of 13.7 rad/s, and the magnitude
of Gs(jω) is shown by the dashed line in Figure 9.18(a). The response to a unit step in the disturbance
response is shown by the dashed line in Figure 9.18(b), and, as may expected, the response with the
“controller” K = W1 is too oscillatory.

We now “robustify” this design so that the shaped plant tolerates as much H∞ coprime factor
uncertainty as possible. This may be done with Matlab using either the command ncfsyn in the
Robust Control toolbox or using the function coprimeunc given in Table 9.2. Here the shaped plant
Gs = GW1 has state-space matrices A,B,C and D, and the function returns the “robustifying”
positive feedback controller Ks with state-space matrices Ac, Bc, Cc and Dc. In general, Ks has the
same number of poles (states) as Gs. gamrel is the value of γ relative to γmin, and was in our
case selected as 1.1. The returned variable gammin (γmin) is the inverse of the magnitude of coprime
uncertainty we can tolerate before we get instability. We want γmin ≥ 1 as small as possible, and we
usually require that γmin is less than 4, corresponding to 25% allowed coprime uncertainty.

By applying this to our example we get γmin = 2.34 and an overall controller K = W1Ks with £ve
states (Gs, and thus Ks, has four states, and W1 has one state). The corresponding loop shape |GsKs|
is shown by the solid line in Figure 9.18(a). We see that the change in the loop shape is small, and
we note with interest that the slope around crossover is somewhat gentler. This translates into better
margins: the gain margin (GM) is improved from 1.62 (for Gs) to 3.48 (for GsKs), and the phase
margin (PM) is improved from 13.2◦ to 51.5◦. The gain crossover frequency wc is reduced slightly
from 13.7 to 10.3 rad/s. The corresponding disturbance response is shown in Figure 9.18(b) and is
seen to be much improved.

Remark. The response with the controller K = W1Ks is quite similar to that of the loop-shaping
controller K3(s) designed in Chapter 2 (see curves L3 and y3 in Figure 2.24). The response for
reference tracking with controller K = W1Ks is not shown; it is also very similar to that with K3 (see
Figure 2.26), but it has a slightly smaller overshoot of 21% rather than 24%. To reduce this overshoot
we would need to use a two degrees-of-freedom controller.
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Exercise 9.8 ∗ Design anH∞ loop-shaping controller for the disturbance process in (9.75) using the
weight W1 in (9.76), i.e. generate plots corresponding to those in Figure 9.18. Next, repeat the design
with W1 = 2(s + 3)/s (which results in an initial Gs which would yield closed-loop instability with
Kc = 1). Compute the gain and phase margins and compare the disturbance and reference responses.
In both cases £nd ωc and use (2.45) to compute the maximum delay that can be tolerated in the plant
before instability arises.

Skill is required in the selection of the weights (pre- and post-compensators W1 and W2),
but experience on real applications has shown that robust controllers can be designed with
relatively little effort by following a few simple rules. An excellent illustration of this
is given in the thesis of Hyde (1991) who worked with Glover on the robust control of
VSTOL (Vertical and/or Short Take-Off and Landing) aircraft. Their work culminated in
a successful ¤ight test of H∞ loop-shaping control laws implemented on a Harrier jump-
jet research vehicle at the former UK Defence Research Agency (now QinetiQ), Bedford,
in 1993. The H∞ loop-shaping procedure has also been extensively studied and worked on
by Postlethwaite and Walker (1992) in their work on advanced control of high-performance
helicopters, also for the UK DRA (now QinetiQ) at Bedford. This application is discussed in
detail in the helicopter case study in Section 13.2. More recently,H∞ loop shaping has been
tested in ¤ight on a Bell 205 ¤y-by-wire helicopter; see Postlethwaite et al. (1999), Smerlas
et al. (2001), Prempain and Postlethwaite (2004), Postlethwaite et al. (2005).

Based on these, and other, studies, it is recommended that the following systematic
procedure is followed when usingH∞ loop shaping design:

1. Scale the plant outputs and inputs. This is very important for most design procedures and is
sometimes forgotten. In general, scaling improves the conditioning of the design problem,
it enables meaningful analysis to be made of the robustness properties of the feedback
system in the frequency domain, and for loop shaping it can simplify the selection of
weights. There are a variety of methods available including normalization with respect to
the magnitude of the maximum or average value of the signal in question. Scaling with
respect to maximum values is important if the controllability analysis of earlier chapters is
to be used. However, if one is to go straight to a design the following variation has proved
useful in practice:

(a) The outputs are scaled such that equal magnitudes of cross-coupling into each of the
outputs is equally undesirable.

(b) Each input is scaled by a given percentage (say 10%) of its expected range of operation.
That is, the inputs are scaled to re¤ect the relative actuator capabilities. An example of
this type of scaling is given in the aero-engine case study of Chapter 13.

2. Order the inputs and outputs so that the plant is as diagonal as possible. The relative gain
array can be useful here. The purpose of this pseudo-diagonalization is to ease the design
of the pre- and post-compensators which, for simplicity, will be chosen to be diagonal.

Next, we discuss the selection of weights to obtain the shaped plant Gs =W2GW1 where

W1 =WpWaWg (9.77)

3. Select the elements of diagonal pre- and post-compensators Wp and W2 so that the
singular values of W2GWp are desirable. This would normally mean high gain at low
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frequencies, roll-off rates of approximately 20 dB/decade (a slope of about −1) at the
desired bandwidth(s), with higher rates at high frequencies. Some trial and error is
involved here. W2 is usually chosen as a constant, re¤ecting the relative importance of
the outputs to be controlled and the other measurements being fed back to the controller.
For example, if there are feedback measurements of two outputs to be controlled and a
velocity signal, then W2 might be chosen to be diag[1, 1, 0.1], where 0.1 is in the velocity
signal channel. Wp contains the dynamic shaping. Integral action, for low-frequency
performance; phase advance for reducing the roll-off rates at crossover; and phase lag
to increase the roll-off rates at high frequencies should all be placed in Wp if desired. The
weights should be chosen so that no unstable hidden modes are created in Gs.

4. Optional: Align the singular values at a desired bandwidth using a further constant weight
Wa cascaded with Wp. This is effectively a constant decoupler and should not be used
if the plant is ill-conditioned in terms of large RGA elements (see Section 6.10.4). The
align algorithm of Kouvaritakis (1974) is recommended (see £le align.m available at
the book’s home page).

5. Optional: Introduce an additional gain matrix Wg cascaded with Wa to provide control
over actuator usage. Wg is diagonal and is adjusted so that actuator rate limits are not
exceeded for reference demands and typical disturbances on the scaled plant outputs. This
requires some trial and error.

6. Robustly stabilize the shaped plant Gs = W2GW1, where W1 = WpWaWg , using the
formulae of the previous section. First, calculate the maximum stability margin εmax =
1/γmin. If the margin is too small, εmax < 0.25, then go back to step 4 and modify
the weights. Otherwise, select γ > γmin, by about 10%, and synthesize a suboptimal
controller using (9.70). There is usually no advantage to be gained by using the optimal
controller. When εmax > 0.25 (respectively γmin < 4) the design is usually successful. In
this case, at least 25% coprime factor uncertainty is allowed, and we also £nd that the shape
of the open-loop singular values will not have changed much after robust stabilization. A
small value of εmax indicates that the chosen singular value loop shapes are incompatible
with robust stability requirements. That the loop shapes do not change much following
robust stabilization if γ is small (ε large) is justi£ed theoretically in McFarlane and Glover
(1990).

7. Analyze the design and if all the speci£cations are not met make further modi£cations to
the weights.

8. Implement the controller. The con£guration shown in Figure 9.19 has been found useful
when compared with the conventional setup in Figure 9.1. This is because the references
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Figure 9.19: A practical implementation of the loop-shaping controller

do not directly excite the dynamics of Ks, which can result in large amounts of overshoot
(classical derivative kick). The constant pre£lter ensures a steady-state gain of 1 between
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r and y, assuming integral action in W1 or G.

It has recently been shown (Glover et al., 2000) that the stability margin εmax = 1/γmin,
here de£ned in terms of coprime factor perturbations, can be interpreted in terms of
simultaneous gain and phase margins in all the plant’s inputs and outputs, when theH∞ loop-
shaping weights W1 and W2 are diagonal. The derivation of these margins is based on the
gap metric (Georgiou and Smith, 1990) and the ν-gap metric (Vinnicombe, 1993) measures
for uncertainty. A discussion of these measures lies outside the scope of this book, but the
interested reader is referred to the excellent book on the subject by Vinnicombe (2001) and
the paper by Glover et al. (2000).

We will conclude this subsection with a summary of the advantages offered by the above
H∞ loop-shaping design procedure:

• It is relatively easy to use, being based on classical loop-shaping ideas.
• There exists a closed formula for the H∞ optimal cost γmin, which in turn corresponds to

a maximum stability margin εmax = 1/γmin.
• No γ-iteration is required in the solution.
• Except for special systems, ones with all-pass factors, there are no pole–zero cancellations

between the plant and controller (Sefton and Glover, 1990; Tsai et al., 1992). Pole–zero
cancellations are common in some other H∞ control problems, like the S/T -problem in
(9.56), and are a problem when the plant has lightly damped modes.

Exercise 9.9 First a de£nition and some useful properties.
De£nition: A stable transfer function matrix H(s) is inner if H∗H = I , and co-inner if HH∗ = I .

The operator H∗ is de£ned as H∗(s) = HT (−s).
Properties: The H∞ norm is invariant under right multiplication by a co-inner function and under

left multiplication by an inner function.
Equipped with the above de£nition and properties, show for the shaped Gs = M−1

s Ns that the
matrix [Ms Ns ] is co-inner and hence that theH∞ loop-shaping cost function

∥∥∥∥
[
Ks

I

]
(I −GsKs)

−1M−1
s

∥∥∥∥
∞

(9.78)

is equivalent to ∥∥∥∥
[
KsSs KsSsGs

Ss SsGs

]∥∥∥∥
∞

(9.79)

where Ss = (I −GsKs)
−1. This shows that the problem of £nding a stabilizing controller to minimize

the four-block cost function (9.79) has an exact solution.

Whilst it is highly desirable, from a computational point of view, to have exact solutions for
H∞ optimization problems, such problems are rare. We are fortunate that the above robust
stabilization problem is also one of great practical signi£cance.

9.4.3 Two degrees-of-freedom controllers
Many control design problems possess two degrees of freedom: on the one hand,
measurement or feedback signals; and on the other, commands or references. Sometimes,
one degree of freedom is left out of the design, and the controller is driven (for example) by
an error signal, i.e. the difference between a command and the output. But in cases where
stringent time domain speci£cations are set on the output response, a one degree-of-freedom
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structure may not be suf£cient. A general two degrees-of-freedom feedback control scheme
is depicted in Figure 9.20. The commands and feedbacks enter the controller separately and
are independently processed.

-
-
-r

-Controller G
y

Figure 9.20: General two degrees-of-freedom feedback control scheme

The H∞ loop-shaping design procedure of McFarlane and Glover is a one degree-of-
freedom design, although as we showed in Figure 9.19 a simple constant pre£lter can easily
be implemented for steady-state accuracy. For many tracking problems, however, this will not
be suf£cient and a dynamic two degrees-of-freedom design is required. In Hoyle et al. (1991)
and Limebeer et al. (1993) a two degrees-of-freedom extension of the Glover–McFarlane
procedure was proposed to enhance the model-matching properties of the closed loop. With
this the feedback part of the controller is designed to meet robust stability and disturbance
rejection requirements in a manner similar to the one degree-of-freedom loop-shaping design
procedure except that only a pre-compensator weight W is used. It is assumed that the
measured outputs and the outputs to be controlled are the same, although this assumption can
be removed as shown later. An additional pre£lter part of the controller is then introduced to
force the response of the closed-loop system to follow that of a speci£ed model, Tref , often
called the reference model. Both parts of the controller are synthesized by solving the design
problem illustrated in Figure 9.21.
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Figure 9.21: Two degrees-of-freedomH∞ loop-shaping design problem

The design problem is to £nd the stabilizing controller K = [K1 K2 ] for the shaped
plant Gs = GW1, with a normalized coprime factorization Gs =M−1

s Ns, which minimizes
theH∞ norm of the transfer function between the signals [ rT φT ]

T and [uTs yT eT ]
T

as de£ned in Figure 9.21. The problem is easily cast into the general control con£guration
and solved suboptimally using standard methods and γ-iteration. We will show this later.

The control signal to the shaped plant us is given by

us = [K1 K2 ]

[
β
y

]
(9.80)
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where K1 is the pre£lter, K2 is the feedback controller, β is the scaled reference, and y is the
measured output. The purpose of the pre£lter is to ensure that

‖(I −GsK2)
−1GsK1 − Tref‖∞ ≤ γρ−2 (9.81)

Tref is the desired closed-loop transfer function selected by the designer to introduce time
domain speci£cations (desired response characteristics) into the design process; and ρ is a
scalar parameter that the designer can increase to place more emphasis on model matching in
the optimization at the expense of robustness.

From Figure 9.21 and a little bit of algebra, we have that


us
y
e


 =



ρ(I −K2Gs)

−1K1 K2(I −GsK2)
−1M−1

s

ρ(I −GsK2)
−1GsK1 (I −GsK2)

−1M−1
s

ρ2
[
(I −GsK2)

−1GsK1 − Tref
]

ρ(I −GsK2)
−1M−1

s



[
r
φ

]

(9.82)
In the optimization, theH∞ norm of this block matrix transfer function is minimized.

Notice that the (1,2) and (2,2) blocks taken together are associated with robust stabilization
and the (3,1) block corresponds to model matching. In addition, the (1,1) and (2,1) blocks
help to limit actuator usage and the (3,2) block is linked to the performance of the loop. For
ρ = 0, the problem reverts to minimizing the H∞ norm of the transfer function between φ
and [uTs yT ]

T , namely, the robust stabilization problem, and the two degrees-of-freedom
controller reduces to an ordinaryH∞ loop-shaping controller.

To put the two degrees-of-freedom design problem into the standard control con£guration,
we can de£ne a generalized plant P by




us
y
e- - -
β
y




=

[
P11 P12
P21 P22

]


r
φ- - -
us


 (9.83)

=




0 0 I
0 M−1

s Gs

−ρ2Tref ρM−1
s ρGs- - - - - - - - - - - - - - - - - -

ρI 0 0
0 M−1

s Gs







r
φ- - -
us


 (9.84)

Further, if the shaped plant Gs and the desired stable closed-loop transfer function Tref have
the following state-space realizations

Gs
s
=

[
As Bs

Cs Ds

]
(9.85)

Tref
s
=

[
Ar Br

Cr Dr

]
(9.86)
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then P may be realized by



As 0 0 (BsD
T
s + ZsC

T
s )R

−1/2
s Bs

0 Ar Br 0 0
0 0 0 0 I

Cs 0 0 R
1/2
s Ds

ρCs −ρ2Cr −ρ2Dr ρR
1/2
s ρDs- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 0 ρI 0 0

Cs 0 0 R
1/2
s Ds




(9.87)

and used in standardH∞ algorithms (Doyle et al., 1989) to synthesize the controllerK. Note
thatRs = I+DsD

T
s , andZs is the unique positive de£nite solution to the generalized Riccati

equation (9.67) for Gs. Matlab commands to synthesize the controller are given in Table 9.3.

Table 9.3: Matlab commands to synthesize the H∞ two degrees-of-freedom controller in
(9.80)

% Uses Robust Control toolbox
%
% INPUTS: Shaped plant Gs
% Reference model Tref
%
% OUTPUT: Two degrees-of-freedom controller K
%
% Coprime factorization of Gs
%
[As,Bs,Cs,Ds] = ssdata(balreal(Gs));
[Ar,Br,Cr,Dr] = ssdata(Tref);
[nr,nr] = size(Ar); [lr,mr] = size(Dr);
[ns,ns] = size(As); [ls,ms] = size(Ds);
Rs = eye(ls)+Ds*Ds’; Ss = eye(ms)+Ds’*Ds;
A = (As - Bs*inv(Ss)*Ds’*Cs);
B=sqrtm(Cs’*inv(Rs)*Cs);
Q=Bs*inv(Ss)*Bs’;
[Zs,ZAMP,G,REP]=care(A,B,Q);
%
% Choose rho=1 (Designer’s choice) and
% build the generalized plant P in (9.87)
%
rho=1;
A = blkdiag(As,Ar);
B1 = [zeros(ns,mr) ((Bs*Ds’)+(Zs*Cs’))*inv(sqrtm(Rs));

Br zeros(nr,ls)];
B2 = [Bs;zeros(nr,ms)];
C1 = [zeros(ms,ns+nr);Cs zeros(ls,nr);rho*Cs -rho*rho*Cr];
C2 = [zeros(mr,ns+nr);Cs zeros(ls,nr)];
D11 = [zeros(ms,mr+ls);zeros(ls,mr) sqrtm(Rs);-rho*rho*Dr rho*sqrtm(Rs)];
D12 = [eye(ms);Ds;rho*Ds];
D21 = [rho*eye(mr) zeros(mr,ls);zeros(ls,mr) sqrtm(Rs)];
D22 = [zeros(mr,ms);Ds];
B = [B1 B2]; C = [C1;C2]; D = [D11 D12;D21 D22];
P = ss(A,B,C,D);
% Alternative: Use sysic to generate P from Figure 9.21
% but may get extra states, since states from Gs may enter twice.
%
% Gamma iterations to obtain H-infinity controller
%
[l1,m2] = size(D12); [l2,m1] = size(D21);
nmeas = l2; ncon = m2; gmin = 1; gmax = 5; gtol = 0.01;
[K,Gnclp, gam] = hinfsyn(P,nmeas,ncon,’GMIN’,gmin,’GMAX’,gmax,...

’TOLGAM’,gtol,’DISPLAY’,’on’);
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Remark 1 We stress that we aim here to minimize the H∞ norm of the entire transfer function in
(9.82). An alternative problem would be to minimize the H∞ norm form r to e subject to an upper
bound on ‖ [ ∆Ns ∆MS

] ‖∞. This problem would involve the structured singular value, and the
optimal controller could be obtained from solving a series of H∞ optimization problems using DK-
iteration; see Section 8.12.

Remark 2 Extra measurements. In some cases, a designer has more plant outputs available as
measurements than can (or even need) to be controlled. These extra measurements can often make
the design problem easier (e.g. velocity feedback) and therefore when bene£cial should be used by the
feedback controller K2. This can be accommodated in the two degrees-of-freedom design procedure by
introducing an output selection matrix Wo. This matrix selects from the output measurements y only
those which are to be controlled and hence included in the model-matching part of the optimization.
In Figure 9.21, Wo is introduced between y and the summing junction. In the optimization problem,
only the equation for the error e is affected, and in the realization (9.87) for P one simply replaces ρCs

by ρWoCs, ρR1/2
s by ρWoR

1/2
s and ρDs by ρWoDs in the £fth row. For example, if there are four

feedback measurements and only the £rst three are to be controlled, then

Wo =




1 0 0 0
0 1 0 0
0 0 1 0


 (9.88)

Remark 3 Steady-state gain matching. The command signals r can be scaled by a constant matrix
Wi to make the closed-loop transfer function from r to the controlled outputs Woy match the desired
model Tref exactly at steady-state. This is not guaranteed by the optimization which aims to minimize
the∞-norm of the error. The required scaling is given by

Wi
4
=
[
Wo(I −Gs(s)K2(s))

−1Gs(s)K1(s)
]−1

Tref(s)|s=0 (9.89)

Recall that Wo = I if there are no extra feedback measurements beyond those that are to be controlled.
The resulting controller is K = [K1Wi K2 ].

We will conclude this subsection with a summary of the main steps required to synthesize a
two degrees-of-freedomH∞ loop-shaping controller.

1. Design a one degree-of-freedom H∞ loop-shaping controller using the procedure of
Section 9.4.2, but without a post-compensator weight W2. Hence W1.

2. Select a desired closed-loop transfer function Tref between the commands and controlled
outputs.

3. Set the scalar parameter ρ to a small value greater than 1; something in the range 1 to 3
will usually suf£ce.

4. For the shaped plant Gs = GW1, the desired response Tref , and the scalar parameter
ρ, solve the standard H∞ optimization problem de£ned by P in (9.87) to a speci£ed
tolerance to get K = [K1 K2 ]. Remember to include Wo in the problem formulation if
extra feedback measurements are to be used.

5. Replace the pre£lter K1 by K1Wi to give exact model matching at steady-state.
6. Analyze and, if required, redesign making adjustments to ρ and possibly W1 and Tref .

The £nal two degrees-of-freedomH∞ loop-shaping controller is illustrated in Figure 9.22

9.4.4 Observer-based structure forH∞ loop-shaping controllers
H∞ designs exhibit a separation structure in the controller. As seen from (9.50) and (9.51) the
controller has an observer/state feedback structure, but the observer is non-standard, having a
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Figure 9.22: Two degrees-of-freedomH∞ loop-shaping controller

disturbance term (a “worst” disturbance) entering the observer state equations. ForH∞ loop-
shaping controllers, whether of the one or two degrees-of-freedom variety, this extra term is
not present. The clear structure ofH∞ loop-shaping controllers has several advantages:

• It is helpful in describing a controller’s function, especially to one’s managers or clients
who may not be familiar with advanced control.

• It lends itself to implementation in a gain-scheduled scheme, as shown by Hyde and Glover
(1993).

• It offers computational savings in digital implementations and some multi-mode switching
schemes, as shown in Samar (1995).

We will present the controller equations, for both one and two degrees-of-freedomH∞ loop-
shaping designs. For simplicity we will assume the shaped plant is strictly proper, with a
stabilizable and detectable state-space realization

Gs
s
=

[
As Bs

Cs 0

]
(9.90)

In this case, as shown in Sefton and Glover (1990), the single degree-of-freedom H∞ loop-
shaping controller can be realized as an observer for the shaped plant plus a state feedback
control law. The equations are

˙̂xs = Asx̂s +Hs(Csx̂s − ys) +Bsus (9.91)
us = K̄sx̂s (9.92)

where x̂s is the observer state, us and ys are respectively the input and output of the shaped
plant, and

Hs = −ZsC
T
s (9.93)

K̄s = −BT
s

[
I − γ−2I − γ−2XsZs

]−1
Xs (9.94)

where Zs and Xs are the appropriate solutions to the generalized algebraic Riccati equations
for Gs given in (9.67) and (9.68).

In Figure 9.23, an implementation of an observer-based H∞ loop-shaping controller is
shown in block diagram form. The same structure was used by Hyde and Glover (1993) in
their VSTOL design which was scheduled as a function of aircraft forward speed.

Walker (1996) has shown that the two degrees-of-freedom H∞ loop-shaping controller
also has an observer-based structure. He considers a stabilizable and detectable plant

Gs
s
=

[
As Bs

Cs 0

]
(9.95)
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Figure 9.23: An implementation of an H∞ loop-shaping controller for use when gain
scheduling against a variable v

and a desired closed-loop transfer function

Tref
s
=

[
Ar Br

Cr 0

]
(9.96)

in which case the generalized plant P (s) in (9.87) simpli£es to

P
s
=




As 0 0 ZsC
T
s Bs

0 Ar Br 0 0

0 0 0 0 I
Cs 0 0 I 0
ρCs −ρ2Cr 0 ρI 0- - - - - - - - - - - - - - - - - - - - - - - - - -
0 0 ρI 0 0
Cs 0 0 I 0




4
=




A B1 B2

C1 D11 D12

C2 D21 D22


 (9.97)

Walker (1996) then shows that a stabilizing controller K = [K1 K2 ] satisfying
‖Fl(P,K)‖∞ < γ exists if, and only if,

(i) γ >
√

1 + ρ2, and

(ii) X∞ ≥ 0 is a solution to the algebraic Riccati equation

X∞A+ATX∞ + CT
1 C1 − F̄T (D̄T J̄D̄)F̄ = 0 (9.98)

such that Re λi
[
A−BF̄

]
< 0 ∀i, where

F̄ = (D̄T J̄D̄)−1(D̄T J̄C +BTX∞) (9.99)

D̄ =

[
D11 D12

Iw 0

]
(9.100)

J̄ =

[
Iz 0
0 −γ2Iw

]
(9.101)
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where Iz and Iw are unit matrices of dimensions equal to those of the error signal z,
and exogenous input w, respectively, in the standard con£guration.

Notice that thisH∞ controller depends on the solution to just one algebraic Riccati equation,
not two. This is a characteristic of the two degrees-of-freedom H∞ loop-shaping controller
(Hoyle et al., 1991).

Walker (1996) further shows that if (i) and (ii) are satis£ed, then a stabilizing controller
K(s) satisfying ‖Fl(P,K)‖∞ < γ has the following equations:

˙̂xs = Asx̂s +Hs(Csx̂s − ys) +Bsus (9.102)
ẋr = Arxr +Brr (9.103)
us = −BT

s X∞11x̂s −BT
s X∞12xr (9.104)

where X∞11 and X∞12 are elements of

X∞ =

[
X∞11 X∞12

X∞21 X∞22

]
(9.105)

which has been partitioned conformably with

A =

[
As 0
0 Ar

]
(9.106)

and Hs is as in (9.93).
The structure of this controller is shown in Figure 9.24, where the state feedback gain

matrices Fs and Fr are de£ned by

Fs
4
= BT

s X∞11 Fr
4
= BT

s X∞12 (9.107)
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The controller consists of a state observer for the shaped plant Gs, a model of the desired
closed-loop transfer function Tref (without Cr) and a state feedback control law that uses
both the observer and reference-model states.

As in the one degree-of-freedom case, this observer-based structure is useful in gain
scheduling. The reference-model part of the controller is also nice because it is often the
same at different design operating points and so may not need to be changed at all during
a scheduled operation of the controller. Likewise, parts of the observer may not change; for
example, if the weight W1(s) is the same at all the design operating points. Therefore whilst
the structure of the controller is comforting in the familiarity of its parts, it also has some
signi£cant advantages when it comes to implementation.

9.4.5 Implementation issues
Discrete time controllers. For implementation purposes, discrete time controllers are
usually required. These can be obtained from a continuous time design using a bilinear
transformation from the s-domain to the z-domain, but there can be advantages in being
able to design directly in discrete time. In Samar (1995) and Postlethwaite et al. (1995),
observer-based state-space equations are derived directly in discrete time for the two degrees-
of-freedom H∞ loop-shaping controller and successfully applied to an aero-engine. This
application was on a real engine, a Spey engine, which is a Rolls-Royce two-spool reheated
turbofan that was housed at the UK Defence Research Agency (now QinetiQ), Pyestock.
As this was a real application, a number of important implementation issues needed to be
addressed. Although these are outside the general scope of this book, they will be brie¤y
mentioned now.

Anti-windup. In H∞ loop shaping the pre-compensator weight W1 would normally
include integral action in order to reject low-frequency disturbances acting on the system.
However, in the case of actuator saturation the integrators continue to integrate their input and
hence cause windup problems. An anti-windup scheme is therefore required on the weighting
function W1. One approach is to implement the weight W1 in its self-conditioned or Hanus
form. Let the weight W1 have a realization

W1
s
=

[
Aw Bw

Cw Dw

]
(9.108)

and let u be the input to the plant actuators and us the input to the shaped plant. Then
u = W1us. When implemented in Hanus form, the expression for u becomes (Hanus
et al., 1987)

u =

[
Aw −BwD

−1
w Cw 0 BwD

−1
w

Cw Dw 0

] [
us
ua

]
(9.109)

where ua is the actual plant input; that is, the measurement at the output of the actuators which
therefore contains information about possible actuator saturation. The situation is illustrated
in Figure 9.25, where the actuators are each modelled by a unit gain and a saturation. The
Hanus form prevents windup by keeping the states of W1 consistent with the actual plant
input at all times. When there is no saturation ua = u, the dynamics ofW1 remain unaffected
and (9.109) simpli£es to (9.108). But when ua 6= u the dynamics are inverted and driven
by ua so that the states remain consistent with the actual plant input ua. Notice that such an
implementation requires W1 to be invertible and minimum-phase. A more general approach
to anti-windup is given in Section 12.4.



CONTROLLER DESIGN 381

---
-

- 6
-conditioned

Self-

W1

us

actuator
saturation

u ua
G

Figure 9.25: Self-conditioned weight W1

Exercise 9.10 ∗ Show that the Hanus form of the weightW1 in (9.109) simpli£es to (9.108) when there
is no saturation, i.e. when ua = u.

Bumpless transfer. In the aero-engine application, a multi-mode switched controller was
designed. This consisted of three controllers, each designed for a different set of engine output
variables, which were switched between depending on the most signi£cant outputs at any
given time. To ensure smooth transition from one controller to another – bumpless transfer
– it was found useful to condition the reference models and the observers in each of the
controllers. Thus when on-line, the observer state evolves according to an equation of the
form (9.102) but when off-line the state equation becomes

˙̂xs = Asx̂s +Hs(Csx̂s − ys) +Bsuas (9.110)

where uas is the actual input to the shaped plant governed by the on-line controller.
The reference model with state feedback given by (9.103) and (9.104) is not invertible
and therefore cannot be self-conditioned. However, in discrete time the optimal control
also has a feed-through term from r which gives a reference model that can be inverted.
Consequently, in the aero-engine example the reference models for the three controllers were
each conditioned so that the inputs to the shaped plant from the off-line controller followed
the actual shaped plant input uas given by the on-line controller. For a more recent treatment
of bumpless transfer see Turner and Walker (2000).

Satisfactory solutions to implementation issues such as those discussed above are crucial
if advanced control methods are to gain wider acceptance in industry. We have tried to
demonstrate here that the observer-based structure of the H∞ loop-shaping controller is
helpful in this regard.

9.5 Conclusion
We have described several methods and techniques for controller design, but our emphasis
has been on H∞ loop shaping which is easy to apply and in our experience works very well
in practice. It combines classical loop-shaping ideas (familiar to most practising engineers)
with an effective method for robustly stabilizing the feedback loop. For complex problems,
such as unstable plants with multiple gain crossover frequencies, it may not be easy to decide
on a desired loop shape. In this case, we would suggest doing an initial LQG design (with
simple weights) and using the resulting loop shape as a reasonable one to aim for inH∞ loop
shaping.



382 MULTIVARIABLE FEEDBACK CONTROL

An alternative toH∞ loop shaping is a standardH∞ design with a “stacked” cost function
such as in S/KS mixed-sensitivity optimization. In this approach,H∞ optimization is used to
shape two or sometimes three closed-loop transfer functions. However, with more functions
the shaping becomes increasingly dif£cult for the designer.

In other design situations where there are several performance objectives (e.g. on signals,
model following and model uncertainty), it may be more appropriate to follow a signal-
based H2 or H∞ approach. But again the problem formulations become so complex that
the designer has little direct in¤uence on the design.

After a design, the resulting controller should be analyzed with respect to robustness and
tested by nonlinear simulation. For the former, we recommend µ-analysis as discussed in
Chapter 8, and if the design is not robust, then the weights will need modifying in a redesign.
Sometimes one might consider synthesizing a µ-optimal controller, but this complexity is
rarely necessary in practice. Moreover, one should be careful about combining controller
synthesis and analysis into a single step. The following quote from Rosenbrock (1974)
illustrates the dilemma:

In synthesis the designer speci£es in detail the properties which his system
must have, to the point where there is only one possible solution. . . . The act
of specifying the requirements in detail implies the £nal solution, yet has to be
done in ignorance of this solution, which can then turn out to be unsuitable in
ways that were not foreseen.

Therefore, control system design usually proceeds iteratively through the steps of modelling,
control structure design, controllability analysis, performance and robustness weights
selection, controller synthesis, control system analysis and nonlinear simulation. Rosenbrock
(1974) makes the following observation:

Solutions are constrained by so many requirements that it is virtually impossible
to list them all. The designer £nds himself threading a maze of such
requirements, attempting to reconcile con¤icting demands of cost, performance,
easy maintenance, and so on. A good design usually has strong aesthetic appeal
to those who are competent in the subject.
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CONTROL STRUCTURE
DESIGN

Most (if not all) available control theories assume that a control structure is given at the outset. They
therefore fail to answer some basic questions, which a control engineer regularly meets in practice.
Which variables should be controlled, which variables should be measured, which inputs should be
manipulated, and which links should be made between them? The objective of this chapter is to describe
the main issues involved in control structure design and to present some of the quantitative methods
available, for example, for selection of controlled variables and for decentralized control.

10.1 Introduction
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Figure 10.1: General control con£guration

In much of this book, we consider the general control problem formulation shown in
Figure 10.1, where the controller design problem is to
• Find a stabilizing controller K, which, based on the information in y, generates a control

signal u, which counteracts the in¤uence of w on z, thereby minimizing the closed-loop
norm from w to z.
We presented different techniques for controller design in Chapters 2, 8 and 9. However, if

we go back to Chapter 1 (page 1), then we see that controller design is only one step, step 9,
in the overall process of designing a control system. In this chapter, we are concerned with
the structural decisions of control structure design, which are the steps necessary to get to
Figure 10.1:

Multivariable Feedback Control: Analysis and Design. Second Edition
S. Skogestad and I. Postlethwaite c© 2005, 2006 John Wiley & Sons, Ltd
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Step 4 on page 1: The selection of controlled outputs (a set of variables which are to be
controlled to achieve a set of speci£c objectives).
See Sections 10.2 and 10.3: What are the variables z in Figure 10.1?

Step 5 on page 1: The selection of manipulated inputs and measurements (sets of variables
which can be manipulated and measured for control purposes).
See Section 10.4: What are the variable sets u and y in Figure 10.1?

Step 6 on page 1: The selection of a control con£guration (a structure of interconnecting
measurements/commands and manipulated variables).
See Sections 10.5 and 10.6: What is the structure of K in Figure 10.1; that is, how should we
“pair” the variable sets u and y?

The distinction between the words control structure and control con£guration may seem
minor, but note that it is signi£cant within the context of this book. The control structure (or
control strategy) refers to all structural decisions included in the design of a control system
(steps 4, 5 and 6). On the other hand, the control con£guration refers only to the structuring
(decomposition) of the controllerK itself (step 6) (also called the measurement/manipulation
partitioning or input/output pairing). Control con£guration issues are discussed in more detail
in Section 10.5. The selection of controlled outputs, manipulations and measurements (steps
4 and 5 combined) is sometimes called input/output selection.

One important reason for decomposing the control system into a speci£c control
con£guration is that it may allow for simple tuning of the subcontrollers without the need for
a detailed plant model describing the dynamics and interactions in the process. Multivariable
centralized controllers can always outperform decomposed (decentralized) controllers, but
this performance gain must be traded off against the cost of obtaining and maintaining a
suf£ciently detailed plant model and the additional hardware.

The number of possible control structures shows a combinatorial growth, so for most
systems a careful evaluation of all alternative control structures is impractical. Fortunately, we
can often obtain a reasonable choice of controlled outputs, measurements and manipulated
inputs from physical insight. In other cases, simple controllability measures as presented
in Chapters 5 and 6 may be used for quickly evaluating or screening alternative control
structures. Additional tools are presented in this chapter.

From an engineering point of view, the decisions involved in designing a complete
control system are taken sequentially: £rst, a “top-down” selection of controlled outputs,
measurements and inputs (steps 4 and 5) and then a “bottom-up” design of the control
system (in which step 6, the selection of the control con£guration, is the most important
decision). However, the decisions are closely related in the sense that one decision directly
in¤uences the others, so the procedure may involve iteration. Skogestad (2004a) has proposed
a procedure for control structure design for complete chemical plants, consisting of the
following structural decisions:

“Top-down” (mainly step 4)

(i) Identify operational constraints and identify a scalar cost function J that characterizes
optimal operation.

(ii) Identify degrees of freedom (manipulated inputs u) and in particular identify the ones that
affect the cost J (in process control, the cost J is usually determined by the steady-state).

(iii) Analyze the solution of optimal operation for various disturbances, with the aim of £nding
primary controlled variables (y1 = z) which, when kept constant, indirectly minimize the
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cost (“self-optimizing control”). (Section 10.3)
(iv) Determine where in the plant to set the production rate.

“Bottom-up” (steps 5 and 6)

(v) Regulatory/base control layer: Identify additional variables to be measured and controlled
(y2), and suggest how to pair these with manipulated inputs. (Section 10.4)

(vi) “Advanced”/supervisory control layer con£guration: Should it be decentralized or
multivariable? (Sections 10.5.1 and 10.6)

(vii) On-line optimization layer: Is this needed or is a constant setpoint policy suf£cient (“self-
optimizing control”)? (Section 10.3)

Except for decision (iv), which is speci£c to process control, this procedure may be applied
to any control problem.

Control structure design was considered by Foss (1973) in his paper entitled “Critique of
chemical process control theory” where he concluded by challenging the control theoreticians
of the day to close the gap between theory and applications in this important area. Control
structure design is clearly important in the chemical process industry because of the
complexity of these plants, but the same issues are relevant in most other areas of control
where we have large-scale systems. In the late 1980’s Carl Nett (Nett, 1989; Nett and
Minto, 1989) gave a number of lectures based on his experience of aero-engine control at
General Electric, under the title “A quantitative approach to the selection and partitioning
of measurements and manipulations for the control of complex systems”. He noted that
increases in controller complexity unnecessarily outpace increases in plant complexity, and
that the objective should be to

minimize control system complexity subject to the achievement of accuracy
speci£cations in the face of uncertainty.

Balas (2003) recently surveyed the status of ¤ight control. He states, with reference to the
Boeing company, that “the key to the control design is selecting the variables to be regulated
and the controls to perform regulation” (steps 4 and 5). Similarly, the £rst step in Honeywell’s
procedure for controller design is “the selection of controlled variables (CVs) for performance
and robustness” (step 4).

Surveys on control structure design and input–output selection are given by Van de Wal
(1994) and Van de Wal and de Jager (2001), respectively. A review of control structure design
in the chemical process industry (plantwide control) is given by Larsson and Skogestad
(2000). The reader is referred to Chapter 5 (page 164) for an overview of the literature on
input–output controllability analysis.

10.2 Optimal operation and control
The overall control objective is to maintain acceptable operation (in terms of safety,
environmental impact, load on operators, and so on) while keeping the operating conditions
close to economically optimal. In Figure 10.2, we show three different implementations for
optimization and control:

(a) Open-loop optimization
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Figure 10.2: Different structures for optimization and control. (a) Open-loop optimization. (b) Closed-
loop implementation with separate control layer. (c) Integrated optimization and control.

(b) Closed-loop implementation with separate control layer

(c) Integrated optimization and control (“optimizing control”)

Structure (a) with open-loop optimization is usually not acceptable because of model
error and unmeasured disturbances. Theoretically, optimal performance is obtained with
the centralized optimizing controller in structure (c), which combines the functions of
optimization and control in one layer. All control actions in such an ideal control
system would be perfectly coordinated and the control system would use on-line dynamic
optimization based on a nonlinear dynamic model of the complete plant instead of, for
example, infrequent steady-state optimization. However, this solution is normally not used
for a number of reasons, including: the cost of modelling, the dif£culty of controller design,
maintenance and modi£cation, robustness problems, operator acceptance, and the lack of
computing power.

In practice, the hierarchical control system in Figure 10.2(b) is used, with different tasks
assigned to each layer in the hierarchy. In the simplest case we have two layers:

• optimization layer – computes the desired optimal reference commands r (outside the
scope of this book)

• control layer – implements the commands to achieve z ≈ r (the focus of this book).

The optimization tends to be performed open-loop with limited use of feedback. On the other
hand, the control layer is mainly based on feedback information. The optimization is often
based on nonlinear steady-state models, whereas linear dynamic models are mainly used in
the control layer (as we do throughout the book).

Additional layers are possible, as is illustrated in Figure 10.3 which shows a typical
control hierarchy for a complete chemical plant. Here the control layer is subdivided into
two layers: supervisory control (“advanced control”) and regulatory control (“base control”).
We have also included a scheduling layer above the optimization layer. Similar hierarchies
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Figure 10.3: Typical control system hierarchy in a chemical plant

are found in control systems for most applications, although the time constants and names
of the layers may be different. Note that we have not included any functions related to logic
control (startup/ shutdown) and safety systems. These are of course important, but need not
be considered during normal operation.

In general, the information ¤ow in such a control hierarchy is based on the upper layer
sending setpoints (references, commands) to the layer below, and the lower layer reporting
back any problems in achieving this. There is usually a time scale separation between the
upper layers and the lower layers as indicated in Figure 10.3. The slower upper layer controls
variables that are more important from an overall (long time scale) point of view, using as
degrees of freedom the setpoints for the faster lower layer. The lower layer should take care
of fast (high-frequency) disturbances and keep the system reasonably close to its optimum
in the fast time scale. To reduce the need for frequent setpoint changes, we should control
variables that require small setpoint changes, and this observation is the basis for Section 10.3
which deals with selecting controlled variables.

With a “reasonable” time scale separation between the layers, typically a factor of £ve or
more in terms of closed-loop response time, we have the following advantages:
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1. The stability and performance of a lower (faster) layer is not much in¤uenced by the
presence of upper (slow) layers because the frequency of the “disturbance” from the upper
layer is well inside the bandwidth of the lower layer.

2. With the lower (faster) layers in place, the stability and performance of the upper (slower)
layers do not depend much on the speci£c controller settings used in the lower layers
because they only effect high frequencies outside the bandwidth of the upper layers.

More generally, there are two ways of partitioning the control system:

Vertical (hiearchical) decomposition. This is the decomposition just discussed which
usually results from a time scale difference between the various control objectives
(“decoupling in time”). The controllers are normally designed sequentially, starting
with the fast layers, and then cascaded (series interconnected) in a hierarchical manner.

Horizontal decomposition. This is used when the plant is “decoupled in space”, and
normally involves a set of independent decentralized controllers. Decentralized control
is discussed in more detail in Section 10.6 (page 429).

Remark 1 In accordance with Lunze (1992) we have purposely used the word layer rather than level
for the hierarchical decomposition of the control system. The somewhat subtle difference is that in
a multilevel system all units contribute to satisfying the same goal, whereas in a multilayer system
the different units have different local objectives (which preferably contribute to the overall goal).
Multilevel systems have been studied in connection with the solution of optimization problems.

Remark 2 The tasks within any layer can be performed by humans (e.g. manual control), and the
interaction and task sharing between the automatic control system and the human operators are very
important in most cases, e.g. an aircraft pilot. However, these issues are outside the scope of this book.

Remark 3 As noted above, we may also decompose the control layer, and from now on when we talk
about control con£gurations, hierarchical decomposition and decentralization, we generally refer to the
control layer.

Remark 4 A fourth possible strategy for optimization and control, not shown in Figure 10.2, is
(d) extremum-seeking control. Here the model-based block in Figure 10.2(c) is replaced by an
“experimenting” controller, which, based on measurements of the cost J , perturbs the input in order
to seek the extremum (minimum) of J ; see e.g. Ariyur and Krstic (2003) for details. The main
disadvantage with this strategy is that a fast and accurate on-line measurement of J is rarely available.

10.3 Selection of primary controlled outputs
We are concerned here with the selection of controlled outputs (controlled variables, CVs).
This involves selecting the variables z to be controlled at given reference values, z ≈ r, where
r is set by some higher layer in the control hierarchy. Thus, the selection of controlled outputs
(for the control layer) is usually intimately related to the hierarchical structuring of the control
system shown in Figure 10.2(b). The aim of this section is to provide systematic methods for
selecting controlled variables. Until recently, this has remained an unsolved problem. For
example, Fisher et al. (1985) state that “Our current approach to control of a complete plant
is to solve the optimal steady-state problem on-line, and then use the results of this analysis to
£x the setpoints of selected controlled variables. There is no available procedure for selecting
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this set of controlled variables, however. Hence experience and intuition still plays a major
role in the design of control systems.”

The important variables in this section are:

• u – degrees of freedom (inputs)
• z – primary (“economic”) controlled variables
• r – reference value (setpoint) for z
• y – measurements, process information (often including u)

In the general case, the controlled variables are selected as functions of the measurements,
z = H(y). For example, z can be a linear combination of measurements, i.e. z = Hy. In
many cases, we select individual measurements as controlled variables and H is a “selection
matrix” consisting of ones and zeros. Normally, we select as many controlled variables as the
number of available degrees of freedom, i.e. nz = nu.

The controlled variables z are often not important variables in themselves, but are
controlled in order to achieve some overall operational objective. A reasonable question is
then: why not forget the whole thing about selecting controlled variables, and instead directly
adjust the manipulated variables u? The reason is that an open-loop implementation usually
fails because we are not able to adjust to changes (disturbances d) and errors (in the model).
The following example illustrates the issues.

Example 10.1 Cake baking. The overall goal is to make a cake which is well baked inside and has
a nice exterior. The manipulated input for achieving this is the heat input, u = Q (and we will assume
that the duration of the baking is £xed, e.g. at 15 minutes).

(a) If we had never baked a cake before, and if we were to construct the oven ourselves, we might
consider directly manipulating the heat input to the oven, possibly with a watt-meter measurement.
However, this open-loop implementation would not work well, as the optimal heat input depends
strongly on the particular oven we use, and the operation is also sensitive to disturbances; for example,
opening the oven door or whatever else might be in the oven. In short, the open-loop implementation is
sensitive to uncertainty.

(b) An effective way of reducing the uncertainty is to use feedback. Therefore, in practice we use a
closed-loop implementation where we control the oven temperature (z = T ) using a thermostat. The
temperature setpoint r = Ts is found from a cook book (which plays the role of the “optimizer”).
The (a) open-loop and (b) closed-loop implementations of the cake baking process are illustrated in
Figure 10.2.

The key question is: what variables z should we control? In many cases, it is clear from
a physical understanding of the process what these are. For example, if we are considering
heating or cooling a room, then we should select the room temperature as the controlled
variable z. Furthermore, we generally control variables that are optimally at their constraints
(limits). For example, we make sure that the air conditioning is on maximum if we want to
cool down our house quickly. In other cases, it is less obvious what to control, because the
overall control objective may not be directly associated with keeping some variable constant.

To get an idea of the issues involved, we will consider some simple examples. Let us £rst
consider two cases where implementation is obvious because the optimal strategy is to keep
variables at their constraints.

Example 10.2 Short-distance (100 m) running. The objective is to minimize the time T of the race
(J = T ). The manipulated input (u) is the muscle power. For a well-trained runner, the optimal
solution lies at the constraint u = umax. Implementation is then easy: select z = u and r = umax or
alternatively “run as fast as possible”.
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Example 10.3 Driving from A to B. Let y denote the speed of the car. The objective is to minimize
the time T of driving from A to B or, equivalently, to maximize the speed (y), i.e. J = −y. If we are
driving on a straight and clear road, then the optimal solution is always to stay on the speed limit
constraint (ymax). Implementation is then easy: use a feedback scheme (cruise control) to adjust the
engine power (u) such that we are at the speed limit; that is, select z = y and r = ymax.

In the next example, the optimal solution does not lie at a constraint and the selection of
the controlled variable is not obvious.

Example 10.4 Long-distance running. The objective is to minimize the time T of the race (J = T ),
which is achieved by maximizing the average speed. It is clear that running at maximum input power is
not a good strategy. This would give a high speed at the beginning, but a slower speed towards the end,
and the average speed will be lower. A better policy would be to keep constant speed (z = y1 = speed).
The optimization layer (e.g. the trainer) will then choose an optimal setpoint r for the speed, and this is
implemented by the control layer (the runner). Alternative strategies, which may work better in a hilly
terrain, are to keep a constant heart rate (z = y2 = heart rate) or a constant lactate level (z = y3 =
lactate level).

10.3.1 Self-optimizing control
Recall that the title of this section is selection of primary controlled outputs. In the cake
baking process, we select the oven temperature as the controlled output z in the control layer.
It is interesting to note that controlling the oven temperature in itself has no direct relation to
the overall goal of making a well-baked cake. So why do we select the oven temperature as a
controlled output? We now want to outline an approach for answering questions of this kind.
Two distinct questions arise:

1. What variables z should be selected as the controlled variables?
2. What is the optimal reference value (zopt) for these variables?

The second problem is one of optimization and is extensively studied (but not in this book).
Here we want to gain some insight into the £rst problem which has been much less studied.
We make the following assumptions:

1. The overall goal can be quanti£ed in terms of a scalar cost function J .
2. For a given disturbance d, there exists an optimal value uopt(d) (and corresponding value
zopt(d)), which minimizes the cost function J .

3. The reference values r for the controlled outputs z are kept constant, i.e. r is independent
of the disturbances d. Typically, some average value is selected, e.g. r = zopt(d̄).

In the following, we assume that the optimally constrained variables are already controlled
at their constraints (“active constraint control”) and consider the “remaining” unconstrained
problem with controlled variables z and remaining unconstrained degrees of freedom u.

The system behaviour is a function of the independent variables u and d, so we may
formally write J = J(u, d).1 For a given disturbance d the optimal value of the cost function
1 Note that the cost J is usually not a simple function of u and d, but is rather given by some implied relationship

such as
min
u,x

J = J0(u, x, d) s.t. f(x, u, d) = 0

where dim f = dimx and f(x, u, d) = 0 represents the model equations. Formally eliminating the internal state
variables x gives the problem minu J(u, d).
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is
Jopt(d) , J(uopt(d), d) = min

u
J(u, d) (10.1)

Ideally, we want u = uopt(d). However, this will not be achieved in practice and we have a
loss L = J(u, d)− Jopt(d) > 0.

We consider the simple feedback policy in Figure 10.2(b), where we attempt to keep z
constant. Note that the open-loop implementation is included as a special case by selecting
z = u. The aim is to adjust u automatically, if necessary, when there is a disturbance d such
that u ≈ uopt(d). This effectively turns the complex optimization problem into a simple
feedback problem. The goal is to achieve “self-optimizing control” (Skogestad, 2000):

Self-optimizing control is when we can achieve an acceptable loss with constant
setpoint values for the controlled variables without the need to reoptimize when
disturbances occur.

Remark. In Chapter 5, we introduced the term self-regulation, which is when acceptable dynamic
control performance can be obtained with constant manipulated variables (u). Self-optimizing control
is a direct generalization to the layer above where we can achieve acceptable (economic) performance
with constant controlled variables (z).

The concept of self-optimizing control is inherent in many real-life scenarios
including (Skogestad, 2004b):

• The central bank attempts to optimize the welfare of the country (J) by keeping a constant
in¤ation rate (z) by varying the interest rate (u).

• The long-distance runner may attempt to minimize the total running time (J = T ) by
keeping a constant heart rate (z = y1) or constant lactate level (z = y2) by varying the
muscle power (u).

• A driver attempts to minimize the fuel consumption and engine wear (J) by keeping a
constant engine rotation speed (z) by varying the gear position (u).

The presence of self-optimizing control is also evident in biological systems, which have
no capacity for solving complex on-line optimization problems. Here, self-optimizing control
policies are the only viable solution and have developed by evolution. In business systems,
the primary (“economic”) controlled variables are called key performance indicators (KPIs)
and their optimal values are obtained by analyzing successful businesses (“benchmarking”).

The idea of self-optimizing control is further illustrated in Figure 10.4, where we see
that there is a loss if we keep a constant value for the controlled variable z, rather than
reoptimizing when a disturbance moves the process away from its nominal optimal operating
point (denoted d̄).

An ideal self-optimizing variable would be the gradient of the Lagrange function for
the optimization problem, which should be zero. However, a direct measurement of the
gradient (or a closely related variable) is rarely available, and computing the gradient
generally requires knowing the value of unmeasured disturbances. We will now outline some
approaches for selecting the controlled variables z. Although a model is used to £nd z, note
that the goal of self-optimizing control is to eliminate the need for on-line model-based
optimization.
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Figure 10.4: Loss imposed by keeping constant setpoint for the controlled variable. In this case z1 is a
better “self-optimizing” controlled variable than z2.

10.3.2 Selecting controlled outputs: local analysis
We use here a local second-order accurate analysis of the loss function. From this, we derive
the useful minimum singular value rule, and an exact local method; see Halvorsen et al.
(2003) for further details. Note that this is a local analysis, which may be misleading; for
example, if the optimum point of operation is close to infeasibility.

Consider the loss L = J(u, d) − Jopt(d), where d is a £xed (generally non-zero)
disturbance. We here make the following additional assumptions:

1. The cost function J is smooth, or more precisely twice differentiable.
2. As before, we assume that the optimization problem is unconstrained. If it is optimal

to keep some variable at a constraint, then we assume that this is implemented (“active
constraint control”) and consider the remaining unconstrained problem.

3. The dynamics of the problem can be neglected when evaluating the cost; that is, we
consider steady-state control and optimization.

4. We control as many variables z as there are available degrees of freedom, i.e. nz = nu.

For a £xed d we may then express J(u, d) in terms of a Taylor series expansion in u around
the optimal point. We get

J(u, d) = Jopt(d) +

(
∂J

∂u

)T

opt︸ ︷︷ ︸
=0

(u− uopt(d))

+
1

2
(u− uopt(d))T

(
∂2J

∂u2

)

opt︸ ︷︷ ︸
=Juu

(u− uopt(d)) + · · · (10.2)

We will neglect terms of third order and higher (which assumes that we are reasonably close
to the optimum). The second term on the right hand side in (10.2) is zero at the optimal point
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for an unconstrained problem. Equation (10.2) quanti£es how a non-optimal input u − uopt

affects the cost function. To study how this relates to output selection we use a linearized
model of the plant

z = Gu+Gdd (10.3)

where G and Gd are the steady-state gain matrix and disturbance model respectively. For a
£xed d, we have z − zopt = G(u− uopt). If G is invertible we then get

u− uopt = G−1(z − zopt) (10.4)

Note that G is a square matrix, since we have assumed that nz = nu. From (10.2) and (10.4)
we get the second-order accurate approximation

L = J − Jopt ≈
1

2
(z − zopt)T G−T JuuG

−1 (z − zopt) (10.5)

where the term Juu = (∂2J/∂u2)opt is independent of z. Alternatively, we may write

L =
1

2
‖z̃‖22 (10.6)

where z̃ = J
1/2
uu G−1(z − zopt). These expressions for the loss L yield considerable insight.

Obviously, we would like to select the controlled outputs z such that z−zopt is zero. However,
this is not possible in practice because of (1) varying disturbances d and (2) implementation
error e associated with control of z. To see this more clearly, we write

z − zopt = z − r + r − zopt = e+ eopt(d) (10.7)

where
Optimization error : eopt(d) , r − zopt(d)

Implementation error : e , z − r
First, we have an optimization error eopt(d) because the algorithm (e.g. the cook book for
cake baking) gives a desired r which is different from the optimal zopt(d). Second, we have
a control or implementation error e because control is not perfect; either because of poor
control performance or because of an incorrect measurement (steady-state bias) nz . If we
have integral action in the controller, then the steady-state control error is zero, and we have

e = nz

If z is directly measured then nz is its measurement error. If z is a combination of several
measurements y, z = Hy, see Figure 10.2(b), then nz = Hny , where ny is the vector of
measurement errors for the measurements y.

In most cases, the errors e and eopt(d) can be assumed independent. The maximum value
of |z − zopt| for the expected disturbances and implementation errors, which we call the
“expected optimal span”, is then

span(z) = max
d,e
|z− zopt| = max

d
|eopt(d)|+max

e
|e| (10.8)
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Example 10.1 Cake baking continued. Let us return to the question: why select the oven temperature
as a controlled output? We have two alternatives: a closed-loop implementation with z = T (the oven
temperature) and an open-loop implementation with z = u = Q (the heat input). From experience, we
know that the optimal oven temperature Topt is largely independent of disturbances and is almost
the same for any oven. This means that we may always specify the same oven temperature, say
r = Ts = 190◦C, as obtained from the cook book. On the other hand, the optimal heat input Qopt

depends strongly on the heat loss, the size of the oven, etc., and may vary between, say, 100 W and 5000

W. A cook book would then need to list a different value of r = Qs for each kind of oven and would in
addition need some correction factor depending on the room temperature, how often the oven door is
opened, etc. Therefore, we £nd that it is much easier to get eopt = Ts − Topt [◦C] small than to get
eopt = Qs−Qopt [W] small. Thus, the main reason for controlling the oven temperature is to minimize
the optimization error. In addition, the control error e is expected to be much smaller when controlling
temperature.

From (10.5) and (10.7), we conclude that we should select the controlled outputs z such that:

1. G−1 is small (i.e. G is large); the choice of z should be such that the inputs have a large
effect on z.

2. eopt(d) = r−zopt(d) is small; the choice of z should be such that its optimal value zopt(d)
depends only weakly on the disturbances (and other changes).

3. e = z − r is small; the choice of z should be such that it is easy to keep the control or
implementation error e small.

4. G−1 is small, which implies that G should not be close to singular. For cases with two or
more controlled variables, the variables should be selected such that they are independent
of each other.

By proper scaling of the variables, these four requirements can be combined into the
“maximize minimum singular value rule” as discussed next.

10.3.3 Selecting controlled outputs: maximum scaled gain method
We here derive a very simple method for selecting controlled variables in terms of the steady-
state gain matrix G from inputs u (unconstrained degrees of freedom) to outputs z (candidate
controlled variables).

Scalar case. In many cases we only have one unconstrained degree of freedom (u is a
scalar and we want to select one z to control). Introduce the scaled gain from u to z:

G′ = G/span(z)

Note form (10.8) that span(z) = maxd,e |z − zopt| includes both the optimization (setpoint)
error and the implementation error. Then, from (10.5), the maximum expected loss imposed
by keeping z constant is

Lmax = max
d,e

L =
|Juu|
2

(
maxd,e |z − zopt|

G

)2

=
|Juu|
2

1

|G′|2 (10.9)

Here |Juu|, the Hessian of the cost function, is independent of the choice for z. From (10.9),
we then get that the “scaled gain” |G′| should be maximized to minimize the loss. Note that
the loss decreases with the square of the scaled gain. For an application, see Example 10.6 on
page 398.



CONTROL STRUCTURE DESIGN 395

Multivariable case. Here u and z are vectors. Introduce the scaled outputs z ′ , S1z and
the scaled plant G′ = S1G. Similar to the scalar case we scale with respect to the span,

S1 = diag{ 1

span(zi)
} (10.10)

where
span(zi) = max

d,e
|zi − zi,opt| = max

d
ei,opt(d) + max

e
|ei|

From (10.6), we have L = 1
2‖z̃‖22 where z̃ = J

1/2
uu G−1(z − zopt). Introducing the scaled

outputs gives z̃ = J
1/2
uu G′−1(z′ − z′opt). With the assumed scaling, the individual scaled

output deviations z′i − z′i,opt are less than 1 in magnitude. However, the variables zi are
generally correlated, so any combinations of deviations with magnitudes less than 1 may
not possible. For example, the optimal values of both z1 and z2 may change in the same
direction when there is a disturbance. Nevertheless, we will here assume that the expected
output deviations are uncorrelated by making the following assumption:

A1 The variations in z′i − z′iopt are uncorrelated, or more precisely, the “worst-case”
combination of output deviations z′i − z′iopt , with ‖z′ − z′opt‖2 = 1, can occur in practice.
Here z′ = S1z denotes the scaled outputs.

The reason for using the vector 2-norm, and not the max-norm, is mainly for mathematical
comvenience. With assumption A1 and (A.104), we then have from (10.6) that the maximum
(worst-case) loss is

Lmax = max
‖z′−z′opt‖2≤1

‖z̃‖2
2

=
1

2
σ̄2(J1/2uu G

′−1) =
1

2

1

σ2(G′J−1/2uu )
(10.11)

where G′ = S1G and the last equality follows from (A.40). The result may be stated as
follows

Maximum gain (minimum singular value) rule. Let G denote the steady-
state gain matrix from inputs u (unconstrained degrees of freedom) to outputs
z (candidate controlled variables). Scale the outputs using S1 in (10.10) and
assume that A1 holds. Then to minimize the steady-state loss select controlled
variables z that maximize σ(S1GJ−1/2uu ).

The rule may stated as minimizing the scaled minimum singular value, σ(G′), of the scaled
gain matrix G′ = S1GS2, where the output scaling matrix S1 has the inverse of the spans
along its diagonal, whereas the input “scaling” is generally a full matrix, S2 = J

−1/2
uu .

This important result was £rst presented in the £rst edition of this book (Skogestad and
Postlethwaite, 1996) and proven in more detail by Halvorsen et al. (2003).

Example 10.5 The aero-engine application in Chapter 13 (page 500) provides a nice illustration of
output selection. There the overall goal is to operate the engine optimally in terms of fuel consumption,
while at the same time staying safely away from instability. The optimization layer is a look-up table,
which gives the optimal parameters for the engine at various operating points. Since the engine
at steady-state has three degrees of freedom we need to specify three variables to keep the engine
approximately at the optimal point, and six alternative sets of three outputs are given in Table 13.3.2
(page 503). For the scaled variables, the value of σ(G′(0)) is 0.060, 0.049, 0.056, 0.366, 0.409 and
0.342 for the six alternative sets. Based on this, the £rst three sets are eliminated. The £nal choice is
then based on other considerations including controllability.

skoge
Cross-Out

skoge
Replacement Text
maximizing
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Remark 1 In the maximum gain rule, the objective function and the magnitudes of the disturbances
and measurement noise enter indirectly through the scaling S1 of the outputs z. To obtain S1 =
diag{ 1

span(zi)
} we need to obtain for each candidate output span(zi) = maxd |ei,opt(d)| +max |ei|.

The second contribution to the span is simply the expected measurement error, which is the
measurement error plus the control error. The £rst contribition, ei,opt, may be obtained from a
(nonlinear) model as follows: Compute the optimal values of the unconstrained z for the expected
disturbances (with optimally constrained variables £xed). This yields a “look-up” table of zopt for
various expected disturbance combinations. From this data obtain for each candidate output, the
expected variation in its optimal value, eiopt = (ziopt,max − ziopt,min)/2.

Remark 2 Our desire to have σ(G′) large for output selection is not related to the desire to have σ(G)
large to avoid input constraints as discussed in Section 6.9. In particular, the scalings, and thus the
matrix G′, are different for the two cases.

Remark 3 We have in our derivation assumed that the nominal operating point is optimal. However,
it can be shown that the results are independent of the operating point, provided we are in the region
where the cost can be approximated by a quadratic function as in (10.2) (Alstad, 2005). Thus, it is
equally important to select the right controlled variables when we are nominally non-optimal.

Exercise 10.1 Recall that the maximum gain rule requires that the minimum singular value of the
(scaled) gain matrix be maximized. It is proposed that the loss can simply be minimized by selecting the
controlled variables as z = βy, where β is a large number. Show that such a scaling does not affect the
selection of controlled variables using the singular value method.

10.3.4 Selecting controlled outputs: exact local method
The maximum gain rule is based on assumption A1 on page 395, which may not hold for
some cases with more than one controlled variable (nz = nu > 1). This is pointed out by
Halvorsen et al. (2003), who derived the following exact local method.

Let the diagonal matrix Wd contain the magnitudes of expected disturbances and the
diagonal matrixWe contain the expected implementation errors associated with the individual
controlled variables. We assume that the combined disturbance and implementation error

vector has norm 1, ‖
[
d′

e′

]
‖2 = 1. Then, it may be shown that the worst-case loss

is (Halvorsen et al., 2003)

max

‖
[
d′

e′

]
‖2≤1

L =
1

2
σ̄([Md Me ])

2 (10.12)

where

Md = J1/2uu

(
J−1uu Jud −G−1Gd

)
Wd (10.13)

Me = J1/2uu G
−1We (10.14)

Here Juu =
(
∂2J/∂u2

)
opt

, Jud =
(
∂2J/∂u∂d

)
opt

and the scaling enters through the
weights Wd and We.
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10.3.5 Selecting controlled outputs: direct evaluation of cost
The local methods presented in Sections 10.3.2-10.3.4 are very useful. However, in many
practical examples nonlinear effects are important. In particular, the local methods may not
be able to detect feasibility problems. For example, in marathon running, selecting a control
strategy based on constant speed may be good locally (for small disturbances). However,
if we encounter a steep hill (a large disturbance), then operation may not be feasible,
because the selected reference value may be too high. In such cases, we may need to use
a “brute force” direct evaluation of the loss and feasibility for alternative sets of controlled
variables. This is done by solving the nonlinear equations, and evaluating the cost function
J for various selected disturbances d and control errors e, assuming z = r + e where r
is kept constant (Skogestad, 2000). Here r is usually selected as the optimal value for the
nominal disturbance, but this may not be the best choice and its value may also be found
by optimization (“optimal back-off”) (Govatsmark, 2003). The set of controlled outputs
with smallest worst-case or average value of J is then preferred. This approach may be
time consuming because the solution of the nonlinear equations must be repeated for each
candidate set of controlled outputs.

10.3.6 Selecting controlled outputs: measurement combinations
We have so far selected z as a subset of the available measurements y. More generally, we may
consider combinations of the measurements. We will restrict ourselves to linear combinations

z = Hy (10.15)

where y now denotes all the available measurements, including the inputs u used by the
control system. The objective is to £nd the measurement combination matrix H .

Optimal combination. Write the linear model in terms of the measurements y as
y = Gyu + Gy

dd. Locally, the optimal linear combination is obtained by minimizing
σ̄([Md Me ]) in (10.12) with We = HWny , where Wny contains the expected
measurement errors associated with the individual measured variables; see Halvorsen et al.
(2003). Note that H enters (10.12) indirectly, since G = HGy and Gd = HGy

d depend on
H . However, (10.12) is a nonlinear function of H and numerical search-based methods need
to be used.

Null space method. A simpler method for £nding H is the null space method proposed
by Alstad and Skogestad (2004), where we neglect the implementation error, i.e., Me = 0 in
(10.14). Then, a constant setpoint policy (z = r) is optimal if zopt(d) is independent of d,
that is, when zopt = 0 · d in terms of deviation variables. Note that the optimal values of the
individual measurements yopt still depend on d and we may write

yopt = Fd (10.16)

where F denotes the optimal sensitivity of y with respect to d. We would like to £nd z = Hy
such that zopt = Hyopt = HFd = 0 · d for all d. To satisfy this, we must require

HF = 0 (10.17)

or thatH lies in the left null space of F . This is always possible, provided ny ≥ nu+nd. This
is because the null space of F has dimension ny−nd and to make HF = 0, we must require
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that nz = nu < ny − nd. It can be shown that when (10.17) holds, Md = 0. If there are too
many disturbances, i.e. ny < nu+nd, then one should select only the important disturbances
(in terms of economics) or combine disturbances with a similar effect on y (Alstad, 2005).

In the presence of implementation errors, even when (10.17) holds such that Md = 0, the
loss can be large due to non-zero Me. Therefore, the null space method does not guarantee
that the loss L using a combination of measurements will be less than using the individual
measurements. One practical approach is to select £rst the candidate measurements y, whose
sensitivity to the implementation error is small (Alstad, 2005).

10.3.7 Selecting controlled outputs: examples
The following example illustrates the simple “maximize scaled gain rule” (mimimum singular
value method).

Example 10.6 Cooling cycle. A simple cooling cycle or heat pump consists of a compressor (where
work Ws is supplied and the pressure is increased to ph), a high-pressure condenser (where heat is
supplied to the surroundings at high temperature), an expansion valve (where the ¤uid is expanded to
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Figure 10.5: Cooling cycle

a lower pressure pl such that the temperature drops) and a low-pressure evaporator (where heat is
removed from the surroundings at low temperature); see Figure 10.5. The compressor work is indirectly
set by the amount of heating or cooling, which is assumed given. We consider a design with a ¤ooded
evaporator where there is no super-heating. In this case, the expansion valve position (u) remains as
an unconstrained degree of freedom, and should be adjusted to minimize the work supplied, J = Ws.
The question is: what variable should we control?

Seven alternative controlled variables are considered in Table 10.1. The data is for an ammonia
cooling cycle, and we consider ∆yopt for a small disturbance of 0.1 K in the hot surroundings
(d1 = TH ). We do not consider implementation errors. Details are given in Jensen and Skogestad
(2005). From (10.9), it follows that it may be useful to compute the scaled gain G′ = G/span(z(di))
for the various disturbances di and look for controlled variables z with a large value of |G′|. From a
physical point of view, two obvious candidate controlled variables are the high and low pressures (ph
and pl). However, these appear to be poor choices with scaled gains |G′| of 126 and 0, respectively. The
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Table 10.1: Local “maximum gain” analysis for selecting controlled variable for cooling cycle
Variable (y) ∆zopt(d1) G = ∆z

∆u
|G′| = |G|

|∆zopt(d1)|
Condenser pressure, ph [Pa] 3689 −464566 126
Evaporator pressure, pl [Pa] −167 0 0
Temperature at condenser exit, Th [K] 0.1027 316 3074
Degree of sub-cooling, Th − T sat(ph) [K] −0.0165 331 20017
Choke valve opening, u 8.0× 10−4 1 1250
Liquid level in condenser, Mh [m3] 6.7× 10−6 −1.06 157583
Liquid level in evaporator, Ml [m3] −1.0× 10−5 1.05 105087

zero gain is because we assume a given cooling dutyQC = UA(Tl−TC) and further assume saturation
Tl = T sat(pl). Keeping pl constant is then infeasible when, for example, there are disturbances in TC .
Other obvious candidates are the temperatures at the exit of the heat exchangers, Th and Tl. However,
the temperature Tl at the evaporator exit is directly related to pl (because of saturation) and also has
a zero gain. The open-loop policy with a constant valve position u has a scaled gain of 1250, and
the temperature at the condenser exit (Th) has a scaled gain of 3074. Even more promising is the
degree of subcooling at the condenser exit with a scaled gain of 20017. Note that the loss decreases
in proportion to |G′|2, so the increase in the gain by a factor 20017/1250 = 16.0 when we change
from constant choke valve opening (“open-loop”) to constant degree of subcooling, corresponds to a
decrease in the loss (at least for small perturbations) by a factor 16.02 = 256. Finally, the best single
measurements seem to be the amount of liquid in the condenser and evaporator, Mh and Ml, with
scaled gains of 157583 and 105087, respectively. Both these strategies are used in actual heat pump
systems. A “brute force” evaluation of the cost for a (large) disturbance in the surrounding temperature
(d1 = TH ) of about 10 K, con£rms the linear analysis, except that the choice z = Th turns out to be
infeasible. The open-loop policy with constant valve position (z = u) increases the compressor work
by about 10%, whereas the policy with a constant condenser level (z = Mh) has an increase of less
than 0.003%. Similar results hold for a disturbance in the cold surroundings (d2 = TC ). Note that the
implementation error was not considered, so the actual losses will be larger.

The next simple example illustrates the use of different methods for selection of controlled
variables.

Example 10.7 Selection of controlled variables. As a simple example, consider a scalar
unconstrained problem, with the cost function J = (u−d)2, where nominally d∗ = 0. For this problem
we have three candidate measurements,

y1 = 0.1(u− d); y2 = 20u; y3 = 10u− 5d

We assume the disturbance and measurement noises are of unit magnitude, i.e. |d| ≤ 1 and |nyi | ≤ 1.
For this problem, we always have Jopt(d) = 0 corresponding to

uopt(d) = d, y1,opt(d) = 0, y2,opt(d) = 20d and y3,opt(d) = 5d

For the nominal case with d∗ = 0, we thus have uopt(d∗) = 0 and yopt(d∗) = 0 for all candidate
controlled variables and at the nominal operating point we have Juu = 2, Jud = −2. The linearized
models for the three measured variables are

y1: Gy
1 = 0.1, Gy

d1 = −0.1
y2: Gy

2 = 20, Gy
d2 = 0

y3: Gy
3 = 10, Gy

d3 = −5
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Let us £rst consider selecting one of the individual measurements as a controlled variable. We have

Case 1: z = y1, G = Gy
1

Case 2: z = y2, G = Gy
2

Case 3: z = y3, G = Gy
3

The losses for this example can be evaluated analytically, and we £nd for the three cases

L1 = (10e1)
2; L2 = (0.05e2 − d)2; L3 = (0.1e3 − 0.5d)2

(For example, with z = y3, we have u = (y3 + 5d)/10 and with z = ny3 , we get L3 = (u − d)2 =
(0.1ny3 + 0.5d − d)2.) With |d| ≤ 1 and |nyi | ≤ 1, the worst-case losses (with |d| = 1 and
|nyi | = 1) are L1 = 100, L2 = 1.052 = 1.1025 and L3 = 0.62 = 0.36, and we £nd that
z = y3 is the best overall choice for self-optimizing control and z = y1 is the worst. We note that
z = y1 is perfectly self-optimizing with respect to disturbances, but has the highest loss. This highlights
the importance of considering the implementation error when selecting controlled variables. Next, we
compare the three different methods discussed earlier in this section.
A. Maximum scaled gain (singular value rule): For the three choices of controlled variables we have

without scaling |G1| = σ(G1) = 0.1, σ(G2) = 20 and σ(G3) = 10. This indicates that z2 is
the best choice, but this is only correct with no disturbances. Let us now follow the singular value
procedure.
1. The input is scaled by the factor 1/

√
(∂2J/∂u2)opt = 1/

√
2 such that a unit deviation in each

input from its optimal value has the same effect on the cost function J .
2. To £nd the optimum setpoint error, £rst note that uopt(d) = d. Substituting d = 1 (the maximum

disturbance) and u = uopt = 1 (the optimal input) into the de£ning expressions for the
candidate measurements, then gives eopt,1 = 0.1(u − d) = 0, eopt,2 = 20u = 20 and
eopt,3 = 10u − 5d = 5. Alternatively, one may use the expression (Halvorsen et al., 2003)
eopt,i = (Gy

i J
−1
uu Jud −Gy

di)∆d. Note that only the magnitude of eopt,i matters.
3. For each candidate controlled variable the implementation error is assumed to be nz = 1.
4. The expected variation (“span”) for z = y1 is |eopt,i|+ |ny1 | = 0+ 1 = 1. Similarly, for z = y2

and z = y3, the spans are 20 + 1 = 21 and 5 + 1 = 6, respectively.
5. The scaled gain matrices and the worst-case losses are

z = y1 : |G′1| = 1
1
· 0.1/

√
2 = 0.071; L1 = 1

2|G′|2 = 100

z = y2 : |G′2| = 1
21
· 20/

√
2 = 0.67; L2 = 1

2|G′|2 = 1.1025

z = y3 : |G′3| = 1
6
· 10/

√
2 = 1.18; L3 = 1

2|G′|2 = 0.360

We note from the computed losses that the singular value rule (= maximize scaled gain rule) suggests
that we should control z = y3, which is the same as found with the “exact” procedure. The losses
are also identical.

B. Exact local method: In this case, we have Wd = 1 and Wei = 1 and for y1

Md =
√
2
(
2−1 · (−2)− 0.1−1 · (−0.1)

)
· 1 = 0 and Me =

√
2 · 0.1−1 · 1 = 10

√
2

L1 =
σ̄([Md Me ])2

2
=

1

2
(σ̄(0 10

√
2)) = 100

Similarly, we £nd with z2 and z3

L2 =
1

2
(σ̄(−

√
2
√
2/20)) = 1.0025 and L3 =

1

2
(σ̄(−

√
2/2

√
2/10)) = 0.26

Thus, the exact local method also suggests selecting z = y3 as the controlled variable. The reason
for the slight difference from the “exact” nonlinear losses is that we assumed d and ny individually
to be less than 1 in the exact nonlinear method, whereas in the exact linear method we assumed that
the combined 2-norm of d and ny was less than 1.
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C. Combinations of measurements: We now want to £nd the best combination z = Hy. In addition to
y1, y2 and y3, we also include the input u in the set y, i.e.

y = [ y1 y2 y3 u ]
T

We assume that the implementation error for u is 1, i.e. nu = 1. We then have W y
n = I , where W y

n

is a 4× 4 matrix. Furthermore, we have

Gy = [ 0.1 20 10 1 ]T Gy
d = [−0.1 0 −5 0 ]T

Optimal combination. We wish to £nd H such that σ̄([Md Me ]) in (10.12) is minimized, where
G = HGy , Gd = HGy

d, We = HW y
n , Juu = 2, Jud = −2 and Wd = 1. Numerical optimization

yields Hopt = [ 0.0209 −0.2330 0.9780 −0.0116 ]; that is, the optimal combination of the
three measurements and the manipulated input u is

z = 0.0209y1 − 0.23306y2 + 0.9780y3 − 0.0116u

We note, as expected, that the most important contribution to z comes from the variable y3. The loss
is L = 0.0405, so it is reduced by a factor 6 compared to the previous best case (L = 0.26) with
z = y3.
Null space method. In the null space method we £nd the optimal combination without implementation
error. This £rst step is to £nd the optimal sensitivity with respect to the disturbances. Since uopt = d,
we have

∆yopt = F∆d = Gy∆uopt +Gy
d∆d = (Gy +Gy

d)︸ ︷︷ ︸
F

∆d

and thus the optimal sensitivity is

F = [ 0 20 5 1 ]T

To have zero loss with respect to disturbances we need to combine at least nu + nd = 1 + 1 = 2
measurements. Since we have four candidate measurements, there are an in£nite number of possible
combinations, but for simplicity of the control system, we prefer to combine only two measurements.
To reduce the effect of implementation errors, it is best to combine measurements y with a large
gain, provided they contain different information about u and d. More precisely, we should maximize
σ([Gy Gy

d ]). From this we £nd that measurements 2 and 3 are the best, with σ([Gy Gy
d ]) =

σ
[
20 0
10 −5

]
= 4.45. To £nd the optimal combination we use HF = 0 or

20h2 + 5h3 = 0

Setting h2 = 1 gives h3 = −4, and the optimal combination is z = y2 − 4y3 or (normalizing the
2-norm of H to 1):

z = −0.2425y2 + 0.9701y3

The resulting loss when including the implementation error is L = 0.0425. We recommend the use
of this solution, because the loss is only marginally higher (0.0425 instead of 0.0405) than that
obtained using the optimal combination of all four measurements.
Maximizing scaled gain for combined measurements. For the scalar case, the “maximize scaled gain
rule” can also be used to £nd the best combination. Consider a linear combination of measurements
2 and 3, z = h2y2 + h3y3. The gain from u to z is G = h2G

y
2 + h3G

y
3 . The span for z,

span(z) = |eopt,z|+ |ez|, is obtained by combining the individual spans

eopt,z = h2eopt,2 + h3eopt,3 = h2f2 + h3f3 = 20h2 + 5h3
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and |ez| = h2|e2| + h3|e3|. If we assume that the combined implementation errors are 2-norm

bounded, ‖
[
e2
e3

]
‖2 ≤ 1, then the worst-case implementation error for z is |ez| = ‖

[
h2
h3

]
‖2. The

resulting scaled gain that should be maximized in magnitude is

G′ =
G

span
=

h2G
y
2 + h3G

y
3

|h2eopt,2 + h3eopt,3|+ |ez|
(10.18)

The expression (10.18) gives considerable insight into the selection of a good measurement
combination. We should select H (i.e. h2 and h3) in order to maximize |G′|. The null space method
corresponds to selecting H such that eopt = h2eopt,2 + h3eopt,3 = 0. This gives h2 = −0.2425
and h3 = 0.9701, and |ez| = ‖

[
h2
h3

]
‖2 = 1. The corresponding scaled gain is

G′ =
−20 · 0.2425 + 10 · 0.9701

0 + 1
= −4.851

with a loss L = α/(2|G′|2) = 0.0425 (as found above). (The factor α = Juu = 2 is included
because we did not scale the inputs when obtaining G′.)

Some additional examples can be found in Skogestad (2000), Halvorsen et al. (2003),
Skogestad (2004b) and Govatsmark (2003).

Exercise 10.2 ∗ Suppose that we want to minimize the LQG-type objective function, J = x2 + ru2,
r > 0, where the steady-state model of the system is

x+ 2u− 3d = 0

y1 = 2x, y2 = 6x− 5d, y3 = 3x− 2d

Which measurement would you select as a controlled variable for r = 1? How does your conclusion
change with variation in r? Assume unit implementation error for all measurements.

Exercise 10.3 In Exercise 10.2, how would your conclusions change when u (open-loop
implementation policy) is also included as a candidate controlled variable? First, assume the
implementation error for u is unity. Repeat the analysis, when the implementation error for u and
each of the measurements is 10.

10.3.8 Selection of controlled variables: summary
When the optimum coincides with constraints, optimal operation is achieved by controlling
the active constraints. It is for the remaining unconstrained degrees of freedom that the
selection of controlled variables is a dif£cult issue.

The most common “unconstrained case” is when there is only a single unconstrained
degree of freedom. The rule is then to select a controlled variable such that the (scaled) gain
is maximized.

Scalar rule: “maximize scaled gain |G′|”

• G = unscaled gain from u to z
• Scaled gain G′ = G/span
• span = optimal range (|eopt|) + implementation error (|e|)

In words, this “maximize scaled gain rule” may be expressed as follows:
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Select controlled variables z with a large controllable range compared to their
sum of optimal variation and implementation error. Here

• controllable range = range which may be reached by varying the inputs (as
given by the steady-state gain)
• optimal variation: due to disturbance (at steady-state)
• implementation error = sum of control error and measurement error (at steady-

state)

For cases with more than one unconstrained degree of freedom, we use the gain in the most
dif£cult direction as expressed by the minimum singular value.

General “maximum gain” rule: “maximize the (scaled) minimum singular
value σ(G′) (at steady-state)”, where G′ = S1GS2 and S2 = J

−1/2
uu (see

page 395 for details).

We have written “at steady-state” because the cost usually depends on the steady-state, but
more generally it could be replaced by “at the bandwidth frequency of the layer above (which
adjusts the setpoints for z)”.

10.4 Regulatory control layer
In this section, we are concerned with the regulatory control layer. This is at the bottom of
the control hierarchy and the objective of this layer is generally to “stabilize” the process and
facilitate smooth operation. It is not to optimize objectives related to pro£t, which is done
at higher layers. Usually, this is a decentralized control system of “low complexity” which
keeps a set of measurements at given setpoints. The regulatory control layer is usually itself
hierarchical, consisting of cascaded loops. If there are “truly” unstable modes (RHP-poles)
then these are usually stabilized £rst. Then, we close loops to “stabilize” the system in the
more general sense of keeping the states within acceptable bounds (avoiding drift), for which
the key issue is local disturbance rejection.

The most important issues for regulatory control are what to measure and what to
manipulate. Some simple rules for these are given on page 405. A fundamental issue
is whether the introduction of a separate regulatory control layer imposes an inherent
performance loss in terms of control of the primary variables z. Interestingly, the answer is
“no” provided the regulatory controller does not contain RHP-zeros, and provided the layer
above has full access to changing the reference values in the regulatory control layer (see
Theorem 10.2 on page 416).

10.4.1 Objectives of regulatory control
Some more speci£c objectives of the regulatory control layer may be:

O1. Provide suf£cient quality of control to enable a trained operator to keep the plant running
safely without use of the higher layers in the control system.

This sharply reduces the need for providing costly backup systems for the higher layers of
the control hierarchy in case of failures.
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O2. Allow for simple decentralized (local) controllers (in the regulatory layer) that can be
tuned on-line.

O3. Take care of “fast” control, such that acceptable control is achievable using “slow”
control in the layer above.

O4. Track references (setpoints) set by the higher layers in the control hierarchy.

The setpoints of the lower layers are often the manipulated variables for the higher levels in
the control hierarchy, and we want to be able to change these variables as directly and with as
little interaction as possible. Otherwise, the higher layer will need a model of the dynamics
and interactions of the outputs from the lower layer.

O5. Provide for local disturbance rejection.

This follows from O4, since we want to be able to keep the controlled variables in the
regulatory control system at their setpoints.

O6. Stabilize the plant (in the mathematical sense of shifting RHP-poles to the LHP).

O7. Avoid “drift” so that the system stays within its “linear region” which allows the use of
linear controllers.

O8. Make it possible to use simple (at least in terms of dynamics) models in the higher
layers.

We want to use relatively simple models because of reliability and the costs involved in
obtaining and maintaining a detailed dynamic model of the plant, and because complex
dynamics will add to the computational burden on the higher-layer control system.

O9. Do not introduce unnecessary performance limitations for the remaining control
problem.

The “remaining control problem” is the control problem as seen from the higher layer
which has as manipulated inputs the setpoints to the lower-level control system and the
possible “unused” manipulated inputs. By “unnecessary” we mean limitations (e.g. RHP-
zeros, large RGA elements, strong sensitivity to disturbances) that do not exist in the original
problem formulation.

10.4.2 Selection of variables for regulatory control
For the following discussion, it is useful to divide the outputs y into two classes:

• y1 – (locally) uncontrolled outputs (for which there is an associated control objective)
• y2 – (locally) measured and controlled outputs (with reference value r2)

By “locally” we mean here “in the regulatory control layer”. Thus, the variables y2 are the
selected controlled variables in the regulatory control layer. We also subdivide the available
manipulated inputs u in a similar manner:

• u1 – (locally) unused inputs (this set may be empty)
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• u2 – (locally) used inputs for control of y2 (usually nu2 = ny2)

We will study the regulatory control layer, but a similar subdivision and analysis could be
performed for any control layer. The variables y1 are sometimes called “primary” outputs,
and the variables y2 “secondary” outputs. Note that y2 is the controlled variable (CV) in the
control layer presently considered. Typically, you can think of y1 as the variables we would
really like to control and y2 as the variables we control locally to make control of y1 easier.

The regulatory control layer should assist in achieving the overall operational goals, so if
the “economic” controlled variables z are known, then we should include them in y1. In other
cases, if the objective is to stop the system from “drifting” away from its steady-state, then the
variables y1 could be a weighted subset of the system states; see the discussion on page 418.

The most important issues for regulatory control are:

1. What should we control (what is the variable set y2)?
2. What should we select as manipulated variables (what is the variable set u2) and how

should it be paired with y2?

The pairing issue arises because we aim at using decentralized SISO control, if at all possible.
In many cases, it is “clear” from physical considerations and experience what the variables
y2 are (see the distillation example below for a typical case). However, we have put the word
“clear” in quotes, because it may sometimes be useful to question the conventional control
wisdom.

We will below, see (10.28), derive transfer functions for “partial control”, which are useful
for a more exact analysis of the effects of various choices for y2 and u2. However, we will
£rst present some simple rules that may be useful for reducing the number of alternatives that
could be studied. This is important in order to avoid a combinatorial growth in possibilities.
For a plant where we want to select m from M candidate inputs u, and l from L candidate
measurements y, the number of possibilities is

(
L

l

)(
M

m

)
=

L!

l!(L− l)!
M !

m!(M −m)!
(10.19)

A few examples: for m = l = 1 and M = L = 2 the number of possibilities is 4; for
m = l = 2 and M = L = 4 it is 36; and for m = M , l = 5 and L = 100 (selecting 5
measurements out of 100 possible) there are 75287520 possible combinations.

It is useful to distinguish between two main cases:

1. Cascade and indirect control. The variables y2 are controlled solely to assist in achieving
good control of the “primary” outputs y1. In this case r2 (sometimes denoted r2,u) is
usually “free” for use as manipulated inputs (MVs) in the layer above for the control of
y1.

2. Decentralized control (using sequential design). The variables y2 are important in
themselves. In this case, their reference values r2 (sometimes denoted r2,d) are usually
not available for the control of y1, but rather act as disturbances to the control of y1.

Rules for selecting y2. Especially for the £rst case (cascade and indirect control), the
following rules may be useful for identifying candidate controlled variables y2 in the
regulatory control layer:

1. y2 should be easy to measure.
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2. Control of y2 should “stabilize” the plant.
3. y2 should have good controllability; that is, it has favourable dynamics for control.
4. y2 should be located “close” to the manipulated variable u2 (as a consequence of rule 3,

because for good controllability we want a small effective delay; see page 57).
5. The (scaled) gain from u2 to y2 should be large.

In words, the last rule says that the controllable range for y2 (which may be reached
by varying the inputs u2) should be large compared to its expected variation (span). It
is a restatement of the maximum gain rule presented on page 395 for selecting primary
(“economic”) controlled variables z. The rule follows because we would like to control
variables y2 that contribute to achieving optimal operation. For the scalar case, we should
maximize the gain |G′22| = |G22|/span(y2), where G22 is the unscaled transfer function
from u2 to y2, and span(y2) is the sum of the optimal variation and the implementation error
for y2. For cases with more than one output, the “gain” is given by the minimum singular
value, σ(G′22). The scaled gain (including the optimal variation and implementation error)
should be evaluated for constant u1 and approximately at the bandwidth frequency of the
control layer immediately above (which adjust the references r2 for y2).

Rules for selecting u2. To control y2, we select a subset u2 of the available manipulated
inputs u. Similar considerations as for y2 apply to the choice of candidate manipulated
variables u2:

1. Select u2 so that controllability for y2 is good; that is, u2 has a “large” and “direct” effect
on y2. Here “large” means that the gain is large, and “direct” means good dynamics with
no inverse response and a small effective delay.

2. Select u2 to maximize the magnitude of the (scaled) gain from u2 to y2.
3. Avoid using variables u2 that may saturate.

The last item is the only “new” requirement compared to what we stated for selecting y2.
By “saturate” we mean that the desired value of the input u2 exceeds a physical constraint;
for example, on its magnitude or rate. The last rule applies because, when an input saturates,
we have effectively lost control, and recon£guration may be required. Preferably, we would
like to minimize the need for recon£guration and its associated logic in the regulatory control
layer, and rather leave such tasks for the upper layers in the control hierarchy.

Example 10.8 Regulatory control for distillation column: basic layer. The overall control
problem for the distillation column in Figure 10.6 has £ve manipulated inputs

u = [L V D B VT ]
T

These are all ¤ows [mol/s]: re¤ux L, boilup V , distillate D, bottom ¤ow B, and overhead vapour
(cooling) VT . What to control (y) is yet to be decided.

Overall objective. From a steady-state (and economic) point of view, the column has only three
degrees of freedom2 With pressure also controlled, there are two remaining steady-state degrees of
freedom, and we want to identify the economic controlled variables y1 = z associated with these. To do
this, we de£ne the cost function J and minimize it for various disturbances, subject to the constraints,
which include speci£cations on top composition (xD) and bottom composition (xB), together with
upper and lower bounds on the ¤ows. In most cases, the optimal solution lies at the constraints. A very
2 A distillation column has two fewer steady-state than dynamic degrees of freedom, because the integrating

condenser and reboiler levels, which need to be controlled to stabilize the process, have no steady-state effect.
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common situation is that both top and bottom composition optimally lie at their speci£cations (yD,min

and xB,max). We generally choose to control active constraints and then have

y1 = z = [xD xB ]
T

Regulatory control: selection of y2. We need to stabilize the two integrating modes associated with
the liquid holdups (levels) in the condenser and reboiler of the column (MD and MB [mol]). In
addition, we normally have tight control of pressure (p), because otherwise the (later) control of
temperature and composition becomes more dif£cult. In summary, we decide to control the following
three variables in the regulatory control layer:

y2 = [MD MB p ]
T

Note that these three variables are important to control in themselves.

Overall control problem. In summary, we have now identi£ed £ve variables that we want to control

y = [xD xB︸ ︷︷ ︸
y1

MD MB p︸ ︷︷ ︸
y2

]T

The resulting overall 5 × 5 control problem from u to y can be approximated as (Skogestad and
Morari, 1987a):




xD
xB
MD

MB

MV (p)


 =




g11(s) g12(s) 0 0 0
g21(s) g22(s) 0 0 0
−1/s 0 −1/s 0 0

gL(s)/s −1/s 0 −1/s 0
0 1/(s+ kp) 0 0 −1/(s+ kp)







L
V
D
B
VT


 (10.20)

In addition, there are high-frequency dynamics (delays) associated with the inputs (valves) and outputs
(measurements). For control purposes it is very important to include the transfer function gL(s), which
represents the liquid ¤ow dynamics from the top to the bottom of the column, ∆LB = gL(s)∆L.
For control purposes, it may be approximated by a delay, gL(s) = e−θLs. gL(s) also enters into the
transfer function g21(s) from L to xB , and by this decouples the distillation column dynamics at high
frequencies. The overall plant model in (10.20) usually has no inherent control limitations caused by
RHP-zeros, but the plant has two poles at the origin (from the integrating liquid levels, MD and MB),

and also one pole close to the origin (“almost integrating”) in GLV =

[
g11 g12
g21 g22

]
originating from

the internal recycle in the column. These three modes need to be “stabilized”. In addition, for high-
purity separations, there is a potential control problem in that the GLV-subsystem is strongly coupled
at steady-state, e.g. resulting in large elements in the RGA matrices for GLV and also for the overall
5×5 plant, but fortunately the system is decoupled at high frequency because of the liquid ¤ow dynamics
represented by gL(s). Another complication is that composition measurements (y1) are often expensive
and unreliable.

Regulatory control: selection of u2. As already mentioned, the distillation column is £rst stabilized
by closing three decentralized SISO loops for level and pressure, y2 = [MD MB p ]T . These
loops usually interact weakly with each other and may be tuned independently. However, there exist
many possible choices for u2 (and thus for u1). For example, the condenser holdup tank (MD) has
one inlet ¤ow (VT ) and two outlet ¤ows (L and D), and any one of these ¤ows, or a combination,
may be used effectively to control MD . By convention, each choice (“con£guration”) of u2 used for
controlling level and pressure is named by the inputs u1 left for composition control. For example, the
“LV -con£guration” used in many examples in this book refers to a partially controlled system where
u2 = [D B VT ]T is used to control levels and pressure (y2) in the regulatory layer, and we are left
with

u1 = [L V ]
T
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Figure 10.6: Distillation column controlled with the LV -con£guration

to control composition (y1). The LV -con£guration is known to be strongly interactive at steady-state,
as can been seen from the large steady-state RGA elements; see (3.94) on page 100. On the other hand,
the LV -con£guration is good from the point of view that it is the only con£guration where control of
y1 (using u1) is nearly independent of the tuning of the level controllers (K2). This is quite important,
because we normally want “slow” (smooth control) rather than tight control of the levels (MD and
MB). This may give undesirable interactions from the regulatory control layer (y2) into the primary
control layer (y1). However, this is avoided with the LV-con£guration.

Another con£guration is the DV -con£guration where u2 = [L B VT ]T is used to control levels
and pressure, and we are left with

u1 = [D V ]
T

to control compositions. If we were only concerned with controlling the condenser level (MD) then this
choice would be better for cases with dif£cult separations where L/D À 1. This is because to avoid
saturation in u2 we would like to use the largest ¤ow (in this case u2 = L) to control condenser level
(MD). In addition for this case, the steady-state interactions from u1 to y1, as expressed by the RGA,
are generally much less; see (6.74) on page 245. However, a disadvantage with the DV -con£guration
is that the effect of u1 on y1 depends strongly on the tuning of K2. This is not surprising, since using D
to control xD corresponds to pairing on g31 = 0 in (10.20), and D (u1) therefore only has an effect on
xD (y1) when the level loop (from u2 = L to y2 = MD) has been closed.

There are also many other possible con£gurations (choices for the two inputs in u1); with £ve inputs
there are ten alternative con£gurations. Furthermore, one often allows for the possibility of using ratios
between ¤ows, e.g. L/D, as possible degrees of freedom in u1, and this sharply increases the number
of alternatives. However, for all these con£gurations, the effect of u1 on y1 depends on the tuning of
K2, which is undesirable. This is one reason why the LV -con£guration is used most in practice. In the
next section, we discuss how closing a “fast” temperature loop may improve the controllability of the
LV -con£guration.
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In the above example, the variables y2 were important variables in themselves. In the
following example, the variable y2 is controlled to assist in the control of the primary
variables y1.

Example 10.9 Regulatory control for distillation column: temperature control. We will assume
that we have closed the three basic control loops for liquid holdup (MD,MB) and pressure (p) using
the LV -con£guration, see Example 10.8, and we are left with a 2× 2 control problem with

u = [L V ]
T

(re¤ux and boilup) and
y1 = [xD xB ]

T

(product compositions). A controllability analysis of the model GLV(s) from u to y1 shows that there
is (1) an almost integrating mode, and (2) strong interactions. The integrating mode results in high
sensitivity to disturbances at lower frequencies. The control implication is that we need to close a
“stabilizing” loop. A closer analysis of the interactions (e.g. a plot of the RGA elements as a function of
frequency) shows that they are much smaller at high frequencies. The physical reason for this is that L
and xD are at the top of the column, and V and xB at the bottom, and since it takes some time (θL) for
a change in L to reach the bottom, the high-frequency response is decoupled. The control implication is
that the interactions may be avoided by closing a loop with a closed-loop response time less than about
θL.

PSfrag replacements
B
xB
LC

LC

TC

Ts
MB

MD

V
F
zF
p

L
D
yD
PC

VT

Figure 10.7: Distillation column with LV -con£guration and regulatory temperature loop

It turns out that closing one fast loop may take care of both stabilization and reducing interactions.
The issue is then which loop to close. The most obvious choice is to close one of the composition
loops (y1). However, there is usually a time delay involved in measuring composition (xD and xB),
and the measurement may be unreliable. On the other hand, the temperature T is a good indicator of
composition and is easy to measure. The preferred solution is therefore to close a fast temperature loop
somewhere along the column. This loop will be implemented as part of the regulatory control system.
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We have two available manipulated variables u, so temperature may be controlled using re¤ux L or
boilup V . We choose re¤ux L here (see Figure 10.7) because it is more likely that boilup V will reach
its maximum value, and input saturation is not desired in the regulatory control layer. In terms of the
notation presented above, we then have a SISO regulatory loop with

y2 = T ; u2 = L

and u1 = V . The “primary” composition control layer adjusts the temperature setpoint r2 = Ts for
the regulatory layer. Thus, for the primary layer we have

y1 = [xD xB ]
T ; u = [u1 r2 ]

T = [V Ts ]
T

The issue is to £nd which temperature T in the column to control, and for this we may use the “maximum
gain rule”. The objective is to maximize the scaled gain |G′22(jω)| from u2 = L to y2 = T .
Here, |G′22| = |G22|/span where G22 is the unscaled gain and span = optimal range (|eopt|) +
implementation error (|e|) for the selected temperature. The gain should be evaluated at approximately
the bandwidth frequency of the composition layer that adjusts the setpoint r2 = Ts. For this application,
we assume that the primary layer is relatively slow, such that we can evaluate the gain at steady-state,
i.e. ω = 0.

In Table 10.2, we show the normalized temperatures y2 = x, unscaled gain, optimal variation for
the two disturbances, implementation error, and the resulting span and scaled gain for measurements
located at stages 1 (reboiler), 5, 10, 15, 21 (feed stage), 26, 31, 36 and 41 (condenser). The gains
are also plotted as a function of stage number in Figure 10.8. The largest scaled gain of about 88 is
achieved when the temperature measurement is located at stage 15 from the bottom. However, this is
below the feed stage and it takes some time for the change in re¤ux (u2 = L), which enters at the top,
to reach this stage. Thus, for dynamic reasons it is better to place the measurement in the top part of
the column; for example, at stage 27 where the gain has a “local” peak of about 74.

Table 10.2: Evaluation of scaled gain |G′22| for alternative temperature locations (y2) for distillation
example. Span = |∆y2,opt(d1)|+ |∆y2,opt(d2)|+ ey2 . Scaled gain |G′22| = |G22|/span.

Nominal Unscaled Scaled
Stage value y2 G22 ∆y2,opt(d1) ∆y2,opt(d2) ey2 span(y2) |G′22|
1 0.0100 1.0846 0.0077 0.0011 0.05 0.0588 18.448
5 0.0355 3.7148 0.0247 0.0056 0.05 0.0803 46.247
10 0.1229 10.9600 0.0615 0.0294 0.05 0.1408 77.807
15 0.2986 17.0030 0.0675 0.0769 0.05 0.1944 87.480
21 0.4987 9.6947 -0.0076 0.0955 0.05 0.1532 63.300
26 0.6675 14.4540 -0.0853 0.0597 0.05 0.1950 74.112
31 0.8469 10.5250 -0.0893 0.0130 0.05 0.1524 69.074
36 0.9501 4.1345 -0.0420 -0.0027 0.05 0.0947 43.646
41 0.9900 0.8754 -0.0096 -0.0013 0.05 0.0609 14.376

Remarks to example.
1. We use data for “column A” (see Section 13.4) which has 40 stages. This column separates a binary

mixture, and for simplicity we assume that the temperature T on stage i is directly given by the mole
fraction of the light component, Ti = xi. This can be regarded as a “normalized” temperature which
ranges from 0 in the bottom to 1 in the top of the column. The implementation error is assumed to
be the same on all stages, namely ey2 = 0.05 (and with a temperature difference between the two
components of 13.5 K, this corresponds to an implementation error of ±0.68 K). The disturbances
are a 20% increase in feed rate F (d1 = 0.2) and a change from 0.5 to 0.6 in feed mole fraction zF
(d2 = 0.1).
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2. The optimal variation (∆y2,opt(d)) is often obtained from a detailed steady-state model, but it was
generated here from the linear model. For any disturbance d we have in terms of deviation variables
(we omit the ∆’s)

y1 = G12u2 +Gd1d

y2 = G22u2 +Gd2d

The optimal strategy is to have the product compositions constant; that is, y1 = [xD xB ]T = 0.
However, since u2 = L is a scalar, this is not possible. The best solution in a least squares sense
(minimize ‖y1‖2) is found by using the pseudo-inverse, uopt2 = −G†12Gd1d. The resulting optimal
change in the temperature y2 = T is then

yopt2 = (−G22G
†
12Gd1 +Gd2)d (10.21)
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Figure 10.8: Scaled (|G′22|) and unscaled (|G22|) gains for alternative temperature locations for the
distillation example

3. As seen from the solid and dashed lines in Figure 10.8, the local peaks of the unscaled and scaled
gains occur at stages 26 and 27, respectively. Thus, scaling does not affect the £nal conclusion much
in this case. However, if we were to set the implementation error e to zero, then the maximum scaled
gain would be at the bottom of the column (stage 1).

4. We made the choice u2 = L to avoid saturation in the boilup V in the regulatory control layer.
However, if saturation is not a problem, then the other alternative u2 = V may be better. A similar
analysis with u2 = V gives a maximum scaled gain of about 100 is obtained with the temperature
measured at stage 14.
In summary, the overall 5 × 5 distillation control problem may be solved by £rst designing a 4 × 4

“stabilizing” (regulatory) controller K2 for levels, pressure and temperature

y2 = [MD MB p T ]
T , u2 = [D B VT L ]

T

and then designing a 2× 2 “primary” controller K1 for composition control

y1 = [xD xB ], u1 = [V Ts ]

Alternatively, we may interchange L and V in u1 and u2. The temperature sensor (T ) should be located
at a point with a large scaled gain.

We have discussed some simple rules and tools (“maximum gain rule”) for selecting
the variables in the regulatory control layer. The regulatory control layer is usually itself
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hierarchical, consisting of a layer for stabilization of unstable modes (RHP-poles) and a layer
for “stabilization” in terms of disturbance rejection. Next, we introduce pole vectors and
partial control, which are more speci£c tools for addressing the issues of stabilization and
disturbance rejection.

10.4.3 Stabilization: pole vectors
Pole vectors are useful for selecting inputs and outputs for stabilization of unstable modes
(RHP-poles) when input usage is an issue. An important advantage is that the selection of
inputs is treated separately from the selection of outputs and hence we avoid the combinatorial
issue. The main disadvantage is that the theoretical results only hold for cases with a single
RHP-pole, but applications show that the tool is more generally useful.

The issue is: which outputs (measurements) and inputs (manipulations) should be used for
stabilization? We should clearly avoid saturation of the inputs, because this makes the system
effectively open-loop and stabilization is then impossible. A reasonable objective is therefore
to minimize the input usage required for stabilization. In addition, this choice also minimizes
the “disturbing” effect that the stabilization layer has on the remaining control problem.

Recall that u = −KS(r + n − d), so input usage is minimized when the norm of KS is
minimal. We will consider both theH2 andH∞ norms.

Theorem 10.1 (Input usage for stabilization) For a rational plant with a single unstable
mode p, the minimalH2 andH∞ norms of the transfer function KS are given as (Havre and
Skogestad, 2003; Kariwala, 2004)

min
K
‖KS‖2 =

(2p)3/2 · |qT t|
‖up‖2 · ‖yp‖2

(10.22)

min
K
‖KS‖∞ =

2p · |qT t|
‖up‖2 · ‖yp‖2

(10.23)

Here up and yp denote the input and output pole vectors (see page 127), respectively, and
t and q are the right and left eigenvectors of the state matrix A, satisfying At = pt and
qTA = qT p.

Theorem 10.1 applies to plants with any number of RHP-zeros and to both multivariable
(MIMO) and single-loop (SISO) control. In the SISO case, up and yp are the elements in the
pole vectors, up,j and yp,i, corresponding to the selected input (uj) and output (yi). Notice
that the term (qT t) is independent of the selected inputs and outputs, uj and yi. Thus, for a
single unstable mode and SISO control:

The input usage required for stabilization is minimized by selecting the output
yi (measurement) and input uj (manipulation) corresponding to the largest
elements in the output and input pole vectors (yp and up), respectively (see also
Remark 2 on page 137).

This choice maximizes the (state) controllability and observability of the unstable mode. Note
that the selections of measurement yi and input uj are performed independently. The above
result is for unstable poles. However, Havre (1998) shows that the input requirement for
pole placement is minimized by selecting the output and input corresponding to the largest
elements in the yp and up, respectively. This property also holds for LHP-poles, and shows
that pole vectors may also be useful when we want to move stable poles.
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Exercise 10.4 ∗ Show that for a system with a single unstable pole, (10.23) represents the least
achievable value of ‖KS‖∞. (Hint: Rearrange (5.31) on page 178 using the de£nition of pole vectors.)

When the plant has multiple unstable poles, the pole vectors associated with a speci£c
RHP-pole give a measure of input usage required to move this RHP-pole assuming that the
other RHP-poles are unchanged. This is of course unrealistic; nevertheless, the pole vector
approach can be used by stabilizing one source of instability at a time. That is, £rst an input
and an output are selected considering one real RHP-pole or a pair of complex RHP-poles
and a stabilizing controller is designed. Then, the pole vectors are recomputed for the partially
controlled system and another set of variables is selected. This process is repeated until all the
modes are stabilized. This process results in a sequentially designed decentralized controller
and has been useful in several practical applications, as demonstrated by the next example.

Example 10.10 Stabilization of Tennessee Eastman process. The Tennessee Eastman chemical
process (Downs and Vogel, 1993) was introduced as a challenge problem to test methods for
control structure design.3 The process has 12 manipulated inputs and 41 candidate measurements,
of which we consider 11 here; see Havre (1998) for details on the selection of these variables
and scaling. The model has six unstable poles at the operating point considered, p =
[ 0 0.001 0.023± j0.156 3.066± j5.079 ]. The absolute values of the output and input pole vectors
are

|Yp| =




0.000 0.001 0.041 0.112
0.000 0.004 0.169 0.065
0.000 0.000 0.013 0.366
0.000 0.001 0.051 0.410
0.009 0.581 0.488 0.316
0.000 0.001 0.041 0.115
1.605 1.192 0.754 0.131
0.000 0.001 0.039 0.108
0.000 0.001 0.038 0.217
0.000 0.001 0.055 1.485
0.000 0.002 0.132 0.272




|Up|T =




6.815 6.909 2.573 0.964
6.906 7.197 2.636 0.246
0.148 1.485 0.768 0.044
3.973 11.550 5.096 0.470
0.012 0.369 0.519 0.356
0.597 0.077 0.066 0.033
0.135 1.850 1.682 0.110
22.006 0.049 0.000 0.000
0.007 0.054 0.010 0.013
0.247 0.708 1.501 2.021

0.109 0.976 1.447 0.753
0.033 0.095 0.201 0.302




where we have combined pole vectors corresponding to a complex eigenvalue into a single column.
The individual columns of |Yp| and individual rows of |Up| correspond to the poles at 0, 0.001,
0.023± j0.156 and 3.066± j5.079, respectively.

When designing a stabilizing control system, we normally start by stabilizing the “most unstable”
(fastest) pole, i.e. complex poles at 3.066±j5.079 in this case. From the pole vectors, this mode is most
easily stabilized by use of u10 and y10. A PI controller, with proportional gain of −0.05 and integral
time of 300 minutes, is designed for this loop. This simple controller stabilizes the complex unstable
poles at 3.066±j5.079 and also at 0.023±j0.156. This is reasonable since the pole vectors show that
the modes at 0.023 ± j0.156 are observable and controllable through y10 and u10, respectively. For
stabilizing the integrating modes, the pole vectors can be recomputed to select two additional inputs
and outputs; see Havre (1998) for details.

Note that the different choices of inputs and outputs for stabilization have different effects
on the controllability of the stabilized system. Thus, in some cases, variable selection using
pole vectors may need to be repeated a few times before a satisfactory solution is obtained.
An alternative approach is to use the method by Kariwala (2004), which also handles the case
of multiple unstable modes directly, but is more involved than the simple pole-vector-based
method.
3 Simulink and Matlab models for the Tennessee Eastman process are available from Professor Larry Ricker at the

University of Washington (easily found using a search engine).
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Exercise 10.5 ∗ For systems with multiple unstable poles, the variables can be selected sequentially
using the pole vector approach by stabilizing one real pole or a pair of complex poles at a time. Usually,
the selected variable does not depend on the controllers designed in the previous steps. Verify this for
each of the following two systems:

G1(s) = Q(s) ·
[
10 2 1
12 1.5 5.01

]
G2(s) = Q(s) ·

[
10 2 1
12 1 1.61

]

Q(s) =
[
1/(s− 1) 0

0 1/(s− 0.5)

]

(Hint: Use simple proportional controllers for stabilization of p = 1 and evaluate the effect of change
of controller gain on pole vectors in the second iteration.)

10.4.4 Local disturbance rejection: partial control
Let y1 denote the primary variables, and y2 the locally controlled variables. We start by
deriving the transfer functions for y1 for the partially controlled system when y2 is controlled.
We also partition the inputs u into the sets u1 and u2, where the set u2 is used to control y2.
The model y = Gu may then be written4

y1 = G11u1 +G12u2 +Gd1d (10.24)

y2 = G21u1 +G22u2 +Gd2d (10.25)
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Figure 10.9: Partial control

Now assume that feedback control

u2 = K2(r2 − y2,m)

4 We may assume that any stabilizing loops have already been closed, so for the model y = Gu, G includes the
stabilizing controller and u includes any “free” setpoints to the stabilizing layer below.
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is used for the secondary subsystem involving u2 and y2, see Figure 10.9, where y2,m =
y2 + n2 is the measured value of y2. By eliminating u2 and y2, we then get the following
model for the resulting partially controlled system from u1, r2, d and n2 to y1:

y1 =
(
G11 −G12K2(I +G22K2)

−1G21

)
︸ ︷︷ ︸

Pu

u1

+
(
Gd1 −G12K2(I +G22K2)

−1Gd2

)
︸ ︷︷ ︸

Pd

d

+ G12K2(I +G22K2)
−1

︸ ︷︷ ︸
Pr

(r2 − n2) (10.26)

Note that Pd, the partial disturbance gain, is the disturbance gain for a system under partial
control. Pu is the effect of u1 on y1 with y2 controlled. In many cases, the set u1 is empty
because there are no extra inputs. In such cases, r2 is probably available for control of y1,
and Pr gives the effect of r2 on y1. In other cases, r2 may be viewed as a disturbance for the
control of y1.

In the following discussion, we assume that the control of y2 is fast compared to the control
of y1. This results in a time scale separation between these layers, which simpli£es controller
design. To obtain the resulting model we may let K2 →∞ in (10.26). Alternatively, we may
solve for u2 in (10.25) to get

u2 = −G−122 Gd2d−G−122 G21u1 +G−122 y2 (10.27)

We have assumed that G22 is square and invertible, otherwise we can use a least squares
solution by replacing G−122 by the pseudo-inverse, G†22. On substituting (10.27) into (10.24)
and assuming y2 ≈ r2 − n2 (“perfect” control), we get

y1 ≈ (G11 −G12G
−1
22 G21)︸ ︷︷ ︸

Pu

u1 + (Gd1 −G12G
−1
22 Gd2)︸ ︷︷ ︸

Pd

d+G12G
−1
22︸ ︷︷ ︸

Pr

(r2 − n2︸ ︷︷ ︸
y2

) (10.28)

The advantage of the approximation (10.28) over (10.26) is that it is independent of K2, but
we stress that it is useful only at frequencies where y2 is tightly controlled.

Remark 1 Relationships similar to those given in (10.28) have been derived by many authors, e.g. see
the work of Manousiouthakis et al. (1986) on block relative gains and the work of Haggblom and Waller
(1988) on distillation control con£gurations.

Remark 2 Equation (10.26) may be rewritten in terms of linear fractional transformations (page 543).
For example, the transfer function from u1 to y1 is

Fl(G,−K2) = G11 −G12K2(I +G22K2)
−1G21 (10.29)

Exercise 10.6 The block diagram in Figure 10.11 below shows a cascade control system where the
primary output y1 depends directly on the extra measurement y2, so G12 = G1G2, G22 = G2,
Gd1 = [ I G1 ] and Gd2 = [ 0 I ]. Assume tight control of y2. Show that Pd = [ I 0 ] and Pr = G1

and discuss the result. Note that Pr is the “new” plant as it appears with the inner loop closed.

The selection of secondary variables y2 depends on whether u1 or r2 (or any) are available
for control of y1. Next, we consider in turn each of the three cases that may arise.
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1. Cascade control system
Cascade control is a special case of partial control, where we use u2 to control (tightly) the
secondary outputs y2, and r2 replaces u2 as a degree of freedom for controlling y1. We would
like to avoid the introduction of additional (new) RHP-zeros, when closing the secondary
loops. The next theorem shows that this is not a problem.

Theorem 10.2 (RHP-zeros due to closing of secondary loop) Assume that ny1 = nu1

+nu2 and ny2 = nr2 = nu2 (see Figure 10.9). Let the plant G =
[
G11 G12

G21 G22

]
and the

secondary loop (S2 = (I +G22K2)
−1) be stable. Then the partially controlled plant

PCL = [G11 −G12K2S2G21 G12K2S2 ] (10.30)

from [u1 r2] to y1 in (10.26) has no additional RHP-zeros (that are not present in the open-
loop plant [G11 G12 ] from [u1 u2] to y1) if

1. r2 is available for control of y1, and
2. K2 is minimum-phase.

Proof: Under the dimensional and stability assumptions, PCL is a stable and square transfer function
matrix. Thus, the RHP-zeros of PCL are the points in RHP where det(PCL(s)) = 0 (also see Remark 4
on page 141). Using Schur’s formula in (A.14),

det(PCL) = det(M) · det(S2)

where

M =

[
G11 0 G12K2

G21 −I I +G22K2

]

with the partitioning as shown above. By exchanging the columns of M , we have

det(M) = (−1)ndet
([

G11 G12K2 0

G21 I +G22K2 −I

])

= det
([

G11 G12K2

])

= det
([

G11 G12

])
det

([
I 0
0 K2

])

= det
([

G11 G12

])
· det(K2)

The second equality follows since the rearranged matrix is block triangular and det(−I) = (−1)n.
Then, putting everything together, we have that

det(PCL) = det
([

G11 G12

])
· det(K2) · det(S2)

Although the RHP-poles of K2 appear as RHP-zeros of S2 due to the interpolation constraints, these
zeros are cancelled by K2 and thus det(K2) · det(S2) evaluated at RHP-poles of K2 is non-zero.
Therefore, when r2 is available for control of y1 and K2 is minimum-phase, the RHP-zeros of PCL

are the same as the RHP-zeros of [G11 G12 ] and the result follows. When u1 is empty, the transfer
matrix from r2 to y1 is given asG12K2(I+G22K2)

−1 and thusK2 being minimum-phase implies that
the secondary loop does not introduce any additional RHP-zeros. A somewhat more restrictive version
of this theorem was proven by Larsson (2000). The proof here is due to V. Kariwala. Note that the
assumptions on the dimensions of y1 and u2 are made for simplicity of the proof and the conclusions
of Theorem 10.2 still hold when these assumptions are relaxed. 2
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For a stable plant G, the controller K2 can usually be chosen to be minimum-phase. Then,
Theorem 10.2 implies that whenever r2 is available for control of y1, closing the secondary
loops does not introduce additional RHP-zeros. However, note that closing secondary loops
may make the system more sensitive to disturbances if the action of the secondary (inner)
loop “overcompensates” and thereby makes the system more sensitive to the disturbance. As
an example consider a plant with Gd1 = 1, G12 = 1, G22 = −0.1 and Gd2 = 1. Then
with tight control of y2, the disturbance gain for y1 increases by a factor 9, from Gd1 = 1
to Pd = Gd1 − G12G

−1
22 Gd2 = 9. In summary, it follows that we should select secondary

variables for cascade control such that the input–output controllability of the “new” partially
controlled plant PCL = [G11 −G12K2S2G21 G12K2S2 ] = [Pu Pr ] with disturbance
model Pd is better than that of the “original” plant [G11 G12 ] with disturbance model Gd1.
In particular, this requires that

1. σ([Pu Pr ]) (or σ(Pr), if u1 is empty) is large at low frequencies.
2. σ̄([Pd −Pr ]) is small and at least smaller than σ̄(Gd1). In particular, this argument

applies at higher frequencies. Note that Pr measures the effect of measurement noise n2
on y1.

3. To ensure that u2 has enough power to reject the local disturbances d and track r2, based
on (10.27), we require that σ̄(G−122 Gd2) < 1 and σ̄(G−122 ) < 1. Here, we have assumed
that the inputs have been scaled as outlined in Section 1.4.

Remark 1 The above recommendations for selection of secondary variables are stated in terms of
singular values, but the choice of norm is usually of secondary importance. The minimization of

σ̄([Pd −Pr ]) arises if ‖
[
d
n2

]
‖2 ≤ 1 and we want to minimize ‖y1‖2.

Remark 2 By considering the cost function J = mind,n2 y
T
1 y1, the selection of secondary variables

for disturbance rejection using the objectives outlined above is closely related to the concept of self-
optimizing control discussed in Section 10.3.

2. Sequentially designed decentralized control system
When r2 is not available for control of y1, we have a sequentially designed decentralized
controller. Here the variables y2 are important in themselves and we £rst design a controller
K2 to control the subset y2. With this controller K2 in place (a partially controlled system),
we may then design a controller K1 for the remaining outputs.

In this case, secondary loops can introduce “new” RHP-zeros in the partially controlled
system Pu. For example, this is likely to happen if we pair on negative RGA elements
(Shinskey, 1967; 1996); see Example 10.22 (page 447). Such zeros, however, can be moved
to high frequencies (beyond the bandwidth), if it is possible to tune the inner (secondary) loop
suf£ciently fast (Cui and Jacobsen, 2002).

In addition, based on the general objectives for variable selection, we require that σ(Pu)
instead of σ([Pu Pr ]) be large. The other objectives for secondary variable selection are
the same as for cascade control and are therefore not repeated here.

3. Indirect control
Indirect control is when neither r2 nor u1 are available for control of y1. The objective is to
minimize J = ‖y1− r1‖, but we assume that we cannot measure y1. Instead we hope that y1
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is indirectly controlled by controlling y2. With perfect control of y2, as before

y1 = Pdd+ Pr(r2 − n2)

With n2 = 0 and d = 0 this gives y1 = G12G
−1
22 r2, so r2 must be chosen such that

r2 = G22G
−1
12 r1 (10.31)

The control error in the primary output is then

y1 − r1 = Pdd− Prn2 (10.32)

To minimize J = ‖y1 − r1‖ we should therefore (as for the two other cases) select the
controlled outputs y2 such that ‖Pdd‖ and ‖Prn2‖ are small or, in terms of singular values,
σ̄([Pd −Pr ]) is small. The problem of indirect control is closely related to that of cascade
control. The main difference is that in cascade control we also measure and control y1 in an
outer loop; so in cascade control we need ‖ [Pd Pr ] ‖ small only at frequencies outside the
bandwidth of the outer control loop (involving y1).

Remark 1 In some cases, this measurement selection problem involves a trade-off between wanting
‖Pd‖ small (wanting a strong correlation between measured outputs y2 and “primary” outputs y1)
and wanting ‖Pr‖ small (wanting the effect of control errors (measurement noise) to be small). For
example, this is the case in a distillation column when we use temperatures inside the column (y2) for
indirect control of the product compositions (y1). For a high-purity separation, we cannot place the
measurement close to the column end due to sensitivity to measurement error (‖Pr‖ becomes large),
and we cannot place it far from the column end due to sensitivity to disturbances (‖Pd‖ becomes large);
see also Example 10.9 (page 409).

Remark 2 Indirect control is related to the idea of inferential control which is commonly used in
the process industry. However, with inferential control the idea is usually to use the measurement of
y2 to estimate (infer) y1 and then to control this estimate rather than controlling y2 directly, e.g. see
Stephanopoulos (1984). However, there is no universal agreement on these terms, and Marlin (1995)
uses the term inferential control to mean indirect control as discussed above.

Optimal “stabilizing” control in terms of minimizing drift
A primary objective of the regulatory control system is to “stabilize” the plant in terms of
minimizing its steady-state drift from a nominal operating point. To quantify this, let w
represent the variables in which we would like to avoid drift; for example, w could be the
weighted states of the plant. For now let y denote the available measurements and u the
manipulated variables to be used for stabilizing control. The problem is: to minimize the
drift, which variables c should be controlled (at constant setpoints) by u? We assume linear
measurement combinations,

c = Hy (10.33)

and that we control as many variables as the number of degrees of freedom, nc = nu. The
linear model is

w = Gwu+Gw
d d = G̃w

[
u
d

]

y = Gyu+Gy
dd = G̃y

[
u
d

]
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With perfect regulatory control (c = 0), the closed-loop response from d to w is

w = Pw
d d; Pw

d = Gw
d −Gw(HGy)−1HGy

d

Since generally nw > nu, we do not have enough degrees of freedom to make w = 0 (“zero
drift”). Instead, we seek the least squares solution that minimizes ‖w‖2. In the absence of
implementation error, an explicit solution, which also minimizes ‖Pw

d ‖2, is

H = (Gw)T G̃w(G̃y)† (10.34)

where we have assumed that we have enough measurements, ny ≥ nu + nd.
Proof of (10.34): We want to minimize

J = ‖w‖22 = uT (Gw)TGwu+ dT (Gw
d )

TGw
d d+ 2uT (Gw)TGw

d d

Then,
dJ/du = 2(Gw)TGwu+ 2(Gw)TGw

d d = 2(Gw)T G̃w

[
u
d

]

An ideal “self-optimizing” variable is c = dJ/du, as then c = 0 is always optimal with zero loss (in

the absence of implementation error). Now, c = Hy = HG̃y

[
u
d

]
, so to get c = dJ/du, we would

like
HG̃y = (Gw)T G̃w (10.35)

(the factor 2 does not matter). Since ny ≥ nu + nd, (10.35) has an in£nite number of solutions, and
the one using the right inverse of G̃y is given by (10.34). It can be shown that the use of the right
inverse is optimal in terms of minimizing the effect of the (until now neglected) implementation error
on w, provided the measurements (y) have been normalized (scaled) with respect to their expected
measurement error (ny) (Alstad, 2005, p. 52). The result (10.34) was originally proved by Hori et al.
(2005), but this proof is due to V. Kariwala.

2

H computed from (10.34) will be dynamic (frequency-dependent), but for practical
purposes, we recommend that it is evaluated at the closed-loop bandwidth frequency of the
outer loop that adjusts the setpoints for r. In most cases. it is acceptable to use the steady-state
matrices.
Example 10.11 Combination of measurements for minimizing drift of distillation column. We
consider the distillation column (column “A”) with the LV -con£guration and use the same data as in
Example 10.9 (page 409). The objective is to minimize the steady-state drift of the 41 composition
variables (w = states) due to variations in the feed rate and feed composition by controlling a
combination of the available temperature measurements. We have u = L, nu = 1 and nd = 2 and we
need at least nu+nd = 1+2 = 3 measurements to achieve zero loss (see null space method, page 397).
We select three temperature measurements (y) at stages 15, 20 and 26. One reason for not selecting the
measurements located at the column ends is their sensitivity to implementation error, see Example 10.9.
By ignoring the implementation error, the optimal combination of variables that minimizes ‖P w

d (0)‖2
is, from (10.34),

c = 0.719T15 − 0.018T20 + 0.694T26

When c is controlled perfectly at cs = 0, this gives σ̄(Pw
d (0)) = 0.363. This is signi£cantly

smaller than σ̄(Gw
d (0)) = 9.95, which is the “open-loop” deviation of the state variables due to the

disturbances. We have not considered the effect of implementation error so far. Similar to (10.28), it can
be shown that the effect of implementation error onw is given by σ̄(Gw(Gy)

†). With an implementation
error of 0.05 in the individual temperature measurements, we get σ̄(Gw(Gy)

†) = 0.135, which is
small.
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10.5 Control con£guration elements
In this section, we discuss in more detail some of the control con£guration elements
mentioned above. We assume that the measurements y, manipulations u and controlled
outputs z are £xed. The available synthesis theories presented in this book result in a
multivariable controller K which connects all available measurements/commands (y) with
all available manipulations (u),

u = Ky (10.36)
However, such a “big” (full) controller may not be desirable. By control con£guration
selection we mean the partitioning of measurements/commands and manipulations within
the control layer. More speci£cally, we de£ne

Control con£guration. The restrictions imposed on the overall controller K by
decomposing it into a set of local controllers (subcontrollers, units, elements,
blocks) with predetermined links and with a possibly predetermined design
sequence where subcontrollers are designed locally.

In a conventional feedback system, a typical restriction on K is to use a one degree-of-
freedom controller (so that we have the same controller for r and −y). Obviously, this
limits the achievable performance compared to that of a two degrees-of-freedom controller.
In other cases, we may use a two degrees-of-freedom controller, but we may impose the
restriction that the feedback part of the controller (Ky) is £rst designed locally for disturbance
rejection, and then the pre£lter (Kr) is designed for command tracking. In general, this will
limit the achievable performance compared to a simultaneous design (see also the remark on
page 111). Similar arguments apply to other cascade schemes.

Some elements used to build up a speci£c control con£guration are:
• Cascade controllers
• Decentralized controllers
• Feedforward elements
• Decoupling elements
• Selectors
These are discussed in more detail below, and in the context of the process industry in
Shinskey (1967, 1996) and Balchen and Mumme (1988). First, some de£nitions:

Decentralized control is when the control system consists of independent
feedback controllers which interconnect a subset of the output measure-
ments/commands with a subset of the manipulated inputs. These subsets should
not be used by any other controller.

This de£nition of decentralized control is consistent with its use by the control community.
In decentralized control, we may rearrange the ordering of measurements/commands and
manipulated inputs such that the feedback part of the overall controller K in (10.36) has a
£xed block-diagonal structure.

Cascade control arises when the output from one controller is the input to
another. This is broader than the conventional de£nition of cascade control which
is that the output from one controller is the reference command (setpoint) to
another. In addition, in cascade control, it is usually assumed that the inner loop
(K2) is much faster than the outer loop (K1).
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Feedforward elements link measured disturbances to manipulated inputs.

Decoupling elements link one set of manipulated inputs (“measurements”) with
another set of manipulated inputs. They are used to improve the performance
of decentralized control systems, and are often viewed as feedforward elements
(although this is not correct when we view the control system as a whole) where
the “measured disturbance” is the manipulated input computed by another
decentralized controller.

Selectors are used to select for control, depending on the conditions of the
system, a subset of the manipulated inputs or a subset of the outputs.

In addition to restrictions on the structure of K, we may impose restrictions on the way,
or rather in which sequence, the subcontrollers are designed. For most decomposed control
systems we design the controllers sequentially, starting with the “fast” or “inner” or “lower-
layer” control loops in the control hierarchy. Since cascade and decentralized control systems
depend more strongly on feedback rather than models as their source of information, it is
usually more important (relative to centralized multivariable control) that the fast control
loops are tuned to respond quickly.

In this section, we discuss cascade controllers and selectors, and in the following section,
we consider decentralized diagonal control. Let us £rst give some justi£cation for using such
“suboptimal” con£gurations rather than directly designing the overall controller K.

10.5.1 Why use simpli£ed control con£gurations?
Decomposed control con£gurations can be quite complex, see for example Figure 10.13
(page 427), and it may therefore be both simpler and better in terms of control performance to
set up the controller design problem as an optimization problem and let the computer do the
job, resulting in a centralized multivariable controller as used in other chapters of this book.

If this is the case, why are simpli£ed parameterizations (e.g. PID) and control
con£gurations (e.g. cascade and decentralized control) used in practice? There are a number
of reasons, but the most important one is probably the cost associated with obtaining good
plant models, which are a prerequisite for applying multivariable control. On the other hand,
with cascade and decentralized control the controllers are usually tuned one at a time with
a minimum of modelling effort, sometimes even on-line by selecting only a few parameters
(e.g., the gain and integral time constant of a PI controller). Thus:

• A fundamental reason for applying cascade and decentralized control is to save on
modelling effort.

Other bene£ts of cascade and decentralized control may include the following:

• easy for operators to understand
• ease of tuning because the tuning parameters have a direct and “localized” effect
• insensitive to uncertainty, e.g. in the input channels
• failure tolerance and the possibility of taking individual control elements into or out of

service
• few control links and the possibility for simpli£ed (decentralized) implementation
• reduced computation load
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The latter two bene£ts are becoming less relevant as the cost of computing power is
reduced. Based on the above discussion, the main challenge is to £nd a control con£guration
which allows the (sub)controllers to be tuned independently based on a minimum of model
information (the pairing problem). For industrial problems, the number of possible pairings
is usually very high, but in most cases physical insight and simple tools, such as the RGA,
can be helpful in reducing the number of options to a manageable number. To be able to tune
the controllers independently, we must require that the loops interact only to a limited extent.
For example, one desirable property is that the steady-state gain from ui to yi in an “inner”
loop (which has already been tuned) does not change too much as outer loops are closed. For
decentralized diagonal control the RGA is a useful tool for addressing this pairing problem
(see page 450).

Remark. We just argued that the main advantage of applying cascade and decentralized control is that
the controllers can be tuned on-line and this saves on the modelling effort. However, in our theoretical
treatment we need a model, for example, to decide on a control con£guration. This seems to be a
contradiction, but note that the model required for selecting a con£guration may be more “generic” and
does not need to be modi£ed for each particular application. Thus, if we have found a good control
con£guration for one particular applications, then it is likely that it will work well also for similar
applications.

10.5.2 Cascade control systems
We want to illustrate how a control system which is decomposed into subcontrollers can be
used to solve multivariable control problems. For simplicity, we use SISO controllers here of
the form

ui = Ki(s)(ri − yi) (10.37)

where Ki(s) is a scalar. Note that whenever we close a SISO control loop we lose the
corresponding input, ui, as a degree of freedom, but at the same time the reference, ri,
becomes a new degree of freedom.

It may look like it is not possible to handle non-square systems with SISO controllers.
However, since the input to the controller in (10.37) is a reference minus a measurement, we
can cascade controllers to make use of extra measurements or extra inputs. A cascade control
structure results when either of the following two situations arise:

• The reference ri is an output from another controller (typically used for the case of an extra
measurement yi), see Figure 10.10(a). This is conventional cascade control.
• The “measurement” yi is an output from another controller (typically used for the case of

an extra manipulated input uj , e.g. in Figure 10.10(b) where u2 is the “measurement” for
controller K1). This cascade scheme where the “extra” input u2 is used to improve the
dynamic response, but is reset to a desired “mid-range” target value on a longer time scale,
is referred to as input resetting (also known as mid-ranging or valve position control).

10.5.3 Extra measurements: cascade control
In many cases, we make use of extra measurements y2 (secondary outputs) to provide local
disturbance rejection and linearization, or to reduce the effects of measurement noise. For
example, velocity feedback is frequently used in mechanical systems, and local ¤ow cascades
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r1 -+- - K1
-r2+- - K2

-u Plant
-

y26

y1

6

(a) Extra measurements y2 (conventional cascade control)

ru2 -+- - K1
-u1

r -+- - K2
-u2

6
Plant -y

6

(b) Extra inputs u2 (input resetting)

Figure 10.10: Cascade implementations

are used in process systems. For distillation columns, it is usually recommended to close an
inner temperature loop (y2 = T ), see Example 10.9.

A typical implementation with two cascaded SISO controllers is shown in Figure 10.10(a)
where

r2 = K1(s)(r1 − y1) (10.38)
u = K2(s)(r2 − y2) (10.39)

u is the manipulated input, y1 the controlled output (with an associated control objective r1)
and y2 the extra measurement. Note that the output r2 from the slower primary controller
K1 is not a manipulated plant input, but rather the reference input to the faster secondary
(or slave) controller K2. For example, cascades based on measuring the actual manipulated
variable (in which case y2 = um) are commonly used to reduce uncertainty and nonlinearity
at the plant input.

r1 -+- - K1

r2
-+- - K2

-u G2
-?

d2
+ + -

y26
G1

-?
d1

+ + -y1
6

Figure 10.11: Common case of cascade control where the primary output y1 depends directly on the
extra measurement y2

In the general case, y1 and y2 in Figure 10.10(a) are not directly related to each other,
and this is sometimes referred to as parallel cascade control. However, it is common to
encounter the situation in Figure 10.11 where y1 depends directly on y2. This is a special case

of Figure 10.10(a) with “Plant” =

[
G1G2

G2

]
, and it is considered further in Example 10.12

and Exercise 10.7.

Remark. Centralized (parallel) implementation. Alternatively, we may use a centralized
implementation u = K(r − y) where K is a 2-input 1-output controller. This gives

u = K11(s)(r1 − y1) +K12(s)(r2 − y2) (10.40)
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where in most cases r2 = 0 (since we do not have a degree of freedom to control y2). With r2 = 0
in (10.40) the relationship between the centralized and cascade implementations is K11 = K2K1 and
K12 = K2.

An advantage with the cascade implementation is that it more clearly decouples the design of the
two controllers. It also shows that r2 is not a degree of freedom at higher layers in the control system.
Finally, it allows for integral action in both loops (whereas usually only K11 would have integral action
in (10.40)). On the other hand, a centralized implementation is better suited for direct multivariable
synthesis; see the velocity feedback for the helicopter case study in Section 13.2.

When should we use cascade control? With reference to the special (but common) case
of conventional cascade control shown in Figure 10.11, Shinskey (1967, 1996) states that the
principal advantages of cascade control are:

1. Disturbances arising within the secondary loop (before y2 in Figure 10.11) are corrected
by the secondary controller before they can in¤uence the primary variable y1.

2. Phase lag existing in the secondary part of the process (G2 in Figure 10.11) is reduced
measurably by the secondary loop. This improves the speed of response of the primary
loop.

3. Gain variations in the secondary part of the process are overcome within its own loop.

Morari and Za£riou (1989) conclude, again with reference to Figure 10.11, that the use of an
extra measurement y2 is useful under the following circumstances:

(a) The disturbance d2 (entering before the measurement y2) is signi£cant and G1 is non-
minimum-phase – e.g. G1 contains an effective time delay [see Example 10.12].

(b) The plant G2 has considerable uncertainty associated with it – e.g. G2 has a poorly known
nonlinear behaviour – and the inner loop serves to remove the uncertainty.

In terms of design, they recommended that K2 is £rst designed to minimize the effect of d2
on y1 (with K1 = 0) and then K1 is designed to minimize the effect of d1 on y1.

An example where local feedback control is required to counteract the effect of high-order
lags is given for a neutralization process in Figure 5.25 on page 216. The bene£ts of local
feedback are also discussed by Horowitz (1991).

Exercise 10.7 We want to derive the above conclusions (a) and (b) from an input–output
controllability analysis, and also explain (c) why we may choose to use cascade control if we want
to use simple controllers (even with d2 = 0).

Outline of solution: (a) Note that ifG1 is minimum-phase, then the input–output controllability ofG2

and G1G2 are in theory the same, and for rejecting d2 there is no fundamental advantage in measuring
y1 rather than y2. (b) The inner loop L2 = G2K2 removes the uncertainty if it is suf£ciently fast (high-
gain feedback). It yields a transfer function (I +L2)

−1L2 which is close to I at frequencies where K1

is active. (c) In most cases, such as when PID controllers are used, the practical closed-loop bandwidth
is limited approximately by the frequency wu, where the phase of the plant is −180◦ (see Section 5.8
on page 191), so an inner cascade loop may yield faster control (for rejecting d1 and tracking r1) if the
phase of G2 is less than that of G1G2.

Tuning of cascaded PID controllers using the SIMC rules. Recall the SIMC PID
procedure presented on page 57, where the idea is to tune the controllers such that the
resulting transfer function from r to y is T ≈ e−θs

τcs+1 . Here, θ is the effective delay in G
(from u to y) and τc is a tuning parameter with τc = θ being selected for fast (and still
robust) control. Let us apply this approach to the cascaded system in Figure 10.11. The inner
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loop (K2) is tuned based on G2. We then get y2 = T2r2, where T2 ≈ e−θ2s

τc2s+1 and θ2 is the
effective delay in G2. Since the inner loop is fast (θ2 and τc2 are small), its response may be
approximated as a pure time delay for the tuning of the slower outer loop (K1),

T2 ≈ 1 · e−(θ2+τc2)s (10.41)

The resulting model for tuning of the outer loop (K1) is then

G̃1 = G1T2 ≈ G1e
−(θ2+τc2)s (10.42)

and the PID tuning parameters for K1 are easily obtained using the SIMC rules. For a “fast
response” from r2 to y2 in the inner loop, the SIMC-rule is to select τc2 = θ2. However, this
may be unnecessarily fast and to improve robustness we may want to select a larger τc2. Its
value will not affect the outer loop, provided τc2 < τc1/5 approximately, where τc1 is the
response time in the outer loop.

Example 10.12 Consider the closed-loop system in Figure 10.11, where

G1 =
(−0.6s+ 1)

(6s+ 1)
e−s and G2 =

1

(6s+ 1)(0.4s+ 1)

We £rst consider the case where we only use the primary measurement (y1), i.e. design the
controller based on G = G1G2. Using the half rule on page 57, we £nd that the effective delay is
θ1 = 6/2+0.4+0.6+1 = 5, and using the SIMC tuning rules on page 57, a PI controller is designed
with Kc = 0.9 and τI = 9. The closed-loop response of the system to step changes of magnitude 1 in
the setpoint (at t = 0) and of magnitude 6 in disturbance d2 (at t = 50) is shown in Figure 10.12. From
the dashed line, we see that the closed-loop disturbance rejection is poor.
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Disturbance Change (d2)Setpoint Change (r1)

Figure 10.12: Improved control performance with cascade control (solid) as compared to single-loop
control (dashed)

Next, to improve disturbance rejection, we make use of the measurement y2 in a cascade
implementation as shown in Figure 10.11. First, the PI controller for the inner loop is designed based
on G2. The effective delay is θ2 = 0.2. For “fast control” the SIMC rule (page 57) is to use τc2 = θ2.
However, since this is an inner loop, where tight control is not critical, we choose τc2 = 2θ2 = 0.4,
which gives somewhat less aggressive settings with Kc2 = 10.33 and τI2 = 2.4. The PI controller for
the outer loop is next designed with the inner loop closed. From (10.41), the transfer function for the
inner loop is approximated as a delay of τc2 + θ2 = 0.6 giving G̃1 = G1e

−0.6s = (−0.6s+1)
(6s+1)

e−1.6s.
Thus, for the outer loop, the effective delay is θ1 = 0.6 + 1.6 = 2.2 and with τc1 = θ1 = 2.2 (“fast
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control”), the resulting SIMC PI tunings are Kc1 = 1.36 and τI1 = 6. From Figure 10.12, we note that
the cascade controller greatly improves the rejection of d2. The speed of the setpoint tracking is also
improved, because the local control (K2) reduces the effective delay for control of y1.

Exercise 10.8 To illustrate the bene£t of using inner cascades for high-order plants, consider
Figure 10.11 and a plant G = G1G2G3G4G5 with

G1 = G2 = G3 = G4 = G5 =
1

s+ 1

Consider the following two cases:
(a) Measurement of y1 only, i.e. G = 1

(s+1)5
.

(b) Four additional measurements available (y2, y3, y4, y5) on outputs of G1, G2, G3 and G4.
For case (a) design a PID controller and for case (b) use £ve simple proportional controllers with gains
with gains 10 (innermost loop), 5, 2, 1 and 0.5 (outer loop) (note that the gain has to be smaller in the
outer loop to avoid instability caused by the effective delay in the inner loop). For case (b) also try using
a PI controller in the outer loop to avoid the steady-state offset. Compare the responses to disturbances
entering before G1 (at t = 0), G2 (t = 20), G3 (t = 40), G4 (t = 60), G5 (t = 80), and for a setpoint
change (t = 100)”.

10.5.4 Extra inputs
In some cases, we have more manipulated inputs than controlled outputs. These may be used
to improve control performance. Consider a plant with a single controlled output y and two
manipulated inputs u1 and u2. Sometimes u2 is an extra input which can be used to improve
the fast (transient) control of y, but if it does not have suf£cient power or is too costly to
use for long-term control, then after a while it is reset to some desired value (“ideal resting
value”).

Cascade implementation (input resetting). An implementation with two cascaded SISO
controllers is shown in Figure 10.10(b). We let input u2 take care of the fast control and u1
the long-term control. The fast control loop is then

u2 = K2(s)(r − y) (10.43)

The objective of the other slower controller is then to use input u1 to reset input u2 to its
desired value ru2 :

u1 = K1(s)(ru2 − y1), y1 = u2 (10.44)

and we see that the output u2 from the fast controller K2 is the “measurement” y1 for the
slow controller K1.

In process control, the cascade implementation with input resetting often involves valve
position control, because the extra input u2, usually a valve, is reset to a desired position by
the outer cascade.

Centralized (parallel) implementation. Alternatively, we may use a centralized
implementation u = K(r − y) where K is a 1-input 2-output controller. This gives

u1 = K11(s)(r − y), u2 = K21(s)(r − y) (10.45)

Here two inputs are used to control one output, so to get a unique steady-state for the inputs u1
and u2 we usually let K11 have integral control, whereas K21 does not. Then u2(t) will only
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be used for transient (fast) control and will return to zero (or more precisely to its desired
value ru2 ) as t → ∞. With ru2 = 0 the relationship between the centralized and cascade
implementation is K11 = −K1K2 and K21 = K2.

Comparison of cascade and centralized implementations. The cascade implementation
in Figure 10.10(b) has the advantage, compared to the centralized (parallel) implementation,
of decoupling the design of the two controllers. It also shows more clearly that ru2 , the
reference for u2, may be used as a degree of freedom at higher layers in the control system.
Finally, we can have integral action in both K1 and K2, but note that the gain of K1 should
be negative (if effects of u1 and u2 on y are both positive).

Exercise 10.9 ∗ Draw the block diagrams for the two centralized (parallel) implementations
corresponding to Figure 10.10.

Exercise 10.10 Derive the closed-loop transfer functions for the effect of r on y, u1 and u2 in the
cascade input resetting scheme of Figure 10.10(b). As an example use G = [G11 G12 ] = [ 1 1 ] and
use integral action in both controllers, K1 = −1/s and K2 = 10/s. Show that input u2 is reset at
steady-state.

10.5.5 Extra inputs and outputs
In some cases performance may be improved with local control loops involving both extra
manipulated inputs and extra measurements. However, as always, the improvement must be
traded off against the cost of the extra actuators, measurements and control system.

Example 10.13 Two layers of cascade control. Consider the system in Figure 10.13 with two
manipulated plant inputs (u2 and u3), one controlled output (y1, which should be close to r1) and
two measured variables (y1 and y2). Input u2 has a more direct effect on y1 than does input u3 (since
there is a large delay in G3(s)). Input u2 should only be used for transient control as it is desirable that
it remains close to r3 = ru2 . The extra measurement y2 is closer than y1 to the input u2 and may be
useful for detecting disturbances (not shown) affecting G1.

-

-

- -

?- -

- -?

?r1

r2

r3

K1

K2

K3

u1

u2

u3

G1 G2

G3

-
+

-
+

+
-

y1-+
+6

- -y2

Figure 10.13: Control con£guration with two layers of cascade control

In Figure 10.13, controllers K1 and K2 are cascaded in a conventional manner, whereas controllers
K2 andK3 are cascaded to achieve input resetting. The “input” u1 is not a (physical) plant input, but it
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does play the role of an input (manipulated variable) as seen from the controllerK1. The corresponding
equations are

u1 = K1(s)(r1 − y1) (10.46)
u2 = K2(s)(r2 − y2), r2 = u1 (10.47)
u3 = K3(s)(r3 − y3), y3 = u2 (10.48)

Controller K1 controls the primary output y1 at its reference r1 by adjusting the “input” u1, which
is the reference value for y2. Controller K2 controls the secondary output y2 using input u2. Finally,
controller K3 manipulates u3 slowly in order to reset input u2 to its desired value r3.

Typically, the controllers in a cascade system are tuned one at a time starting with the
fastest loop. For example, for the control system in Figure 10.13 we would probably tune the
three controllers in the order K2 (inner cascade using fast input), K3 (input resetting using
slower input), and K1 (£nal adjustment of y1).

Exercise 10.11 ∗ Process control application. A practical case of a control system like the one in
Figure 10.13 is in the use of a pre-heater to keep a reactor temperature y1 at a given value r1. In this
case, y2 may be the outlet temperature from the pre-heater, u2 the bypass ¤ow (which should be reset to
r3, say 10% of the total ¤ow), and u3 the ¤ow of heating medium (steam). Process engineering students:
Make a process ¤owsheet with instrumentation lines (not a block diagram) for this heater/reactor
process.

10.5.6 Selectors
Split-range control for extra inputs. We considered above the case where the primary input
is “slow”, and an extra input is added to improve the dynamic performance. For economic
reasons or to avoid saturation the extra input is reset to a desired “mid-range” target value on
a longer time scale (input resetting or mid-ranging). Another situation is when the primary
input may saturate, and an extra input is added to maintain control of the output. In this
case, the control range is often split such that, for example, u1 is used for control when
y ∈ [ymin, y1], and u2 is used when y ∈ [y1, ymax].

Selectors for too few inputs. A completely different situation occurs if there are too few
inputs. Consider the case with one input (u) and several outputs (y1, y2, . . .). In this case,
we cannot control all the outputs independently, so we either need to control all the outputs
in some average manner, or we need to make a choice about which outputs are the most
important to control. Selectors or logic switches are often used for the latter. Auctioneering
selectors are used to decide to control one of several similar outputs. For example, such a
selector may be used to adjust the heat input (u) to keep the maximum temperature (maxi yi)
in a £red heater below some value. Override selectors are used when several controllers
compute the input value, and we select the smallest (or largest) as the input. For example, this
is used in a heater where the heat input (u) normally controls temperature (y1), except when
the pressure (y2) is too large and pressure control takes over.
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Figure 10.14: Decentralized diagonal control of a 2× 2 plant

10.6 Decentralized feedback control
10.6.1 Introduction
We have already discussed, in the previous sections on control con£gurations, the use of
decentralized control, but here we consider it in more detail. To this end, we assume in this
section that G(s) is a square plant which is to be controlled using a diagonal controller (see
Figure 10.14)

K(s) = diag{ki(s)} =




k1(s)
k2(s)

. . .
km(s)


 (10.49)

This is the problem of decentralized (or diagonal) feedback control.
It may seem like the use of decentralized control seriously limits the achievable control

performance. However, often the performance loss is small, partly because of the bene£ts
of high-gain feedback. For example, it can be proved theoretically (Zames and Bensoussan,
1983) that with decentralized control one may achieve perfect control of all outputs, provided
the plant has no RHP-zeros that limit the use of high feedback gains. Furthermore, for
a stable plant G(s) (also with RHP-zeros), it is possible to use integral control in all
channels (to achieve perfect steady-state control) if and only if G(0) is non-singular (Campo
and Morari, 1994). Both these conditions are also required with full multivariable control.
Nevertheless, for “interactive” plants and £nite bandwidth controllers, there is a performance
loss with decentralized control because of the interactions caused by non-zero off-diagonal
elements in G. The interactions may also cause stability problems. A key element in
decentralized control is therefore to select good “pairings” of inputs and outputs, such that
the effect of the interactions is minimized.

The design of decentralized control systems typically involves two steps:

1. The choice of pairings (control con£guration selection).
2. The design (tuning) of each controller, ki(s).

The optimal solution to this problem is very dif£cult mathematically. First, the number of
pairing options in step 1 is m! for an m ×m plant and thus increases exponentially with the
size of the plant. Second, the optimal controller in step 2 is in general of in£nite order and
may be non-unique. In step 2, there are three main approaches:
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Fully coordinated design. All the diagonal controller elements ki(s) are designed
simultaneously based on the complete model G(s). This is the theoretically optimal
approach for decentralized control, but it is not commonly used in practice. First,
as just mentioned, the design problem is very dif£cult. Second, it offers few of the
“normal” bene£ts of decentralized control (see page 421), such as ease of tuning,
reduced modelling effort, and good failure tolerance. In fact, since a detailed dynamic
model is required for the design, an optimal coordinated decentralized design offers
few bene£ts compared to using a “full” multivariable controller which is easier to
design and has better performance. The exception is situations where multivariable
control cannot be used, for example, when centralized cooordination is dif£cult
for geographical reasons. We do not address the optimal coordinated design of
decentralized controllers in this book, and the reader is referred to the literature (e.g.
Sourlas and Manousiouthakis, 1995) for more details.

Independent design. Each controller element ki(s) is designed based on the corresponding
diagonal element of G(s), such that each individual loop is stable. Possibly, there
is some consideration of the off-diagonal interactions when tuning each loop. This
approach is the main focus in the remaining part of this chapter. It is used when it is
desirable that we have integrity where the individual parts of the system (including each
loop) can operate independently. The pairing rules on page 450 can be used to obtain
pairings for independent design. In short the rules are to (1) pair on RGA elements
close to 1 at crossover frequencies, (2) pair on positive steady-state RGA elements,
and (3) pair on elements that impose minimal bandwidth limitations (e.g., small delay).
The £rst and second rules are to avoid that the interactions cause instability. The third
rule follows because we for good performance want to use high-gain feedback, but we
require stable individual loops. For many interactive plants, it is not possible to £nd a
set of pairing satisfying all the three rules.

Sequential design. The controllers are designed sequentially, one at a time, with the
previously designed (“inner”) controllers implemented. This has the important
advantage of reducing each design to a scalar (SISO) problem, and is well suited for
on-line tuning. The sequential design approach can be used for interactive problems
where the independent design approach does not work, provided it is acceptable to have
“slow” control of some output so that we get a difference in the closed-loop response
times of the outputs. One then starts by closing the fast “inner” loops (involving the
outputs with the fastest desired response times), and continues by closing the slower
“outer” loops. The main disadvantage with this approach is that failure tolerance is not
guaranteed when the inner loops fail (integrity). In particular, the individual loops are
not guaranteed to be stable. Furthermore, one has to decide on the order in which to
close the loops.

The effective use of a decentralized controller requires some element of decoupling.
Loosely speaking, independent design is used when the system is decoupled in space (G(s)
is close to diagonal), whereas sequential design is used when the system outputs can be
decoupled in time.

The analysis of sequentially designed decentralized control systems may be performed
using the results on partial control presented earlier in this chapter. For example, after closing
the inner loops (from u2 to y2), the transfer function for the remaining outer system (from u1
to y1) is Pu =

(
G11 −G12K2(I +G22K2)

−1G21

)
; see (10.26). Notice that in the general
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case we need to take into account the details of the controller K2. However, when there is
a time scale separation between the layers with the fast loops (K2) being closed £rst, then
we may for the design of K1 assume K2 → ∞ (“perfect control of y2”), and the transfer
function for the remaining “slow” outer system becomes Pu = G11 − G12G

−1
22 G21; see

(10.28). The advantages of the time scale separation for sequential design of decentralized
controllers (with fast “inner” and slow “outer” loops), are the same as those for hierarchical
cascade control (with fast “lower” and slow “upper” layers) as listed on page 387. Examples
of sequential design are given in Example 10.15 (page 433) and in Section 10.6.6 (page 446).

The relative gain array (RGA) is a very useful tool for decentralized control. It is de£ned as
Λ = G × (G−1)T , where × denotes element-by-element multiplication. It is recommended
to read the discussion about the “original interpretation” of the RGA on page 83, before
continuing. Note in particular from (3.56) that each RGA element represents the ratio between
the open-loop (gij) and “closed-loop” (ĝij) gains for the corresponding input-output pair,
λij = gij/ĝij . By “closed-loop” here we mean “partial control with the other outputs
perfectly controlled”. Intuitively, we would like to pair on elements with λij(s) close to 1,
because then the transfer function from uj to yi is unaffected by closing the other loops.

Remark. We assume in this section that the decentralized controllers ki(s) are scalar. The treatment
may be generalized to block-diagonal controllers by, for example, introducing tools such as the block
relative gain; e.g., see Manousiouthakis et al. (1986) and Kariwala et al. (2003).

10.6.2 Introductory examples
To provide some insight into decentralized control and to motivate the material that follows
we start with some simple 2 × 2 examples. We assume that the outputs y1 and y2 have
been scaled so that the allowable control errors (ei = yi − ri), i = 1, 2 are approximately
between 1 and −1. We design the decentralized controller to give £rst-order responses with
time constant τi in each of the individual loops, that is, yi = 1

τis+1ri. For simplicity, the
plants have no dynamics, and the individual controllers are then simple integral controllers
ki(s) =

1
gii

1
τis

; see the IMC design procedure on page 54. To make sure that we do not use
aggressive control, we use (in all simulations) a “real” plant, where we add a delay of 0.5
time units in each output, i.e. Gsim = Ge−0.5s. This delay is not included in the analytic
expressions, e.g. (10.52), in order to simplify our discussion, but it is included for simulation
and tuning. With a delay of 0.5 we should, for stability and acceptable robustness, select
τi ≥ 1; see the SIMC rule for “fast but robust” control on page 57. In all simulations we drive
the system with reference changes of r1 = 1 at t = 0 and r2 = 1 at t = 20.

Example 10.14 Diagonal plant. Consider the simplest case of a diagonal plant

G =

[
g11 g12
g21 g22

]
=

[
1 0
0 1

]
(10.50)

with RGA = I . The off-diagonal elements are zero, so there are no interactions and decentralized
control with diagonal pairings is obviously optimal.

Diagonal pairings. The controller

K =

[ 1
τ1s

0

0 1
τ2s

]
(10.51)

gives nice decoupled £rst-order responses

y1 =
1

τ1s+ 1
r1 and y2 =

1

τ2s+ 1
r2 (10.52)
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(a) Diagonal pairing; controller (10.51) with τ1 = τ2 = 1
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(b) Off-diagonal pairing; plant (10.53) and controller (10.54)

Figure 10.15: Decentralized control of diagonal plant (10.50)

as illustrated in Figure 10.15(a) for the case with τ1 = τ2 = 1.
Off-diagonal pairings. When considering pairings other than diagonal, we recommend to £rst

permute the inputs such that the paired elements are along the diagonal. For the off-diagonal pairing,
we use the permuted inputs

u∗1 = u2 , u
∗
2 = u1

corresponding to the permuted plant (denoted with ∗)

G∗ = G

[
0 1
1 0

]T
=

[
g12 g11
g22 g21

]
=

[
0 1
1 0

]
(10.53)

This corresponds to pairing on two zero elements, g∗11 = 0 and g∗22 = 0, and we cannot use independent
or sequential controller design. A coordinated (simultaneous) controller design is required and after
some trial and error we arrived at the following design

K∗(s) =

[ −(0.5s+0.1)
s

0

0 (0.5s+2)
s

]
(10.54)

Performance is of course quite poor as is illustrated in Figure 10.15(b), but it is nevertheless workable
(surprisingly!).

Remark. The last example, where a diagonal plant is controlled using the off-diagonal
pairings, is quite striking. A simple physical example is the control of temperatures in two
unrelated rooms, say one located in the UK (Ian’s of£ce) and one in Norway (Sigurd’s of£ce).
The setup is then that Ian gets a measurement of Sigurd’s room temperature, and based on
this adjusts the heating in his room (in the UK). Similarly, Sigurd gets a measurement of
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Ian’s room temperature, and based on this adjusts the heating in his room (in Norway). As
shown in Figure 10.15(b), such a ridiculous setup (with g11 = 0 and g2 = 0) is actually
workable because of the “hidden” feedback loop going through the off-diagonal elements
and the controllers (k1k2g12g21 is nonzero), provided one is able to tune the controllers k1
and k2 (which is not trivial – as seen it requires a negative sign in one of the controllers). Two
lessons from this example are that (1) decentralized control can work for almost any plant,
and (2) the fact that we have what seems to be acceptable closed-loop performance does not
mean that we are using the best pairing.

Exercise 10.12 Consider in more detail the off-diagonal pairings for the diagonal plant in the
example above. (i) Explain why it is necessary to use a negative sign in (10.54). (ii) Show that the
plant (10.53) cannot be stabilized by a pure integral action controller of the form K∗(s) = diag( ki

s
).

Example 10.15 One-way interactive (triangular) plant. Consider

G =

[
1 0
5 1

]
(10.55)

for which

G−1 =

[
1 0
−5 1

]
and RGA =

[
1 0
0 1

]

The RGA matrix is identity, which suggests that the diagonal pairings are best for this plant. However,
we see that there is a large interaction (g21 = 5) from u1 to y2, which, as one might expect, implies
poor performance with decentralized control. Note that this is not a fundamental control limitation as
the decoupling controller K(s) = 1

s

[
1 0
−5 1

]
gives nice decoupled responses, identical to those shown

in Figure10.15 (but the decoupler may be sensitive to uncertainty; see Exercise 10.13).
Diagonal pairings using independent design. If we use independent design based on the paired

(diagonal) elements only (without considering the interactions caused by g21 = 5 6= 0), then the
controller becomes

K =

[ 1
τ1s

0

0 1
τ2s

]
(10.56)

with τ1 = τ2 = 1 (assuming a 0.5 time delay). However, a closer analysis shows that the closed-loop
response with the controller (10.56) becomes

y1 =
1

τ1s+ 1
r1 (10.57)

y2 =
5τ2s

(τ1s+ 1)(τ2s+ 1)
r1 +

1

τ2s+ 1
r2 (10.58)

If we plot the interaction term from r1 to y2 as a function of frequency, then we £nd that for τ1 = τ2 it
has a peak value of about 2.5. Therefore, with this controller the response for y2 is not acceptable when
we make a change in r1. To keep this peak below 1, we need to select τ1 ≥ 5τ2, approximately. This is
illustrated in Figure10.16(a) where we have selected τ1 = 5 and τ2 = 1. Thus, to keep |e2| ≤ 1, we
must accept slow control of y1.

Remark. The performance problem was not detected from the RGA matrix, because it only measures
two-way interactions. However, it may be detected from the “Performance RGA” matrix (PRGA), which
for our plant with unity diagonal elements is equal to G−1. As discussed on page 438, a large element
in a row of PRGA indicates that fast control is needed to get acceptable reference tracking. Thus, the
2, 1 element in G−1 of magnitude 5, con£rms that control of y2 must be about 5 times faster than that
of y1.
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(a) Diagonal pairing; controller (10.56) with τ1 = 5 and τ2 = 1
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(b) Off-diagonal pairing; plant (10.59) and controller (10.60) with τ1 = 5 and τ2 = 1

Figure 10.16: Decentralized control of triangular plant (10.55)

Off-diagonal pairings using sequential design. The permuted plant is

G∗ = G

[
0 1
1 0

]T
=

[
0 1
1 5

]
(10.59)

This corresponds to pairing on a zero element g∗11 = 0. This pairing is not acceptable if we use the
independent design approach, because u∗1 has no effect on y1 so “loop 1” does not work by itself.
However, with the sequential design approach, we may £rst close the loop around y2 (on the element
g∗22 = 5). With the IMC design approach, the controller becomes k∗2(s) = 1/(g∗22τ2s) = 1/(5τ2s)
and with this loop closed, u∗1 does have an effect on y1. Assuming tight control of y2 gives (using the
expression for “perfect” partial control in (10.28))

y1 =

(
g∗11 −

g∗12g
∗
21

g∗22

)
u∗1 = −1

5
u∗1

The controller for the pairing u∗1-y1 becomes k∗1(s) = 1/(g∗11τ1s) = −5/(τ1s) and thus

K∗ =

[ −5
τ1s

0

0 1
5τ2s

]
(10.60)

The response with τ1 = 5 and τ2 = 1 is shown in Figure 10.16(b). We see that performance is only
slightly worse than with the diagonal pairings. However, more seriously, we have the problem that if
control of y2 fails, e.g. because u∗2 = u1 saturates, then we also lose control of y1 (in addition, we get
instability with y2 drifting away, because of the integral action for y1). The situation is particularly bad
in this case because of the pairing on a zero element, but the dependence on faster (inner) loops being
in service is a general problem with sequential design.
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Exercise 10.13 . Redo the simulations in Example 10.15 with 20% diagonal input uncertainty.
Speci£cally, add a block

[
1.2 0
0 0.8

]
between the plant and the controller. Also simulate with the

decoupler K(s) = 1
s

[
1 0
−5 1

]
which is expected to be particularly sensitive to uncertainty (why? –

see conclusions on page 251 and note that γ∗I (G) = 10 for this plant).

Example 10.16 Two-way interactive plant. Consider the plant

G =

[
1 g12
5 1

]
(10.61)

for which

G−1 =
1

1− 5g12

[
1 −g12
−5 1

]
and RGA =

1

1− 5g12

[
1 −5g12

−5g12 1

]

The control properties of this plant depend on the parameter g12. The plant is singular (det(G) =
1 − 5g12 = 0) for g12 = 0.2, and in this case independent control of both outputs is impossible,
whatever the controller. We will examine the diagonal pairings using the independent design controller

K =

[ 1
τ1s

0

0 1
τ2s

]
(10.62)

The individual loops are stable with responses y1 = 1
(τ1s+1)

r1 and y2 = 1
(τ2s+1)

r2, respectively. With
both loops closed, the response is y = GK(I +GK)−1r = Tr, where

T =
1

(τ1s+ 1)(τ2s+ 1)− 5g12

[
τ2s+ 1− 5g12 g12τ1s

5τ2s τ1s+ 1− 5g12

]

We see that T (0) = I , so we have perfect steady-state control, as is expected with integral action.
However, the interactions as expressed by the term 5g12 may yield instability, and we £nd that the
system is closed-loop unstable for g12 > 0.2. This is also expected because the diagonal RGA elements
are negative for g12 > 0.2, indicating a gain change between the open-loop (gii) and closed-loop (ĝii)
transfer functions, which is incompatible with integral action. Thus, for g12 > 0.2, the off-diagonal
pairings must be used if we want to use an independent design (with stable individual loops).

We will now consider three cases, (a) g12 = 0.17, (b) g12 = −0.2 and (c) g12 = −1, each with the
same controller (10.62) with τ1 = 5 and τ2 = 1. Because of the large interactions given by g21 = 5,
we need to control y2 faster than y1.

(a) g12 = 0.17. In this case,

G−1 =

[
6.7 −1.1
−33.3 6.7

]
and RGA =

[
6.7 −5.7
−5.7 6.7

]

The large RGA elements indicate strong interactions. Furthermore, recall from (3.56) that the
RGA gives the ratio of the open-loop and (partially) closed-loop gains, gij/ĝij . Thus, in terms of
decentralized control, the large positive RGA elements indicate that ĝij is small and the loops will
tend to counteract each other by reducing the effective loop gain. This is con£rmed by simulations
in Figure 10.17(a).

(b) g12 = −0.2. In this case,

G−1 =

[
0.5 0.1
−2.5 0.5

]
and RGA =

[
0.5 0.5
0.5 0.5

]

The RGA elements of 0.5 indicate quite strong interactions and show that the interaction increases
the effective gain. This is con£rmed by the closed-loop responses in Figure 10.17(b).
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(a) g12 = 0.17; controller (10.62) with τ1 = 5 and τ2 = 1
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(b) g12 = −0.2; controller (10.62) with τ1 = 5 and τ2 = 1
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(c) g12 = −1; controller (10.62) with τ1 = 5 and τ2 = 1
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(d) g12 = −1; controller (10.62) with τ1 = 21.95 and τ2 = 1

Figure 10.17: Decentralized control of plant (10.61) with diagonal pairings
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(c) g12 = −1. In this case,

G−1 =

[
0.17 0.17
−0.83 0.17

]
and RGA =

[
0.17 0.83
0.83 0.17

]

The RGA indicates clearly that the off-diagonal pairings are preferable. Nevertheless, we will
consider the diagonal pairings with τ1 = 5 and τ2 = 1 (as before). The response is poor as seen in
Figure 10.17(c). The closed-loop system is stable, but very oscillatory. This is not surprising as the
diagonal RGA elements of 0.17 indicate that the interactions increase the effective loop gains by a
factor 6 (= 1/0.17). To study this in more detail, we write the closed-loop polynomial in standard
form

(τ1s+ 1)(τ2s+ 1)− 5g12 = τ2s2 + 2τζs+ 1

with
τ =

√
τ1τ2

1− 5g12
and ζ =

1

2

τ1 + τ2√
τ1τ2

1√
1− 5g12

We note that we get oscillations (0 < ζ < 1), when g12 is negative and large. For example,
g12 = −1, τ1 = 5 and τ2 = 1 gives ζ = 0.55. Interestingly, we see from the expression for ζ
that the oscillations may be reduced by selecting τ1 and τ2 to be more different. This follows because
1
2
τ1+τ2√
τ1τ2

is the ratio between the arithmetic and geometric means, which is larger the more different
τ1 and τ2 are. Indeed, with g12 = −1 we £nd that oscillations can be eliminated (ζ = 1) by selecting
τ1 = 21.95τ2. This is con£rmed by the simulations in Figure10.17(d). The response is surprisingly
good taking into account that we are using the wrong pairings.

Exercise 10.14 Design decentralized controllers for the 3×3 plant G(s) = G(0)e−0.5s where G(0)

is given by (10.80). Try both the diagonal pairings and the pairings corresponding to positive steady-

state RGA elements, i.e. G∗ = G

[
0 1 0
1 0 0
0 0 1

]T
.

The above examples show that in many cases we can achieve quite good performance
with decentralized control, even for interactive plants. However, decentralized controller
design is more dif£cult for such plants, and this, in addition to the possibility for improved
performance, favours the use of multivariable control for interactive plants.

With the exception of Section 10.6.6, the focus in the rest of this chapter is on
independently designed decentralized control systems, which cannot be analyzed using the
expressions for partial control presented earlier in (10.28). We present tools for pairing
selections (step 1) and for analyzing the stability and performance of decentralized control
systems based on independent design. Readers who are primarily interested in applications of
decentralized control may want to go directly to the summary in Section 10.6.8 (page 449).

10.6.3 Notation and factorization of sensitivity function
G(s) denotes a square m ×m plant with elements gij . With a particular choice of pairings
we can rearrange the columns or rows of G(s) such that the paired elements are along the
diagonal ofG(s). We then have that the controllerK(s) is diagonal (diag{ki}). We introduce

G̃ , diag{gii} =




g11
g22

. . .
gmm


 (10.63)
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as the matrix consisting of the diagonal elements of G. The loop transfer function in loop i is
denoted Li = giiki, which is also equal to the i’th diagonal element of L = GK.

S̃ , (I + G̃K)−1 = diag

{
1

1 + giiki

}
and T̃ = I − S̃ (10.64)

contain the sensitivity and complementary sensitivity functions for the individual loops. Note
that S̃ is not equal to the matrix of diagonal elements of S = (I +GK)−1.

With decentralized control, the interactions are given by the off-diagonal elements G− G̃.
The interactions can be normalized with respect to the diagonal elements and we de£ne

E , (G− G̃)G̃−1 (10.65)

The “magnitude” of the matrix E is commonly used as an “interaction measure”. We will
show that µ(E) (where µ is the structured singular value) is the best (least conservative)
measure, and will de£ne “generalized diagonal dominance” to mean µ(E) < 1. To derive
these results we make use of the following important factorization of the “overall” sensitivity
function S = (I +GK)−1 with all loops closed,

S︸︷︷︸
overall

= S̃︸︷︷︸
individual loops

(I + ET̃ )−1︸ ︷︷ ︸
interactions

(10.66)

Equation (10.66) follows from (A.147) with G = G̃ and G′ = G. The reader is encouraged
to con£rm that (10.66) is correct, because most of the important results for stability and
performance using independent design may be derived from this expression.

A related factorization which follows from (A.148) is

S = S̃(I − ESS̃)
−1(I − ES) (10.67)

where
ES = (G− G̃)G−1 (10.68)

(10.67) may be rewritten as
S = (I + S̃(Γ− I))−1S̃Γ (10.69)

where Γ is the performance relative gain array (PRGA),

Γ(s) , G̃(s)G−1(s) (10.70)

Γ is a normalized inverse of the plant. Note that ES = I − Γ and E = Γ−1 − I . In Section
10.6.7 we discuss in more detail the use of the PRGA.

These factorizations are particularly useful for analyzing decentralized control systems
based on independent design, because the basis is then the individual loops with transfer
function S̃.

10.6.4 Stability of decentralized control systems
We consider the independent design procedure and assume that (a) the plant G is stable and
(b) each individual loop is stable by itself (S̃ and T̃ are stable). Assumption (b) is the basis
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for independent design. Assumption (a) is also required for independent design because we
want to be able to take any loop(s) out of service and remain stable, and this is not possible if
the plant is unstable.

To achieve stability of the overall system with all loops closed, we must require that the
interactions do not cause instability. We use the expressions for S in (10.66) and (10.69) to
derive conditions for this.

Theorem 10.3 With assumptions (a) and (b), the overall system is stable (S is stable):
(i) if and only if (I + ET̃ )−1 is stable, where E = (G− G̃)G̃−1,
(ii) if and only if det(I + ET̃ (s)) does not encircle the origin as s traverses the Nyquist
D-contour,
(iii) if

ρ(ET̃ (jω)) < 1,∀ω (10.71)

(iv) (and (10.71) is satis£ed) if

σ̄(T̃ ) = max
i
|t̃i| < 1/µ(E) ∀ω (10.72)

The structured singular value µ(E) is computed with respect to a diagonal structure (of T̃ ).

Proof: (Grosdidier and Morari, 1986) (ii) follows from the factorization S = S̃(I + ET̃ )−1 in (10.66)
and the generalized Nyquist theorem in Lemma A.5 (page 543). (iii) Condition (10.71) follows from
the spectral radius stability condition in (4.110). (iv) The least conservative way to split up ρ(ET̃ ) is to
use the structured singular value. From (8.92) we have ρ(ET̃ ) ≤ µ(E)σ̄(T ) and (10.72) follows. 2

Theorem 10.4 With assumptions (a) and (b) and also assuming that that G and G̃ have no
RHP-zeros, the overall system is stable (S is stable):
(i) if and only if (I − ESS̃(s))

−1 is stable, where ES = (G− G̃)G−1,
(ii) if and only if det(I − ESS̃) does not encircle the origin as s traverses the Nyquist D-
contour,
(iii) if

ρ(ESS̃(jω)) < 1,∀ω (10.73)

(iv) (and (10.73) is satis£ed) if

σ̄(S̃) = max
i
|s̃i| < 1/µ(ES) ∀ω (10.74)

The structured singular value µ(ES) is computed with respect to a diagonal structure (of S̃).

Proof: The proof is similar to that of Theorem 10.3. We need to assume no RHP-zeros in order to get
(i). 2

Remark. The µ-conditions (10.72) and (10.74) for (nominal) stability of the decentralized control
system can be generalized to include robust stability and robust performance; see equations (31a-b)
in Skogestad and Morari (1989).

In both the above Theorems, (i) and (ii) are necessary and suf£cient conditions for stability,
whereas the spectral radius condition (iii) is weaker (only suf£cient) and the µ-condition
condition (iv) is even weaker. Nevertheless, the use of µ is the least conservative way of
“splitting up” the spectral radius ρ in condition (iii).
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Equation (10.72) is easy to satisfy at high frequencies, where generally σ̄(T̃ ) → 0.
Similarly, (10.74) is usually easy to satisfy at low frequencies since σ̄(S̃(0)) = 0 for systems
with integral control (no steady-state offset). Unfortunately, the two conditions cannot be
combined over different frequency ranges (Skogestad and Morari, 1989). Thus, to guarantee
stability we need to satisfy one of the conditions over the whole frequency range.

Since (10.72) is generally most dif£cult to satisfy at low frequencies, where usually
σ̄(T̃ ) ≈ 1, this gives rise to the following pairing rule:

• Prefer pairings with µ(E) < 1 (“diagonal dominance”) at frequencies within the closed-
loop bandwidth.

Let Λ denote the RGA of G. For an n × n plant λii(0) > 0.5 ∀ i is a necessary condition
for µ(E(0)) < 1 (diagonal dominance at steady state) (Kariwala et al., 2003). This gives the
following pairing rule: Prefer pairing on steady-state RGA elements larger than 0.5 (because
otherwise we can never have µ(E(0)) < 1).

Since (10.74) is generally most dif£cult to satisfy at high frequencies where σ̄(S̃) ≈ 1, and
since encirclement of the origin of det(I −ESS̃(s)) is most likely to occur at frequencies up
to crossover, this gives rise to the following pairing rule:

• Prefer pairings with µ(ES) < 1 (“diagonal dominance”) at crossover frequencies.

Gershgorin bounds. An alternative to splitting up ρ(ET̃ ) using µ, is to use Gershgorin’s
theorem, see page 519. From (10.71) we may then derive (Rosenbrock, 1974) suf£cient
conditions for overall stability, either in terms of the rows of G,

|t̃i| < |gii|/
∑

j 6=i

|gij | ∀i,∀ω (10.75)

or, alternatively, in terms of the columns,

|t̃i| < |gii|/
∑

j 6=i

|gji| ∀i,∀ω (10.76)

This gives the important insight that it is preferable to pair on large elements in G,
because then the sum of the off-diagonal elements,

∑
j 6=i |gij | and

∑
j 6=i |gji|, is small. The

“Gershgorin bounds”, which should be small, are the inverse of the right hand sides in (10.75)
and (10.76),

The Gershgorin conditions (10.75) and (10.76), are complementary to the µ-condition in
(10.72). Thus, the use of (10.72) is not always better (less conservative) than (10.75) and
(10.76). It is true that the smallest of the i = 1, . . .m upper bounds in (10.75) or (10.76)
is always smaller (more restrictive) than 1/µ(E) in (10.72). However, (10.72) imposes the
same bound on |t̃i| for each loop, whereas (10.75) and (10.76) give individual bounds, some
of which may be less restrictive than 1/µ(E).

Diagonal dominance. Although “diagonal dominance” is a matrix property, its de£nition
has been motivated by control, where, loosely speaking, diagonal dominance means that the
interactions will not introduce instability. Originally, for example in the Inverse Nyquist Array
method of Rosenbrock (1974), diagonal dominance was de£ned in terms of the Gershgorin
bounds, resulting in the conditions ‖E‖i1 < 1 (“column dominance”) and ‖E‖i∞ < 1

(“row dominance”), where E = (G − G̃)G̃−1. However, stability is scaling independent,
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and by “optimally” scaling the plant using DGD−1, where the scaling matrix D is diagonal,
one obtains from these conditions that the matrix G is (generalized) diagonally dominant
if ρ(|E|) < 1; see (A.128). Here ρ(|E|) is the Perron root of E. An even less restrictive
de£nition of diagonal dominance is obtained by starting from the stability condition in terms
of µ(E) in (10.72). This leads us to propose the improved de£nition below.

De£nition 10.1 A matrix G is generalized diagonally dominant if and only if µ(E) < 1.

Here the term “generalized diagonally dominant” means “can be scaled to be diagonally
dominant”. Note that we always have µ(E) ≤ ρ(|E|), so the use of µ is less restrictive than
the Perron root. Also note that µ(E) = 0 for a triangular plant.5 It is also possible to use
µ(Es) as measure of diagonal dominance, and we then have that a matrix is generalized
diagonally dominant if µ(E) < 1 or if µ(ES) < 1.

Example 10.17 Consider the following plant where we pair on its diagonal elements:

G =

[−5 1 2
4 2 −1
−3 −2 6

]
; G̃ =

[−5 0 0
0 2 0
0 0 6

]
; E = (G− G̃)G̃−1 =

[
0 0.5 0.33
−0.8 0 −0.167
0.6 −1 0

]

The µ-interaction measure is µ(E) = 0.9189, so the plant is diagonally dominant. From (10.72),
stability of the individual loops t̃i guarantees stability of the overall closed-loop system, provided
we keep the individual peaks of |t̃i| less than 1/µ(E) = 1.08. This allows for integral control with
t̃(0) = 1. Note that it is not possible in this case to conclude from the Gershgorin bounds in (10.75)
and (10.76) that the plant is diagonally dominant, because the 2, 2 element of G (= 2) is smaller than
both the sum of the off-diagonal elements in row 2 (= 5) and in column 2 (= 3).

Iterative RGA. An iterative computation of the RGA, Λk(G), gives a permuted identity
matrix that corresponds to the (permuted) generalized diagonal dominant pairing, if it exists
(Johnson and Shapiro, 1986, Theorem 2) (see also page 88). Note that the iterative RGA
avoids the combinatorial problem of testing all pairings, as is required when computing µ(E)
or the RGA number. Thus, we may use the iterative RGA to £nd a promising pairing, and
check for diagonal dominance using µ(E).

Exercise 10.15 For the plant in Example 10.17 check that the iterative RGA converges to the
diagonally dominant pairings.

Example 10.18 RGA number. The RGA number, ‖Λ − I‖sum, is commonly used as a measure
of diagonal dominance, but unfortunately for 4 × 4 plants or larger, a small RGA number does not
guarantee diagonal dominance. To illustrate this, consider the matrix G = [1 1 0 0; 0 0.1 1
1; 1 1 0.1 0; 0 0 1 1]. It has has RGA= I , but µ(E) = µ(ES) = 10.9 so it is far from
diagonally dominant.

Triangular plants. Overall stability is trivially satis£ed for a triangular plant as described
in the theorem below.

Theorem 10.5 Suppose the plant G(s) is stable and upper or lower triangular (at all
frequencies), and is controlled by a diagonal controller. Then the overall system is stable
if and only if the individual loops are stable.
5 A triangular plant may have large off-diagonal elements, but it can be scaled to be diagonal. For example[

d1 0
0 d2

][
g11 0
g21 g22

][
1/d1 0
0 1/d2

]
=

[
g11 0
d2
d1

g12 g22

]
which approaches

[
g11 0
0 g22

]
for |d1| À |d2|.
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Proof: For a triangular plant G, E = (G − G̃)G̃−1 is triangular with all diagonal elements zero, so it
follows that all eigenvalues of ET̃ are zero. Thus det(I + ET̃ (s)) = 1 and from (ii) in Theorem 10.3
the interactions can not cause instability. 2

Because of interactions, there may not exists pairings such that the plant is triangular at
low frequencies. Fortunately, in practice it is suf£cient for stability that the plant is triangular
at crossover frequencies, and we have:

Triangular pairing rule. To achieve stability with decentralized control,
prefer pairings such that at frequencies ω around crossover, the rearranged
plant matrix G(jω) (with the paired elements along the diagonal) is close to
triangular.

Derivation of triangular pairing rule. The derivation is based on Theorem 10.4. From the spectral
radius stability condition in (10.74) the overall system is stable if ρ(S̃ES(jω)) < 1, ∀ω. At
low frequencies, this condition is usually satis£ed because S̃ is small. At higher frequencies, where
S̃ = diag{s̃i} ≈ I , (10.74) may be satis£ed if G(jω) is close to triangular. This is because ES

and thus S̃ES are then close to triangular, with diagonal elements close to zero, so the eigenvalues of
S̃ES(jω) are close to zero. Thus (10.74) is satis£ed and we have stability of S. The use of Theorem 10.4
assumes thatG and G̃ have no RHP-zeros, but in practice the result also holds for plants with RHP-zeros
provided they are located beyond the crossover frequency range. 2

Remark. Triangular plant, RGA= I and stability. An important RGA-property is that the RGA
of a triangular plant is always the identity matrix (Λ = I) or equivalently the RGA number is zero;
see property 4 on page 527. In the £rst edition of this book (Skogestad and Postlethwaite, 1996), we
incorrectly claimed that the reverse is also true; that is, an identity RGA matrix (Λ(G) = I) implies
that G is triangular. Then, in the £rst printing of the second edition we incorrectly claimed that it holds
for 3× 3 systems or smaller, but actually it holds only for 2× 2 systems or smaller as illustrated by the
following 3× 3 counterexample (due to Vinay Kariwala):

G =



g11 0 0
g21 g22 g23
g31 0 g33


 (10.77)

has RGA= I in all cases (for any nonzero value of the indicated entries gij), but G is not triangular.
On the other hand, note that this G is diagonally dominant since µ(E) = 0 in all cases. However, more
generally RGA= I does not imply diagonal dominance as illustrated by the following 4× 4 matrix 6

G =




1 1 0 0
0 α 1 1
1 1 β 0
0 0 1 1


 (10.78)

which has RGA= I for any nonzero value of α and β, but G is not triangular and not always diagonal
dominant. For example, µ(E) = 3.26 (not diagonally dominant) for α = β = 0.4. Also, for this plant
stability of the individual loops does not necessarily give overall stability. For example, T̃ = 1

τs+1
I

(stable individual loops) gives instability (T unstable) with α = β when |α| = |β| < 0.4. Therefore,
RGA= I and stable individual loops do not generally guarantee overall stability (it is not a suf£cient
stability condition). Nevertheless, it is clear that we would prefer to have RGA= I , because otherwise
the plant cannot be triangular. Thus, from the triangular pairing rule we have that it is desirable to select
pairings such that the RGA is close to the identity matrix in the crossover region.
6 (10.78) is a generalization of a counterexample given by Johnson and Shapiro (1986). On our book’s home page a

physical mixing process is given with a transfer function of this form.
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10.6.5 Integrity and negative RGA elements
A desirable property of a decentralized control system is that it has integrity, that is, the
closed-loop system should remain stable as subsystem controllers are brought in and out of
service or when inputs saturate. Mathematically, the system possesses integrity if it remains
stable when the controller K is replaced by EK where E = diag{εi} and εi may take on the
values of εi = 0 or εi = 1.

An even stronger requirement (“complete detunability”) is when it is required that the
system remains stable as the gain in various loops is reduced (detuned) by an arbitrary factor,
i.e. εi may take any value between 0 and 1, 0 ≤ εi ≤ 1. Decentralized integral controllability
(DIC) is concerned with whether complete detunability is possible with integral control.

De£nition 10.2 Decentralized integral controllability (DIC). The plant G(s) (corre-
sponding to a given pairing with the paired elements along its diagonal) is DIC if there
exists a stabilizing decentralized controller with integral action in each loop such that each
individual loop may be detuned independently by a factor εi (0 ≤ εi ≤ 1) without introducing
instability.

Note that DIC considers the existence of a controller, so it depends only on the plant G and
the chosen pairings. The steady-state RGA provides a very useful tool to test for DIC, as is
clear from the following result which was £rst proved by Grosdidier et al. (1985).

Theorem 10.6 Steady-state RGA and DIC. Consider a stable square plant G and a
diagonal controller K with integral action in all elements, and assume that the loop transfer
function GK is strictly proper. If a pairing of outputs and manipulated inputs corresponds
to a negative steady-state relative gain, then the closed-loop system has at least one of the
following properties:
(a) The overall closed-loop system is unstable.
(b) The loop with the negative relative gain is unstable by itself.
(c) The closed-loop system is unstable if the loop with the negative relative gain is opened
(broken).

This can be summarized as follows:

A stable (reordered) plant G(s) is DIC only if λii(0) ≥ 0 for all i. (10.79)

Proof: Use Theorem 6.7 on page 252 and select G′ = diag{gii, Gii}. Since detG′ = gii detG
ii and

from (A.78) λii = gii detG
ii

detG
we have detG′/detG = λii and Theorem 10.6 follows. 2

Each of the three possible instabilities in Theorem 10.6 resulting from pairing on a negative
value of λij(0) is undesirable. The worst case is (a) when the overall system is unstable,
but situation (c) is also highly undesirable as it will imply instability if the loop with the
negative relative gain somehow becomes inactive, e.g. due to input saturation. Situation (b)
is unacceptable if the loop in question is intended to be operated by itself, or if all the other
loops may become inactive, e.g. due to input saturation.

The RGA is a very ef£cient tool because it does not have to be recomputed for each
possible choice of pairing. This follows since any permutation of the rows and columns of
G results in the same permutation in the RGA of G. To achieve DIC one has to pair on a
positive RGA(0) element in each row and column, and therefore one can often eliminate
many candidate pairings by a simple glance at the RGA matrix. This is illustrated by the
following examples:
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Example 10.19 Consider a 3× 3 plant with

G(0) =

[
10.2 5.6 1.4
15.5 −8.4 −0.7
18.1 0.4 1.8

]
and Λ(0) =

[
0.96 1.45 −1.41
0.94 −0.37 0.43
−0.90 −0.07 1.98

]
(10.80)

For a 3×3 plant there are six possible pairings, but from the steady-state RGA we see that there is only
one positive element in column 2 (λ12 = 1.45), and only one positive element in row 3 (λ33 = 1.98),
and therefore there is only one possible pairing with all RGA elements positive (u1 ↔ y2, u2 ↔ y1,
u3 ↔ y3). Thus, if we require to pair on the positive RGA elements, we can from a quick glance at the
steady-state RGA eliminate £ve of the six pairings.

Example 10.20 Consider the following plant and RGA:

G(0) =

[
0.5 0.5 −0.004
1 2 −0.01
−30 −250 1

]
and Λ(0) =

[−1.56 −2.19 4.75
3.12 4.75 −6.88
−0.56 −1.56 3.12

]
(10.81)

From the RGA, we see that it is impossible to rearrange the plant such that all diagonal RGA elements
are positive. Consequently, this plant is not DIC for any choice of pairings.

Example 10.21 Consider the following plant and RGA:

G(s) =
(−s+ 1)

(5s+ 1)2

[
1 −4.19 −25.96

6.19 1 −25.96
1 1 1

]
and Λ(G) =

[
1 5 −5
−5 1 5
5 −5 1

]

Note that the RGA is constant, independent of frequency. Only two of the six possible pairings give
positive steady-state RGA elements (see pairing rule 2 on page 450): (a) the (diagonal) pairing on all
λii = 1 and (b) the pairing on all λii = 5. Intuitively, one may expect pairing (a) to be the best since
it corresponds to pairing on RGA elements equal to 1. However, the RGA matrix is far from identity,
and the RGA number, ‖Λ − I‖sum, is 30 for both pairings. Also, none of the pairings are diagonally
dominant as µ(E) = 8.84 for pairing (a) and µ(E) = 1.25 for the pairing (b). These are larger than 1,
so none of the two alternatives satisfy pairing rule 1 discussed on page 450, and we are led to conclude
that decentralized control should not be used for this plant.

Hovd and Skogestad (1992) con£rm this conclusion by designing PI controllers for the two cases.
They found pairing (a) corresponding to λii = 1 to be signi£cantly worse than (b) with λii = 5, in
agreement with the values for µ(E). They also found the achievable closed-loop time constants to be
1160 and 220, respectively, which in both cases is very slow compared to the RHP-zero which has a
time constant of 1.

Exercise 10.16 Use the method of “iterative RGA” (page 88) on the model in Example 10.21, and
con£rm that it results in “recommending” the pairing on λii = 5, which indeed was found to be the
best choice based on µ(E) and the simulations. (This is partly good luck, because the proven theoretical
result for iterative RGA only holds for a generalized diagonally dominant matrix.)

Exercise 10.17 ∗ (a) Assume that the 4 × 4 matrix in (A.83) represents the steady-state model of a
plant. Show that 20 of the 24 possible pairings can be eliminated by requiring DIC. (b) Consider the
3 × 3 FCC process in Exercise 6.17 on page 257. Show that £ve of the six possible pairings can be
eliminated by requiring DIC.

Remarks on DIC and RGA.
1. DIC was introduced by Skogestad and Morari (1988b) who also give necessary and suf£cient

conditions for testing DIC. A detailed survey of conditions for DIC and other related properties
is given by Campo and Morari (1994).
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2. DIC is also closely related to D-stability, see papers by Yu and Fan (1990) and Campo and Morari
(1994). The theory of D-stability provides necessary and suf£cient conditions (except in a few
special cases, such as when the determinant of one or more of the submatrices is zero).

3. Unstable plants are not DIC. The reason for this is that with all εi = 0 we are left with the
uncontrolled plant G, and the system will be (internally) unstable if G(s) is unstable.

4. For εi = 0 we assume that the integrator of the corresponding SISO controller has been removed,
otherwise the integrator would yield internal instability.

5. For 2 × 2 and 3 × 3 plants we have even tighter RGA conditions for DIC than (10.79). For 2 × 2
plants (Skogestad and Morari, 1988b)

DIC ⇔ λ11(0) > 0 (10.82)

For 3 × 3 plants with positive diagonal RGA elements of G(0) and of Gii(0), i = 1, 2, 3 (its three
principal submatrices), we have (Yu and Fan, 1990)

DIC ⇔
√
λ11(0) +

√
λ22(0) +

√
λ33(0) ≥ 1 (10.83)

(Strictly speaking, as pointed out by Campo and Morari (1994), we do not have equivalence for the
case when

√
λ11(0) +

√
λ22(0) +

√
λ33(0) is identically equal to 1, but this has little practical

signi£cance.)
6. One cannot in general expect tight conditions for DIC in terms of the RGA (i.e. for 4 × 4 systems

or higher). The reason for this is that the RGA essentially only considers “corner values”, εi = 0
or εi = 1, for the detuning factor, that is, it tests for integrity. This is clear from the fact that
λii = gii detG

ii

detG
, where G corresponds to εi = 1 for all i, gii corresponds to εi = 1 with the

other εk = 0, and Gii corresponds to εi = 0 with the other εk = 1. A more complete integrity
(“corner-value”) result is given next.

7. Determinant condition for integrity (DIC). The following condition is concerned with whether it
is possible to design a decentralized controller for the plant such that the system possesses integrity,
which is a prerequisite for having DIC. Assume without loss of generality that the signs of the
rows or columns of G have been adjusted such that all diagonal elements of G(0) are positive,
i.e. gii(0) ≥ 0. Then one may compute the determinant of G(0) and all its principal submatrices
(obtained by deleting rows and corresponding columns in G(0)), which should all have the same
sign for integrity. This determinant condition follows by applying Theorem 6.7 to all possible
combinations of εi = 0 or 1 as illustrated in the proof of Theorem 10.6.

8. The Niederlinski index of a matrix G is de£ned as

NI(G) = detG/Πigii (10.84)

A simple way to test the determinant condition for integrity, which is a necessary condition for DIC,
is to require that the Niederlinski index of G(0) and the Niederlinski indices of all the principal
submatrices Gii(0) of G(0) are positive.

The original result of Niederlinski, which involved only testing NI of G(0), obviously yields
less information than the determinant condition as does the use of the sign of the RGA elements.
This is because the RGA element is λii = gii detG

ii

detG
, so we may have cases where two negative

determinants result in a positive RGA element. Nevertheless, the RGA is usually the preferred tool
because it does not have to be recomputed for each pairing. Let us £rst consider an example where
the Niederlinski index is inconclusive:

G1(0) =

[
10 0 20
0.2 1 −1
11 12 10

]
and Λ(G1(0)) =

[
4.58 0 −3.58
1 −2.5 2.5

−4.58 3.5 2.08

]

Since one of the diagonal RGA elements is negative, we conclude that this pairing is not DIC.
On the other hand, NI(G1(0)) = 0.48 (which is positive), so Niederlinski’s original condition
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is inconclusive. However, the NI of the three principal submatrices
[
10 0
0.2 1

]
,
[
10 20
11 10

]
and

[
1 −1
12 10

]
are 1,−1.2 and 2.2, and since one of these is negative, the determinant condition correctly

tells us that we do not have DIC.
For this 4× 4 example the RGA is inconclusive:

G2(0) =




8.72 2.81 2.98 −15.80
6.54 −2.92 2.50 −20.79
−5.82 0.99 −1.48 −7.51
−7.23 2.92 3.11 7.86


 and Λ(G2(0)) =




0.41 0.47 −0.06 0.17
−0.20 0.45 0.32 0.44
0.40 0.08 0.17 0.35
0.39 0.001 0.57 0.04




All the diagonal RGA values are positive, so it is inconclusive when it comes to DIC. However, the
Niederlinski index of the gain matrix is negative, NI(G2(0)) = −18.65, and we conclude that this
pairing is not DIC (further evaluation of the 3 × 3 and 2 × 2 submatrices is not necessary in this
case).

9. The above results, including the requirement that we should pair on positive RGA elements, give
necessary conditions for DIC. If we assume that the controllers have integral action, then T (0) = I ,
and we can derive from (10.72) that a suf£cient condition for DIC is that G is generalized diagonally
dominant at steady-state, i.e.

µ(E(0)) < 1

This is proved by Braatz (1993, p. 154). Since the requirement is only suf£cient for DIC, it cannot
be used to eliminate designs.

10. If the plant has jω-axis poles, e.g. integrators, it is recommended that, prior to the RGA analysis,
these are moved slightly into the LHP (e.g. by using very low-gain feedback). This will have no
practical signi£cance for the subsequent analysis.

11. Since Theorem 6.7 applies to unstable plants, we may also easily extend Theorem 10.6 to unstable
plants (and in this case one may actually desire to pair on a negative RGA element). This is shown
in Hovd and Skogestad (1994). Alternatively, one may £rst implement a stabilizing controller and
then analyze the partially controlled system as if it were the plant G(s).

10.6.6 RHP-zeros and RGA: reasons for avoiding negative RGA
elements with sequential design

So far we have considered decentralized control based on independent design, where we
require that the individual loops are stable and that we do not get instability as loops are
closed or taken out of service. This led to the integrity (DIC) result of avoiding pairing on
negative RGA elements at steady state. However, if we use sequential design, then the “inner”
loops should not be taken out of service, and one may even end up with loops that are unstable
by themselves (if the inner loops were to be removed). Nevertheless, for sequential design we
£nd that it is also generally undesirable to pair on negative RGA elements, and the purpose
of this section is primarily to illustrate this, by using some results that link the RGA and
RHP-zeros.

Bristol (1966) claimed that negative values of λii(0) imply the presence of RHP-zeros,
but did not provide any proof. However, it is indeed true as illustrated by the following two
theorems.

Theorem 10.7 (Hovd and Skogestad, 1992) Consider a transfer function matrix G(s) with
no zeros or poles at s = 0. Assume that lims→∞ λij(s) is £nite and different from zero. If
λij(j∞) and λij(0) have different signs then at least one of the following must be true:
(a) The element gij(s) has a RHP-zero.
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(b) The overall plant G(s) has a RHP-zero.
(c) The subsystem with input j and output i removed, Gij(s), has a RHP-zero.

Theorem 10.8 (Grosdidier et al., 1985) Consider a stable transfer function matrix G(s)
with elements gij(s). Let ĝij(s) denote the closed-loop transfer function between input uj
and output yi with all the other outputs under integral control. Assume that: (i) gij(s) has
no RHP-zeros, (ii) the loop transfer function GK is strictly proper, (iii) all other elements of
G(s) have equal or higher pole excess than gij(s). We then have:

If λij(0) < 0, then for ĝij(s) the number of RHP-poles plus RHP-zeros is odd.

Note that ĝij(s) in Theorem 10.8 is the same as the transfer function Pu from u1 to y1 for
the partially controlled system in (10.26).

Sequential design and RHP-zeros. We design and implement the diagonal controller by
tuning and closing one loop at a time in a sequential manner. Assume that we end by pairing
on a negative steady-state RGA element, λij(0) < 0, and that the corresponding element
gij(s) has no RHP-zero. Then we have the following implications:

(a) If we have integral action (as we normally have), then we will get a RHP-zero in
ĝij(s) which will limit the performance in the “£nal” output yi (follows from Theorem 10.8).
However, the performance limitation is less if the inner loop is tuned suf£ciently fast (Cui
and Jacobsen, 2002), see also Example 10.22.

(b) If λij(∞) is positive (it is usually close to 1, see pairing rule 1), then irrespective of
integral action, we have a RHP-zero in Gij(s), which will also limit the performance in the
other outputs (follows from Theorem 10.7).

In conclusion, for performance we should avoid ending up by pairing on a negative RGA
element.

Example 10.22 Negative RGA element and RHP-zeros. Consider a plant with

G(s) =
1

s+ 10

[
4 4
2 1

]
Λ(s) =

[
−1 2
2 −1

]

Note that the RGA is independent of frequency for this plant, so λ11(0) = λ∞ = 1. We want to illustrate
that pairing on negative RGA elements gives performance problems. We start by closing the loop from
u1 to y1 with a controller u1 = k11(s)(r1 − y1). For the partially controlled system, the resulting
transfer function from u2 to y2 (“outer loop”) is

ĝ22(s) = g22(s)− k11(s)g21(s)g12(s)

1 + g11(s)k11(s)

With an integral controller k11(s) = KI/s, we £nd, as expected from Theorem 10.8, that

ĝ22(s) =
s2 + 10s− 4KI

(s+ 10)(s2 + 10s+ 4KI)

always has a RHP-zero. For large values of KI , the RHP-zero moves further away, and is less limiting
in terms of performance for the outer loop. With a proportional controller, k11(s) = Kc, we £nd that

ĝ22(s) =
s+ 10− 4Kc

(s+ 10)(s+ 10 + 4Kc)

has a zero at 4Kc − 10. For Kc < 2.5, the zero is in the LHP, but it crosses into the RHP, when
Kc exceeds 2.5. For large values of Kc, the RHP-zero moves further away, and does not limit the
performance in the outer loop in practice. The worst value is Kc = 2.5, where we have a zero at the
origin and the steady-state gain ĝ22(0) changes sign.
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10.6.7 Performance of decentralized control systems
Consider again the factorization

S = (I + S̃(Γ− I))−1S̃Γ

in (10.69) where Γ = G̃G−1 is the performance relative gain array (PRGA), The diagonal
elements of the PRGA matrix are equal to the diagonal elements of the RGA, γii = λii, and
this is the reason for its name. Note that the off-diagonal elements of the PRGA depend on the
relative scaling on the outputs, whereas the RGA is scaling independent. On the other hand,
the PRGA also measures one-way interaction, whereas the RGA only measures two-way
interaction. At frequencies where feedback is effective (S̃ ≈ 0), (10.69) yields S ≈ S̃Γ Thus,
large elements in the PRGA (Γ) (compared to 1 in magnitude) mean that the interactions
“slow down” the overall response and cause performance to be worse than for the individual
loops. On the other hand, small PRGA elements (compared to 1 in magnitude) mean that the
interactions actually improve performance at this frequency.

We will also make use of the related closed-loop disturbance gain (CLDG) matrix, de£ned
as

G̃d(s) , Γ(s)Gd(s) = G̃(s)G−1(s)Gd(s) (10.85)
The CLDG depends on both output and disturbance scaling.

In the following, we consider performance in terms of the control error

e = y − r = Gu+Gdd− r (10.86)

Suppose the system has been scaled as outlined in Section 1.4, such that at each frequency:

1. Each disturbance is less than 1 in magnitude, |dk| < 1.
2. Each reference change is less than the corresponding diagonal element in R, |rj | < Rj .
3. For each output the acceptable control error is less than 1, |ei| < 1.

Single disturbance. Consider a single disturbance, in which case Gd is a vector, and let
gdi denote the i’th element of Gd. Let Li = giiki denote the loop transfer function in loop i.
Consider frequencies where feedback is effective so S̃Γ is small (and (10.89) is valid). Then
for acceptable disturbance rejection (|ei| < 1) with decentralized control, we must require
for each loop i,

|1 + Li| > |g̃di| (10.87)
which is the same as the SISO condition (5.77) except that Gd is replaced by the CLDG, g̃di.
In words, g̃di gives the “apparent” disturbance gain as seen from loop i when the system is
controlled using decentralized control.

Single reference change. We can similarly address a change in reference for output j of
magnitude Rj and consider frequencies where feedback is effective (and (10.89) is valid).
Then for acceptable reference tracking (|ei| < 1) we must require for each loop i

|1 + Li| > |γij | · |Rj | (10.88)

which is the same as the SISO condition (5.80) except for the PRGA factor, |γij |. In other
words, when the other loops are closed the response in loop i gets slower by a factor
|γii|. Consequently, for performance it is desirable to have small elements in Γ, at least at
frequencies where feedback is effective. However, at frequencies close to crossover, stability
is the main issue, and since the diagonal elements of the PRGA and RGA are equal, we
usually prefer to have γii = λii close to 1 (see pairing rule 1 on page 450).
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Proofs of (10.87) and (10.88): At frequencies where feedback is effective, S̃ is small, so

I + S̃(Γ− I) ≈ I (10.89)

and from (10.69) we have
S ≈ S̃Γ (10.90)

The closed-loop response then becomes

e = SGdd− Sr ≈ S̃G̃dd− S̃Γr (10.91)

and the response in output i to a single disturbance dk and a single reference change rj is

ei ≈ s̃ig̃dikdk − s̃iγikrk (10.92)

where s̃i = 1/(1 + giiki) is the sensitivity function for loop i by itself. Thus, to achieve |ei| < 1
for |dk| = 1 we must require |s̃ig̃dik| < 1 and (10.87) follows. Similarly, to achieve |ei| < 1 for
|rj | = |Rj | we must require |siγikRj | < 1 and (10.88) follows. Also note that |siγik| < 1 will imply
that assumption (10.89) is valid. Since R usually has all of its elements larger than 1, in most cases
(10.89) will be automatically satis£ed if (10.88) is satis£ed, so we normally need not check assumption
(10.89). 2

Remark 1 Relation (10.90) may also be derived from (10.66) by assuming T̃ ≈ I which yields
(I + ET̃ )−1 ≈ (I + E)−1 = Γ.

Remark 2 Consider a particular disturbance with model gd. Its effect on output iwith no control is gdi,
and the ratio between g̃di (the CLDG) and gdi is the relative disturbance gain (RDG) (βi) of Stanley
et al. (1985) (see also Skogestad and Morari (1987b)):

βi , g̃di/gdi = [G̃G−1gd]i/[gd]i (10.93)

Thus βi, which is scaling independent, gives the change in the effect of the disturbance caused by
decentralized control. It is desirable to have βi small, as this means that the interactions are such that
they reduce the apparent effect of the disturbance, such that one does not need high gains |Li| in the
individual loops.

10.6.8 Summary: pairing selection and controllability analysis for
decentralized control

When considering decentralized diagonal control of a plant, one should £rst check that the
plant is controllable with any controller, see Section 6.11.

If the plant is unstable, then it recommended that a lower-layer stabilizing controller is £rst
implemented, at least for the “fast” unstable modes. The pole vectors (page 412) are useful
in selecting which inputs and outputs to use for stabilizing control. Note that some unstable
plants are not stabilizable with a diagonal controller. This happens if the unstable modes
belong to the “decentralized £xed modes”, which are the modes unaffected by diagonal
feedback control (e.g. Lunze (1992)). A simple example is a triangular plant where the
unstable mode appears only in the off-diagonal elements, but here the plant can be stabilized
by changing the pairings.
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10.6.9 Independent design
We £rst consider the case of independent design, where the controller elements are designed
based on the diagonal (paired) elements of the plant such that individual loops are stable.

The £rst step is to determine if one can £nd a good set of input–output pairs bearing in
mind the following three pairing rules:

Pairing rule 1. RGA at crossover frequencies. Prefer pairings such that the
rearranged system, with the selected pairings along the diagonal, has an RGA
matrix close to identity at frequencies around the closed-loop bandwidth.

To help in identifying the pairing with RGA closest to identity, one may, at the bandwidth
frequency, compute the iterative RGA, Λk(G); see Exercise 10.6.4 on page 441.

Pairing rule 1 is to ensure that we have diagonal dominance where interactions from other
loops do not cause instability. Actually, pairing rule 1 does not ensure this, see the Remark on
page 442, and to ensure stability we may instead require that the rearranged plant is triangular
at crossover frequencies. However, the RGA is simple and only requires one computation,
and since (a) all triangular plants have RGA = I and (b) there is at most one choice of
pairings with RGA = I at crossover frequencies, we do nothing wrong in terms of missing
good pairing alternatives by following pairing rule 1. To check for diagonal dominance of a
promising pairing (with RGA = I) one may subsequently compute µ(ES) = µ(PRGA−I))
to check if it is smaller than 1 at crossover frequencies.

Pairing rule 2. For a stable plant avoid pairings that correspond to negative
steady-state RGA elements, λij(0) < 0.

This rule follows because we require integrity (DIC) with independent design (page 443), and
also because we would like to avoid the introduction of RHP-zeros with sequential design
(page 446).

Remark. Even if we have λii(0) = 1 and λii(∞) = 1 for all i, this does not necessarily mean that
the diagonal pairing is the best, even for a 2 × 2 plant. The reason for this is that the behaviour at
“intermediate” bandwidth frequencies is more important. This was illustrated in Example 3.11, where
we found from the frequency-dependent RGA in Figure 3.8 (page 86) that the off-diagonal pairing is
preferable, because it has RGA close to identity at the bandwidth frequencies.

Pairing rule 3. Prefer a pairing ij where gij puts minimal restrictions on the
achievable bandwidth. Speci£cally, the effective delay θij in gij(s) should be
small.

This rule favours pairing on variables physically “close to each other”, which makes it
easier to use high-gain feedback and satisfy (10.87) and (10.88), while at the same time
achieving stability in each loop. It is also consistent with the desire that Λ(jω) is close to I at
crossover frequencies. Pairing rule 3 implies that we should avoid pairing on elements with
high order, a time delay or a RHP-zero, because these result in an increased effective delay;
see page 58. Goodwin et al. (2005) discuss performance limitations of independent design,
in particular when pairing rule 3 is violated.

When a reasonable choice of pairings has been found (if possible), one should rearrange
G to have the paired elements along the diagonal and perform a controllability analysis as
follows.
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1. Compute the PRGA (Γ = G̃G−1) and CLDG (G̃d = ΓGd), and plot these as functions
of frequency. For systems with many loops, it is best to perform the analysis one loop at
a time. That is, for each loop i, plot |g̃dik| for each disturbance k and plot |γij | for each
reference j (assuming here for simplicity that each reference is of unit magnitude). For
performance, see (10.88) and( 10.87), we need |1 + Li| to be larger than each of these

Performance : |1 + Li| > max
k,j
{|g̃dik|, |γij |} (10.94)

To achieve stability of the individual loops one must analyze gii(s) to ensure that the
bandwidth required by (10.94) is achievable. Note that RHP-zeros in the diagonal elements
may limit achievable decentralized control, whereas they may not pose any problems for
a multivariable controller. Since with decentralized control we usually want to use simple
controllers, the achievable bandwidth in each loop will be limited by the effective delay
θij in gij(s).

2. In general, see rule 5.13 on page 207, one may check for constraints by considering the
elements of G−1Gd and making sure that they do not exceed 1 in magnitude within the
frequency range where control is needed. Equivalently, one may plot |gii| for each loop i,
and the requirement is then

To avoid input constraints : |gii| > |g̃dik|, ∀k (10.95)

at frequencies where |g̃dik| is larger than 1 (this follows since G̃d = G̃G−1Gd). This
provides a direct generalization of the requirement |G| > |Gd| for SISO systems.
The advantage of (10.95) compared to using G−1Gd is that we can limit ourselves to
frequencies where control is needed to reject the disturbance (where |g̃dik| > 1).

If the plant is not controllable with any choice of pairings, then one may consider another
pairing choice and go back to step 1. Most likely this will not help, and one would need to
consider decentralized sequential design, or multivariable control.

If the chosen pairing is controllable then the analysis based on (10.94) tells us directly how
large the loop gain |Li| = |giiki| must be, and this can be used as a basis for designing the
controller ki(s) for loop i.

10.6.10 Sequential design
Sequential design may be applied when it is not possible to £nd a suitable set of pairings for
independent design using the above three pairing rules. For example, with sequential design
one may choose to pair on an element with gii = 0 (and λii = 0), which violates both
pairing rules 1 and 3. One then relies on the interactions to achieve the desired performance,
as loop i by itself has no effect. This was illustrated for the case with off-diagonal pairings
in Example 10.15 on page 434. Another case with pairing on a zero element is in distillation
control when the LV -con£guration is not used, see Example 10.8. One may also in some
cases pair on negative steady-state RGA elements, although we have established that to avoid
introducing RHP-zeros one should avoid closing a loop on a negative steady-state RGA (see
page 447).

The procedure and rules for independent design can be used as a starting point for £nding
good pairings for sequential design. With sequential design, one also has to decide the order
in which the loops are closed, and one generally starts by closing the fast loops. This favours
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starting with a pairing where gij has good controllability, including a large gain and a small
effective delay. One may also consider the disturbance gain to £nd which outputs need to be
tightly controlled. After closing one loop, one needs to obtain the transfer function for the
resulting partially controlled system, see (10.28), and then redo the analysis in order to select
the next pairing, and so on.

Example 10.23 Application to distillation process. In order to demonstrate the use of the
frequency-dependent RGA and CLDG for evaluation of expected diagonal control performance, we
again consider the distillation process used in Example 10.8. The LV -con£guration is used; that is, the
manipulated inputs are re¤ux L (u1) and boilup V (u2). The outputs are the product compositions yD
(y1) and xB (y2). Disturbances in feed ¤ow rate F (d1) and feed composition zF (d2) are included in
the model. The disturbances and outputs have been scaled such that a magnitude of 1 corresponds to a
change in F of 20%, a change in zF of 20%, and a change in xB and yD of 0.01 mole fraction units.
The £ve state dynamic model is given in Section 13.4.

Initial controllability analysis. G(s) is stable and has no RHP-zeros. The plant and RGA matrix at
steady-state are

G(0) =
[
87.8 −86.4
108.2 −109.6

]
Λ(0) =

[
35.1 −34.1
−34.1 35.1

]
(10.96)

The RGA elements are much larger than 1 and indicate a plant that is fundamentally dif£cult to control
(recall property C1, page 89). Fortunately, the ¤ow dynamics partially decouple the response at higher
frequencies, and we £nd that Λ(jω) ≈ I at frequencies above about 0.5 rad/min. Therefore if we can
achieve suf£ciently fast control, the large steady-state RGA elements may be less of a problem.
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Figure 10.18: Disturbance gains |gdik| for assessing the effect of disturbance k on output i
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Figure 10.19: Closed-loop disturbance gains |g̃dik| for assessing the effect of disturbance k on output i
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The steady-state effect of the two disturbances is given by

Gd(0) =
[
7.88 8.81
11.72 11.19

]
(10.97)

and the magnitudes of the elements in Gd(jω) are plotted as functions of frequency in Figure 10.18.
From this plot the two disturbances seem to be equally dif£cult to reject with magnitudes larger than
1 up to a frequency of about 0.1 rad/min. We conclude that control is needed up to 0.1 rad/min. The
magnitude of the elements in G−1Gd(jω) (not shown) are all less than 1 at all frequencies (at least up
to 10 rad/min), and so it will be assumed that input constraints pose no problem.

Choice of pairings. The selection of u1 to control y1 and u2 to control y2 corresponds to pairing on
positive elements of Λ(0) and Λ(jω) ≈ I at high frequencies. This seems sensible, and is used in the
following.

Analysis of decentralized control. The elements in the CLDG and PRGA matrices are shown as
functions of frequency in Figures 10.19 and 10.20. At steady-state we have

Γ(0) =
[

35.1 −27.6
−43.2 35.1

]
, G̃d(0) = Γ(0)Gd(0) =

[
−47.7 −0.40
70.5 11.7

]
(10.98)

In this particular case, the off-diagonal elements of RGA (Λ) and PRGA (Γ) are quite similar. We note
that G̃d(0) is very different from Gd(0), and this also holds at higher frequencies. For disturbance 1

(£rst column in G̃d) we £nd that the interactions increase the apparent effect of the disturbance, whereas
they reduce the effect of disturbance 2, at least on output 1.
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Figure 10.20: PRGA elements |γij | for effect of reference j on output i

We now consider one loop at a time to £nd the required bandwidth. For loop 1 (output 1) we consider
γ11 and γ12 for references, and g̃d11 and g̃d12 for disturbances. Disturbance 1 is the most dif£cult, and
we need |1+L1| > |ĝd11| at frequencies where |ĝd11| is larger than 1, which is up to about 0.2 rad/min.
The magnitudes of the PRGA elements are somewhat smaller than |g̃d11| (at least at low frequencies),
so reference tracking will be achieved if we can reject disturbance 1. From g̃d12 we see that disturbance
2 has almost no effect on output 1 under feedback control.

Also, for loop 2 we £nd that disturbance 1 is the most dif£cult, and from g̃d12 we require a loop gain
larger than 1 up to about 0.3 rad/min. A bandwidth of about 0.2 to 0.3 rad/min in each loop is required
for rejecting disturbance 1, and should be achievable in practice.

Observed control performance. To check the validity of the above results we designed two single-
loop PI controllers:

k1(s) = 0.261
1 + 3.76s

3.76s
; k2(s) = −0.3751 + 3.31s

3.31s
(10.99)

The loop gains, Li = giiki, with these controllers are larger than the closed-loop disturbance gains,
|δik|, at frequencies up to crossover. Closed-loop simulations with these controllers are shown in Figure
10.21. The simulations con£rm that disturbance 2 is more easily rejected than disturbance 1.
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Figure 10.21: Decentralized PI control. Responses to a unit step in d1 at t = 0 and a unit step in d2 at
t = 50 min.

In summary, there is an excellent agreement between the controllability analysis and the
simulations, as has also been con£rmed by a number of other examples.

10.6.11 Conclusions on decentralized control
In this section, we have derived a number of conditions for the stability, e.g. (10.72) and
(10.79), and performance, e.g. (10.87) and (10.88), of decentralized control systems. The
conditions may be useful in determining appropriate pairings of inputs and outputs and
the sequence in which the decentralized controllers should be designed. Recall, however,
that in many practical cases decentralized controllers are tuned off-line, and sometimes
on-line, using local models. In such cases, the conditions may be used in an input–output
controllability analysis to determine the viability of decentralized control.

Some exercises which include a controllability analysis of decentralized control are given
at the end of Chapter 6.

10.7 Conclusion
Control structure design is very important in applications, but it has traditionally received
little attention in the control community. In this chapter, we have discussed the issues
involved, and we have provided some results and rules, dos and don’ts, which we believe
will be helpful in practice. However, there is still a need for improved tools and theory in this
important area.
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MODEL REDUCTION

This chapter describes methods for reducing the order of a plant or controller model. We place
considerable emphasis on reduced order models obtained by residualizing the less controllable and
observable states of a balanced realization. We also present the more familiar methods of balanced
truncation and optimal Hankel norm approximation.

11.1 Introduction
Modern controller design methods such asH∞ and LQG produce controllers of order at least
equal to that of the plant, and usually higher because of the inclusion of weights. These control
laws may be too complex with regards to practical implementation and simpler designs are
then sought. For this purpose, one can either reduce the order of the plant model prior to
controller design, or reduce the controller in the £nal stage, or both.

The central problem we address is: given a high-order linear time-invariant stable modelG,
£nd a low-order approximation Ga such that the in£nity (H∞ or L∞) norm of the difference,
‖G−Ga‖∞, is small. By model order, we mean the dimension of the state vector in a minimal
realization. This is sometimes called the McMillan degree.

So far in this book we have only been interested in the in£nity (H∞) norm of stable
systems. But the error G − Ga may be unstable and the de£nition of the in£nity norm
needs to be extended to unstable systems. L∞ de£nes the set of rational functions which
have no poles on the imaginary axis, it includes H∞, and its norm (like H∞) is given by
‖G‖∞ = supw σ̄ (G(jw)).

We will describe three main methods for tackling this problem: balanced truncation,
balanced residualization and optimal Hankel norm approximation. Each method gives a stable
approximation and a guaranteed bound on the error in the approximation. We will further
show how the methods can be employed to reduce the order of an unstable model G. All
these methods start from a special state-space realization of G referred to as balanced. We
will describe this realization, but £rst we will show how the techniques of truncation and
residualization can be used to remove the high-frequency or fast modes of a state-space
realization.

Multivariable Feedback Control: Analysis and Design. Second Edition
S. Skogestad and I. Postlethwaite c© 2005, 2006 John Wiley & Sons, Ltd
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11.2 Truncation and residualization
Let (A,B,C,D) be a minimal realization of a stable system G(s), and partition the state
vector x, of dimension n, into

[
x1
x2

]
where x2 is the vector of n− k states which we wish to

remove. With appropriate partitioning of A, B and C, the state-space equations become

ẋ1 = A11x1 +A12x2 +B1u

ẋ2 = A21x1 +A22x2 +B2u (11.1)
y = C1x1 + C2x2 +Du

11.2.1 Truncation
A k’th-order truncation of the realization G

s
= (A,B,C,D) is given by Ga

s
=

(A11, B1, C1, D). The truncated model Ga is equal to G at in£nite frequency, G(∞) =
Ga(∞) = D, but apart from this there is little that can be said in the general case about the
relationship between G and Ga. If, however, A is in Jordan form then it is easy to order the
states so that x2 corresponds to high-frequency or fast modes. This is discussed next.

Modal truncation. For simplicity, assume that A has been diagonalized so that

A =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


 B =




bT1
bT2
...
bTn


 C = [ c1 c2 · · · cn ] (11.2)

Then, if the λi’s are ordered so that |λ1| < |λ2| < · · ·, the fastest modes are removed from
the model after truncation. The difference between G and Ga following a k’th-order model
truncation is given by

G−Ga =
n∑

i=k+1

cib
T
i

s− λi
(11.3)

and therefore

‖G−Ga‖∞ ≤
n∑

i=k+1

σ̄(cib
T
i )

|Re(λi)|
(11.4)

It is interesting to note that the error depends on the residues cibTi as well as the λi’s. The
distance of λi from the imaginary axis is therefore by itself not a reliable indicator of whether
the associated mode should be included in the reduced order model or not.

An advantage of modal truncation is that the poles of the truncated model are a subset of
the poles of the original model and therefore retain any physical interpretation they might
have, e.g. the phugoid mode in aircraft dynamics.

11.2.2 Residualization
In truncation, we discard all the states and dynamics associated with x2. Suppose that instead
of this we simply set ẋ2 = 0, i.e. we residualize x2, in the state-space equations. One can
then solve for x2 in terms of x1 and u, and back substitution of x2 then gives

ẋ1 = (A11 −A12A
−1
22 A21)x1 + (B1 −A12A

−1
22 B2)u (11.5)
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y = (C1 − C2A
−1
22 A21)x1 + (D − C2A

−1
22 B2)u (11.6)

Let us assume A22 is invertible and de£ne

Ar
4
= A11 −A12A

−1
22 A21 (11.7)

Br
4
= B1 −A12A

−1
22 B2 (11.8)

Cr
4
= C1 − C2A

−1
22 A21 (11.9)

Dr
4
= D − C2A

−1
22 B2 (11.10)

The reduced order model Ga(s)
s
= (Ar, Br, Cr, Dr) is called a residualization of G(s) s

=
(A,B,C,D). Usually (A,B,C,D) will have been put into Jordan form, with the eigenvalues
ordered so that x2 contains the fast modes. Model reduction by residualization is then
equivalent to singular perturbational approximation, where the derivatives of the fastest
states are allowed to approach zero with some parameter ε. An important property of
residualization is that it preserves the steady-state gain of the system, Ga(0) = G(0).
This should be no surprise since the residualization process sets derivatives to zero, which
are zero anyway at steady-state. But it is in stark contrast to truncation which retains the
system behaviour at in£nite frequency. This contrast between truncation and residualization
follows from the simple bilinear relationship s → 1

s which relates the two (e.g. Liu and
Anderson, 1989).

It is clear from the discussion above that truncation is to be preferred when accuracy is
required at high frequencies, whereas residualization is better for low-frequency modelling.

Both methods depend to a large extent on the original realization and we have suggested
the use of the Jordan form. A better realization, with many useful properties, is the balanced
realization which will be considered next.

11.3 Balanced realizations
In words only: a balanced realization is an asymptotically stable minimal realization in which
the controllability and observability Gramians are equal and diagonal.

More formally: let (A,B,C,D) be a minimal realization of a stable, rational transfer
function G(s), then (A,B,C,D) is called balanced if the solutions to the following
Lyapunov equations

AP + PAT +BBT = 0 (11.11)
ATQ+QA+ CTC = 0 (11.12)

are P = Q = diag(σ1, σ2, . . . , σn)
4
= Σ, where σ1 ≥ σ2 ≥ · · · ≥ σn > 0. P and Q are the

controllability and observability Gramians, also de£ned by

P
4
=

∫ ∞

0

eAtBBT eA
T tdt (11.13)

Q
4
=

∫ ∞

0

eA
T tCTCeAtdt (11.14)
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Σ is therefore simply referred to as the Gramian of G(s). The σi’s are the ordered Hankel
singular values of G(s), more generally de£ned as σi

4
= λ

1
2
i (PQ), i = 1, . . . , n. Notice that

σ1 = ‖G‖H , the Hankel norm of G(s).
Any minimal realization of a stable transfer function can be balanced by a simple state

similarity transformation, and routines for doing this are available in Matlab. For further
details on computing balanced realizations, see Laub et al. (1987). Note that balancing does
not depend on D.

So what is so special about a balanced realization? In a balanced realization the value of
each σi is associated with a state xi of the balanced system. And the size of σi is a relative
measure of the contribution that xi makes to the input–output behaviour of the system; also
see the discussion on page 161. Therefore if σ1 À σ2, then the state x1 affects the input–
output behaviour much more than x2, or indeed any other state because of the ordering of
the σi. After balancing a system, each state is just as controllable as it is observable, and a
measure of a state’s joint observability and controllability is given by its associated Hankel
singular value. This property is fundamental to the model reduction methods in the remainder
of this chapter which work by removing states having little effect on the system’s input–output
behaviour.

11.4 Balanced truncation and balanced residualization
Let the balanced realization (A,B,C,D) of G(s) and the corresponding Σ be partitioned
compatibly as

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
(11.15)

Σ =

[
Σ1 0
0 Σ2

]
(11.16)

where Σ1 = diag(σ1, σ2, . . . , σk), Σ2 = diag(σk+1, σk+2, . . . , σn) and σk > σk+1.
Balanced truncation. The reduced order model given by (A11, B1, C1, D) is called

a balanced truncation of the full-order system G(s). This idea of balancing the system
and then discarding the states corresponding to small Hankel singular values was £rst
introduced by Moore (1981). A balanced truncation is also a balanced realization (Pernebo
and Silverman, 1982), and the H∞ norm of the error between G(s) and the reduced order
system is bounded by twice the sum of the last n − k Hankel singular values, i.e. twice the
trace of Σ2 or simply “twice the sum of the tail” (Glover, 1984; Enns, 1984). For the case
of repeated Hankel singular values, Glover (1984) shows that each repeated Hankel singular
value is to be counted only once in calculating the sum.

A precise statement of the bound on the approximation error is given in Theorem 11.1
below.

Useful algorithms that compute balanced truncations without £rst computing a balanced
realization have been developed by Tombs and Postlethwaite (1987) and Safonov and Chiang
(1989). These still require the computation of the observability and controllability Gramians,
which can be a problem if the system to be reduced is of very high order. In such cases the
technique of Jaimoukha et al. (1992), based on computing approximate solutions to Lyapunov
equations, is recommended.
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Balanced residualization. In balanced truncation above, we discarded the least
controllable and observable states corresponding to Σ2. In balanced residualization, we
simply set to zero the derivatives of all these states. The method was introduced by Fernando
and Nicholson (1982) who called it a singular perturbational approximation of a balanced
system. The resulting balanced residualization of G(s) is (Ar, Br, Cr, Dr) as given by the
formulae (11.7)–(11.10).

Liu and Anderson (1989) have shown that balanced residualization enjoys the same error
bound as balanced truncation. An alternative derivation of the error bound, more in the style
of Glover (1984), is given by Samar et al. (1995). A precise statement of the error bound is
given in the following theorem.

Theorem 11.1 Let G(s) be a stable rational transfer function with Hankel singular values
σ1 > σ2 > · · · > σN where each σi has multiplicity ri and let Gk

a(s) be obtained by
truncating or residualizing the balanced realization of G(s) to the £rst (r1 + r2 + · · ·+ rk)
states. Then

‖G(s)−Gk
a(s)‖∞ ≤ 2(σk+1 + σk+2 + · · ·+ σN ) (11.17)

The following two exercises are to emphasize that (i) balanced residualization preserves
the steady-state gain of the system and (ii) balanced residualization is related to balanced
truncation by the bilinear transformation s→ s−1.

Exercise 11.1 ∗ The steady-state gain of a full-order balanced system (A,B,C,D) is D − CA−1B.
Show, by algebraic manipulation, that this is also equal to Dr − CrA

−1
r Br , the steady-state gain of

the balanced residualization given by (11.7)–(11.10).

Exercise 11.2 Let G(s) have a balanced realization
[

A B
C D

]
, then

[
A−1 A−1B

−CA−1 D − CA−1B

]

is a balanced realization of H(s)
4
= G(s−1), and the Gramians of the two realizations are the same.

1. Write down an expression for a balanced truncation Ht(s) of H(s).
2. Apply the reverse transformation s−1 → s to Ht(s), and hence show that Gr(s)

4
= Ht(s

−1) is a
balanced residualization of G(s) as de£ned by (11.7)–(11.10).

11.5 Optimal Hankel norm approximation
In this approach to model reduction, the problem that is directly addressed is the following:
given a stable model G(s) of order (McMillan degree) n, £nd a reduced order model Gk

h(s)
of degree k such that the Hankel norm of the approximation error, ‖G(s) − Gk

h(s)‖H , is
minimized.

The Hankel norm of any stable transfer function E(s) is de£ned as

‖E(s)‖H 4
= ρ

1
2 (PQ) (11.18)

where P and Q are the controllability and observability Gramians of E(s). It is also the
maximum Hankel singular value of E(s). So in the optimization we seek an error which is in
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some sense closest to being completely unobservable and completely uncontrollable, which
seems sensible. A more detailed discussion of the Hankel norm was given in Section 4.10.4
(page 160).

The Hankel norm approximation problem has been considered by many but especially
Glover (1984). In Glover (1984) a complete treatment of the problem is given, including a
closed-form optimal solution and a bound on the in£nity norm of the approximation error.
The in£nity norm bound is of particular interest because it is better than that for balanced
truncation and residualization.

The theorem below gives a particular construction for optimal Hankel norm approxima-
tions of square stable transfer functions.

Theorem 11.2 Let G(s) be a stable, square, transfer function G(s) with Hankel singular
values σ1 ≥ σ2 ≥ · · · ≥ σk ≥ σk+1 = σk+2 = · · · = σk+l > σk+l+1 ≥ · · · ≥ σn > 0, then
an optimal Hankel norm approximation of order k, Gk

h(s), can be constructed as follows.
Let (A,B,C,D) be a balanced realization of G(s) with the Hankel singular values

reordered so that the Gramian matrix is

Σ = diag (σ1, σ2, · · · , σk, σk+l+1, · · · , σn, σk+1, · · · , σk+l) (11.19)
4
= diag (Σ1, σk+1I)

Partition (A,B,C,D) to conform with Σ:

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C = [C1 C2 ] (11.20)

De£ne (Â, B̂, Ĉ, D̂) by

Â
4
= Γ−1

(
σ2k+1A

T
11 +Σ1A11Σ1 − σk+1C

T
1 UB

T
1

)
(11.21)

B̂
4
= Γ−1

(
Σ1B1 + σk+1C

T
1 U
)

(11.22)

Ĉ
4
= C1Σ1 + σk+1UB

T
1 (11.23)

D̂
4
= D − σk+1U (11.24)

where U is a unitary matrix satisfying

B2 = −CT
2 U (11.25)

and
Γ
4
= Σ2

1 − σ2k+1I (11.26)

The matrix Â has k “stable” eigenvalues (in the open LHP); the remaining ones are in the
open RHP. Then

Gk
h(s) + F (s)

s
=

[
Â B̂

Ĉ D̂

]
(11.27)

where Gk
h(s) is a stable optimal Hankel norm approximation of order k, and F (s) is an anti-

stable (all poles in the open RHP) transfer function of order n − k − l. The Hankel norm
of the error between G and the optimal approximation Gk

h is equal to the (k + 1)’th Hankel
singular value of G:

‖G−Gk
h‖H = σk+1(G) (11.28)
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Remark 1 The k+1’th Hankel singular value is generally not repeated, but the possibility is included
in the theory for completeness.

Remark 2 The order k of the approximation can be selected either directly, or indirectly by choosing
the “cut-off” value σk for the included Hankel singular values. In the latter case, one often looks for
large “gaps” in the relative magnitude, σk/σk+1.

Remark 3 There is an in£nite number of unitary matrices U satisfying (11.25); one choice is U =
−C2(B

T
2 )
†.

Remark 4 If σk+1 = σn, i.e. only the smallest Hankel singular value is deleted, then F = 0, otherwise
(Â, B̂, Ĉ, D̂) has a non-zero anti-stable part and Gk

h has to be separated from F .

Remark 5 When the order k is chosen to be zero, Gk
h is a constant matrix and (Â, B̂, Ĉ, D̂ −Gk

h) =
F (s), which is entirely anti-stable. In this case, ‖G(s) − Gk

h(s)‖H = ‖G(s) − F (s)‖L∞ =
‖GT (−s) − FT (−s)‖L∞ . The last inequality follows since the L∞ norm of a system is equal to
the L∞ norm of its mirror image across the imaginary axis. This special case can be interpreted as
approximating a stable system by an unstable system or an unstable system by a stable one. The latter
problem is alternatively known as the Nehari extension problem, which was used extensively in the early
solutions of H∞ optimal controller design problems (Francis, 1987); also see the robust stabilization
problem on page 368.

Remark 6 For non-square systems, an optimal Hankel norm approximation can be obtained by
£rst augmenting G(s) with zero to form a square system. For example, if G(s) is ¤at, de£ne
Ḡ(s)

4
=

[
G(s)
0

]
which is square, and let Ḡh(s) =

[
G1(s)
G2(s)

]
be a k’th-order optimal Hankel norm

approximation of Ḡ(s) such that ‖Ḡ(s)− Ḡh(s)‖H = σk+1

(
Ḡ(s)

)
. Then

σk+1 (G(s)) ≤ ‖G−G1‖H ≤ ‖Ḡ− Ḡh‖H = σk+1(Ḡ) = σk+1(G)

Consequently, this implies that ‖G − G1‖H = σk+1(G) and G1(s) is an optimal Hankel norm
approximation of G(s).

Remark 7 The Hankel norm of a system does not depend on the D-matrix in the system’s state-space
realization. The choice of the D-matrix in Gk

h is therefore arbitrary except when F = 0, in which case
it is equal to D̂.

Remark 8 The in£nity norm does depend on the D-matrix, and therefore the D-matrix of Gk
h can be

chosen to reduce the in£nity norm of the approximation error (without changing the Hankel norm).
Glover (1984) showed that through a particular choice of D, called Do, the following bound could be
obtained:

‖G−Gk
h −Do‖∞ ≤ σk+1 + δ (11.29)

where

δ
4
= ‖F −Do‖∞ ≤

n−k−l∑

i=1

σi (F (−s)) ≤
n−k−l∑

i=1

σi+k+l (G(s)) (11.30)

This results in an in£nity norm bound on the approximation error, δ ≤ σk+l+1+· · ·+σn, which is equal
to the “sum of the tail” or less since the Hankel singular value σk+1, which may be repeated, is only
included once. Recall that the bound for the error in balanced truncation and balanced residualization is
twice the “sum of the tail”.
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11.6 Reduction of unstable models
Balanced truncation, balanced residualization and optimal Hankel norm approximation only
apply to stable models. In this section we will brie¤y present two approaches for reducing the
order of an unstable model.

11.6.1 Stable part model reduction
Enns (1984) and Glover (1984) proposed that the unstable model could £rst be decomposed
into its stable and anti-stable parts. Namely

G(s) = Gu(s) +Gs(s) (11.31)

where Gu(s) has all its poles in the closed RHP and Gs(s) has all its poles in the open LHP.
Balanced truncation, balanced residualization or optimal Hankel norm approximation can
then be applied to the stable part Gs(s) to £nd a reduced order approximation Gsa(s). This
is then added to the anti-stable part to give

Ga(s) = Gu(s) +Gsa(s) (11.32)

as an approximation to the full-order model G(s).

11.6.2 Coprime factor model reduction
The coprime factors of an unstable transfer function G(s) are stable, and therefore we
could reduce the order of these factors using balanced truncation, balanced residualization
or optimal Hankel norm approximation, as proposed in the following scheme (McFarlane
and Glover, 1990):
• Let G(s) =M−1(s)N(s), where M(s) and N(s) are stable left coprime factors of G(s).
• Approximate [N M ] of degree n by [Na Ma] of degree k < n, using balanced truncation,

balanced residualization or optimal Hankel norm approximation.
• Realize the reduced order transfer function Ga(s), of degree k, by Ga(s) =M−1

a Na.
A dual procedure could be written down based on a right coprime factorization of G(s).

For related work in this area, we refer the reader to Anderson and Liu (1989) and Meyer
(1987). In particular, Meyer (1987) has derived the following result:
Theorem 11.3 Let (N,M) be a normalized left coprime factorization of G(s) of degree n.
Let [Na Ma] be a degree k balanced truncation of [N M ] which has Hankel singular values
σ1 ≥ σ2 ≥ · · · ≥ σk > σk+1 ≥ · · · ≥ σn > 0. Then (Na,Ma) is a normalized left coprime
factorization of Ga =M−1

a Na, and [Na Ma] has Hankel singular values σ1, σ2, . . . , σk.

Exercise 11.3 ∗ Is Theorem 11.3 true, if we replace balanced truncation by balanced residualization?

11.7 Model reduction using Matlab
The commands in Table 11.1 from the Matlab Robust Control toolbox may be used to perform
model reduction for both stable and unstable systems. Note that most reduction commands in



MODEL REDUCTION 463

Matlab automatically separate out the unstable part and then add it to the stable part after its
reduction.

Table 11.1: Matlab commands for model reduction
% Uses Robust Control toolbox
% Remove fast stable modes
p=pole(sys);
sysd=canon(sys); % Diagonalize the system
elim=(abs(p)>tol) & (real(p)<0); % and identify fast stable modes
syst=modred(sysd,elim,’t’); % then: Truncate fast modes.
sysr=modred(sysd,elim); % or: Residualize fast modes.
% Balanced model reduction
% Works for stable modes, so use k > number of unstable modes
n=size(sys.A,1);
sysbt=balancmr(sys,k); % kth order balanced truncation.
sysbr=modred(balreal(sys),k+1:n); % or: kth order balanced residualization.
sysbh=hankelmr(sys,k); % or: kth order optimal Hankel norm approx.
% Using coprime factors (works also for unstable modes)
nu=size(sys,2);
sysct=ncfmr(sys,k); % balanced truncation of coprime factors.
[sysc,cinfo]=ncfmr(sys,n); % or: obtain coprime factors of system
syscr=modred(cinfo.GL,k+1:n); % residualize.
syscrm=minreal(inv(syscr(:,nu+1.... % and obtain kth order model.

:end))*syscr(:,1:nu));
sysch=hankelmr(cinfo.GL,k); % or: optimal Hankel norm approximation.
syschm=minreal(inv(sysch(:,nu+1.... % and obtain kth order model.

:end))*sysch(:,1:nu));

11.8 Two practical examples
In this section, we make comparisons between the three main model reduction techniques
presented by applying them to two practical examples. The £rst example is on the reduction of
a plant model and the second considers the reduction of a two degrees-of-freedom controller.
Our presentation is similar to that in Samar et al. (1995).

11.8.1 Reduction of a gas turbine aero-engine model
For the £rst example, we consider the reduction of a stable model of a Rolls-Royce Spey
gas turbine engine. This engine will be considered again in Chapter 13. The model has 3
inputs, 3 outputs, and 15 states. Inputs to the engine are fuel ¤ow, variable nozzle area and
an inlet guide vane with a variable angle setting. The outputs to be controlled are the high-
pressure compressor’s spool speed, the ratio of the high-pressure compressor’s outlet pressure
to engine inlet pressure, and the low-pressure compressor’s exit Mach number measurement.
The model describes the engine at 87% of maximum thrust with sea-level static conditions.
The Hankel singular values for the 15-state model are listed in Table 11.2. Recall that the L∞
error bounds after reduction are “twice the sum of the tail” for balanced residualization and
balanced truncation and the “sum of the tail” for optimal Hankel norm approximation. Based
on this we decided to reduce the model to 6 states.

Figure 11.1 shows the singular values (not Hankel singular values) of the reduced and
full-order models plotted against frequency for the residualized, truncated and optimal
Hankel norm approximated cases respectively. The D-matrix used for optimal Hankel norm
approximation is such that the error bound given in (11.29) is met. It can be seen that
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Table 11.2: Hankel singular values of the gas turbine aero-engine model
1) 2.0005e+01 6) 6.2964e-01 11) 1.3621e-02
2) 4.0464e+00 7) 1.6689e-01 12) 3.9967e-03
3) 2.7546e+00 8) 9.3407e-02 13) 1.1789e-03
4) 1.7635e+00 9) 2.2193e-02 14) 3.2410e-04
5) 1.2965e+00 10) 1.5669e-02 15) 3.3073e-05
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Figure 11.1: Singular values for model reductions of the aero-engine from 15 to 6 states

the residualized system matches perfectly at steady-state. The singular values of the error
system (G − Ga), for each of the three approximations, are shown in Figure 11.2(a). The
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Figure 11.2: Singular values for the scaled and unscaled error systems

H∞ norm of the error system is computed to be 0.295 for balanced residualization and
occurs at 208 rad/s; the corresponding error norms for balanced truncation and optimal
Hankel norm approximation are 0.324 and 0.179 occurring at 169 rad/s and 248 rad/s,
respectively. The theoretical upper bounds for these error norms are 0.635 (twice the sum
of the tail) for residualization and truncation, and 0.187 (using (11.29)) for optimal Hankel
norm approximation respectively. It should be noted that the plant under consideration is
desired to have a closed-loop bandwidth of around 10 rad/s. The error around this frequency,
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therefore, should be as small as possible for good controller design. Figure 11.2(a) shows that
the error for balanced residualization is the smallest in this frequency range.

Steady-state gain preservation. It is sometimes desirable to have the steady-state gain of
the reduced plant model the same as the full-order model. For example, this is the case if
we want to use the model for feedforward control. The truncated and optimal Hankel norm
approximated systems do not preserve the steady-state gain and have to be scaled, i.e. the
model approximationGa is replaced byGaWs, whereWs = Ga(0)

−1G(0),G being the full-
order model. The scaled system no longer enjoys the bounds guaranteed by these methods
and ‖G−GaWs‖∞ can be quite large as is shown in Figure 11.2(b). Note that the residualized
system does not need scaling, and the error system for this case has been shown again only
for ease of comparison. TheH∞ norms of these errors are computed and are found to degrade
to 5.71 (at 151 rad/s) for the scaled truncated system and 2.61 (at 168.5 rad/s) for the scaled
optimal Hankel norm approximated system. The truncated and Hankel norm approximated
systems are clearly worse after scaling since the errors in the critical frequency range around
crossover become large despite the improvement at steady-state. Hence residualization is to
be preferred over these other techniques whenever good low-frequency matching is desired.
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Figure 11.3: Aero-engine: impulse responses (second input)
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Figure 11.4: Aero-engine: step responses (second input)

Impulse and step responses from the second input to all the outputs for the three reduced
systems (with the truncated and optimal Hankel norm approximated systems scaled) are
shown in Figures 11.3 and 11.4, respectively. The responses for the other inputs were found
to be similar. The simulations con£rm that the residualized model’s response is closer to the
full-order model’s response.
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11.8.2 Reduction of an aero-engine controller
We now consider reduction of a stable two degrees-of-freedom H∞ loop-shaping controller.
The plant for which the controller is designed is the full-order gas turbine engine model
described in Section 11.8.1 above.

A robust controller was designed using the procedure outlined in Section 9.4.3; see
Figure 9.21 which describes the design problem. Tref(s) is the desired closed-loop transfer
function, ρ is a design parameter, Gs = M−1

S Ns is the shaped plant and (∆Ns
,∆MS

) are
perturbations on the normalized coprime factors representing uncertainty. We denote the
actual closed-loop transfer function (from β to y) by Tyβ .

The controller K = [K1 K2], which excludes the loop-shaping weight W1 (which
includes 3 integral action states), has 6 inputs (because of the two degrees-of-freedom
structure), 3 outputs and 24 states. It has not been scaled (i.e. the steady-state value of Tyβ
has not been matched to that of Tref by scaling the pre£lter). It is reduced to 7 states in each
of the cases that follow.

Let us £rst compare the magnitude of Tyβ with that of the speci£ed model Tref . By
magnitude, we mean singular values. These are shown in Figure 11.5(a). The in£nity norm of
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Figure 11.5: Singular values of Tref (solid) and Tyβ (dashed)

the difference Tyβ − Tref is computed to be 0.974 and occurs at 8.5 rad/s. Note that we have
ρ = 1 and the γ achieved in theH∞ optimization is 2.32, so that ‖Tyβ − Tref‖∞ ≤ γρ−2 as
required; see (9.81). The pre£lter is now scaled so that Tyβ matches Tref exactly at steady-
state, i.e. we replace K1 by K1Wi where Wi = Tyβ(0)

−1Tref(0). It is argued by Hoyle et al.
(1991) that this scaling produces better model matching at all frequencies, because the H∞
optimization process has already given Tyβ the same magnitude frequency response shape
as the model Tref . The scaled transfer function is shown in Figure 11.5(b), and the in£nity
norm of the difference (Tyβ − Tref) computed to be 1.44 (at 46 rad/s). It can be seen that this
scaling has not degraded the in£nity norm of the error signi£cantly as was claimed by Hoyle
et al. (1991). To ensure perfect steady-state tracking the controller is always scaled in this
way. We are now in a position to discuss ways of reducing the controller. We will look at the
following two approaches:

1. The scaled controller [K1Wi K2 ] is reduced. A balanced residualization of this
controller preserves the controller’s steady-state gain and would not need to be scaled
again. Reductions via truncation and optimal Hankel norm approximation techniques,
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however, lose the steady-state gain. The pre£lters of these reduced controllers would
therefore need to be rescaled to match Tref(0).

2. The full-order controller [K1 K2 ] is directly reduced without £rst scaling the pre£lter.
In this case, scaling is done after reduction.

We now consider the £rst approach. A balanced residualization of [K1Wi K2 ] is obtained.
The theoretical upper bound on theH∞ norm of the error (twice the sum of the tail) is 0.698,
i.e.

‖K1Wi − (K1Wi)a K2 −K2a ‖∞ ≤ 0.698 (11.33)

where the subscript a refers to the low-order approximation. The actual error norm is
computed to be 0.365. Tyβ for this residualization is computed and its magnitude plotted
in Figure 11.6(a). TheH∞ norm of the difference (Tyβ − Tref) is computed to be 1.44 (at 43

10−2 100 10210−4

10−2

100

PSfrag replacements

Frequency [rad/s]

Tref
Tyβ

(a) Balanced residualiza-
tion

10−2 100 10210−4

10−2

100

PSfrag replacements

Frequency [rad/s]

Tref
Tyβ

(b) Scaled balanced trunca-
tion

10−2 100 10210−4

10−2

100

PSfrag replacements

Frequency [rad/s]

Tref
Tyβ

(c) Scaled optimal Hankel
norm approximation

Figure 11.6: Singular values of Tref and Tyβ for reduced [K1Wi K2 ]

rad/s). This value is very close to that obtained with the full-order controller [K1Wi K2 ],
and so the closed-loop response of the system with this reduced controller is expected to be
very close to that with the full-order controller. Next [K1Wi K2 ] is reduced via balanced
truncation. The bound given by (11.33) still holds. The steady-state gain, however, falls below
the adjusted level, and the pre£lter of the truncated controller is thus scaled. The bound given
by (11.33) can no longer be guaranteed for the pre£lter (it is in fact found to degrade to 3.66),
but it holds for K2−K2a. Singular values of Tref and Tyβ for the scaled truncated controller
are shown in Figure 11.6(b). The in£nity norm of the difference is computed to be 1.44 and
this maximum occurs at 46 rad/s. Finally [K1Wi K2 ] is reduced by optimal Hankel norm
approximation. The following error bound is theoretically guaranteed:

‖K1Wi − (K1Wi)a K2 −K2a ‖∞ ≤ 0.189 (11.34)

Again the reduced pre£lter needs to be scaled and the above bound can no longer be
guaranteed; it actually degrades to 1.87. Magnitude plots of Tyβ and Tref are shown in
Figure 11.6(c), and the in£nity norm of the difference is computed to be 1.43 and occurs
at 43 rad/s.

It has been observed that both balanced truncation and optimal Hankel norm approximation
cause a lowering of the system steady-state gain. In the process of adjustment of these steady-
state gains, the in£nity norm error bounds are destroyed. In the case of our two degrees-
of-freedom controller, where the pre£lter has been optimized to give closed-loop responses
within a tolerance of a chosen ideal model, large deviations may be incurred. Closed-loop
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Figure 11.7: Closed-loop step responses: [K1Wi K2 ] balanced residualized
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Figure 11.8: Closed-loop step responses: [K1Wi K2 ] balanced truncated
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Figure 11.9: Closed-loop step responses: [K1Wi K2 ] optimal Hankel norm approximated and
rescaled
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responses for the three reduced controllers discussed above are shown in Figures 11.7, 11.8
and 11.9.

It is seen that the residualized controller performs much closer to the full-order controller
and exhibits better performance in terms of interactions and overshoots. It may not be
possible to use the other two reduced controllers if the deviation from the speci£ed model
becomes larger than the allowable tolerance, in which case the number of states by which
the controller is reduced would probably have to be reduced. It should also be noted from
(11.33) and (11.34) that the guaranteed bound for K2 − K2a is lowest for optimal Hankel
norm approximation.

Let us now consider the second approach. The controller [K1 K2 ] obtained from the
H∞ optimization algorithm is reduced directly. The theoretical upper bound on the error for
balanced residualization and truncation is

‖K1 −K1a K2 −K2a ‖∞ ≤ 0.165 (11.35)

The residualized controller retains the steady-state gain of [K1 K2 ]. It is therefore scaled
with the sameWi as was required for scaling the pre£lter of the full-order controller. Singular
values of Tref and Tyβ for this reduced controller are shown in Figure 11.10(a), and the
in£nity norm of the difference was computed to be 1.50 at 44 rad/s. [K1 K2 ] is next
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Figure 11.10: Singular values of Tref and Tyβ for reduced [K1 K2 ]

truncated. The steady-state gain of the truncated controller is lower than that of [K1 K2 ],
and it turns out that this has the effect of reducing the steady-state gain of Tyβ . Note that the
steady-state gain of Tyβ is already less than that of Tref (Figure 11.5). Thus in scaling the
pre£lter of the truncated controller, the steady-state gain has to be pulled up from a lower
level as compared with the previous (residualized) case. This causes greater degradation at
other frequencies. The in£nity norm of (Tyβ − Tref) in this case is computed to be 25.3 and
occurs at 3.4 rad/s (see Figure 11.10(b)). Finally [K1 K2 ] is reduced by optimal Hankel
norm approximation. The theoretical bound given in (11.29) is computed and found to be
0.037, i.e. we have

‖K1 −K1a K2 −K2a ‖∞ ≤ 0.037 (11.36)

The steady-state gain falls once more in the reduction process, and again a larger scaling is
required. Singular value plots for Tyβ and Tref are shown in Figure 11.10(c). ‖Tyβ − Tref‖∞
is computed to be 4.5 and occurs at 5.1 rad/s.

Some closed-loop step response simulations are shown in Figures 11.11, 11.12 and 11.13.
It can be seen that the truncated and Hankel norm approximated systems have deteriorated
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to an unacceptable level. Only the residualized system maintains an acceptable level of
performance.
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Figure 11.11: Closed-loop step responses: [K1 K2 ] balanced residualized and scaled
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Figure 11.12: Closed-loop step responses: [K1 K2 ] balanced truncated and scaled
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Figure 11.13: Closed-loop step responses: [K1 K2 ] optimal Hankel norm approximated and scaled

We have seen that the £rst approach yields better model matching, though at the expense
of a larger in£nity norm bound on K2 −K2a (compare (11.33) and (11.35), or (11.34) and
(11.36)). We have also seen how the scaling of the pre£lter in the £rst approach gives poorer
performance for the truncated and optimal Hankel norm approximated controllers, relative to
the residualized one.

In the second case, all the reduced controllers need to be scaled, but a “larger” scaling is
required for the truncated and optimal Hankel norm approximated controllers. There appears
to be no formal proof of this observation. It is, however, intuitive in the sense that controllers
reduced by these two methods yield poorer model matching at steady-state as compared with
that achieved by the full-order controller. A larger scaling is therefore required for them
than is required by the full-order or residualized controllers. In any case, this larger scaling
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gives poorer model matching at other frequencies, and only the residualized controller’s
performance is deemed acceptable.

11.9 Conclusion
We have presented and compared three main methods for model reduction based on
balanced realizations: balanced truncation, balanced residualization and optimal Hankel norm
approximation.

Residualization, unlike truncation and optimal Hankel norm approximation, preserves
the steady-state gain of the system, and, like truncation, it is simple and computationally
inexpensive. It is observed that truncation and optimal Hankel norm approximation perform
better at high frequencies, whereas residualization performs better at low and medium
frequencies, i.e. up to the critical frequencies. Thus for plant model reduction, where models
are not accurate at high frequencies to start with, residualization would seem to be a better
option. Further, if the steady-state gains are to be kept unchanged, truncated and optimal
Hankel norm approximated systems require scaling, which may result in large errors. In such
a case, too, residualization would be a preferred choice.

Frequency-weighted model reduction has been the subject of numerous papers over the
past few years. The idea is to emphasize frequency ranges where better matching is required.
This, however, has been observed to have the effect of producing larger errors (greater
mismatching) at other frequencies (Anderson, 1986; Enns, 1984). In order to get good steady-
state matching, a relatively large weight would have to be used at steady-state, which would
cause poorer matching elsewhere. The choice of weights is not straightforward, and an error
bound is available only for weighted Hankel norm approximation. The computation of the
bound is also not as easy as in the unweighted case (Anderson and Liu, 1989). Balanced
residualization can, in this context, be seen as a reduction scheme with implicit low- and
medium-frequency weighting.

For controller reduction, we have shown in a two degrees-of-freedom example the
importance of scaling and steady-state gain matching.

In general, steady-state gain matching may not be crucial, but the matching should usually
be good near the desired closed-loop bandwidth. Balanced residualization has been seen
to perform close to the full-order system in this frequency range. Good approximation at
high frequencies may also sometimes be desired. In such a case, using truncation or optimal
Hankel norm approximation with appropriate frequency weightings may yield better results.

Finally, for controller reduction it is important that any subsequent loss in closed-loop
performance is minimized. This problem has been addressed by Goddard (1995).
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12

LINEAR MATRIX
INEQUALITIES

This chapter gives an introduction to the use of linear matrix inequalities (LMIs) in the numerical
solution of some important control problems. LMI problems are de£ned and tools described for
transforming such problems into suitable formats for solution. The chapter ends with a case study on
anti-windup compensator synthesis.

12.1 Introduction to LMI problems
LMIs are matrix inequalities which are linear (or af£ne) in a set of matrix variables. Many
problems in control theory can be stated in terms of LMIs and their existence can be traced
back over 100 years to the work of Lyapunov. However, until relatively recently, there were
few (if any) routines available to solve LMIs numerically. During the past 10–15 years, the
development of sophisticated numerical routines has made it possible to solve LMIs in a
reasonably ef£cient manner. These routines exploit the convexity of LMI problems in order
to obtain reliable numerical calculations.

From a control engineering perspective, one of the main attractions of LMIs is that they can
be used to solve problems which involve several matrix variables, and, moreover, different
structures can be imposed on these matrix variables. Another attractive feature of LMI
methods is that they are ¤exible, so it is often relatively straightforward to pose a variety of
problems as LMI problems, amenable to LMI methods. Furthermore, in many cases the use of
LMIs can remove restrictions associated with conventional methods and aid their extension to
more general scenarios. Often LMI methods can be applied in instances where conventional
methods either fail or struggle to £nd a solution.

Another advantage of LMIs, at least in a pedagogical sense, is that they are able to unite
many previous results in a common framework. This can enable one to obtain additional
insight into established areas. Some important controller design problems, which have been
shown to be solvable using LMIs, include: H∞ controller design (Gahinet and Apkarian,
1994; Iwasaki and Skelton, 1994), H2 controller design (e.g. Sato and Liu, 1999), mixed
H2/H∞ optimal controller design (e.g. Khargonekar and Rotea, 1991), pole placement (e.g.
Chilali and Gahinet, 1996) and robust model predictive control (e.g. Kothare et al., 1996).
This list is by no means exhaustive and we encourage the reader to refer to the book by Boyd
et al. (1994) for an overview of control-theoretic problems that can be posed as LMIs and for
a more complete exposure to LMIs.

Multivariable Feedback Control: Analysis and Design. Second Edition
S. Skogestad and I. Postlethwaite c© 2005, 2006 John Wiley & Sons, Ltd
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The main contents of this chapter are available as a University of Leicester technical report
(Turner et al., 2004) which draws heavily on the material contained within the book by Boyd
et al. (1994) and the Matlab LMI control toolbox by Gahinet et al. (1995). Note that the LMI
control toolbox is now part of the Robust Control toolbox in Matlab.

12.1.1 Fundamental LMI properties
A notion central to the understanding of matrix inequalities is de£niteness. In particular, a
real square matrix Q is de£ned to be positive de£nite if

xTQx > 0 ∀x 6= 0 (12.1)

and Q is said to be positive semi-de£nite if

xTQx ≥ 0 ∀x (12.2)

It is common practice to writeQ > 0 (Q ≥ 0) to indicate thatQ is positive (semi-)de£nite.
Likewise, a matrix P = −Q is said to be negative (semi-)de£nite if Q is positive
(semi-)de£nite and to indicate negative (semi-)de£niteness, we write P < 0 (P ≤ 0).

Notice that any real square matrix Q can be written as

Q =

(
Q+QT

2

)
+

(
Q−QT

2

)
(12.3)

where the £rst term on the right hand side of (12.3) is symmetric and the second term is skew-
symmetric. A property of a skew-symmetric matrix is that its associated quadratic function is
always zero and therefore

xTQx = xT
(
Q+QT

2

)
x (12.4)

It then follows thatQ is positive de£nite, if the symmetric matrix (Q+QT ) is positive de£nite.
A consequence of this is that Q is positive de£nite, if all the eigenvalues of (Q + QT ) are
positive.

If Q is a complex matrix, it is said to be positive de£nite, if xHQx > 0 for any non-zero
x; and Q will then be Hermitian. In this chapter, however, we are largely interested in real
matrices and real-valued LMIs as discussed below.

The basic structure of an LMI is

F (x) = F0 +

m∑

i=1

xiFi > 0 (12.5)

where x ∈ R
m is a variable and F0, Fi are given constant symmetric real matrices.

The representation (12.5) may seem restrictive, as we have not allowed for cases where
some of the matrices Fi are complex Hermitian or the LMI is non-strict having the form
F (x) ≥ 0. However, complex-valued LMIs can be easily turned into real-valued LMIs; see
Exercise 12.1. Similarly, it is also possible to convert any “feasible” non-strict LMI to the
strict LMI form in (12.5); see Boyd et al. (1994).

The basic LMI problem – the feasibility problem – is to £nd x such that inequality (12.5)
holds. Note that F (x) > 0 in (12.5) describes an af£ne relationship in terms of the variable
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x. Normally the variable x, which we are interested in, is composed of one or many matrices
whose columns have been “stacked” as a vector. That is,

F (x) = F (X1, X2, . . . , Xn) (12.6)

whereXi ∈ R
qi×pi is a matrix,

∑n
i=1 qi×pi = m, and the columns of all the matrix variables

are stacked up to form a single vector variable.
Hence, from now on, we will consider functions of the form

F (X1, X2, . . . , Xn) = F0 +G1X1H1 +G2X2H2 + . . . (12.7)

= F0 +

n∑

i=1

GiXiHi > 0 (12.8)

where F0, Gi, Hi are given matrices and the Xi are the matrix variables which we seek.

Exercise 12.1 ∗ Let Q be a Hermitian matrix (Q = QH ) having the form Q = QR+ jQI . Show that
Q > 0 if and only if

[
QR QI

−QI QR

]
> 0 (12.9)

12.1.2 Systems of LMIs
In general, we are frequently faced with LMI constraints of the form

F1(X1, . . . , Xn) > 0 (12.10)
...

Fp(X1, . . . , Xn) > 0 (12.11)

where

Fj(X1, . . . , Xn) = F0j +
n∑

i=1

GijXiHij (12.12)

However, it is easily seen that, by de£ning F̃0, G̃i, H̃i, X̃i as

F̃0 = diag(F01, . . . , F0p) (12.13)
G̃i = diag(Gi1, . . . , Gip) (12.14)
H̃i = diag(Hi1, . . . , Hip) (12.15)
X̃i = diag(Xi, . . . Xi) (12.16)

we actually have the inequality

Fbig(X1, . . . , Xn) , F̃0 +

n∑

i=1

G̃iX̃iH̃i > 0 (12.17)
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That is, we can represent a (big) system of LMIs as a single LMI. Therefore, we do not
distinguish a single LMI from a system of LMIs; they are the same mathematical entity. We
may also encounter systems of LMIs of the form

F1(X1, . . . , Xn) > 0 (12.18)
F2(X1, . . . , Xn) > F3(X1, . . . , Xn) (12.19)

Again, it is easy to see that this can be written in the same form as inequality (12.17) above.
For the remainder of the chapter we do not distinguish between LMIs which can be written
as above, or those which are in the more generic form of inequality (12.17).

Notation. It is standard to let Xi denote the generic LMI variables. In the examples that
follow in this chapter, we will use the notation more commonly associated with the speci£c
problem. For instance, in Example 12.1, P = X1, and in Example 12.6, P andQ are the LMI
variables X1 and X2, respectively.

12.2 Types of LMI problems
The term “LMI problem” is rather vague and in fact there are several sub-groups of LMI
problems including LMI feasibility problems, linear objective minimization problems and
generalized eigenvalue problems. These three problems will be described below in the same
way that they are separated in the Matlab LMI toolbox. Note that by “LMI problem”
we normally mean solving an optimization problem or an eigenvalue problem with LMI
constraints.

12.2.1 LMI feasibility problems
These are simply problems for which we seek a feasible solution {X1, . . . , Xn} such that

F (X1, . . . , Xn) > 0 (12.20)

We are not interested in the optimality of the solution, only in £nding a solution, which may
not be unique.

Example 12.1 Determining stability of a linear system. Consider an autonomous linear system

ẋ = Ax (12.21)

then the Lyapunov LMI problem for proving stability of this system (Re{λi(A)} < 0, ∀i) is to £nd a
P > 0 such that (see e.g. Boyd et al., 1994, p. 20)

ATP + PA < 0 (12.22)

This is an LMI feasibility problem in P > 0. However, given any P > 0 which satis£es this, it is
obvious that any matrix from the set

P = {βP : scalar β > 0} (12.23)

also solves the problem. In fact, as will be seen later in the anti-windup case study, the matrix P forms
part of a Lyapunov function for the linear system. Further, note that the LMI (12.22) and the requirement
P > 0 can be combined into a single LMI as

[
ATP + PA 0

0 −P

]
< 0 (12.24)
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Matlab code for solving this problem is given in Table 12.1.

Table 12.1: MATLAB program for determining stability in Example 12.1
% Uses MATLAB Robust Control toolbox
% A: n × n state matrix
setlmis([])
P = lmivar(1,[size(A,1) 1]); % Specify structure and size of P
Lyap = newlmi
% Only the terms above the diagonal need to be specified:
lmiterm([Lyap 1 1 P],1,A,’s’) % AP + P’A < 0
lmiterm([Lyap 1 2 0],1) % 0
lmiterm([Lyap 2 2 P],-1,1) % P > 0
LMIsys = getlmis; % Obtain the system of LMIs
[tmin,xfeas] = feasp(LMIsys); % Solve the feasibility problem
% Feasible (A is stable) iff tmin < 0

12.2.2 Linear objective minimization problems
These problems are also called eigenvalue problems. They involve the minimization (or
maximization) of some linear scalar function, α(.), of the matrix variables, subject to LMI
constraints:

minα(X1, . . . , Xn) (12.25)
s.t. F (X1, . . . , Xn) > 0 (12.26)

where we have used the abbreviation “s.t.” to mean “such that”. In this case, we are therefore
trying to optimize some quantity whilst ensuring some LMI constraints are satis£ed. Actually,
α(.) does not need to be a linear function but the problem should be convex. Examples, where
α(.) is not linear, can be found in Boyd et al. (1994) and in some LMI software.
Example 12.2 Calculating theH∞norm of a linear system. Consider a linear system

ẋ = Ax+Bw (12.27)
z = Cx+Dw (12.28)

then the problem of £nding theH∞ norm of the transfer function matrix Tzw from w to z is equivalent
to the following optimization problem in P > 0 (see e.g. Gahinet and Apkarian, 1994):

min γ (12.29)

s.t.




ATP + PA PB CT

BTP −γI DT

C D −γI


 < 0 (12.30)

Note that although γ > 0 is unique, the uniqueness of P > 0 is, in general, not guaranteed. The LMI
problem (12.29)–(12.30) can be easily solved using Matlab, as shown in Table 12.2. Also note that we
have here chosen to write the two LMIs (12.30) and P > 0 separately and not combined, as in (12.24).

12.2.3 Generalized eigenvalue problems
The generalized eigenvalue problem, or GEVP, is slightly different to the preceding problem
in the sense that the objective of the optimization problem is not actually convex, but quasi-
convex. However, the methods used to solve such problems are similar. Speci£cally a GEVP
is formulated as
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Table 12.2: MATLAB program for calculatingH∞norm in Example 12.2
% Uses MATLAB Robust Control toolbox
% [A,B,C,D]: State-space realization
n = size(A,1)
setlmis([])
P = lmivar(1,[size(A,1) 1]); %Specify structure and size of P
gamma = lmivar(1,[1 1]);
HinfLMI = newlmi % LMI # 1
lmiterm([HinfLMI 1 1 P],1,A,’s’) % AP + P’A
lmiterm([HinfLMI 1 2 P],1,B) % PB
lmiterm([HinfLMI 1 3 0],C’) % C’
lmiterm([HinfLMI 2 2 gamma],-1,1) % -gamma*I
lmiterm([HinfLMI 2 3 0],D’) % D’
lmiterm([HinfLMI 3 3 gamma],-1,1) % -gamma*I
Ppos = newlmi % LMI # 2
lmiterm([Ppos 1 1 P],-1,1) % P > 0
LMIsys = getlmis; % Obtain the system of LMIs
c = mat2dec(LMIsys,zeros(n),1); % Vector c in c’x
options = [1e-5,0,0,0,0]; % Relative accuracy of solution
[normhinf,xopt] = mincx(LMIsys,c, options); % Solve minimization problem

minλ (12.31)
s.t. F1(X1, . . . , Xn)− λF2(X1, . . . , Xn) < 0 (12.32)

F2(X1, . . . , Xn) > 0 (12.33)
F3(X1, . . . , Xn) > 0 (12.34)

The £rst two lines are equivalent to minimizing the largest “generalized” eigenvalue of
the matrix pencil F1(X1, . . . , Xn) − λF2(X1, . . . , Xn). In some cases, a GEVP problem
can be reduced to a linear objective minimization problem, through an appropriate change of
variables.

Example 12.3 Bounding the decay rate of a linear system. A good example of a GEVP is given by
Boyd et al. (1994). Given a stable linear system ẋ = Ax, the decay rate is the largest α such that

‖x(t)‖ ≤ e−αtβ‖x(0)‖ ∀x(t) (12.35)

where β is a constant. If we choose V (x) = xTPx > 0 as a Lyapunov function for the system and
ensure that V̇ (x) ≤ −2αV (x) it is easily shown that the system will have a decay rate of at least α.
Hence, the problem of £nding the decay rate could be posed as the optimization problem in P > 0

min −α (12.36)
s.t. ATP + PA+ 2αP ≤ 0 (12.37)

This problem is a GEVP with the functions

F1(P ) = ATP + PA (12.38)
F2(P ) = 2P (12.39)

Example 12.4 Calculating upper bound on µ. Consider the problem of calculating the upper bound
on the structured singular value, µ in (8.87), given as

µup(M) = min
D∈D

σ̄(DMD−1) (12.40)
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whereD is the set of matrices D which commute with the uncertainty block ∆ (i.e. satisfy D∆ = ∆D).
This bound is tight for complex ∆ with three or fewer blocks. Due to the presence of the inverse term,
the optimization problem is dif£cult to solve in its original form; however, it can be transformed into an
equivalent LMI problem. To see this note that

σ̄(DMD−1) < γ ⇔ ρ(D−HMHDHDMD−1) < γ2 (12.41)
⇔ D−HMHDHDMD−1 − γ2I < 0⇔MHPM − γ2P < 0 (12.42)

where we have introduced P = DHD. Note that P > 0 and in addition has the structure of D, i.e.
P ∈ D. Now, µup can be found by solving the following optimization problem:

min γ2 (12.43)
s.t. MHPM − γ2P < 0 (12.44)

which is a GEVP with the functions

F1(P ) = MHPM (12.45)
F2(P ) = P (12.46)

A Matlab program for solving the GEVP (12.43)–(12.44) with structured ∆ is shown in Table 12.3.

Table 12.3: MATLAB program for calculating upper bound on µ in Example 12.4
% Uses MATLAB Robust Control toolbox
% Here: M is 4 × 4 real matrix
% Here: Structured Delta with a full 2 × 2 block and a scalar 2 × 2 block
setlmis([])
P = lmivar(1,[2 0;2 1]); % Specify P to commute with Delta
gamma = lmivar(1,[1 1]);
Ppos = newlmi; % LMI # 2
lmiterm([-Ppos 1 1 P],1,1) % P > 0
MuupLMI = newlmi; % LMI # 1
lmiterm([MuupLMI 1 1 P],M’,M) % F1(P) = M’PM
lmiterm([-MuupLMI 1 1 P],1,1) % -F2(P) = -P
LMIsys = getlmis; % Obtain the system of LMIs
[gmin,xopt] = gevp(LMIsys,1); % Solve the GEVP problem
muup = sqrt(gmin) % Upper bound on µ

Exercise 12.2 Let M =
[
−1 −1
3 3

]
and compute µ(M) for (i) ∆ = δ · I (scalar 2 × 2 block), (ii)

∆ = diag(δ1, δ2) (two 1 × 1 blocks) and (iii) ∆ = full 2 × 2 block using the Matlab program in
Table 12.3. Verify with (8.99). (Solution: µ(M) = 2, 4 and

√
20 = 4.47.)

12.3 Tricks in LMI problems
Although many control problems can be cast as LMI problems, a substantial number of these
need to be manipulated before they are in a suitable LMI problem format. Fortunately, there
are a number of common tools or “tricks” which can be used to transform problems into
suitable LMI forms. Some of the more useful ones are described below.
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12.3.1 Change of variables
Many control problems can be posed in the form of a set of nonlinear matrix inequalities;
that is, the inequalities are nonlinear in the matrix variables we seek. However, by de£ning
new variables it is sometimes possible to “linearize” the nonlinear inequalities, hence making
them solvable by LMI methods.

Example 12.5 State feedback control synthesis problem. Consider the problem of £nding a matrix
F ∈ R

m×n such that the matrix A + BF ∈ R
n×n has all of its eigenvalues in the open left-half

complex plane. By the theory of Lyapunov equations (see Zhou et al., 1996), this is equivalent to £nding
a matrix F and a positive de£nite matrix P ∈ R

n×n such that the following inequality holds:

(A+BF )TP + P (A+BF ) < 0 (12.47)

or

ATP + PA+ F TBTP + PBF < 0 (12.48)

This problem is not in LMI form due to the terms which contain products of F and P – these terms
are ‘nonlinear’ and as there are products of two variables, they are said to be “bilinear”. If we multiply
either side of (12.48) by Q := P−1 (which does not change the de£niteness of the expression since
rank(P ) = rank(Q) = n) we obtain

QAT +AQ+QFTBT +BFQ < 0 (12.49)

This is a new matrix inequality in the variables Q > 0 and F , but it is still nonlinear. To rectify this,
we simply de£ne a second new variable L = FQ giving

QAT +AQ+ LTBT +BL < 0 (12.50)

We now have an LMI feasibility problem in the new variables Q > 0 and L ∈ R
m×n. Once this

LMI has been solved we can recover a suitable state feedback matrix as F = LQ−1 and our Lyapunov
variable as P = Q−1. Hence, by making a change of variables we have obtained an LMI from a
nonlinear matrix inequality.

The key fact to consider when making a change of variables is the assurance that the
original variables can be recovered and that they are not over-determined. Notice also that
multiplication by Q above is an example of a congruence transformation as considered in the
next section.

Exercise 12.3 ∗ With reference to Example 12.2, formulate the problem of £nding the worst-case
(maximum) gain of each of the uncertain systems

G1(s) =
k

s+ τ
;G2(s) =

k

τs+ 1
(12.51)

as LMI problems. Verify your results with the Robust Control toolbox command wcgain using
numerical values 2 ≤ k, τ ≤ 3.
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12.3.2 Congruence transformation
For a given positive de£nite matrix Q ∈ R

n×n, we know that, for another real matrix
W ∈ R

n×n such that rank(W ) = n, the following inequality holds:

WQWT > 0 (12.52)

In other words, de£niteness of a matrix is invariant under pre- and postmultiplication by a
full rank real matrix, and its transpose, respectively. The process of transforming Q > 0 into
(12.52) using a real full rank matrix is called a “congruence transformation”. It is very useful
for “removing” bilinear terms in matrix inequalities and is often used, in conjunction with a
change of variables, to make a bilinear matrix inequality linear. Often W is chosen to have a
diagonal structure.
Example 12.6 Making a bilinear matrix inequality linear. Consider

Q =

[
ATP + PA PBF + CTV

? −2V

]
< 0 (12.53)

where the matrices P > 0, V > 0 and F (de£niteness not speci£ed) are the matrix variables and the
remaining matrices are constant. The ? in the bottom left entry of the matrix denotes the term required
to make the expression symmetric (in this case, ? = F TBTPT + V TC) and will be used frequently
hereafter. Notice that this inequality is bilinear in the variables P and F which occur in the (1, 2) and
(2, 1) blocks of the matrix Q ∈ R

(n+l)×(n+l). However, if we choose the matrix

W =

[
P−1 0
0 V −1

]
∈ R

(n+l)×(n+l) (12.54)

which is full rank (rank(W ) = n + l) by virtue of the invertibility of P and V (which exist as the
matrices are positive de£nite), then calculating WQW T gives

WQWT =

[
P−1AT +AP−1 BFV −1 + P−1CT

? −2V −1
]
< 0 (12.55)

Hence, in the new variables X = P−1, U = V −1 and L = FV −1 we have a linear matrix inequality

WQWT =

[
XAT +AX BL+XCT

? −2U

]
(12.56)

Notice that the original variables can be recovered by inverting X and U .

12.3.3 Schur complement
The main use of the Schur complement is to transform quadratic matrix inequalities into
LMIs, or at least as a step in this direction. Schur’s complement formula says that the
following statements are equivalent:

(i) Φ =

[
Φ11 Φ12

ΦT
12 Φ22

]
< 0

(ii) Φ22 < 0

Φ11 − Φ12Φ
−1
22 Φ

T
12 < 0

A non-strict form involving a Moore–Penrose pseudo-inverse also exists if Φ is only
negative semi-de£nite; see Boyd et al. (1994).
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Example 12.7 Making a quadratic inequality linear. Consider the LQR-type matrix inequality
(Riccati inequality)

ATP + PA+ PBR−1BTP +Q < 0 (12.57)
where P > 0 is the matrix variable and the other matrices are constant with Q,R > 0. This inequality
can be used to minimize the cost function (seen in Chapter 9)

J =

∫ ∞

0

(xTQx+ uTRu)dt (12.58)

If we now de£ne

Φ11 := ATP + PA+Q (12.59)
Φ12 := PB (12.60)
Φ22 := −R (12.61)

and use the Schur complement identities we can transform our Riccati inequality into
[
ATP + PA+Q PB

? −R

]
< 0 (12.62)

In other words, we have transformed a quadratic matrix inequality into an LMI.

Exercise 12.4 Verify that, for a given complex matrix A, the constraint σ̄(A) < γ can be posed as
an LMI. Is it possible to represent the constraint σ(A) > γ as an LMI?

12.3.4 The S-procedure
The S-procedure is essentially a method which enables one to combine several quadratic
inequalities into one single inequality (generally with some conservatism). There are many
instances in control engineering when we would like to ensure that a single quadratic function
of x ∈ R

m is such that

F0(x) ≤ 0; F0(x) , xTA0x+ 2b0x+ c0 (12.63)

whenever certain other quadratic functions are positive semi-de£nite, i.e. when

Fi(x) ≥ 0 Fi(x) , xTAix+ 2b0x+ c0, i ∈ {1, 2, . . . , q} (12.64)

To illustrate the S-procedure, consider i = 1, for simplicity. That is, we would like to ensure
F0(x) ≤ 0 for all x such that F1(x) ≥ 0. Now, if there exists a positive (or zero) scalar, τ ,
such that

Faug(x) , F0(x) + τF1(x) ≤ 0 ∀x s.t. F1(x) ≥ 0 (12.65)
it follows that our goal is achieved. To see this, note that Faug(x) ≤ 0 implies that F0(x) ≤ 0
if τF1(x) ≥ 0 because F0(x) ≤ Faug(x) if F1(x) ≥ 0. Thus, extending this idea to q
inequality constraints we have that

F0(x) ≤ 0 whenever Fi(x) ≥ 0 (12.66)

holds if

F0(x) +

q∑

i=1

τiFi(x) ≤ 0, τi ≥ 0 (12.67)

In general the S-procedure is conservative; inequality (12.67) implies inequality (12.66),
but not vice versa. When q = 1, however, the S-procedure is non-conservative. The usefulness
of the S-procedure is in the possibility of including the τi’s as variables in an LMI problem.
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Example 12.8 Combining quadratic constraints to yield an LMI. An instructive example, from
Boyd et al. (1994), involves £nding a matrix variable P > 0 such that

[
x
z

]T [
ATP + PA PB

BTP 0

] [
x
z

]
< 0 (12.68)

whenever x 6= 0 and z satisfy the constraint

zT z ≤ xTCTCx (12.69)

Note that inequality (12.69) is equivalent to

(xTCTCx− zT z) ≥ 0 (12.70)

or
[
x
z

]T [
CTC 0
0 −I

] [
x
z

]
≥ 0 (12.71)

The two quadratic constraints (12.68) and (12.71) can thus be combined with the S-procedure to yield
the LMI

[
ATP + PA+ τCTC PB

BTP −τI

]
< 0 (12.72)

in the variables P > 0 and τ ≥ 0.

12.3.5 The projection lemma and Finsler’s lemma
In some types of control problems, particularly those seeking dynamic controllers, we
encounter inequalities of the form

Ψ(X) +G(X)ΛHT (X) +H(X)ΛTGT (X) < 0 (12.73)

where X and Λ are the matrix variables and Ψ(.), G(.), H(.) are (normally af£ne) functions
of X but not of Λ.

In Gahinet and Apkarian (1994), it is proved that inequality (12.73) is satis£ed, for some
X , if and only if {

WT
G(X)Ψ(X)WG(X) < 0

WT
H(X)Ψ(X)WH(X) < 0

(12.74)

where WG(X) and WH(X) are matrices with columns which form bases for the null spaces
of G(X) and H(X) respectively. Alternatively, WG(X) and WH(X) are sometimes called
orthogonal complements of G(X) and H(X) respectively. Note that

WG(X)G(X) = 0, WH(X)H(X) = 0 (12.75)

The main point of this result (referred to as Gahinet and Apkarian’s projection lemma) is
that it enables one to transform a matrix inequality, which is a, not necessarily linear, function
of two variables, into two inequalities which are functions of just one variable. This has two
useful consequences:

(i) It can facilitate the derivation of an LMI.
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(ii) There are fewer variables for computation.

Finsler (1937) also proved that inequality (12.73) is equivalent to two inequalities
{

Ψ(X)− σG(X)G(X)T < 0
Ψ(X)− σH(X)H(X)T < 0

(12.76)

for some real σ. In other words, inequalities (12.74) and (12.76) are equivalent. This result is
often referred to as Finsler’s lemma.
Example 12.5 (State feedback) continued. Consider again the state feedback synthesis problem
of £nding P > 0 and F such that

(A+BF )TP + P (A+BF ) < 0 (12.77)

Using the change of variables described earlier in Example 12.5, we can change this problem into that
of £nding Q > 0 and L such that

QAT +AQ+ LTBT +BL < 0 (12.78)

If we choose to eliminate the variable L using the projection lemma we get
{

WT
B (AQ+QAT )WB < 0, Q > 0

WT
I (AQ+QAT )WI < 0, Q > 0

(12.79)

However, as WI is a matrix whose columns span the null space of the identity matrix which is
N (I) = {0}, the above equation simply reduces to

WT
B (AQ+QAT )WB < 0, Q > 0 (12.80)

which is an LMI problem.
Alternatively, using Finsler’s lemma we get

{
AQ+QAT − σBBT < 0, Q > 0
AQ+QAT − σI < 0, Q > 0

(12.81)

However, we can neglect the second inequality because if we can £nd a σ satisfying the £rst inequality,
we can always £nd one which satis£es the second.

Notice that the use of both the projection lemma and Finsler’s lemma effectively reduces
our original LMI problem into two separate ones: the £rst LMI problem involves the
calculation of Q > 0; the second involves the back substitution of Q into the original
problem in order for us to £nd L (and then F ). The reader is, however, cautioned against
the possibility of ill-conditioning in this two-step approach. For some problems, normally
those with large numbers of variables, X can be poorly conditioned, which can hinder the
numerical determination of Λ from (12.73).

12.4 Case study: anti-windup compensator synthesis
Linear controllers can be very effective at controlling real plants until they encounter actuator
saturation, which can cause the behaviour of the system to deteriorate dramatically, or even
become unstable. To limit this loss of performance special compensators called anti-windup
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compensators are added which take action when the control signal saturates. As the anti-
windup compensator is inactive for large periods of time, conventional linear methods are
not always useful for designing such a compensator. However, as we will discover, LMIs can
play an important part in this design.

Anti-windup was also discussed in Section 9.4.5, where the Hanus scheme was brie¤y
introduced. The approach below is more general and rigorous.

12.4.1 Representing anti-windup compensators
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Figure 12.1: Generic anti-windup scheme
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Figure 12.2: Conditioning with M(s)

A generic anti-windup compensator is depicted in Figure 12.1. The plant G(s) =
[G1(s) G2(s)] is assumed to be stable (to enable global results to be obtained – see
Turner and Postlethwaite (2004) for more detail about this). G1(s) represents the disturbance



486 MULTIVARIABLE FEEDBACK CONTROL

r -
K - G

6

d

-ylin
-

6
-
+

-

¾M − I

?

ulin

ud

ũ
- G2M

?

yd

+
-

- y

Nonlinear
Loop

Disturbance
Filter

Nominal Linear Transfer Function

Figure 12.3: Equivalent representation of conditioning with M(s)

feedforward part of the plant and therefore is the transfer function from the disturbance d(s)
to the output y(s). Similarly G2(s) represents the feedback part of the plant and therefore is
the transfer function from the actual control input ua(s) to the output y(s). Only G2(s) plays
a part in anti-windup synthesis and its state-space realization is given by

G2(s)
s
=

[
Ap Bp

Cp Dp

]
(12.82)

K(s) is the linear controller, which we assume has been designed such that its closed loop
interconnection with G(s) is stable, in the absence of saturation, and such that some linear
performance speci£cations have been satis£ed.

The anti-windup compensator, Θ(s), adds extra signals to the controller input and output
when control signal saturation occurs. By choosing Θ(s) in different ways, the closed-loop
properties during and following saturation are in¤uenced. Figure 12.2 shows the closed-loop
system, when Θ(s) is parameterized in terms of the transfer function M(s). An interesting
choice of M(s) is M(s) = I . In this case, the anti-windup solution is similar to the
internal model control scheme discussed by Campo and Morari (1990). However, this is
not always a good solution, especially when G2(s) has lightly damped modes (Weston and
Postlethwaite, 2000). As shown later, better solutions can be obtained by choosing M(s) as
a coprime factor of G2(s).

From the identity
Dz(u) = u− sat(u) (12.83)

where Dz(.) and sat(.) represent the deadzone and saturation functions respectively, it can
be proven that Figures 12.2 and 12.3 are equivalent (Weston and Postlethwaite, 2000). Figure
12.3 is convenient to analyze the stability and performance of the system and, in particular,
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it can be seen that, providing the nominal linear closed loop is stable, overall stability is
governed by the stability of the nonlinear loop. Moreover, the performance of the system can
be measured by the “size” of the map from ulin to yd. This map, call it Tp, governs how much
the linear output is perturbed by the saturation of the control signal. Hence, it would be useful
to minimize the size of the norm of this – nonlinear – operator. For more information on the
motivation behind this see, for example, Turner and Postlethwaite (2004) and Turner et al.
(2003).

12.4.2 Lyapunov stability
The stability of nonlinear systems is more dif£cult to ascertain than that of linear systems.
A suf£cient (but not necessary) condition was given by Lyapunov; see, for example, Khalil
(1996).

Theorem 12.1 Lyapunov’s theorem Given a positive de£nite function V (x) > 0 ∀x 6= 0
and an autonomous system ẋ = f(x), then the system ẋ = f(x) is stable if

V̇ (x) =
∂V

∂x
f(x) < 0 ∀x 6= 0 (12.84)

As our anti-windup system is nonlinear due to the presence of the saturation function, we
will use Lyapunov’s theorem to establish stability.

12.4.3 L2 gain
In linear systems, theH∞ norm is equivalent to the maximum root mean square or rms energy
gain of the system. The equivalent measure for nonlinear systems is the so-called L2 gain,
which is a bound on the rms energy gain. Speci£cally a nonlinear system with input u(t) and
output y(t) is said to have an L2 gain of γ if

‖y‖2 < γ‖u‖2 + β (12.85)

where β is a positive constant and ‖(.)‖2 denotes the standard 2-norm-in-time (L2 norm) of
a vector. Thus the L2 gain of a system can be taken as a measure of the size of the output a
system exhibits relative to the size of its input.

12.4.4 Sector boundedness
The saturation function is de£ned as

sat(u) = [sat1(u1), . . . , satm(um)]T (12.86)

and sati(ui) = sign(ui) × min {|ui|, ūi}, ūi > 0 ∀i ∈ {1, . . . ,m}, where ūi is the i’th
saturation limit. From this, the deadzone function can be de£ned as

Dz(u) = u− sat(u) (12.87)

It is easy to verify that the saturation function, sati(ui), satis£es the following inequality:

uisati(ui) ≥ sat2i (ui) (12.88)
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or
sati(ui)[ui − sati(ui)]wi ≥ 0 (12.89)

for some wi > 0. Collecting this inequality for all i we can write

sat(u)TW [u− sat(u)] ≥ 0 (12.90)

for some diagonal W > 0. Similarly it follows that

Dz(u)TW [u−Dz(u)] ≥ 0 (12.91)

for some diagonal W > 0. We will make use of this inequality in the derivation of our
anti-windup compensator synthesis equations.

12.4.5 Full-order anti-windup compensators
The term “full-order” anti-windup compensators has a similar meaning to the term “full-
order”H∞ controller; that is, the compensator is of order equal to the plant. We will con£ne
our attention to full-order anti-windup compensator synthesis. For a treatment of low-order
and static anti-windup synthesis, see Turner and Postlethwaite (2004).

Assume that we factorize G2(s) = N(s)M(s)−1, i.e. the anti-windup parameter M(s) is
chosen as part of a coprime factorization of G2(s); for example, see Section 4.1.5 or Zhou
et al. (1996). In this case, the operator Tp : ulin 7→ yd is given by

Tp ,





ẋp = (Ap +BpF )xp +Bpũ
ud = Fxp
yd = (Cp +DpF )xp +Dpũ
ũ = Dz(ulin − ud)

(12.92)

The matrix F determines the coprime factorization of G2(s), which in turn in¤uences
the performance of the anti-windup compensator. Hence, our goal in full-order anti-windup
synthesis is to £nd an appropriate matrix F such that the closed-loop performance in the
presence of saturation is good.

12.4.6 Anti-windup synthesis
We would like to choose F (and therefore M(s)) such that Tp is internally stable with
suf£ciently small L2 gain. It can be veri£ed see (see Turner and Postlethwaite, 2004) that
if we choose a Lyapunov function V (x) = xTp Pxp > 0 and ensure that

V̇ (x) + yTd yd − γ2uTlinulin < 0 (12.93)

then the operator Tp is indeed internally stable with an L2 gain of γ. Therefore, using the
expression for Tp we can write inequality (12.93) as

zT



ĀTP + PĀ+ C̄T C̄ PBp + C̄TDp 0

? DT
pDp 0

? ? −γ2I


 z < 0 (12.94)
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where

Ā = Ap +BpF (12.95)
C̄ = Cp +DpF (12.96)

z =
[
xTp ũT uTlin

]T (12.97)

However, from the sector boundedness of the deadzone we also have that

2ũTW [ulin − Fxp − ũ] ≥ 0 (12.98)

We will use the S-procedure to combine inequalities (12.94) and (12.98). First note that
inequality (12.98) may be written as

zT




0 −FTW 0
? −2W W
? ? 0


 z ≥ 0 (12.99)

We have added the factor of 2 into inequality (12.98) so that inequality (12.99) can be
written in a tidier fashion; without this factor of 2, there would be several factors of 1/2
present. Using the S-procedure described earlier, we can combine inequality (12.94) with
(12.99) to obtain



ĀTP + PĀ+ C̄T C̄ PBp + C̄TDp − FTWτ 0

? −2Wτ +DT
pDp Wτ

? ? −γ2I


 < 0 (12.100)

Notice that τ only appears adjacent to W , so we can de£ne a new variable V = Wτ and
use this from now on. Applying the Schur complement we obtain




ĀTP + PĀ PBp − FTV 0 C̄T

? −2V V DT
p

? ? −γI 0
? ? ? −γI


 < 0 (12.101)

Next, using the congruence transformation diag(P−1, V −1, I, I) we obtain



P−1AT
p +ApP

−1 + P−1FTBT
p +BpFP

−1 BpV
−1 − P−1FT

? −2V −1
? ?
? ?

0 P−1CT
p + P−1FTDT

p

I V −1DT
p

−γI 0
? −γI


 (12.102)

Finally, de£ning new variables Q = P −1, U = V −1, L = QF we get



QAT
p +ApQ+ LTBT

p +BpL BpU −QFT 0 QCT
p + LTDT

p

? −2U I UDT
p

? ? −γI 0
? ? ? −γI


 < 0
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which is now an LMI in Q > 0, U > 0 and diagonal, γ > 0 and L. To obtain F we can thus
compute F = Q−1L, which allows us to construct our anti-windup compensator.

For applications of these and similar formulae see Turner and Postlethwaite (2004) and
Herrmann et al. (2003a; 2003b).

12.5 Conclusion
In recent years, ef£cient interior-point algorithms have been developed to solve convex LMI
optimization problems of the type presented in this chapter. We have described the main
(generic) LMI problems in control and the tools and tricks required to transform them into
formats that can readily take advantage of the algorithms now available, especially in Matlab.
In the examples, we have only used Matlab code, as we have throughout the book. Alternative
LMI software is available and in this context we would like to mention YALMIP (http:
//control.ee.ethz.ch/˜joloef/yalmip.php), which is particularly useful for
interfacing with the free solvers available. By including this chapter, we have attempted to
give the essential ingredients for developing an understanding of the power and usefulness
of LMIs. More details can be found in Boyd et al. (1994). A cautionary note is that the
complexity of LMI computations is high, and certainly higher, for example, than solving a
Riccati equation in a conventional approach. Nevertheless, the LMI approach opens the way
to solving problems that conventional methods cannot.
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CASE STUDIES

In this chapter, we present three case studies which illustrate a number of important practical issues,
namely: weights selection inH∞ mixed-sensitivity design, disturbance rejection, output selection, two
degrees-of-freedomH∞ loop-shaping design, ill-conditioned plants, µ-analysis and µ-synthesis.

13.1 Introduction
The complete design process for an industrial control system will normally include the
following steps:
1. Plant modelling: to determine a mathematical model of the plant either from experimental

data using identi£cation techniques, or from physical equations describing the plant
dynamics, or a combination of these.

2. Plant input–output controllability analysis: to discover what closed-loop performance can
be expected and what inherent limitations there are to “good” control, and to assist in
deciding upon an initial control structure and maybe an initial selection of performance
weights.

3. Control structure design: to decide on which variables to be manipulated and measured
and which links should be made between them.

4. Controller design: to formulate a mathematical design problem which captures the
engineering design problem and to synthesize a corresponding controller.

5. Control system analysis: to assess the control system by analysis and simulation against
the performance speci£cations or the designer’s expectations.

6. Controller implementation: to implement the controller, almost certainly in software
for computer control, taking care to address important issues such as anti-windup and
bumpless transfer.

7. Control system commissioning: to bring the controller on-line, to carry out on-site testing
and to implement any required modi£cations before certifying that the controlled plant is
fully operational.

In this book, we have focused on steps 2, 3, 4 and 5, and in this chapter we will present
three case studies which demonstrate many of the ideas and practical techniques which can
be used in these steps. The case studies are not meant to produce the “best” controller for the
application considered but rather are used here to illustrate a particular technique from the
book.

In case study 1, a helicopter control law is designed for the rejection of atmospheric
turbulence. The gust disturbance is modelled as an extra input to an S/KS H∞
Multivariable Feedback Control: Analysis and Design. Second Edition
S. Skogestad and I. Postlethwaite c© 2005, 2006 John Wiley & Sons, Ltd
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mixed-sensitivity design problem. Results from nonlinear simulations indicate signi£cant
improvement over a standard S/KS design. For more information on the applicability ofH∞
control to advanced helicopter ¤ight, the reader is referred to Walker and Postlethwaite (1996)
who describe the design and ground-based piloted simulation testing of a high-performance
helicopter ¤ight control system. The £rst ¤ight test results are given in Postlethwaite et al.
(1999).

Case study 2 illustrates the application and usefulness of the two degrees-of-freedom
H∞ loop-shaping approach by applying it to the design of a robust controller for a high-
performance aero-engine. Nonlinear simulation results are shown. Ef£cient and effective
tools for control structure design (input–output selection) are also described and applied to
this problem. This design work on the aero-engine has been further developed and forms
the basis of a multi-mode controller which has been implemented and successfully tested on
a Rolls-Royce Spey engine test facility at the former UK Defence Research Agency (now
QinetiQ), Pyestock (Samar, 1995).

The £nal case study is concerned with the control of an idealized distillation column. A
very simple plant model is used, but it is suf£cient to illustrate the dif£culties of controlling
ill-conditioned plants and the adverse effects of model uncertainty. The structured singular
value µ is seen to be a powerful tool for robustness analysis.

Case studies 1, 2 and 3 are based on papers by Postlethwaite et al. (1994), Samar and
Postlethwaite (1994) and Skogestad et al. (1988), respectively.

13.2 Helicopter control
This case study is used to illustrate how weights can be selected in H∞ mixed-sensitivity
design, and how this design problem can be modi£ed to improve disturbance rejection
properties.

13.2.1 Problem description
In this case study, we consider the design of a controller to reduce the effects of atmospheric
turbulence on helicopters. The reduction of the effects of gusts is very important in reducing
a pilot’s workload, and enables aggressive manoeuvres to be carried out in poor weather
conditions. Also, as a consequence of decreased buffeting, the airframe and component lives
are lengthened and passenger comfort is increased.

The design of rotorcraft ¤ight control systems, for robust stability and performance,
has been studied over a number of years using a variety of methods including: H∞
optimization (Yue and Postlethwaite, 1990; Postlethwaite and Walker, 1992); eigenstructure
assignment (Manness and Murray-Smith, 1992; Samblancatt et al., 1990); sliding mode
control (Foster et al., 1993); and H2 design (Takahashi, 1993). These early H∞ controller
designs were particularly successful (Walker et al., 1993), and have proved themselves in
piloted simulations. These designs have used frequency information about the disturbances
to limit the system sensitivity but in general there has been no explicit consideration of
the effects of atmospheric turbulence. Therefore by incorporating practical knowledge about
the disturbance characteristics, and how they affect the real helicopter, improvements to the
overall performance should be possible. We will demonstrate this below.
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The nonlinear helicopter model we will use for simulation purposes was developed at the
former Defence Research Agency (now QinetiQ), Bedford (Pad£eld, 1981) and is known
as the Rationalized Helicopter Model (RHM). A turbulence generator module has recently
been included in the RHM and this enables controller designs to be tested on-line for their
disturbance rejection properties. It should be noted that the model of the gusts affects the
helicopter equations in a complicated fashion and is self-contained in the code of the RHM.
For design purposes we will imagine that the gusts affect the model in a much simpler manner.

We will begin by repeating the design of Yue and Postlethwaite (1990) which used
an S/KS H∞ mixed-sensitivity problem formulation without explicitly considering
atmospheric turbulence. We will then, for the purposes of design, represent gusts as a
perturbation in the velocity states of the helicopter model and include this disturbance as an
extra input to the S/KS design problem. The resulting controller is seen to be substantially
better at rejecting atmospheric turbulence than the earlier standard S/KS design. More recent
references on the application of H∞ optimization to helicopter ¤ight control, including ¤ight
tests, are given in the conclusions, Section 13.2.6.

13.2.2 The helicopter model
The aircraft model used in our work is representative of the Westland Lynx, a twin-engined
multi-purpose military helicopter, approximately 9000 lbs (4000 kg) gross weight, with a
four-blade semi-rigid main rotor. The unaugmented aircraft is unstable, and exhibits many
of the cross-couplings characteristic of a single main-rotor helicopter. In addition to the
basic rigid body, engine and actuator components, the model also includes second-order rotor
¤apping and coning modes for off-line use. The model has the advantage that essentially the
same code can be used for a real-time piloted simulation as for a workstation-based off-line
handling qualities assessment.

The equations governing the motion of the helicopter are complex and dif£cult to formulate
with high levels of precision. For example, the rotor dynamics are particularly dif£cult to
model. A robust design methodology is therefore essential for high-performance helicopter
control. The starting point for this study was to obtain an eighth-order differential equation

Table 13.1: Helicopter state vector
State Description
θ Pitch attitude
φ Roll attitude
p Roll rate (body-axis)
q Pitch rate (body-axis)
ξ Yaw rate
vx Forward velocity
vy Lateral velocity
vz Vertical velocity

modelling the small-perturbation rigid motion of the aircraft about hover. The corresponding
state-space model is

ẋ = Ax+Bu (13.1)
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y = Cx (13.2)
where the matrices A,B and C for the appropriately scaled system are available over the
Internet as described in the preface. The eight-state rigid-body vector x is given in Table
13.2.2. The model is open-loop unstable with a pair of complex RHP-poles located at
0.23± 0.55 rad/s. The outputs consist of four primary controlled outputs

• Heave velocity Ḣ
• Pitch attitude θ
• Roll attitude φ
• Heading rate ψ̇




y1

together with two additional (body-axis) measurements

• Roll rate p
• Pitch rate q

}
y2

The controller (or pilot in manual control) generates four blade angle demands which are
effectively the helicopter inputs, since the actuators (which are typically modelled as £rst-
order lags) are modelled as unity gains in this study. The blade angles are

• main rotor collective
• longitudinal cyclic
• lateral cyclic
• tail rotor collective




u

The action of each of these blade angles can be brie¤y described as follows. The main rotor
collective changes all the blades of the main rotor by an equal amount and so roughly
speaking controls lift. The longitudinal and lateral cyclic inputs change the main rotor
blade angles differently thereby tilting the lift vector to give longitudinal and lateral motion,
respectively. The tail rotor is used to balance the torque generated by the main rotor, and so
stops the helicopter spinning around; it is also used to give lateral motion. This description,
which assumes the helicopter inputs and outputs are decoupled, is useful to get a feeling of
how a helicopter works but the dynamics are actually highly coupled. They are also unstable,
and about some operating points exhibit non-minimum-phase characteristics.

We are interested in the design of full-authority controllers, which means that the controller
has total control over the blade angles of the main and tail rotors, and is interposed between
the pilot and the actuation system. It is normal in conventional helicopters for the controller
to have only limited authority leaving the pilot to close the loop for much of the time (manual
control). With a full-authority controller, the pilot merely provides the reference commands.

One degree-of-freedom controllers as shown in Figure 13.1 are to be designed. Notice that
in the standard one degree-of-freedom con£guration the pilot reference commands r1 are
augmented by a zero vector because of the rate feedback signals. These zeros indicate that
there are no a priori performance speci£cations on y2 = [ p q ]T .

13.2.3 H∞ mixed-sensitivity design
We will consider the H∞ mixed-sensitivity design problem illustrated in Figure 13.2. It can
be viewed as a tracking problem as previously discussed in Chapter 9 (see Figure 9.11), but
with an additional weight W3. W1 and W2 are selected as loop-shaping weights whereas W3
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Figure 13.2: S/KS mixed-sensitivity minimization

is signal-based. The optimization problem is to £nd a stabilizing controller K to minimize
the cost function ∥∥∥∥

[
W1SW3

W2KSW3

]∥∥∥∥
∞

(13.3)

This cost was also considered by Yue and Postlethwaite (1990) in the context of helicopter
control. Their controller was successfully tested on a piloted ¤ight simulator at DRA Bedford
and so we propose to use the same weights here. The design weights W1,W2 and W3 were
selected as

W1 = diag

{
0.5

s+ 12

s+ 0.012
, 0.89

s+ 2.81

s+ 0.005
, 0.89

s+ 2.81

s+ 0.005
,

0.5
s+ 10

s+ 0.01
,

2s

(s+ 4)(s+ 4.5)
,

2s

(s+ 4)(s+ 4.5)

}
(13.4)

W2 = 0.5
s+ 0.0001

s+ 10
I4 (13.5)
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W3 = diag {1, 1, 1, 1, 0.1, 0.1} (13.6)

The reasoning behind these selections of Yue and Postlethwaite (1990) is summarized below.
Selection of W1(s) (performance weight): For good tracking accuracy in each of the

controlled outputs the sensitivity function is required to be small. This suggests forcing
integral action into the controller by selecting an s−1 shape in the weights associated with the
controlled outputs. It was not thought necessary to have exactly zero steady-state errors and
therefore these weights were given a £nite gain of 500 at low frequencies. (Notice that a pure
integrator cannot be included in W1 anyway, since the standardH∞ optimal control problem
would not then be well posed in the sense that the corresponding generalized plant P could
not then be stabilized by the feedback controller K.) In tuning W1 it was found that a £nite
attenuation at high frequencies was useful in reducing overshoot. Therefore, high-gain low-
pass £lters were used in the primary channels to give accurate tracking up to about 6 rad/s.
The presence of unmodelled rotor dynamics around 10 rad/s limits the bandwidth of W1.
With four inputs to the helicopter, we can only expect to control four outputs independently.
Because of the rate feedback measurements the sensitivity function S is a 6 × 6 matrix and
therefore two of its singular values (corresponding to p and q) are always close to 1 across
all frequencies. All that can be done in these channels is to improve the disturbance rejection
properties around crossover, 4 to 7 rad/s, and this was achieved using second-order band-pass
£lters in the last two elements of W1.

Selection of W2(s) (input weight): The same £rst-order high-pass £lter is used in each
channel with a corner frequency of 10 rad/s to limit input magnitudes at high-frequencies and
thereby limit the closed-loop bandwidth. The high-frequency gain of W2 can be increased
to limit fast actuator movement. The low-frequency gain of W2 was set to approximately
−100 dB to ensure that the cost function is dominated by W1 at low frequencies.

Selection of W3(s) (setpoint £lter): W3 is a weighting on the reference input r. It is
chosen to be a constant matrix with unity weighting on each of the output commands and
a weighting of 0.1 on the £ctitious rate demands. The reduced weighting on the rates (which
are not directly controlled) enables some disturbance rejection on these outputs, without them
signi£cantly affecting the cost function. The main aim ofW3 is to force equally good tracking
of each of the primary signals.

For the controller designed using the above weights, the singular value plots of S and
KS are shown in Figure 13.3(a) and (b). These have the general shapes and bandwidths
designed for and, as already mentioned, the controlled system performed well in piloted
simulation. The effects of atmospheric turbulence will be illustrated later after designing a
second controller in which disturbance rejection is explicitly included in the design problem.

13.2.4 Disturbance rejection design
In the design below we will assume that the atmospheric turbulence can be modelled as
gust velocity components that perturb the helicopter’s velocity states vx, vy and vz by
d = [ d1 d2 d3 ]

T as in the following equations. The disturbed system is therefore expressed
as

ẋ = Ax+A

[
0
d

]
+Bu (13.7)

y = Cx (13.8)
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Figure 13.4: Disturbance rejection design

We de£ne Bd
4
= columns 6, 7 and 8 of A. Then we have

ẋ = Ax+Bu+Bdd (13.9)
y = Cx (13.10)

which in transfer function terms can be expressed as

y = G(s)u+Gd(s)d (13.11)

where G(s) = C(sI −A)−1B, and Gd(s) = C(sI −A)−1Bd. The design problem we will
solve is illustrated in Figure 13.4. The optimization problem is to £nd a stabilizing controller
K that minimizes the cost function

∥∥∥∥
[

W1SW3 −W1SGdW4

W2KSW3 −W2KSGdW4

]∥∥∥∥
∞

(13.12)
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Figure 13.5: Singular values of S and KS (disturbance rejection design)

which is the H∞ norm of the transfer function from
[
r
d

]
to z. This is easily cast into the

general control con£guration and solved using standard software. Notice that if we set W4 to
zero the problem reverts to the S/KS mixed-sensitivity design of the previous subsection. To
synthesize the controller we used the same weights W1, W2 and W3 as in the S/KS design,
and selected W4 = αI , with α a scalar parameter used to emphasize disturbance rejection.
After a few iterations we £nalized on α = 30. For this value of α, the singular value plots of
S and KS, see Figure 13.5(a) and (b), are quite similar to those of the S/KS design, but as
we will see in the next subsection there is a signi£cant improvement in the rejection of gusts.
Also, since Gd shares the same dynamics as G, and W4 is a constant matrix, the degree of
the disturbance rejection controller is the same as that for the S/KS design.
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Figure 13.7: Response to turbulence of the S/KS design (time in seconds)

13.2.5 Comparison of disturbance rejection properties of the two
designs

To compare the disturbance rejection properties of the two designs we simulated both
controllers on the RHM nonlinear helicopter model equipped with a statistical discrete gust
model for atmospheric turbulence (Dahl and Faulkner, 1979). With this simulation facility,
gusts cannot be generated at hover and so the nonlinear model was trimmed at a forward ¤ight
speed of 20 knots (at an altitude of 100 ft (30 m)), and the effect of turbulence on the four
controlled outputs observed. Recall that both designs were based on a linearized model about
hover and therefore these tests at 20 knots also demonstrate the robustness of the controllers.
Tests were carried out for a variety of gusts, and in all cases the disturbance rejection design
was signi£cantly better than the S/KS design.

In Figure 13.6, we show a typical gust generated by the RHM. The effects of this on
the controlled outputs are shown in Figures 13.7 and 13.8 for the S/KS design and the
disturbance rejection design, respectively. Compared with the S/KS design, the disturbance
rejection controller practically halves the turbulence effect on heave velocity, pitch attitude
and roll attitude. The change in the effect on heading rate is small.

13.2.6 Conclusions
The two controllers designed were of the same degree and had similar frequency domain
properties. But by incorporating knowledge about turbulence activity into the second design,
substantial improvements in disturbance rejection were achieved. The reduction of the
turbulence effects by a half in heave velocity, pitch attitude and roll attitude indicates
the possibility of a signi£cant reduction in a pilot’s workload, allowing more aggressive
manoeuvres to be carried out with greater precision. Passenger comfort and safety would
also be increased.
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Figure 13.8: Response to turbulence of the disturbance rejection design (time in seconds)

The study was primarily meant to illustrate the ease with which information about
disturbances can be bene£cially included in controller design. The case study also
demonstrated the selection of weights inH∞ mixed-sensitivity design. To read how theH∞
methods have been successfully used and tested in ¤ight on a Bell 205 ¤y-by-wire helicopter,
see Postlethwaite et al. (1999), Smerlas et al. (2001), Prempain and Postlethwaite (2004) and
Postlethwaite et al. (2005). A series of ¤ight tests carried out in 2004 resulted in level 1 (the
highest) handling qualities ratings for all manoeuvres tested. There results were still to be
written up, when this book went to press. For more ¤ight control examples and illustrations
of the usefulness of robust multivariable control, see Bates and Postlethwaite (2002).

13.3 Aero-engine control
In this case study, we apply a variety of tools to the problem of output selection, and illustrate
the application of the two degrees-of-freedomH∞ loop-shaping design procedure.

13.3.1 Problem description
This case study explores the application of advanced control techniques to the problem of
control structure design and robust multivariable controller design for a high-performance
gas turbine engine. The engine under consideration is the Spey engine which is a Rolls-
Royce two-spool reheated turbofan, used to power modern military aircraft. The engine has
two compressors: a low-pressure (LP) compressor or fan, and a high-pressure (HP) or core
compressor as shown in Figure 13.9. The high-pressure ¤ow at the exit of the core compressor
is combusted and allowed to expand partially through the HP and LP turbines which drive the
two compressors. The ¤ow £nally expands to atmospheric pressure at the nozzle exit, thus
producing thrust for aircraft propulsion. The ef£ciency of the engine and the thrust produced
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Figure 13.9: Schematic of the aero-engine

depends on the pressure ratios generated by the two compressors. If the pressure ratio across
a compressor exceeds a certain maximum, it may no longer be able to hold the pressure head
generated and the ¤ow will tend to reverse its direction. This happens in practice, with the
¤ow actually going negative, but it is only a momentary effect. When the back pressure has
cleared itself, positive ¤ow is re-established but, if ¤ow conditions do not change, the pressure
builds up causing ¤ow reversal again. Thus the ¤ow surges back and forth at high frequency,
the phenomenon being referred to as surge. Surging causes excessive aerodynamic pulsations
which are transmitted through the whole machine and must be avoided at all costs. However,
for higher performance and greater ef£ciency the compressors must also be operated close to
their surge lines. The primary aim of the control system is thus to control engine thrust whilst
regulating compressor surge margins. But these engine parameters, namely thrust and the
two compressor surge margins, are not directly measurable. There are, however, a number of
measurements available which represent these quantities, and our £rst task is to choose from
the available measurements, the ones that are in some sense better for control purposes. This
is the problem of output selection as discussed in Chapter 10.

The next step is the design of a robust multivariable controller which provides satisfactory
performance over the entire operating range of the engine. Since the aero-engine is a highly
nonlinear system, it is normal for several controllers to be designed at different operating
points and then to be scheduled across the ¤ight envelope. Also in an aero-engine there are
a number of parameters, apart from the ones being primarily controlled, that are to be kept
within speci£ed safety limits, e.g. the turbine blade temperature. The number of parameters
to be controlled and/or limited exceeds the number of available inputs, and hence all these
parameters cannot be controlled independently at the same time. The problem can be tackled
by designing a number of scheduled controllers, each for a different set of output variables,
which are then switched between, depending on the most signi£cant limit at any given time.
The switching is usually done by means of lowest-wins or highest-wins gates, which serve
to propagate the output of the most suitable controller to the plant input. Thus, a switched
gain-scheduled controller can be designed to cover the full operating range and all possible
con£gurations. In Postlethwaite et al. (1995) a digital multi-mode scheduled controller is
designed for the Spey engine under consideration here. In their study gain scheduling was
not required to meet the design speci£cations. Below we will describe the design of a robust
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controller for the primary engine outputs using the two degrees-of-freedomH∞ loop-shaping
approach. The same methodology was used in the design of Postlethwaite et al. (1995) which
was successfully implemented and tested on the Spey engine.

13.3.2 Control structure design: output selection
The Spey engine has three inputs, namely fuel ¤ow (WFE), a nozzle with a variable area
(AJ), and inlet guide vanes with a variable angle setting (IGV):

u = [WFE AJ IGV ]
T

In this study, there are six output measurements available,

yall = [NL OPR1 OPR2 LPPR LPEMN NH ]
T

as described below. For each one of the six output measurements, a look-up table provides
its desired optimal value (setpoint) as a function of the operating point. However, with three
inputs we can only control three outputs independently so the £rst question we face is: which
three?

Engine thrust (one of the parameters to be controlled) can be de£ned in terms of the LP
compressor’s spool speed (NL), the ratio of the HP compressor’s outlet pressure to engine
inlet pressure (OPR1), or the engine overall pressure ratio (OPR2). We will choose from
these three measurements the one that is best for control:

• Engine thrust: Select one of NL, OPR1 and OPR2 (outputs 1, 2 and 3).

Similarly, the surge margin of the LP compressor can be represented by either the LP
compressor’s pressure ratio (LPPR) or the LP compressor’s exit Mach number measurement
(LPEMN), and a selection between the two has to be made:

• Surge margin: Select one of LPPR and LPEMN (outputs 4 and 5).

In this study we will not consider control of the HP compressor’s surge margin, or other
con£gurations concerned with the limiting of engine temperatures. Our third output will be
the HP compressor’s spool speed (NH), which it is also important to maintain within safe
limits. (NH is actually the HP spool speed made dimensionless by dividing by the square root
of the total inlet temperature and scaled so that it is a percentage of the maximum spool speed
at a standard temperature of 288.15 K.)

• Spool speed: Select NH (output 6).

We have now subdivided the available outputs into three subsets, and decided to select one
output from each subset. This gives rise to the six candidate output sets as listed in Table
13.3.2.

We now apply some of the tools given in Chapter 10 for tackling the output selection
problem. It is emphasized at this point that a good physical understanding of the plant is very
important in the context of this problem, and some measurements may have to be screened
beforehand on practical grounds. A 15-state linear model of the engine (derived from a
nonlinear simulation at 87% of maximum thrust) will be used in the analysis that follows.
The model is available over the Internet (as described in the Preface), along with actuator
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dynamics which result in a plant model of 18 states for controller design. The nonlinear model
used in this case study was provided by the UK Defence Research Agency (now QinetiQ) at
Pyestock with the permission of Rolls-Royce Military Aero Engines Ltd.

Scaling. Some of the tools we will use for control structure selection are dependent on
the scalings employed. Scaling the inputs and the candidate measurements, therefore, is
vital before comparisons are made and can also improve the conditioning of the problem
for design purposes. We use the method of scaling described in Section 9.4.2. The outputs
are scaled such that equal magnitudes of cross-coupling into each of the outputs are equally
undesirable. We have chosen to scale the thrust-related outputs such that one unit of each
scaled measurement represents 7.5% of maximum thrust. A unit step demand on each of
these scaled outputs would thus correspond to a demand of 7.5% (of maximum) in thrust.
The surge-margin-related outputs are scaled so that one unit corresponds to 5% surge margin.
If the controller designed provides an interaction of less than 10% between the scaled outputs
(for unit reference steps), then we would have 0.75% or less change in thrust for a step
demand of 5% in surge margin, and a 0.5% or less change in surge margin for a 7.5% step
demand in thrust. The £nal output NH (which is already a scaled variable) was further scaled
(divided by 2.2) so that a unit change in NH corresponds to a 2.2% change in NH. The inputs
are scaled by 10% of their expected ranges of operation.

Table 13.2: RHP zeros and minimum singular value for the six candidate output sets
Candidate RHP zeros

Set no. controlled < 100 rad/s σ (G(0))
outputs

1 NL, LPPR, NH (1, 4, 6) none 0.060
2 OPR1, LPPR, NH (2, 4, 6) none 0.049
3 OPR2, LPPR, NH (3, 4, 6) 30.9 0.056
4 NL, LPEMN, NH (1, 5, 6) none 0.366
5 OPR1, LPEMN, NH (2, 5, 6) none 0.409
6 OPR2, LPEMN, NH (3, 5, 6) 27.7 0.392

Steady-state model. With these scalings the steady-state model yall = Gallu (with all the
candidate outputs included) and the corresponding non-square RGA matrix, Λ = Gall×G†

T

all ,
are given by

Gall =




0.696 −0.046 −0.001
1.076 −0.027 0.004
1.385 0.087 −0.002
11.036 0.238 −0.017
−0.064 −0.412 0.000
1.474 −0.093 0.983




Λ(Gall) =




0.009 0.016 0.000
0.016 0.008 −0.000
0.006 0.028 −0.000
0.971 −0.001 0.002
−0.003 0.950 0.000
0.002 −0.000 0.998




(13.13)

and the singular value decomposition of Gall(0) = U0Σ0V
H
0 is

U0 =




0.062 0.001 −0.144 −0.944 −0.117 −0.266
0.095 0.001 −0.118 −0.070 −0.734 0.659
0.123 −0.025 0.133 −0.286 0.640 0.689
0.977 −0.129 −0.011 0.103 −0.001 −0.133
−0.006 0.065 −0.971 0.108 0.195 0.055
0.131 0.989 0.066 −0.000 0.004 −0.004



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Σ0 =




11.296 0 0
0 0.986 0
0 0 0.417
0 0 0
0 0 0
0 0 0




V0 =

[
1.000 −0.007 −0.021
0.020 −0.154 0.988
0.010 0.988 0.154

]

The six row sums of the RGA matrix are

ΛΣ = [ 0.025 0.023 0.034 0.972 0.947 1.000 ]
T

and from (A.85) this indicates that we should select outputs 4, 5 and 6 (corresponding to the
three largest elements) in order to maximize the projection of the selected outputs onto the
space corresponding to the three non-zero singular values. However, this selection is not one
of our six candidate output sets because there is no output directly related to engine thrust
(outputs 1, 2 and 3).

We now proceed with a more detailed input–output controllability analysis of the six
candidate output sets. In the following, G(s) refers to the transfer function matrix for the
effect of the three inputs on the selected three outputs.

Minimum singular value. In Chapter 10, we showed that a reasonable criterion for
selecting controlled outputs y is to make ‖G−1(y − yopt)‖ small (page 395), in particular
at steady-state. Here y− yopt is the deviation in y from its optimal value. At steady-state this
deviation arises mainly from errors in the (look-up table) setpoint due to disturbances and
unknown variations in the operating point. If we assume that, with the scalings given above,
the magnitude |(y − yopt)i| is similar (close to 1) for each of the six outputs, then we should
select a set of outputs such that the elements in G−1(0) are small, or alternatively, such that
σ (G(0)) is as large as possible (minimum singular value rule; see page 395). In Table 13.3.2
we have listed σ (G(0)) for the six candidate output sets. We conclude that we can eliminate
sets 1, 2 and 3, and consider only sets 4, 5 and 6. For these three sets we £nd that the value of
σ(G(0)) is between 0.366 and 0.409 which is only slightly smaller than σ(Gall(0)) = 0.417.

Remark. The three eliminated sets all include output 4, LPPR. Interestingly, this output is associated
with the largest element in the gain matrix Gall(0) of 11.0, and is thus also associated with the largest
singular value (as seen from the £rst column of U ). This illustrates that the preferred choice is often not
associated with σ̄(G).

Right-half plane zeros. RHP-zeros limit the achievable performance of a feedback loop by
limiting the open-loop gain–bandwidth product. They can be a cause of concern, particularly
if they lie within the desired closed-loop bandwidth. Also, choosing different outputs for
feedback control can give rise to different numbers of RHP-zeros at different locations. The
choice of outputs should be such that a minimum number of RHP-zeros are encountered, and
should be as far removed from the imaginary axis as possible.

Table 13.3.2 shows the RHP-zeros slower than 100 rad/s for all combinations of
prospective output variables. The closed-loop bandwidth requirement for the aero-engine
is approximately 10 rad/s. RHP-zeros close to this value or smaller (closer to the origin)
will, therefore, cause problems and should be avoided. It can be seen that the variable OPR2
introduces (relatively) slow RHP-zeros. It was observed that these zeros move closer to the
origin at higher thrust levels. Thus sets 3 and 6 are unfavourable for closed-loop control.
This along with the minimum singular value analysis leaves us with sets 4 and 5 for further
consideration

Relative gain array (RGA). We here consider the RGAs of the candidate square transfer
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function matrices G(s) with three outputs,

Λ(G(s)) = G(s)×G−T (s) (13.14)

In Section 3.4, it is argued that the RGA provides useful information for the analysis of input–
output controllability and for the pairing of inputs and outputs. Speci£cally input and output
variables should be paired so that the diagonal elements of the RGA are as close as possible
to unity. Furthermore, if the plant has large RGA elements and an inverting controller is used,
the closed-loop system will have little robustness in the face of diagonal input uncertainty.
Such a perturbation is quite common due to uncertainty in the actuators. Thus we want Λ
to have small elements and for diagonal dominance we want Λ − I to be small. These two
objectives can be combined in the single objective of a small RGA number, de£ned as

RGA number , ‖Λ− I‖sum =
∑

i=j

| 1− λij | +
∑

i6=j

| λij | (13.15)

The lower the RGA number, the more preferred is the control structure. Before calculating
the RGA number over frequency we rearranged the output variables so that the steady-state
RGA matrix was as close as possible to the identity matrix.
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Figure 13.10: RGA numbers

The RGA numbers for the six candidate output sets are shown in Figure 13.10. As in the
minimum singular value analysis above, we again see that sets 1, 2 and 3 are less favourable.
Once more, sets 4 and 5 are the best but too similar to allow a decisive selection.

Hankel singular values. Notice that sets 4 and 5 differ only in one output variable,
NL in set 4 and OPR1 in set 5. Therefore, to select between them we next consider the
Hankel singular values of the two transfer functions between the three inputs and output NL
and output OPR1, respectively. Hankel singular values re¤ect the joint controllability and
observability of the states of a balanced realization (as described in Section 11.3). Recall that
the Hankel singular values are invariant under state transformations but they do depend on
scaling.

Figure 13.11 shows the Hankel singular values of the two transfer functions for outputs NL
and OPR1, respectively. The Hankel singular values for OPR1 are larger, which indicates that
OPR1 has better state controllability and observability properties than NL. In other words,
output OPR1 contains more information about the system internal states than output NL. It
therefore seems to be preferable to use OPR1 for control purposes rather than NL, and hence
(in the absence of no other information) set 5 is our £nal choice.
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Figure 13.11: Hankel singular values

13.3.3 A two degrees-of-freedomH∞ loop-shaping design
The design procedure given in Section 9.4.3 will be used to design a two degrees-of-freedom
H∞ loop-shaping controller for the 3-input 3-output plant G. An 18-state linear plant model
G (including actuator dynamics) is available over the Internet. It is based on scaling, output
selection and input–output pairing as described below. To summarize, the selected outputs
(set 5) are

• y1 : engine inlet pressure, OPR1
• y2 : LP compressor’s exit Mach number measurement, LPEMN
• y3 : HP compressor’s spool speed, NH

and the corresponding inputs are

• u1 : fuel ¤ow, WFE
• u2 : nozzle area, AJ
• u3 : inlet guide vane angle, IGV

The corresponding steady-state (s = 0) model and RGA matrix is

G =




1.076 −0.027 0.004
−0.064 −0.412 0.000
1.474 −0.093 0.983


 , Λ(G) =




1.002 0.004 −0.006
0.004 0.996 −0.000
−0.006 −0.000 1.006


 (13.16)

Pairing of inputs and outputs. The pairing of inputs and outputs is important because it
makes the design of the pre£lter easier in a two degrees-of-freedom control con£guration
and simpli£es the selection of weights. It is of even greater importance if a decentralized
control scheme is to be used, and gives insight into the working of the plant. In Chapter 10,
it is argued that negative entries on the principal diagonal of the steady-state RGA should be
avoided and that the outputs in G should be (re)arranged such that the RGA is close to the
identity matrix. For the selected output set, we see from (13.16) that no rearranging of the
outputs is needed. That is, we should pair OPR1, LPEMN and NH with WFE, AJ and IGV,
respectively.
H∞ loop-shaping design. We follow the design procedure given in Section 9.4.3. In steps

1 to 3 we discuss how pre- and post-compensators are selected to obtain the desired shaped
plant (loop shape) Gs = W2GW1 where W1 = WpWaWb. In steps 4 to 6 we present the
subsequentH∞ design.
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1. The singular values of the plant are shown in Figure 13.12(a) and indicate a need for
extra low-frequency gain to give good steady-state tracking and disturbance rejection. The
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Figure 13.12: Singular values for plant and shaped plant

pre-compensator weight is chosen as simple integrators, i.e. Wp = 1
sI3, and the post-

compensator weight is selected as W2 = I3.
2. W2GWp is next aligned at 7 rad/s. The align gain Wa (used in front of Wp) is the

approximate real inverse of the shaped system at the speci£ed frequency. The crossover is
thus adjusted to 7 rad/s in order to give a closed-loop bandwidth of approximately 10 rad/s.
Alignment should not be used if the plant is ill-conditioned with large RGA elements at the
selected alignment frequency. In our case the RGA elements are small (see Figure 13.10)
and hence alignment is not expected to cause problems.

3. An additional gain Wg is used in front of the align gain to give some control over actuator
usage. Wg is adjusted so that the actuator rate limits are not exceeded for reference and
disturbance steps on the scaled outputs. By some trial and error, Wg is chosen to be
diag(1, 2.5, 0.3). This indicates that the second actuator (AJ) is made to respond at higher
rates whereas the third actuator (IGV) is made slower. The shaped plant now becomes
Gs = GW1 where W1 =WpWaWg . Its singular values are shown in Figure 13.12(b).

4. γmin in (9.66) for this shaped plant is found to be 2.3 which indicates that the shaped plant
is compatible with robust stability.

5. ρ is set to 1 and the reference model Tref is chosen as

Tref = diag

{
1

0.018s+ 1
,

1

0.008s+ 1
,

1

0.2s+ 1

}

The third output NH is thus made slower than the other two in following reference inputs.
6. The standardH∞ optimization de£ned by P in (9.87) is solved. γ iterations are performed

and a slightly suboptimal controller achieving γ = 2.9 is obtained. Moving closer
to optimality introduces very fast poles in the controller which, if the controller is to
be discretized, would ask for a very high sample rate. Choosing a slightly suboptimal
controller alleviates this problem and also improves on the H2 performance. The pre£lter
is £nally scaled to achieve perfect steady-state model matching. The controller (with the
weights W1 and W2) has 27 states.
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13.3.4 Analysis and simulation results
Step responses of the linear controlled plant model are shown in Figure 13.13. The decoupling
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Figure 13.13: Reference step responses

is good with less than 10% interactions. Although not shown here, the control inputs were
analyzed and the actuator signals were found to lie within speci£ed limits. Responses to
disturbance steps on the outputs were also seen to meet the problem speci£cations. Notice
that because there are two degrees of freedom in the controller structure, the reference to
output and disturbance to output transfer functions can be given different bandwidths.

The robustness properties of the closed-loop system are now analyzed. Figure 13.14(a)
shows the singular values of the sensitivity function. The peak value is less than 2 (actually
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Figure 13.14: Sensitivity and complementary sensitivity functions

it is 1.44 = 3.2 dB), which is considered satisfactory. Figure 13.14(b) shows the maximum
singular values of T = (I −GW1K2)

−1GW1K2 and TI = (I −W1K2G)
−1W1K2G. Both

of these have small peaks and go to zero quickly at high frequencies. From Section 9.2.2, this
indicates good robustness with respect to both multiplicative output and multiplicative input
plant perturbations.

Nonlinear simulation results are shown in Figure 13.15. Reference signals are given to each
of the scaled outputs simultaneously. The solid lines show the references, and the dashed-
dot lines, the outputs. It can be seen that the controller exhibits good performance with low
interactions.



CASE STUDIES 509

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.5 0 0.5 1 1.5 2

OPR1

NH

LPEMN

solid – reference inputs
dash-dot – outputs

Time [sec]
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13.3.5 Conclusions
The case study has demonstrated the ease with which the two degrees-of-freedom H∞ loop-
shaping design procedure can be applied to a complex engineering system. Some tools for
control structure design have also been usefully applied to the aero-engine example. We stress
that a good control structure selection is very important. It results in simpler controllers and,
in general, a simpler design exercise.

13.4 Distillation process
A typical distillation column is shown in Figure 10.6 on page 408. The overall 5× 5 control
problem is discussed in Example 10.8 (page 406) and you are advised to read this £rst.
The commonly used LV - and DV -con£gurations, which are discussed below, are partially
controlled systems where three loops for liquid level and pressure have already been closed.

For a general discussion on distillation column control, the reader is also referred to
Shinskey (1984), Skogestad and Morari (1987a) and the survey paper by Skogestad (1997).

We have throughout the book studied a particular high-purity binary distillation column
with 40 theoretical stages (39 ideal trays and a reboiler) plus a total condenser. This is
“column A” in Skogestad et al. (1990). The feed is an equimolar liquid mixture of two
components with a relative volatility of 1.5. The pressure p is assumed constant (perfect
control of p using VT as an input). The operating variables (e.g. re¤ux and boilup rates)
are such that we nominally have 99% purity for each product (yD and xB). The nominal
holdups on all stages, including the reboiler and condenser, are M ∗

i /F = 0.5 min. The liquid
¤ow dynamics, which are important for control, are modelled by a simple linear relationship,
Li(t) = L∗i +(Mi(t)−M∗

i )/τL, where τL = 0.063 min (the same value is used on all trays).
No actuator or measurement dynamics are included. This results in a model with 82 states.
This distillation process is dif£cult to control because of strong interactions between the two
product compositions. More information, including steady-state pro£les along the column, is
available over the Internet.

The complete linear distillation column model with 4 inputs (L, V,D,B), 4 outputs
(yD, xB ,MD,MB), 2 disturbances (F, zF ) and 82 states is available over the Internet. The
states are the mole fractions and liquid holdups on each of the 41 stages. By closing the two
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level loops (MD andMB) this model may be used to generate the model for any con£guration
(LV ,DV , etc.). The Matlab commands for generating the LV -,DV - andDB-con£gurations
are given in Table 13.3.

A 5-state LV -model, obtained by model reducing the above 82-state model, is given on
page 513. This model is also available over the Internet.

Table 13.3: Matlab program for generating model of various distillation
con£gurations

% Uses Matlab Robust control toolbox
% G4: State-space model (4 inputs, 2 disturbances, 4 outputs, 82 states)
% Level controllers using D and B (P-controllers; bandwidth = 10 rad/min):
Kd = 10; Kb = 10;
% Now generate the LV-configuration from G4 using sysic:
systemnames = ’G4 Kd Kb’;
inputvar = ’[L(1); V(1); d(2)]’;
outputvar = ’[G4(1);G4(2)]’;
input to G4 = ’[L; V; Kd; Kb; d ]’;
input to Kd = ’[G4(3)]’;
input to Kb = ’[G4(4)]’;
sysoutname =’Glv’;
cleanupsysic=’yes’; sysic;
%
% Modifications needed to generate DV-configuration:
Kl = 10; Kb = 10;
systemnames = ’G4 Kl Kb’;
inputvar = ’[D(1); V(1); d(2)]’;
input to G4 = ’[Kl; V; D; Kb; d ]’;
input to Kl = ’[G4(3)]’;
input to Kb = ’[G4(4)]’;
sysoutname =’Gdv’;
%
% Modifications needed to generate DB-configuration:
Kl = 10; Kv = 10;
systemnames = ’G4 Kl Kv’;
inputvar = ’[D(1); B(1); d(2)]’;
input to G4 = ’[Kl; Kv; D; B; d ]’;
input to Kl = ’[G4(3)]’;
input to Kv = ’[G4(4)]’;
sysoutname =’Gdb’;

This distillation process has been used as an illustrative example throughout the book, and
so to avoid unnecessary repetition we will simply summarize what has been done and refer to
the many exercises and examples for more details. The steady-state properties of the model,
including the choice of temperature measurement, are discussed in Examples 10.8 and 10.9.

13.4.1 Idealized LV -model
The following idealized model of the distillation process, originally from Skogestad et al.
(1988), has been used in examples throughout the book:

G(s) =
1

75s+ 1

[
87.8 −86.4
108.2 −109.6

]
(13.17)

The inputs are the re¤ux (L) and boilup (V ), and the controlled outputs are the top and
bottom product compositions (yD and xB). This is a very crude model of the distillation
process, but it provides an excellent example of an ill-conditioned process where control is
dif£cult, primarily due to the presence of input uncertainty.

We refer the reader to the following places in the book where the model (13.17) is used:
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Example 3.5 (page 78): SVD analysis. The singular values are plotted as a function of
frequency in Figure 3.7(b) on page 80.

Example 3.6 (page 79): Discussion of the physics of the process and the interpretation of
directions.

Example 3.14 (page 89): The condition number, γ(G), is 141.7, and the 1, 1 element of the
RGA, λ11(G), is 35.1 (at all frequencies).

Motivating example no. 2 (page 100): Introduction to robustness problems with inverse-
based controller using simulation with 20% input uncertainty.

Exercise 3.10 (page 103): Design of robust SVD controller.

Exercise 3.11 (page 103): Combined input and output uncertainty for inverse-based con-
troller.

Exercise 3.12 (page 103): Attempt to “robustify” an inverse-based design using McFarlane–
GloverH∞ loop-shaping procedure.

Example 6.8 (page 245): Sensitivity to input uncertainty with feedforward control (RGA).

Example 6.11 (page 250): Sensitivity to input uncertainty with inverse-based controller,
sensitivity peak (RGA).

Example 6.14 (page 253): Sensitivity to element-by-element uncertainty (relevant for
identi£cation).

Example 8.1 (page 292): Coupling between uncertainty in transfer function elements.

Example in Section 8.11.3 (page 322): µ for robust performance which explains poor
performance in Motivating example no. 2.

Example in Section 8.12.4 (page 330): Design of µ-optimal controller using DK-iteration.

In addition, the reader is referred to the £rst edition of this book (Skogestad and
Postlethwaite, 1996) for an example on the magnitude of inputs for rejecting disturbances
(in feed rate and feed composition) at steady state.

The model in (13.17) has also been the basis for two benchmark problems.
Original benchmark problem. The original control problem was formulated by

Skogestad et al. (1988) as a bound on the weighted sensitivity with frequency-bounded input
uncertainty. The optimal solution to this problem is provided by the one degree-of-freedom
µ-optimal controller given in the example in Section 8.12.4 where a peak µ-value of 0.974
(Remark 1 on page 335) was obtained.

Revised CDC benchmark problem. The original problem formulation is unrealistic in
that there is no bound on the input magnitudes. Furthermore, the bounds on performance and
uncertainty are given in the frequency domain (in terms of weighted H∞ norm), whereas
many engineers feel that time domain speci£cations are more realistic. Limebeer (1991)
therefore suggested the following CDC speci£cations. The set of plants Π is de£ned by

G̃(s) =
1

75s+ 1

[
0.878 −0.864
1.082 −1.096

] [
k1e

−θ1s 0
0 k2e

−θ2s

]

ki ∈ [ 0.8 1.2 ] , θi ∈ [ 0 1.0 ] (13.18)
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In physical terms this means 20% gain uncertainty and up to 1 minute delay in each input
channel. The speci£cation is to achieve for every plant G̃ ∈ Π:

S1: Closed-loop stability.

S2: For a unit step demand in channel 1 at t = 0 the plant output y1 (tracking) and y2
(interaction) should satisfy:

• y1(t) ≥ 0.9 for all t ≥ 30 min
• y1(t) ≤ 1.1 for all t
• 0.99 ≤ y1(∞) ≤ 1.01
• y2(t) ≤ 0.5 for all t
• −0.01 ≤ y2(∞) ≤ 0.01

The same corresponding requirements hold for a unit step demand in channel 2.

S3: σ̄(KyS̃) < 0.316, ∀ω

S4: σ̄(G̃Ky) < 1 for ω ≥ 150

Note that a two degrees-of-freedom controller may be used andKy then refers to the feedback
plant of the controller. In practice, speci£cation S4 is indirectly satis£ed by S3. Note that the
uncertainty description Gp = G(I + ωI∆I) with wI = s+0.2

0.5s+1 (as used in the examples in
the book) only allows for about 0.9 minute time delay error. To get a weight wI(s) which
includes the uncertainty in (13.18) we may use the procedure described on page 272, i.e.
(7.36) or (7.37) with rk = 0.2 and θmax = 1.

Several designs have been presented which satisfy the speci£cations for the CDC problem
in (13.18). For example, a two degrees-of-freedom H∞ loop-shaping design is given by
Limebeer et al. (1993), and an extension of this by Whidborne et al. (1994). A two degrees-
of-freedom µ-optimal design is presented by Lundström et al. (1999).

13.4.2 Detailed LV -model
In the book we have also used a 5-state dynamic model of the distillation process which
includes liquid ¤ow dynamics (in addition to the composition dynamics) as well as
disturbances. This 5-state model was obtained from model reduction of the detailed model
with 82 states. The steady-state gains for the two disturbances are given in (10.97).

The 5-state model is similar to (13.17) at low frequencies, but the model is much less
interactive at higher frequencies. The physical reason for this is that the liquid ¤ow dynamics
decouple the response and make G(jω) upper triangular at higher frequencies. The effect is
illustrated in Figure 13.16 where we show the singular values and the magnitudes of the RGA
elements as functions of frequency. As a comparison, the RGA element λ11(G) = 35.1 at all
frequencies (and not just at steady-state) for the simpli£ed model in (13.17). The implication
is that control at crossover frequencies is easier than expected from the simpli£ed model
(13.17).

Applications based on the 5-state model are found in:

Example 10.9 (page 409): Selection of secondary (temperature) measurement for improving
controllability of primary (composition) variables.

Example in Section 10.23 (page 452): Controllability analysis of decentralized control.
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Figure 13.16: Detailed 5-state model of distillation column

Details on the 5-state model. A state-space realization is

G(s)
s
=

[
A B
C 0

]
, Gd(s)

s
=

[
A Bd

C 0

]
(13.19)

where

A =




−.005131 0 0 0 0
0 −.07366 0 0 0
0 0 −.1829 0 0
0 0 0 −.4620 .9895
0 0 0 −.9895 −.4620


, B =




−.629 .624
.055 −.172
.030 −.108
−.186 −.139
−1.23 −.056




C =
[
−.7223 −.5170 .3386 −.1633 .1121
−.8913 .4728 .9876 .8425 .2186

]
, Bd =




−0.062 −0.067
0.131 0.040
0.022 −0.106
−0.188 0.027
−0.045 0.014




Scaling. The model is scaled such that a magnitude of 1 corresponds to the following: 0.01
mole fraction units for each output (yD and xB), the nominal feed ¤ow rate for the two inputs
(L and V ) and a 20% change for each disturbance (feed rate F and feed composition zF ).
Notice that the steady-state gains computed with this model are slightly different from the
ones used in the examples.

Remark. A similar dynamic LV -model, but with 8 states, is given by Green and Limebeer (1995), who
also design anH∞ loop-shaping controller.

Exercise 13.1 ∗ Repeat the µ-optimal design based onDK-iteration in Section 8.12.4 using the model
(13.19).

13.4.3 Idealized DV -model
Finally, we have also made use of an idealized model for the DV -con£guration:

G(s) =
1

75s+ 1

[
−87.8 1.4
−108.2 −1.4

]
(13.20)

In this case the condition number γ(G) = 70.8 is still large, but the RGA elements are small
(about 0.5).
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Example 6.9 (page 245): Bounds on the sensitivity peak show that an inverse-based
controller is robust with respect to diagonal input uncertainty.

Example 8.9 (page 314): µ for robust stability with a diagonal controller is computed. The
difference between diagonal and full-block input uncertainty is signi£cant.

Remark. In practice, the DV -con£guration may not be as favourable as indicated by these examples,
because the level controller is not perfect as was assumed when deriving (13.20).

13.4.4 Further distillation case studies
The full distillation model, which is available over the Internet, may form the basis for
several case studies (projects). These could include input–output controllability analysis,
controller design, robustness analysis and closed-loop simulation. The following cases may
be considered:
1. Model with four inputs and four outputs
2. LV -con£guration (studied extensively in this book)
3. DV -con£guration (see previous page)
4. DB-con£guration (see also Exercise 6.16, page 257)
The models in the latter three cases are generated from the 4× 4 model by closing two level
loops (see the Matlab £le in Table 13.3) to get a partially controlled plant with two inputs and
two outputs (in addition to the two disturbances).
Remark. For theDV - andDB-con£gurations the resulting model depends quite strongly on the tuning
of the level loops, so one may consider separately the two cases of tight level control (e.g. K = 10,
as in Table 13.3) or loosely tuned level control (e.g. K = 0.2 corresponding to a time constant of 5
min). Level control tuning may also be considered as a source of uncertainty. The models do not include
actuator or measurement dynamics, which may also be considered as a source of uncertainty.

13.5 Conclusion
The case studies in this chapter have served to demonstrate the usefulness and ease of
application of many of the techniques discussed in the book. Realistic problems have been
considered but the idea has been to illustrate the techniques rather than to provide “optimal”
solutions.

For the helicopter problem, practice was obtained in the selection of weights in H∞
mixed-sensitivity design, and it was seen how information about disturbances could easily
be considered in the design problem.

In the aero-engine study, we applied a variety of tools to the problem of output selection
and then designed a two degrees-of-freedomH∞ loop-shaping controller.

The £nal case study was a collection of examples and exercises on the distillation process
considered throughout the book. This served to illustrate the dif£culties of controlling ill-
conditioned plants and the adverse effects of model uncertainty. The structured singular value
played an important role in the robustness analysis.

You should now be in a position to move straight to Appendix B, to complete a major
project on your own and to sit the sample exam.

Good luck!



APPENDIX A

MATRIX THEORY AND NORMS

The topics in this appendix are included as background material for the book, and should ideally be
studied before reading Chapter 3.

After studying the appendix the reader should feel comfortable with a range of mathematical tools
including eigenvalues, eigenvectors and the singular value decomposition; the reader should appreciate
the difference between various norms of vectors, matrices, signals and systems, and know how these
norms can be used to measure performance.

The main references are: Strang (1976) and Horn and Johnson (1985) on matrices, and Zhou et al.
(1996) on norms.

A.1 Basics
Let us start with a complex scalar

c = α+ jβ, where α = Re c, β = Im c

To compute the magnitude |c|, we multiply c by its conjugate c̄ , α− jβ and take the square
root, i.e.

|c| =
√
c̄c =

√
α2 − j2β2 =

√
α2 + β2

A complex column vector a with m components (elements) is written

a =




a1
a2
...
am




where ai is a complex scalar. aT (the transpose) is used to denote a row vector.
Now consider a complex l ×m matrix A with elements aij = Re aij + j Im aij . l is the

number of rows (the number of “outputs” when viewed as an operator) and m is the number
of columns (“inputs”). Mathematically, we write A ∈ C

l×m if A is a complex matrix, or
A ∈ R

l×m ifA is a real matrix. Note that a column vector a withm elements may be viewed
as an m× 1 matrix.

The transpose of a matrix A is AT (with elements aji), the conjugate is Ā (with elements
Re aij − j Im aij), the conjugate transpose (or Hermitian adjoint) matrix is AH , ĀT

(with elements Re aji − j Im aji), the trace is trA (sum of diagonal elements), and the
determinant is detA. By de£nition, the inverse of a non-singular matrix A, denoted A−1,

Multivariable Feedback Control: Analysis and Design. Second Edition
S. Skogestad and I. Postlethwaite c© 2005, 2006 John Wiley & Sons, Ltd
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satis£es A−1A = AA−1 = I , and is given by

A−1 =
adjA

detA
(A.1)

where adjA is the adjugate (or “classical adjoint”) of A which is the transposed matrix of
cofactors cij of A,

cij = [adjA]ji , (−1)i+j detAij (A.2)
Here Aij is a submatrix formed by deleting row i and column j of A. As an example, for a
2× 2 matrix we have

A =

[
a11 a12
a21 a22

]
; detA = a11a22 − a12a21

A−1 =
1

detA

[
a22 −a12
−a21 a11

]
(A.3)

We also have
(AB)T = BTAT , (AB)H = BHAH (A.4)

and, assuming the inverses exist,

(AB)−1 = B−1A−1 (A.5)

A square matrix A is symmetric if AT = A, and Hermitian if AH = A.
A matrix A is said to be positive de£nite if all the eigenvalues of its symmetric part

(A + AH) are positive or xH(A + AH)x > 0 for any non-zero vector x. When A is a
Hermitian matrix, the condition for positive de£niteness simpli£es as xHAx > 0; this is
simply denoted A > 0. Similarly, a Hermitian matrix A is positive semi-de£nite (A ≥ 0)
if xHAx ≥ 0. For a positive semi-de£nite matrix A, the matrix square root (A1/2) satis£es
A1/2A1/2 = A.

A.1.1 Some useful matrix identities
Lemma A.1 The matrix inversion lemma. Let A1, A2, A3 and A4 be matrices with
compatible dimensions such that the matrices A2A3A4 and (A1 + A2A3A4) are de£ned.
Also assume that the inverses given below exist. Then

(A1 +A2A3A4)
−1 = A−11 −A−11 A2(A4A

−1
1 A2 +A−13 )−1A4A

−1
1 (A.6)

Proof: Postmultiply (or premultiply) the right hand side in (A.6) by A1 + A2A3A4. This gives the
identity matrix. 2

Lemma A.2 Inverse of a partitioned matrix. If A−111 and X−1 exist then
[
A11 A12

A21 A22

]−1
=

[
A−111 +A−111 A12X

−1A21A
−1
11 −A−111 A12X

−1

−X−1A21A
−1
11 X−1

]
(A.7)

where X , A22 − A21A
−1
11 A12 is the Schur complement of A11 in A; also see (A.15).

Similarly if A−122 and Y −1 exist then
[
A11 A12

A21 A22

]−1
=

[
Y −1 −Y −1A12A

−1
22

−A−122 A21Y
−1 A−122 +A−122 A21Y

−1A12A
−1
22

]
(A.8)

where Y , A11 −A12A
−1
22 A21 is the Schur complement of A22 in A; also see (A.16).
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A.1.2 Some determinant identities
The determinant is de£ned only for square matrices, so let A be an n × n matrix. The
matrix is non-singular if detA is non-zero. The determinant may be de£ned inductively
as detA =

∑n
i=1 aijcij (expansion along column j) or detA =

∑n
j=1 aijcij (expansion

along row i), where cij is the ij’th cofactor given in (A.2). This inductive de£nition begins
by de£ning the determinant of an 1 × 1 matrix (a scalar) to be the value of the scalar, i.e.
det a = a. We then get for a 2 × 2 matrix detA = a11a22 − a12a21 and so on. From the
de£nition we directly get that detA = detAT . Some other determinant identities are given
below:

1. Let A1 and A2 be square matrices of the same dimension. Then

det(A1A2) = det(A2A1) = detA1 · detA2 (A.9)

2. Let c be a complex scalar and A an n× n matrix. Then

det(cA) = cn det(A) (A.10)

3. Let A be a non-singular matrix. Then

detA−1 = 1/detA (A.11)

4. Let A1 and A2 be matrices of compatible dimensions such that both matrices A1A2 and
A2A1 are square (but A1 and A2 need not themselves be square). Then

det(I +A1A2) = det(I +A2A1) (A.12)

This is actually a special case of Schur’s formula given in (A.14). Equation (A.12) is useful
in the £eld of control because it yields det(I +GK) = det(I +KG).

5. The determinant of a triangular or block-triangular matrix is the product of the
determinants of the diagonal blocks:

det

[
A11 A12

0 A22

]
= det

[
A11 0
A21 A22

]
= det(A11) · det(A22) (A.13)

6. Schur’s formula for the determinant of a partitioned matrix:

det

[
A11 A12

A21 A22

]
= det(A11) · det(A22 −A21A

−1
11 A12)

= det(A22) · det(A11 −A12A
−1
22 A21) (A.14)

where it is assumed that A11 and/or A22 are non-singular.

Proof: Note that A has the following decomposition if A11 is non-singular:
[
A11 A12

A21 A22

]
=

[
I 0

A21A
−1
11 I

] [
A11 0
0 X

] [
I A−111 A12

0 I

]
(A.15)

where X = A22 −A21A
−1
11 A12. The £rst part of (A.14) is proved by evaluating the determinant using

(A.9) and (A.13). Similarly, if A22 is non-singular,
[
A11 A12

A21 A22

]
=

[
I A12A

−1
22

0 I

] [
Y 0
0 A22

] [
I 0

A−122 A21 I

]
(A.16)

where Y = A11 −A12A
−1
22 A21, and the last part of (A.14) follows. 2
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A.2 Eigenvalues and eigenvectors
De£nition A.1 Eigenvalues and eigenvectors. Let A be a square n × n matrix. The
eigenvalues λi, i = 1, . . . , n, are the n solutions to the n’th-order characteristic equation

det(A− λI) = 0 (A.17)

The (right) eigenvector ti corresponding to the eigenvalue λi is the non-trivial solution
(ti 6= 0) to

(A− λiI)ti = 0 ⇔ Ati = λiti (A.18)
The corresponding left eigenvectors qi satisfy

qHi (A− λiI) = 0 ⇔ qHi A = λiq
H
i (A.19)

When we just say eigenvector we mean the right eigenvector.
Remark 1 Note that if t is an eigenvector then so is αt for any constant α. Therefore, the eigenvectors
are usually normalized to have unit length, i.e. tHi ti = 1.

Remark 2 From (A.19) we get AHqi = λ̄iqi. Thus, for computations, we may obtain the left
eigenvectors qi from the right eigenvectors of AH . However, notice that we have the conjugate of
the eigenvalue, λ̄i, so the order of the complex eigenvalues may be different for A and AH .

Remark 3 The eigenvalues are sometimes called characteristic gains. The set of eigenvalues of A is
called the spectrum of A. The largest of the absolute values of the eigenvalues of A is the spectral
radius of A,

ρ(A) , max
i
|λi(A)| (A.20)

An important result for eigenvectors is that eigenvectors corresponding to distinct
eigenvalues are always linearly independent. For repeated eigenvalues, this may not always
be the case; that is, not all n×n matrices have n linearly independent eigenvectors (these are
the so-called “defective” matrices).

The eigenvectors may be collected as columns in the matrix T and the eigenvalues
λ1, λ2, . . . , λn as diagonal elements in the matrix Λ:

T = {t1, t2, . . . , tn}; Λ = diag{λ1, λ2, . . . , λn} (A.21)

We may then write (A.18) as AT = TΛ. If the eigenvectors are linearly independent such
that T−1 exists, we then have that A may be “diagonalized” as follows:

Λ = T−1AT (A.22)

This always happens if the eigenvalues are distinct, and may also happen in other cases, e.g.
for A = I . For distinct eigenvalues, we also have that the right and left eigenvectors are
mutually orthogonal, and we may scale the columns in Q such that they are also mutually
orthonormal,

qHi tj =

{
1 if i = j
0 if i 6= j

Then we have the following dyadic expansion or spectral decomposition of the matrix A in
terms of its right and left eigenvectors:

A =

n∑

i=1

λitiq
H
i (A.23)
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Remark. The case where the eigenvalues are not distinct (i.e. repeated) is much more complicated,
both theoretically and computationally. Fortunately, from a practical point of view it is suf£cient to
understand the case where the eigenvalues are distinct.

A.2.1 Eigenvalue properties
Let λi denote the eigenvalues of A in the following properties:

1. The sum of the eigenvalues of A is equal to the trace of A (sum of the diagonal elements):
trA =

∑
i λi.

2. The product of the eigenvalues of A is equal to the determinant of A: detA =
∏

i λi.
3. The eigenvalues of an upper or lower triangular matrix are equal to the diagonal elements

of the matrix.
4. For a real matrix the eigenvalues either are real, or occur in complex conjugate pairs.
5. A and AT have the same eigenvalues (but in general different eigenvectors).
6. The inverse A−1 exists if and only if all eigenvalues of A are non-zero. The eigenvalues

of A−1 are then 1/λ1, . . . , 1/λn.
7. The matrix A+ cI has eigenvalues λi + c.
8. The matrix cAk where k is an integer has eigenvalues cλki .
9. Consider the l × m matrix A and the m × l matrix B. Then the l × l matrix AB and

the m ×m matrix BA have the same non-zero eigenvalues. To be more speci£c, assume
l > m. Then the matrix AB has the same m eigenvalues as BA plus l −m eigenvalues
which are identically equal to zero.

10. Eigenvalues are invariant under similarity transformations; that is, A and DAD−1 have
the same eigenvalues.

11. The same eigenvector matrix diagonalizes the matrix A and the matrix (I +A)−1. (Proof:
T−1(I +A)−1T = (T−1(I +A)T )−1 = (I + Λ)−1. )

12. Gershgorin’s theorem. The eigenvalues of the n×n matrix A lie in the union of n circles
in the complex plane, each with centre aii and radius ri =

∑
j 6=i |aij | (sum of off-diagonal

elements in row i). They also lie in the union of n circles, each with centre aii and radius
r′i =

∑
j 6=i |aji| (sum of off-diagonal elements in column i).

13. The eigenvalues of a Hermitian matrix (and hence of a symmetric matrix) are real.
14. A Hermitian matrix is positive de£nite (A > 0) if and only if all its eigenvalues are

positive.

From the above properties we have, for example, that

λi(S) = λi((I + L)−1) =
1

λi(I + L)
=

1

1 + λi(L)
(A.24)

In this book, we are sometimes interested in the eigenvalues of a real (state) matrix A, and
in other cases in the eigenvalues of a complex transfer function matrix evaluated at a given
frequency, e.g. L(jω), as in (A.24). It is important to appreciate this difference.

A.2.2 Eigenvalues of the state matrix
Consider a system described by the linear differential equations

ẋ = Ax+Bu (A.25)
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Unless A is diagonal this is a set of coupled differential equations. For simplicity, we assume
that the eigenvectors ti of A are linearly independent and introduce the new state vector
z = T−1x, i.e. x = Tz. We then get

T ż = ATz +Bu ⇔ ż = Λz + T−1Bu (A.26)

which is a set of uncoupled differential equations in terms of the new states z. The unforced
solution (i.e. with u = 0) for each state zi is zi = z0ie

λit where z0i is the value of the state at
t = 0. If λi is real, then we see that this mode is stable (zi → 0 as t→∞) if and only if λi <
0. If λi = Reλi + jImλi is complex, then we get eλit = eReλit(cos(Imλit) + j sin(Imλit))
and the mode is stable (zi → 0 as t → ∞) if and only if Reλi < 0. The fact that the new
state zi is complex is of no concern since the real physical states x = Tz are of course real.
Consequently, a linear system is stable if and only if all the eigenvalues of the state matrix A
have real parts less than zero; that is, lie in the open left-half plane.

A.2.3 Eigenvalues of transfer functions
The eigenvalues of the loop transfer function matrix, λi(L(jω)), evaluated as a function of
frequency, are sometimes called the characteristic loci, and to some extent they generalize
L(jω) for a scalar system. In Chapter 8, we make use of λi(L) to study the stability of the
M∆-structure where L = M∆. Even more important in this context is the spectral radius,
ρ(L(jω)) = maxi |λi(L(jω))|.

A.3 Singular value decomposition
De£nition A.2 Unitary matrix. A (complex) matrix U is unitary if

UH = U−1 (A.27)

All the eigenvalues of a unitary matrix have absolute value equal to 1, and all its singular
values (as we shall see from the de£nition below) are equal to 1.

De£nition A.3 SVD. Any complex l ×m matrix A may be factorized using the SVD

A = UΣV H (A.28)

where the l×lmatrixU and them×mmatrix V are unitary, and the l×mmatrix Σ contains a
diagonal matrix Σ1 of real, non-negative singular values, σi, arranged in a descending order
as in

Σ =

[
Σ1

0

]
; l ≥ m (A.29)

or
Σ = [Σ1 0 ] ; l ≤ m (A.30)

where
Σ1 = diag{σ1, σ2, . . . , σk}; k = min(l,m) (A.31)

and
σ̄ ≡ σ1 ≥ σ2 ≥ · · · ≥ σk ≡ σ (A.32)
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The unitary matrices U and V form orthonormal bases for the column (output) space and
the row (input) space of A. The column vectors of V , denoted vi, are called right or input
singular vectors and the column vectors of U , denoted ui, are called left or output singular
vectors. We de£ne ū ≡ u1, v̄ ≡ v1, u ≡ uk and v ≡ vk.

Note that the decomposition in (A.28) is not unique. For example, for a square matrix, an
alternative SVD is A = U ′ΣV ′H , where U ′ = US, V ′ = V S, S = diag{ejθi} and θi is any
real number. However, the singular values, σi, are unique.

The singular values are the positive square roots of the k = min(l,m) largest eigenvalues
of both AAH and AHA. We have

σi(A) =
√
λi(AHA) =

√
λi(AAH) (A.33)

Also, the columns of U and V are unit eigenvectors of AAH and AHA, respectively. To
derive (A.33) we write

AAH = (UΣV H)(UΣV H)H = (UΣV H)(V ΣHUH) = UΣΣHUH (A.34)

or equivalently since U is unitary and satis£es UH = U−1 we get

(AAH)U = UΣΣH (A.35)

We then see that U is the matrix of eigenvectors of AAH and {σ2i } are its eigenvalues.
Similarly, we have that V is the matrix of eigenvectors of AHA.

A.3.1 Rank
De£nition A.4 The rank of a matrix is equal to the number of non-zero singular values of
the matrix. Let rank(A) = r, then the matrixA is called rank de£cient if r < k = min(l,m),
and we have singular values σi = 0 for i = r + 1, . . . , k. A rank-de£cient square matrix is a
singular matrix (non-square matrices are always singular).

The rank of a matrix is unchanged after left or right multiplication by a non-singular matrix.
Furthermore, for an l ×m matrix A and an m× p matrix B, the rank of their product AB is
bounded as follows (Sylvester’s inequality):

rank(A) + rank(B)−m ≤ rank(AB) ≤ min(rank(A), rank(B)) (A.36)

A.3.2 Singular values of a 2× 2 matrix
In general, the singular values must be computed numerically. For 2 × 2 matrices, however,
an analytic expression is easily derived. From (A.33), σi(A) =

√
λi(AHA). We introduce

b , tr(AHA) =
∑

i,j

|aij |2, c , det(AHA)

Now the sum of the eigenvalues of a matrix is equal to its trace and the product is equal to its
determinant, so

λ1 + λ2 = b, λ1 · λ2 = c
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Upon solving for λ1 and λ2, and using σi(A) =
√
λi(AHA), we get

σ̄(A) =

√
b+
√
b2 − 4c

2
; σ(A) =

√
b−
√
b2 − 4c

2
(A.37)

For example, for A =
[
1 2
3 4

]
we have b =

∑ |aij |2 = 1 + 4 + 9 + 16 = 30,
c = (detA)2 = (−2)2 = 4, and we £nd σ̄(A) = 5.465 and σ(A) = 0.366. Note that for
singular 2× 2 matrices (with detA = 0 and σ(A) = 0) we get σ̄(A) =

√∑ |aij |2 , ‖A‖F
(the Frobenius norm), which is actually a special case of (A.127).

A.3.3 SVD of a matrix inverse
Since A = UΣV H we get, provided the m×m matrix A is non-singular, that

A−1 = V Σ−1UH (A.38)

This is the SVD of A−1 but with the order of the singular values reversed. Let j = m− i+1.
Then it follows from (A.38) that

σi(A
−1) = 1/σj(A), ui(A

−1) = vj(A), vi(A
−1) = uj(A) (A.39)

and in particular
σ̄(A−1) = 1/σ(A) (A.40)

A.3.4 Singular value inequalities
The singular values bound the magnitude of the eigenvalues (also see (A.117)):

σ(A) ≤ |λi(A)| ≤ σ̄(A) (A.41)

The following is obvious from the SVD de£nition:

σ̄(AH) = σ̄(A) and σ̄(AT ) = σ̄(A) (A.42)

The next important property is proved below (see (A.98)):

σ̄(AB) ≤ σ̄(A)σ̄(B) (A.43)

For a non-singular A (or B) we also have a lower bound on σ̄(AB)

σ(A)σ̄(B) ≤ σ̄(AB) (or σ̄(A)σ(B) ≤ σ̄(AB)) (A.44)

For non-singular A and B, we also have a lower bound on the minimum singular value

σ(A)σ(B) ≤ σ(AB) (A.45)

For a partitioned matrix, M =

[
A
B

]
or M = [A B ], the following inequalities are useful:

max{σ̄(A), σ̄(B)} ≤ σ̄(M) ≤
√
2max{σ̄(A), σ̄(B)} (A.46)
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σ̄(M) ≤ σ̄(A) + σ̄(B) (A.47)

σ(M) ≤ min{σ(A), σ(B)} (A.48)

The following equality for a block-diagonal matrix is used extensively in the book:

σ̄

[
A 0
0 B

]
= max{σ̄(A), σ̄(B)} (A.49)

Another very useful result is Fan’s theorem (Horn and Johnson, 1991, p. 140 and p. 178):

σi(A)− σ̄(B) ≤ σi(A+B) ≤ σi(A) + σ̄(B) (A.50)

Two special cases of (A.50) are

|σ̄(A)− σ̄(B)| ≤ σ̄(A+B) ≤ σ̄(A) + σ̄(B) (A.51)

σ(A)− σ̄(B) ≤ σ(A+B) ≤ σ(A) + σ̄(B) (A.52)

Relation (A.52) yields
σ(A)− 1 ≤ σ(I +A) ≤ σ(A) + 1 (A.53)

On combining (A.40) and (A.53) we get a relationship that is useful when evaluating the
ampli£cation of closed-loop systems:

σ(A)− 1 ≤ 1

σ̄(I +A)−1
≤ σ(A) + 1 (A.54)

A.3.5 SVD as a sum of rank 1 matrices
Let r denote the rank of the l × m matrix A. We may then consider the SVD as a
decomposition of A into r l ×m matrices, each of rank 1. We have

A = UΣV H =
r∑

i=1

σiuiv
H
i (A.55)

The remaining terms from r+1 to k = min(l,m) have singular values equal to zero and give
no contribution to the sum. The £rst and most important submatrix is given byA1 = σ1u1v

H
1 .

If we now consider the residual matrix

A1 = A−A1 = A− σ1u1vH1 (A.56)

then
σ1(A

1) = σ2(A) (A.57)

That is, the largest singular value of A1 is equal to the second singular value of the original
matrix. This shows that the direction corresponding to σ2(A) is the second most important
direction, and so on.
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A.3.6 Singularity of matrix A+ E

From the left inequality in (A.52) we £nd that

σ̄(E) < σ(A) ⇒ σ(A+ E) > 0 (A.58)

and A + E is non-singular. On the other hand, there always exists an E with σ̄(E) = σ(A)
which makes A + E singular, e.g. choose E = −uσ vH ; see (A.55). Thus the smallest
singular value σ(A) measures how near the matrix A is to being singular or rank de£cient.
This test is often used in numerical analysis, and it is also an important inequality in the
formulation of robustness tests.

A.3.7 Economy-size SVD
Since there are only r = rank(A) ≤ min(l,m) non-zero singular values, and since only the
non-zero singular values contribute to the overall result, the SVD of A is sometimes written
as an economy-size SVD, as follows:

Al×m = U l×r
r Σr×r

r (V m×r
r )H (A.59)

where the matrices Ur and Vr contain only the £rst r columns of the matrices U and V
introduced above. Here we have used the notationAl×m to indicate thatA is an l×mmatrix.
The economy-size SVD is used for computing the pseudo-inverse, see (A.62).

Remark. The “economy-size SVD” presently used in Matlab is not quite as economic as the one given
in (A.59) as it uses m instead of r for Σ.

A.3.8 Pseudo-inverse (generalized inverse)
Consider the set of linear equations

y = Ax (A.60)
with a given l × 1 vector y and a given l ×m matrix A. A least squares solution to (A.60) is
an m× 1 vector x such that ‖x‖2 =

√
x21 + x22 + · · ·+ x2m is minimized among all vectors

for which ‖y − Ax‖2 is minimized. The solution is given in terms of the pseudo-inverse
(Moore–Penrose generalized inverse) of A:

x = A†y (A.61)

The pseudo-inverse may be obtained from an SVD of A = UΣV H by

A† = VrΣ
−1
r UH

r =

r∑

i=1

1

σi(A)
viu

H
i (A.62)

where r is the number of non-zero singular values of A. We have that

σ(A) = 1/σ̄(A†) (A.63)

Note that A† exists for any matrix A, even for a singular square matrix and a non-square
matrix. The pseudo-inverse also satis£es

AA†A = A and A†AA† = A†

Note the following cases (where r is the rank of A):
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1. r = l = m, i.e. A is non-singular. In this case A† = A−1 is the inverse of the matrix.
2. r = m ≤ l, i.e. A has full column rank. This is the “conventional least squares problem”

where we want to minimize ‖y −Ax‖2, and the solution is

A† = (AHA)−1AH (A.64)

In this case A†A = I , so A† is a left inverse of A.
3. r = l ≤ m, i.e. A has full row rank. In this case we have an in£nite number of solutions

to (A.60) and we seek the one that minimizes ‖x‖2. We get

A† = AH(AAH)−1 (A.65)

In this case AA† = I , so A† is a right inverse of A.
4. r < k = min(l,m) (general case). In this case both matrices AHA and AAH are rank

de£cient, and we have to use (A.62) to obtain the pseudo-inverse. In this caseA has neither
a left nor a right inverse.

Principal component regression (PCR)
We note that the pseudo-inverse in (A.62) may be very sensitive to noise and “blow up” if the
smallest non-zero singular value, σr, is small. In the PCR method one avoids this problem
by using only the q ≤ r £rst singular values which can be distinguished from the noise. The
PCR pseudo-inverse then becomes

A†PCR =

q∑

i=1

1

σi
viu

H
i (A.66)

Remark. This is similar in spirit to the use of Hankel singular values for model reduction.

A.3.9 Condition number
The condition number of a matrix is de£ned in this book as the ratio

γ(A) = σ1(A)/σk(A) = σ̄(A)/σ(A) (A.67)

where k = min(l,m). A matrix with a large condition number is said to be ill-conditioned.
This de£nition yields an in£nite condition number for rank-de£cient matrices. For a non-
singular matrix we get from (A.40)

γ(A) = σ̄(A) · σ̄(A−1) (A.68)

Other de£nitions for the condition number of a non-singular matrix are also in use, e.g.

γp(A) = ‖A‖p · ‖A−1‖p (A.69)

where ‖A‖p denotes any matrix norm. If we use the induced 2-norm (maximum singular
value) then this yields (A.68). From (A.68) and (A.43), we get for non-singular matrices

γ(AB) ≤ γ(A)γ(B) (A.70)
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The minimized condition number is obtained by minimizing the condition number over all
possible scalings. We have

γ∗(A) , min
DI ,DO

γ(DOADI) (A.71)

where DI and DO are (complex) diagonal scaling matrices. If we allow scaling only on one
side then we get the input and output minimized condition numbers:

γ∗I (A) , min
DI

γ(ADI), γ∗O(A) , min
DO

γ(DOA) (A.72)

As shown in (A.79) and (A.80), the minimized condition number is closely related to the
norm of the RGA-matrix.

Remark. To compute these minimized condition numbers we de£ne

H =

[
0 A−1

A 0

]
(A.73)

Then we have, as proven by Braatz and Morari (1994),
√
γ∗(A) = min

DI ,DO

σ̄(DHD−1), D = diag{D−1I , DO} (A.74)

√
γ∗I (A) = min

DI

σ̄(DHD−1), D = diag{D−1I , I} (A.75)
√
γ∗O(A) = min

DO

σ̄(DHD−1), D = diag{I,DO} (A.76)

These convex optimization problems may be solved using available software for the upper bound on
the structured singular value µup(H); see (8.87) and Example 12.4. In calculating µup(H), we use for
γ∗(A) the structure ∆ = diag{∆diag,∆diag}, for γ∗I (A) the structure ∆ = diag{∆diag,∆full}, and
for γ∗O(A) the structure ∆ = diag{∆full,∆diag}.

A.4 Relative gain array
The relative gain array (RGA), see section 3.4 (page 82), was introduced by Bristol (1966).
Many of its properties were stated by Bristol, but they were not proven rigorously until the
work by Grosdidier et al. (1985). The RGA of a complex non-singular m × m matrix A,
denoted RGA(A) or Λ(A), is a complex m×m matrix de£ned by

RGA(A) ≡ Λ(A) , A× (A−1)T (A.77)

where the operation × denotes element-by-element multiplication (Hadamard or Schur
product). If A is real then Λ(A) is also real. For calculating RGA using Matlab, use
rga = a.*pinv(a).’; see also Table 3.1 on page 87.
Example:

A1 =

[
1 −2
3 4

]
, A−11 =

[
0.4 0.2
−0.3 0.1

]
, Λ(A1) =

[
0.4 0.6
0.6 0.4

]
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A.4.1 Algebraic properties of the RGA
Most of the properties below follow directly if we write the RGA elements in the form

λij = aij · ãji = aij
cij

detA
= (−1)i+j aij detA

ij

detA
(A.78)

where ãji denotes the ji’th element of the matrix Ã , A−1, Aij denotes the matrix A with
row i and column j deleted, and cij = (−1)i+j detAij is the ij’th cofactor of the matrix A.

For any non-singular m×m matrix A, the following properties hold:

1. Λ(A−1) = Λ(AT ) = Λ(A)T .
2. Any permutation of the rows and columns of A results in the same permutation in the

RGA. That is, Λ(P1AP2) = P1Λ(A)P2 where P1 and P2 are permutation matrices. (A
permutation matrix has a single 1 in every row and column and all other elements equal to
0.) Λ(P ) = P for any permutation matrix.

3. The sum of the elements in each row (and each column) of the RGA is 1. That is,∑m
i=1 λij = 1 and

∑m
j=1 λij = 1.

4. Λ(A) = I if A is a lower or upper triangular matrix; and in particular the RGA of a
diagonal matrix is the identity matrix.

5. The RGA is scaling invariant. Therefore, Λ(D1AD2) = Λ(A) where D1 and D2 are
diagonal matrices.

6. The RGA is a measure of sensitivity to relative element-by-element uncertainty in the
matrix. More precisely, the matrixA becomes singular if a single element inA is perturbed
from aij to a′ij = aij(1− 1

λij
); see Theorem 6.6 on page 251.

7. The norm of the RGA is closely related to the minimized condition number γ∗ de£ned in
(A.71). For a 2× 2 matrix (Grosdidier et al., 1985) and a real 3× 3 matrix (Liang, 1992):

γ∗ + 1/γ∗ = ‖Λ‖m (A.79)

In general, for a (complex) matrix of any size (Nett and Manousiouthakis, 1987):

γ∗ + 1/γ∗ ≥ ‖Λ‖m (A.80)

Here ‖Λ‖m , 2max{‖Λ‖i1, ‖Λ‖i∞} is two times the maximum row or column sum of
the RGA (the matrix norms are de£ned in Section A.5.2). (A.80) shows that a matrix with
large RGA elements always has a large minimized condition number. The reverse has also
been conjectured (Nett and Manousiouthakis, 1987), but it does not hold for 4×4 matrices
or larger as shown by the following counterexample motivated by Liang (1992):

A =



1 −1 −1 1
1 1 1 1
1 1 −1 −1
1 −1 1 −1






k 0 0 0
0 k 0 0
0 0 1 0
0 0 0 1







1 1 1 −1
−1 1 1 1
1 −1 1 1
1 1 −1 1


 = 2




k 1 −1 −k
1 k k 1
−1 k k −1
k −1 1 −k




has γ∗(A) = γ(A) = k (which can be arbitrary large), but for any k all RGA elements are
0.25 so ‖Λ(A)‖m = 2.

8. The diagonal elements of the matrix ADA−1 are given in terms of the corresponding row
elements of the RGA (Skogestad and Morari, 1987c; Nett and Manousiouthakis, 1987).
For any diagonal matrix D = diag{di} we have

[ADA−1]ii =
m∑

j=1

λij(A)dj (A.81)
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[A−1DA]ii =
m∑

i=1

λij(A)di (A.82)

9. It follows from Property 3 that Λ always has at least one eigenvalue and one singular value
equal to 1.

Proofs of some of the properties: Property 3: Since AA−1 = I it follows that
∑m

j=1 aij âji = 1.
From the de£nition of the RGA we then have that

∑m
j=1 λij = 1. Property 4: If the matrix is upper

triangular then aij = 0 for i > j. It then follows that cij = 0 for j > i and all the off-diagonal RGA
elements are zero. Property 5: Let A′ = D1AD2. Then a′ij = d1id2jaij and â′ij = 1

d2j

1
d1i

âij and
the result follows. Property 6: The determinant can be evaluated by expanding it in terms of any row or
column, e.g. by row i, detA =

∑
i(−1)i+jaij detAij . Let A′ denote A with a′ij substituted for aij .

By expanding the determinant of A′ by row i and then using (A.78) we get

detA′ = detA− (−1)i+j aij
λij

detAij

︸ ︷︷ ︸
detA

= 0

Property 8: The ii’th element of the matrix B = ADA−1 is bii =
∑

j djaij âji =
∑

j djλij .
2

Example A.1

A2 =




56 66 75 97
75 54 82 28
18 66 25 38
9 51 8 11


 ; Λ(A2) =




6.16 −0.69 −7.94 3.48
−1.77 0.10 3.16 −0.49
−6.60 1.73 8.55 −2.69
3.21 −0.14 −2.77 0.70


 (A.83)

In this case, γ(A2) = σ̄(A2)/σ(A2) = 207.68/1.367 = 151.9, γ∗(A2) = 51.73 (obtained
numerically using (A.74)), γ∗I (A2) = 118.70 and γ∗O(A2) = 92.57. Furthermore, ‖Λ‖m =
2max{22.42, 19.58} = 44.84, so (A.80) is satis£ed. The matrix A2 is non-singular and the 1, 3
element of the RGA is λ13(A2) = −7.94. Thus from Property 6 the matrix A2 becomes singular if
the 1, 3 element is perturbed from 75 to 75(1− 1

−7.94 ) = 84.45.

Additional examples on the properties of RGA are given in Section 3.4.

A.4.2 RGA of a non-square matrix
The RGA may be generalized to a non-square l ×m matrix A by use of the pseudo-inverse
A† de£ned in (A.62). We have

Λ(A) = A× (A†)T (A.84)

Properties 1 (transpose and inverse) and 2 (permutations) of the RGA also hold for non-square
matrices, but the remaining properties do not apply in the general case. However, they partly
apply if A is either of full row rank or full column rank.

1. A has full row rank, r = rank(A) = l (i.e. A has at least as many inputs as outputs, and
the outputs are linearly independent). In this case AA† = I , and the following properties
hold:

(a) The RGA is independent of output scaling, i.e. Λ(DA) = Λ(A).
(b) The elements in each row of the RGA sum to 1,

∑m
j λij = 1.



MATRIX THEORY AND NORMS 529

(c) The elements of column j of the RGA sum to the square of the 2-norm of the j’th row
in Vr,

l∑

i=1

λij = ‖eTj Vr‖22 ≤ 1 (A.85)

Here Vr contains the £rst r input singular vectors for G, and ej is an m×1 basis vector
for input uj ; ej = [ 0 · · · 0 1 0 · · · 0 ]T where 1 appears in position j.

(d) The diagonal elements of B = ADA† are bii =
∑m

j=1 djaij âji =
∑m

j=1 djλij , where
âji denotes the ji’th element of A† and D is any diagonal matrix.

2. A has full column rank, r = rank(A) = m (i.e. A has no more inputs than outputs, and
the inputs are linearly independent). In this case A†A = I , and the following properties
hold:

(a) The RGA is independent of input scaling, i.e. Λ(AD) = Λ(A).
(b) The elements in each column of the RGA sum to 1,

∑l
i λij = 1.

(c) The elements of row i of the RGA sum to the square of the 2-norm of the i’th row in
Ur,

m∑

i=1

λij = ‖eTi Ur‖22 ≤ 1 (A.86)

Here Ur contains the £rst r output singular vectors for G, and ei is an l×1 basis vector
for output yi; ei = [ 0 · · · 0 1 0 · · · 0 ]T where 1 appears in position i.

(d) The diagonal elements of B = A†DA are equal to bjj =
∑l

i=1 âjidiaij =∑l
i=1 diλij , where âji denotes the ji’th element of A† and D is any diagonal matrix.

3. General case. For a general square or non-square matrix which has neither full row nor
full column rank, identities (A.85) and (A.86) still apply.
From this it also follows that the rank of any matrix is equal to the sum of its RGA
elements. Let the l ×m matrix G have rank r, then

∑

i,j

λij(G) = rank(G) = r (A.87)

Proofs of (A.85) and (A.86): We will prove these identities for the general case. Write the SVD of G
as G = UrΣrV

H
r (this is the economy-size SVD from (A.59)) where Σr is invertible. We have that

gij = eHi UrΣrV
H
r ej ,

[
G†
]
ji

= eHj VrΣ
−1
r UH

r ei, UH
r Ur = Ir and V H

r Vr = Ir , where Ir denotes
the identity matrix of dim r × r. For the row sum (A.86) we then get

m∑

j=1

λij =
m∑

j=1

eHi UrΣrV
H
r eje

H
j VrΣ

−1
r UH

r ei

= eHi UrΣrV
H
r

m∑

j=1

eje
H
j

︸ ︷︷ ︸
Im

VrΣ
−1
r UH

r ei = eHi UrU
H
r ei = ‖eHi Ur‖22

The result for the column sum (A.85) is proved in a similar fashion. 2

Remark. The extension of the RGA to non-square matrices was suggested by Chang and Yu (1990)
who also stated most of its properties, although in a somewhat incomplete form. More general and
precise statements are found, for example, in Cao (1995).
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A.5 Norms
It is useful to have a single number which gives an overall measure of the size of a
vector, a matrix, a signal, or a system. For this purpose we use functions which are
called norms. The most commonly used norm is the Euclidean vector norm, ‖e‖2 =√
|e1|2 + |e2|2 + · · ·+ |em|2. This is simply the distance between two points y and x, where

ei = yi − xi is the difference in their i’th coordinates.

De£nition A.5 A norm of e (which may be a vector, matrix, signal or system) is a real
number, denoted ‖e‖, that satis£es the following properties:

1. Non-negative: ‖e‖ ≥ 0.
2. Positive: ‖e‖ = 0⇔ e = 0 (for semi-norms we have ‖e‖ = 0⇐ e = 0).
3. Homogeneous: ‖α · e‖ = |α| · ‖e‖ for all complex scalars α.
4. Triangle inequality:

‖e1 + e2‖ ≤ ‖e1‖+ ‖e2‖ (A.88)

More precisely, e is an element in a vector space V over the £eld C of complex numbers, and
the properties above must be satis£ed ∀e, e1, e2 ∈ V and ∀α ∈ C.

In this book, we consider the norms of four different objects (norms on four different vector
spaces):

1. e is a constant vector.
2. e is a constant matrix.
3. e is a time-dependent signal, e(t), which at each £xed t is a constant scalar or vector.
4. e is a “system”, a transfer function G(s) or impulse response g(t), which at each £xed s

or t is a constant scalar or matrix.

Cases 1 and 2 involve spatial norms and the question that arises is: how do we average or
sum up the channels? Cases 3 and 4 involve function norms or temporal norms where we
want to “average” or “sum up” as a function of time or frequency. Note that the £rst two are
£nite-dimensional norms, while the latter two are in£nite-dimensional.

Remark. Notation for norms. The reader should be aware that the notation on norms in the literature is
not consistent, and one must be careful to avoid confusion. First, in spite of the fundamental difference
between spatial and temporal norms, the same notation, ‖ · ‖, is generally used for both of them, and we
adopt this here. Second, the same notation is often used to denote entirely different norms. For example,
consider the in£nity norm, ‖e‖∞. If e is a constant vector, then ‖e‖∞ is the largest element in the vector
(we often use ‖e‖max for this). If e(t) is a scalar time signal, then ‖e(t)‖∞ is the peak value of |e(t)| as
a function of time. If E is a constant matrix then ‖E‖∞ may denote the largest matrix element (we use
‖A‖max for this), while other authors use ‖E‖∞ to denote the largest matrix row sum (we use ‖E‖i∞
for this). Finally, if E(s) is a stable proper system (transfer function), then ‖E‖∞ is the H∞ norm
which is the peak value of the maximum singular value of E, ‖E(s)‖∞ = maxw σ̄(E(jω)) (which is
how we mostly use the∞-norm in this book).
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A.5.1 Vector norms
We will consider a vector a with m elements; that is, the vector space is V = C

m. To
illustrate the different norms we will calculate each of them for the vector

b =



b1
b2
b3


 =




1
3
−5


 (A.89)

We will consider three norms which are special cases of the vector p-norm

‖a‖p =

(∑

i

|ai|p
)1/p

(A.90)

where we must have p ≥ 1 to satisfy the triangle inequality (property 4 of a norm). Here a is
a column vector with elements ai and |ai| is the absolute value of the complex scalar ai.

Vector 1-norm (or sum norm). This is sometimes referred to as the “taxi-cab norm”, as
in two dimensions it corresponds to the distance between two places when following the
“streets” (New York style). We have

‖a‖1 ,
∑

i

|ai| (‖b‖1 = 1 + 3 + 5 = 9) (A.91)

Vector 2-norm (Euclidean norm). This is the most common vector norm, and
corresponds to the shortest distance between two points

‖a‖2 ,

√∑

i

|ai|2 (‖b‖2 =
√
1 + 9 + 25 = 5.916) (A.92)

The Euclidean vector norm satis£es the property

aHa = ‖a‖22 (A.93)

where aH denotes the complex conjugate transpose of the vector a.
Vector ∞-norm (or max norm). This is the largest-element magnitude in the vector. We

use the notation ‖a‖max so that

‖a‖max ≡ ‖a‖∞ , max
i
|ai| (‖b‖max = | − 5| = 5) (A.94)

Since the various vector norms only differ by constant factors, they are often said to be
equivalent. For example, for a vector with m elements

‖a‖max ≤ ‖a‖2 ≤
√
m ‖a‖max (A.95)

‖a‖2 ≤ ‖a‖1 ≤
√
m ‖a‖2 (A.96)

In Figure A.1 the differences between the vector norms are illustrated by plotting the contours
for ‖a‖p = 1 for the case with m = 2.
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Figure A.1: Contours for the vector p-norm, ‖a‖p = 1 for p = 1, 2,∞. (Mathematically: The unit ball
on R

2 with three different norms.)

A.5.2 Matrix norms
We will consider a constant l ×m matrix A. The matrix A may represent, for example, the
frequency response, G(jω), of a system G(s) with m inputs and l outputs. For numerical
illustrations we will use the following 2× 2 matrix example:

A0 =

[
1 2
−3 4

]
(A.97)

De£nition A.6 A norm on a matrix ‖A‖ is a matrix norm if, in addition to the four norm
properties in De£nition A.5, it also satis£es the multiplicative property (also called the
consistency condition):

‖AB‖ ≤ ‖A‖ · ‖B‖ (A.98)

Property (A.98) is very important when combining systems, and forms the basis for the small-
gain theorem. Note that there exist norms on matrices (thus satisfying the four properties of
a norm), which are not matrix norms (thus not satisfying (A.98)). Such norms are sometimes
called generalized matrix norms. The only generalized matrix norm considered in this book
is the largest-element norm, ‖A‖max.

Let us £rst examine three norms which are direct extensions of the de£nitions of the vector
p-norms.

Sum matrix norm. This is the sum of the element magnitudes

‖A‖sum =
∑

i,j

|aij | (‖A0‖sum = 1 + 2 + 3 + 4 = 10) (A.99)

Frobenius matrix norm (or Euclidean norm). This is the square root of the sum of the
squared element magnitudes

‖A‖F =

√∑

i,j

|aij |2 =
√

tr(AHA) (‖A0‖F =
√
30 = 5.477) (A.100)
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The trace tr is the sum of the diagonal elements, and AH is the complex conjugate transpose
of A. The Frobenius norm is important in control because it is used for summing up the
channels, e.g. when using LQG optimal control.

Max element norm. This is the largest-element magnitude,

‖A‖max = max
i,j
|aij | (‖A0‖max = 4) (A.101)

This norm is not a matrix norm as it does not satisfy (A.98). However, note that
√
lm ‖A‖max

is a matrix norm.
The above three norms are sometimes called the 1-, 2- and∞-norm, respectively, but this

notation is not used in this book to avoid confusion with the more important induced p-norms
introduced next.

Induced matrix norms

- -A
w z

Figure A.2: Representation of (A.102)

Induced matrix norms are important because of their close relationship to signal ampli£cation
in systems. Consider the following equation which is illustrated in Figure A.2:

z = Aw (A.102)

We may think of w as the input vector and z as the output vector and consider the
“ampli£cation” or “gain” of the matrix A as de£ned by the ratio ‖z‖/‖w‖. The maximum
gain for all possible input directions is of particular interest. This is given by the induced
norm which is de£ned as

‖A‖ip , max
w 6=0

‖Aw‖p
‖w‖p

(A.103)

where ‖w‖p = (
∑

i |wi|p)1/p denotes the vector p-norm. In other words, we are looking for
a direction of the vector w such that the ratio ‖z‖p/‖w‖p is maximized. Thus, the induced
norm gives the largest possible “amplifying power” of the matrix. The following equivalent
de£nition is also used:

‖A‖ip = max
‖w‖p≤1

‖Aw‖p = max
‖w‖p=1

‖Aw‖p (A.104)

For the induced 1-, 2- and∞-norms the following identities hold:

‖A‖i1 = max
j

(
∑

i

|aij |) “maximum column sum” (A.105)

‖A‖i∞ = max
i

(
∑

j

|aij |) “maximum row sum” (A.106)

‖A‖i2 = σ̄(A) =
√
ρ(AHA) “singular value or spectral norm” (A.107)
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where the spectral radius ρ(A) = maxi |λi(A)| is the largest eigenvalue of the matrix A.
Note that the induced 2-norm of a matrix is equal to the (largest) singular value, and is often
called the spectral norm. For the example matrix in (A.97) we get

‖A0‖i1 = 6; ‖A0‖i∞ = 7; ‖A0‖i2 = σ̄(A0) = 5.117 (A.108)

Theorem A.3 All induced norms ‖A‖ip are matrix norms and thus satisfy the multiplicative
property

‖AB‖ip ≤ ‖A‖ip · ‖B‖ip (A.109)

- - -AB
w v z

Figure A.3: Representation of (A.110)

Proof: Consider the following set of equations which is illustrated graphically in Figure A.3:

z = Av, v = Bw ⇒ z = ABw (A.110)

From the de£nition of the induced norm we get by £rst introducing v = Bw, then multiplying the
numerator and denominator by ‖v‖p 6= 0, and £nally maximizing each term involving w and v
independently, that

‖AB‖ip , max
w 6=0

‖A
v︷︸︸︷
Bw ‖p
‖w‖p

= max
w 6=0

‖Av‖p
‖v‖p

· ‖Bw‖p‖w‖p
≤ max

v 6=0

‖Av‖p
‖v‖p

·max
w 6=0

‖Bw‖p
‖w‖p

and (A.109) follows from the de£nition of an induced norm. 2

Implications of the multiplicative property
For matrix norms the multiplicative property ‖AB‖ ≤ ‖A‖ · ‖B‖ holds for matrices A and
B of any dimension as long as the product AB exists. In particular, it holds if we choose A
and B as vectors. From this observation we get:

1. Choose B to be a vector, i.e. B = w. Then for any matrix norm we have from (A.98) that

‖Aw‖ ≤ ‖A‖ · ‖w‖ (A.111)

We say that the “matrix norm ‖A‖ is compatible with its corresponding vector norm ‖w‖”.
Clearly, from (A.103) any induced matrix p-norm is compatible with its corresponding
vector p-norm. Similarly, the Frobenius norm is compatible with the vector 2-norm (since
when w is a vector ‖w‖F = ‖w‖2).

2. From (A.111) we also get for any matrix norm that

‖A‖ ≥ max
w 6=0

‖Aw‖
‖w‖ (A.112)

Note that the induced norms are de£ned such that we have equality in (A.112). The
property ‖A‖F ≥ σ̄(A) then follows since ‖w‖F = ‖w‖2.
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3. Choose both A = zH and B = w as vectors. Then using the Frobenius norm or induced
2-norm (singular value) in (A.98) we derive the Cauchy–Schwarz inequality

|zHw| ≤ ‖z‖2 · ‖w‖2 (A.113)

where z and w are column vectors of the same dimension and zHw is the Euclidean inner
product between the vectors z and w.

4. The inner product can also be used to de£ne the angle φ between two vectors z and w

φ = cos−1
( |zHw|
‖z‖2 · ‖w‖2

)
(A.114)

Note that with this de£nition, φ is between 0o and 90o.

A.5.3 The spectral radius
The spectral radius ρ(A) is the magnitude of the largest eigenvalue of the matrix A,

ρ(A) = max
i
|λi(A)| (A.115)

It is not a norm, as it does not satisfy norm properties 2 and 4 in De£nition A.5. For example,
for

A1 =

[
1 0
10 1

]
, A2 =

[
1 10
0 1

]
(A.116)

we have ρ(A1) = 1 and ρ(A2) = 1. However, ρ(A1 + A2) = 12 and ρ(A1A2) = 101.99,
which satisfy neither the triangle inequality (property 4 of a norm) nor the multiplicative
property in (A.98).

Although the spectral radius is not a norm, it provides a lower bound on any matrix norm,
which can be very useful.

Theorem A.4 For any matrix norm (and in particular for any induced norm)

ρ(A) ≤ ‖A‖ (A.117)

Proof: Since λi(A) is an eigenvalue of A, we have that Ati = λiti where ti denotes the eigenvector.
We get

|λi| · ‖ti‖ = ‖λiti‖ = ‖Ati‖ ≤ ‖A‖ · ‖ti‖ (A.118)
(the last inequality follows from (A.111)). Thus for any matrix norm |λi(A)| ≤ ‖A‖ and since this
holds for all eigenvalues the result follows. 2

For our example matrix in (A.97) we get ρ(A0) =
√
10 ≈ 3.162 which is less than all the

induced norms (‖A0‖i1 = 6, ‖A0‖i∞ = 7, σ̄(A0) = 5.117) and also less than the Frobenius
norm (‖A‖F = 5.477) and the sum norm (‖A‖sum = 10).

A simple physical interpretation of (A.117) is that the eigenvalue measures the gain of
the matrix only in certain directions (given by the eigenvectors), and must therefore be less
than that for a matrix norm which allows any direction and yields the maximum gain, recall
(A.112).
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A.5.4 Some matrix norm relationships
The various norms of the matrix A are closely related as can be seen from the following
inequalities from Golub and van Loan (1989, p. 15) and Horn and Johnson (1985, p. 314).
Let A be an l ×m matrix, then

σ̄(A) ≤ ‖A‖F ≤
√

min(l,m) σ̄(A) (A.119)

‖A‖max ≤ σ̄(A) ≤
√
lm ‖A‖max (A.120)

σ̄(A) ≤
√
‖A‖i1‖A‖i∞ (A.121)

1√
m
‖A‖i∞ ≤ σ̄(A) ≤

√
l ‖A‖i∞ (A.122)

1√
l
‖A‖i1 ≤ σ̄(A) ≤

√
m ‖A‖i1 (A.123)

max{σ̄(A), ‖A‖F , ‖A‖i1, ‖A‖i∞} ≤ ‖A‖sum (A.124)

All these norms, except ‖A‖max, are matrix norms and satisfy (A.98). The inequalities are
tight; that is, there exist matrices of any size for which the equality holds. Note from (A.120)
that the maximum singular value is closely related to the largest element of the matrix.
Therefore, ‖A‖max can be used as a simple and readily available estimate of σ̄(A).

An important property of the Frobenius norm and the maximum singular value (induced
2-norm) is that they are invariant with respect to unitary transformations, i.e. for unitary
matrices Ui, satisfying UiU

H
i = I , we have

‖U1AU2‖F = ‖A‖F (A.125)

σ̄(U1AU2) = σ̄(A) (A.126)

From an SVD of the matrix A = UΣV H and (A.125), we then obtain an important
relationship between the Frobenius norm and the singular values, σi(A), namely

‖A‖F =

√∑

i

σ2i (A) (A.127)

The Perron–Frobenius theorem, which applies to a square matrix A, states that

min
D
‖DAD−1‖i1 = min

D
‖DAD−1‖i∞ = ρ(|A|) (A.128)

where D is a diagonal “scaling” matrix, |A| denotes the matrix A with all its elements
replaced by their magnitudes, and ρ(|A|) = maxi |λi(|A|)| is the Perron root (Perron–
Frobenius eigenvalue). The Perron root is greater than or equal to the spectral radius,
ρ(A) ≤ ρ(|A|).
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A.5.5 Matrix and vector norms in Matlab
The following Matlab commands are used for matrices:

σ̄(A) = ‖A‖i2 norm(A,2) or max(svd(A))
‖A‖i1 norm(A,1)
‖A‖i∞ norm(A,’inf’)
‖A‖F norm(A,’fro’)
‖A‖sum sum (sum(abs(A)))
‖A‖max max(max(abs(A))) (which is not a matrix norm)
ρ(A) max(abs(eig(A)))
ρ(|A|) max(eig(abs(A)))

γ(A) = σ̄(A)/σ(A) cond(A)

For vectors:
‖a‖1 norm(a,1)
‖a‖2 norm(a,2)

‖a‖max norm(a,’inf’)

A.5.6 Signal norms
We will consider the temporal norm of a time-varying (or frequency-varying) signal, e(t). In
contrast with spatial norms (vector and matrix norms), we £nd that the choice of temporal
norm makes a big difference. As an example, consider Figure A.4 which shows two signals,
e1(t) and e2(t). For e1(t) the∞-norm (peak) is 1, ‖e1(t)‖∞ = 1, whereas since the signal
does not “die out” the 2-norm is in£nite, ‖e1(t)‖2 =∞. For e2(t) the opposite is true.

PSfrag replacements

e

t

e1(t)

e2(t)

1

Figure A.4: Signals with entirely different 2-norms and∞-norms

For signals we may compute the norm in two steps:

1. “Sum up” the channels at a given time or frequency using a vector norm (for a scalar signal
we simply take the absolute value).

2. “Sum up” in time or frequency using a temporal norm.

Recall from above that the vector norms are “equivalent” in the sense that their values differ
only by a constant factor. Therefore, it does not really make too much difference which norm
we use in step 1. We normally use the same p-norm for both the vector and the signal, and
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Figure A.5: Signal 1-norm and∞-norm

thus de£ne the temporal p-norm, ‖e(t)‖p, of a time-varying vector as

Lp norm: ‖e(t)‖p =

(∫ ∞

−∞

∑

i

|ei(τ)|pdτ
)1/p

(A.129)

The following temporal norms of signals are commonly used:
1-norm in time (integral absolute error (IAE), see Figure A.5):

‖e(t)‖1 =

∫ ∞

−∞

∑

i

|ei(τ)|dτ (A.130)

2-norm in time (quadratic norm, integral square error (ISE), “energy” of signal):

‖e(t)‖2 =

√∫ ∞

−∞

∑

i

|ei(τ)|2dτ (A.131)

∞-norm in time (peak value in time, see Figure A.5):

‖e(t)‖∞ = max
τ

(
max

i
|ei(τ)|

)
(A.132)

In addition, we will consider the power norm or rms norm (which is actually only a semi-
norm since it does not satisfy norm property 2)

‖e(t)‖pow = lim
T→∞

√√√√ 1

2T

∫ T

−T

∑

i

|ei(τ)|2dτ (A.133)

Remark 1 In most cases we assume e(t) = 0 for t < 0 so the lower value for the integration may be
changed to τ = 0.

Remark 2 To be mathematically correct we should have used supτ (least upper bound) rather than
maxτ in (A.132), since the maximum value may not actually be achieved (e.g. if it occurs for t =∞).
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A.5.7 Signal interpretation of various system norms
Two system norms are considered in Section 4.10. These are the H2 norm, ‖G(s)‖2 =
‖g(t)‖2, and the H∞ norm, ‖G(s)‖∞. The main reason for including this subsection is to
show that there are many ways of evaluating performance in terms of signals, and to show
that theH2 andH∞ norms are useful measures in this context. This in turn will be useful in
helping us to understand how to select performance weights in controller design problems.
The proofs of the results in this subsection require a good background in functional analysis
and can be found in Doyle et al. (1992), Dahleh and Diaz-Bobillo (1995) and Zhou et al.
(1996).

Consider a system G with input d and output e, such that

e = Gd (A.134)

For performance we may want the output signal e to be “small” for any allowed input signals
d. We therefore need to specify:

1. What d’s are allowed. (Which set does d belong to?)
2. What we mean by “small”. (Which norm should we use for e?)

Some possible input signal sets are:

1. d(t) consists of impulses, δ(t). These generate step changes in the states, which is the
usual way of introducing the LQ objective and gives rise to theH2 norm.

2. d(t) is a white noise process with zero mean.
3. d(t) = sin(ωt) with £xed frequency, applied from t = −∞ (which corresponds to the

steady-state sinusoidal response).
4. d(t) is a set of sinusoids with all frequencies allowed.
5. d(t) is bounded in energy, ‖d(t)‖2 ≤ 1.
6. d(t) is bounded in power, ‖d(t)‖pow ≤ 1.
7. d(t) is bounded in magnitude, ‖d(t)‖∞ ≤ 1.

The £rst three sets of inputs are speci£c signals, whereas the latter three are classes of inputs
with bounded norm. The physical problem at hand determines which of these input classes is
the most reasonable.

To measure the output signal one may consider the following norms:

1. 1-norm, ‖e(t)‖1
2. 2-norm (energy), ‖e(t)‖2
3. ∞-norm (peak magnitude), ‖e(t)‖∞
4. power, ‖e(t)‖pow
Other norms are possible, but, again, it is engineering issues that determine which norm is the
most appropriate. We will now consider which system norms result from the de£nitions of
input classes, and output norms, respectively. That is, we want to £nd the appropriate system
gain to test for performance. The results for SISO systems in which d(t) and e(t) are scalar
signals are summarized in Tables A.1 and A.2. In these tables G(s) is the transfer function
and g(t) is its corresponding impulse response. Note in particular that

H∞ norm: ‖G(s)‖∞ , maxω σ̄(G(jω)) = maxd(t)
‖e(t)‖2
‖d(t)‖2 (A.135)
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and

L1 norm: ‖g(t)‖1 ,
∫∞
−∞ g(t)dt = maxd(t)

‖e(t)‖∞
‖d(t)‖∞ (A.136)

(where the two right equalities are not by de£nition; these are important results from
functional analysis). We see from Tables A.1 and A.2 that the H2 and H∞ norms appear
in several positions. This gives some basis for their popularity in control. In addition, the
H∞ norm results if we consider d(t) to be the set of sinusoids with all frequencies allowed,
and measure the output using the 2-norm (not shown in Tables A.1 and A.2, but discussed
in Section 3.3.5). Also, the H2 norm results if the input is white noise and we measure the
output using the 2-norm.

Table A.1: System norms for two speci£c input signals and three different output norms
d(t) = δ(t) d(t) = sin(ωt)

||e||2 ||G(s)||2 ∞ (usually)
||e||∞ ||g(t)||∞ σ̄(G(jω))
||e||pow 0 1√

2
σ̄(G(jω))

Table A.2: System norms for three sets of norm-bounded input signals and three different output norms.
The entries along the diagonal are induced norms.

||d||2 ||d||∞ ||d||pow
||e||2 ||G(s)||∞ ∞ ∞ (usually)
||e||∞ ||G(s)||2 ||g(t)||1 ∞ (usually)
||e||pow 0 ≤ ||G(s)||∞ ||G(s)||∞

The results in Tables A.1 and A.2 may be generalized to MIMO systems by use of the
appropriate matrix and vector norms. In particular, the induced norms along the diagonal in
Table A.2 generalize if we use for the H∞ norm ‖G(s)‖∞ = maxω σ̄(G(jω)), and for the
L1 norm we use ‖g(t)‖1 = maxi ‖gi(t)‖1, where gi(t) denotes row i of the impulse response
matrix. The fact that the H∞ norm and L1 norm are induced norms makes them well suited
for robustness analysis; for example, using the small-gain theorem. The two norms are also
closely related as can be seen from the following bounds for a proper scalar system:

‖G(s)‖∞ ≤ ‖g(t)‖1 ≤ (2n+ 1) · ‖G(s)‖∞ (A.137)

where n is the number of states in a minimal realization. We have the following generalization
for a multivariable l ×m system ( Dahleh and Diaz-Bobillo, 1995, p. 342):

‖G(s)‖∞ ≤
√
l · ‖g(t)‖1 ≤

√
lm · (2n+ 1) · ‖G(s)‖∞ (A.138)
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A.6 All-pass factorization of transfer function matrices
Consider a plant model G with Nz RHP-zeros at z and associated input and output zero
directions uz and yz , respectively. Then G can be factored as follows:

G = G1B1 B1 = I − 2Re(z1)

s+ z̄1
ûz1 û

H
z1 (A.139)

where ûz1 is the input zero direction of z1. With this factorization, z1 is not a zero of G1. By
repeated application of (A.139) on Gi, i = 1 · · ·Nz − 1, G can be factored into a minimum-
phase part and an all-pass £lter as

G = GmiBzi Bzi =
Nz∏

i=1

(
I − 2Re(zi)

s+ z̄i
ûzi û

H
zi

)
(A.140)

In (A.140),Gmi is minimum phase with the RHP-zeros ofGmirrored across the imaginary
axis and Bzi is an all-pass £lter. Note that except for the direction associated with the zero
factored £rst, ûzi differs from uzi , as it is calculated based on G(i−1) and not G. The RHP-
zeros can be alternatively factored at system’s output similarly:

G = BzoGmo Bzo =
1∏

i=Nz

(
I − 2Re(zi)

s+ z̄i
ŷzi ŷ

H
zi

)
(A.141)

When G has Np RHP-poles at p, these poles can also be factored into a stable part and an
all-pass £lter on the input and output side as follows:

G = GsiB−1pi B−1pi =

1∏

i=Np

(
I − 2Re(pi)

s− pi
ûpi û

H
pi

)
(A.142)

G = B−1po Gso B−1po =

Np∏

i=1

(
I − 2Re(pi)

s− pi
ŷpi ŷ

H
pi

)
(A.143)

For SISO systems, (A.140)–(A.143) simplify as

Bzi = Bzo =

Nz∏

i=1

s− zi
s+ z̄i

(A.144)

B−1pi = B−1po =

Np∏

i=1

s+ p̄i
s− pj

(A.145)

In Chapters 5 and 6, we use the all-pass factorizations of RHP-zeros and RHP-poles to
derive bounds on peaks of important closed-loop transfer functions. Bzi,Bzo,Bpi and Bpo
are collectively called Blaschke products. A collection of many useful properties of Blaschke
products can be found in Havre (1998).

Remark. In the £rst edition of this book (Skogestad and Postlethwaite, 1996), the Blaschke products are
de£ned as the inverse of the more conventional de£nitions used here. However, note that the alternative
de£nitions used in the £rst edition have no effect on any ensuing analysis.
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A.7 Factorization of the sensitivity function
Consider two plant models, G a nominal model and G′ an alternative model, and assume that
the same controller is applied to both plants. Then the corresponding sensitivity functions are

S = (I +GK)−1, S′ = (I +G′K)−1 (A.146)

A.7.1 Output perturbations
Assume that G′ is related to G by either an output multiplicative perturbation EO, or an
inverse output multiplicative perturbation EiO. Then S′ can be factorized in terms of S as
follows:

S′ = S(I + EOT )
−1; G′ = (I + EO)G (A.147)

S′ = S(I − EiOS)
−1(I − EiO); G′ = (I − EiO)

−1G (A.148)
For a square plant, EO and EiO can be obtained from a given G and G′ by

EO = (G′ −G)G−1; EiO = (G′ −G)G′−1 (A.149)

Proof of (A.147):

I +G′K = I + (I + EO)GK = (I + EO GK(I +GK)−1︸ ︷︷ ︸
T

)(I +GK) (A.150)

2

Proof of (A.148):

I +G′K = I + (I − EiO)
−1GK = (I − EiO)

−1((I − EiO) +GK)

= (I − EiO)
−1(I − EiO (I +GK)−1︸ ︷︷ ︸

S

)(I +GK) (A.151)

2

Similar factorizations may be written in terms of the complementary sensitivity function
(Horowitz and Shaked, 1975; Zames, 1981). For example, by writing (A.147) in the form
S = S′(I + EOT ) and using the fact that S − S′ = T ′ − T , we get

T ′ − T = S′EOT (A.152)

A.7.2 Input perturbations
For a square plant, the following factorization in terms of input multiplicative uncertainty EI

is useful:

S′ = S(I +GEIG
−1T )−1 = SG(I + EITI)

−1G−1; G′ = G(I + EI) (A.153)

where TI = KG(I +KG)−1 is the input complementary sensitivity function.

Proof: Substitute EO = GEIG
−1 into (A.147) and use G−1T = TIG

−1. 2

Alternatively, we may factor out the controller to get

S′ = (I + TK−1EIK)−1S = K−1(I + TIEI)
−1KS (A.154)

Proof: Start from I +G′K = I +G(I + EI)K and factor out (I +GK) to the left. 2
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A.7.3 Stability conditions
The next lemma follows directly from the generalized Nyquist theorem and the factorization
(A.147):

Lemma A.5 Assume that the negative feedback closed-loop system with loop transfer
function G(s)K(s) is stable. Suppose G′ = (I + EO)G, and let the number of open-loop
unstable poles of G(s)K(s) and G′(s)K(s) be P and P ′, respectively. Then the negative
feedback closed-loop system with loop transfer function G′(s)K(s) is stable if and only if

N (det(I + EOT )) = P − P ′ (A.155)

where N denotes the number of clockwise encirclements of the origin as s traverses the
Nyquist D-contour in a clockwise direction.

Proof: LetN (f) denote the number of clockwise encirclements of the origin by f(s) as s traverses the
Nyquist D-contour in a clockwise direction. For the encirclements of the product of two functions we
have N (f1f2) = N (f1) +N (f2). This together with (A.150) and the fact det(AB) = detA · detB
yields

N (det(I +G′K)) = N (det(I + EOT )) +N (det(I +GK)) (A.156)
For stability we need from Theorem 4.9 that N (det(I + G′K)) = −P ′, but we know that
N (det(I + GK)) = −P and hence Lemma A.5 follows. The lemma is from Hovd and Skogestad
(1994); similar results, at least for stable plants, have been presented by, for example, Grosdidier and
Morari (1986) and Nwokah and Perez (1991). 2

In other words, (A.155) tells us that for stability det(I + EOT ) must provide the required
additional number of clockwise encirclements. If (A.155) is not satis£ed then the negative
feedback system with G′K must be unstable. We show in Theorem 6.7 how the information
about what happens at s = 0 can be used to determine stability.

A.8 Linear fractional transformations
Linear fractional transformations (LFTs), as they are currently used in the control literature
for analysis and design, were introduced by Doyle (1984). Consider a matrix P of dimension
(n1 + n2)× (m1 +m2) and partition it as follows:

P =

[
P11 P12
P21 P22

]
(A.157)

Let the matrices ∆ and K have dimensions m1 × n1 and m2 × n2, respectively (compatible
with the upper and lower partitions of P , respectively). We adopt the following notation for
the lower and upper linear fractional transformations:

Fl(P,K) , P11 + P12K(I − P22K)−1P21 (A.158)

Fu(P,∆) , P22 + P21∆(I − P11∆)−1P12 (A.159)

where subscript l denotes lower and subscript u upper. In the following, letR denote a matrix
function resulting from an LFT.



544 MULTIVARIABLE FEEDBACK CONTROL

- -

¾

-

- -

¾

-

w z

R1

P

K

vu

R2

∆

Pw z

y∆u∆

(a) (b)

Figure A.6: (a) R1 as lower LFT in terms of K. (b) R2 as upper LFT in terms of ∆.

The lower fractional transformation Fl(P,K) is the transfer function R1 resulting from
wrapping (positive) feedback K around the lower part of P as illustrated in Figure A.6(a). To
see this, note that the block diagram in Figure A.6(a) may be written as

z = P11w + P12u, v = P21w + P22u, u = Kv (A.160)

Upon eliminating v and u from these equations we get

z = R1w = Fl(P,K)w = [P11 + P12K(I − P22K)−1P21]w (A.161)

In words, R1 is written as a lower LFT of P in terms of the parameter K. Similarly, in
Figure A.6(b) we illustrate the upper LFT, R2 = Fu(P,∆), obtained by wrapping (positive)
feedback ∆ around the upper part of P .
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Figure A.7: An interconnection of LFTs yields an LFT

A.8.1 Interconnection of LFTs
An important property of LFTs is that any interconnection of LFTs is again an LFT. Consider
Figure A.7 where R is written in terms of a lower LFT of K ′, which again is a lower LFT of
K, and we want to express R directly as an LFT of K. We have

R = Fl(Q,K
′) where K ′ = Fl(M,K) (A.162)
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and we want to obtain the P (in terms of Q and M ) such that

R = Fl(P,K) (A.163)

We £nd

P =

[
P11 P12
P21 P22

]

=

[
Q11 +Q12M11(I −Q22M11)

−1Q21 Q12(I −M11Q22)
−1M12

M21(I −Q22M11)
−1Q21 M22 +M21Q22(I −M11Q22)

−1M12

]

(A.164)

Similar expressions apply when we use upper LFTs. For

R = Fu(M,∆′) where ∆′ = Fu(Q,∆) (A.165)

we get R = Fu(P,∆) where P is given in terms of Q and M by (A.164).

A.8.2 Relationship between Fl and Fu

Fl and Fu are obviously closely related. If we know R = Fl(M,K), then we may directly
obtain R in terms of an upper transformation of K by reordering M . We have

Fu(M̃,K) = Fl(M,K) (A.166)

where
M̃ =

[
0 I
I 0

]
M

[
0 I
I 0

]
(A.167)

A.8.3 Inverse of LFTs
On the assumption that all the relevant inverses exist we have

(Fl(M,K))−1 = Fl(M̃,K) (A.168)

where M̃ is given by

M̃ =

[
M−1

11 −M−1
11 M12

M21M
−1
11 M22 −M21M

−1
11 M12

]
(A.169)

This expression follows easily from the matrix inversion lemma in (A.6).

A.8.4 LFT in terms of the inverse parameter
Given an LFT in terms of K, it is possible to derive an equivalent LFT in terms of K−1. If
we assume that all the relevant inverses exist we have

Fl(M,K) = Fl(M̂,K−1) (A.170)
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where M̂ is given by

M̂ =

[
M11 −M12M

−1
22 M21 −M12M

−1
22

M−1
22 M21 M−1

22

]
(A.171)

This expression follows from the fact that (I+L)−1 = I−L(I+L)−1 for any square matrix
L.



APPENDIX B

PROJECT WORK AND
SAMPLE EXAM

B.1 Project work
Students are encouraged to formulate their own project based on an application they are
working on. Otherwise, the project is given by the instructor. In either case, a preliminary
statement of the problem must be approved before starting the project; see the £rst item
below.

A useful collection of benchmark problems for control system design is provided in
Davison (1990). The helicopter, aero-engine and distillation case studies in Chapter 13, and
the chemical reactor in Example 6.17, also provide the basis for several projects. These
models are available over the Internet.

1. Introduction: Preliminary problem de£nition.
(i) Give a simple description of the engineering problem with the aid of one or two

diagrams.
(ii) Discuss brie¤y the control objectives.
(iii) Specify the exogenous inputs (disturbances, noise, setpoints), the manipulated inputs,

the measurements and the controlled outputs (exogenous outputs).
(iv) Describe the most important sources of model uncertainty.
(v) What speci£c control problems do you expect, e.g. due to interactions, RHP-zeros,

saturation, etc.?
The preliminary statement of no more than three pages must be handed in and approved
before starting the project.

2. Plant model. Specify all parameters, operating conditions, etc., and obtain a linear model
of the plant. Comment: You may need to consider more than one operating point.

3. Analysis of the plant. For example, compute the steady-state gain matrix, plot the gain
elements as a function of frequency, obtain the poles and zeros (both of the individual
elements and the overall system), compute the SVD and comment on directions and the
condition number, perform an RGA analysis, a disturbance analysis, etc. Does the analysis
indicate that the plant is dif£cult to control?

4. Initial controller design. Design at least two controllers using, for example,
(i) Decentralized control (PID).

Multivariable Feedback Control: Analysis and Design. Second Edition
S. Skogestad and I. Postlethwaite c© 2005, 2006 John Wiley & Sons, Ltd
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(ii) Centralized control (LQG, LTR, H2 (in principle same as LQG, but with a different
way of choosing weights),H∞ loop shaping,H∞mixed sensitivity, etc.).

(iii) A decoupler combined with PI control.
5. Simulations. Perform simulations in the time domain for the closed-loop system.
6. Robustness analysis using µ.

(a) Choose suitable performance and uncertainty weights. Plot the weights as functions
of frequency.

(b) State clearly how RP is de£ned for your problem (using block diagrams).
(c) Compute µ for NP, RS and RP.
(d) Perform a sensitivity analysis. For example, change the weights (e.g. to make one

output channel faster and another slower), move uncertainties around (e.g. from input
to output), change the ∆’s from a diagonal to full matrix, etc.

Comment: You may need to move back to step (a) and rede£ne your weights if you £nd
out from step (c) that your original weights are unreasonable.

7. Optional:H∞ or µ-optimal controller design. Design anH∞ or µ-optimal controller and
see if you can improve the response and satisfy RP. Compare simulations with previous
designs.

8. Discussion. Discuss the main results. You should also comment on the usefulness of the
project as an aid to learning and give suggestions on how the project activity might be
improved.

9. Conclusion.

B.2 Sample exam
A Norwegian-style £ve-hour exam.

Problem 1 (35%). Controllability analysis.
Perform a controllability analysis (compute poles, zeros, RGA (λ11(s)), check for constraints,
discuss the use of decentralized control (pairings, etc.) for the following four plants. You can
assume that the plants have been scaled properly.

1. 2× 2 plant:

G(s) =
1

(s+ 2)(s− 1.1)

[
s− 1 1
90 10(s− 1)

]
(B.1)

2. SISO plant with disturbance:

g(s) = 200
−0.1s+ 1

(s+ 10)(0.2s+ 1)
; gd(s) =

40

s+ 1
(B.2)

3. Plant with two inputs and one output:

y(s) =
s

0.2s+ 1
u1 +

4

0.2s+ 1
u2 +

3

0.02s+ 1
d (B.3)
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4. Consider the following 2× 2 plant with one disturbance given in state-space form:

ẋ1 = −0.1x1 + 0.01u1

ẋ2 = −0.5x2 + 10u2

ẋ3 = 0.25x1 + 0.25x2 − 0.25x3 + 1.25d

y1 = 0.8x3; y2 = 0.1x3

(a) Construct a block diagram representation of the system with each block in the form
k/(1 + τs).

(b) Perform a controllability analysis.

Problem 2 (25%). General control problem formulation.

pH ≈ 7

(y2)

? ?

-

pH ≈ 10

(y1)

? ?

pH ≈ 13

d u1

u2

ACID

ACID

Figure B.1: Neutralization process

Consider the neutralization process in Figure B.1 where acid is added in two stages. Most of
the neutralization takes place in tank 1 (left) where a large amount of acid is used (input u1)
to obtain a pH of about 10 (measurement y1). In tank 2 the pH is £ne-tuned to about 7 (output
y2) by using a small amount of acid (input u2). This description is just to give you some idea
of a real process; all the information you need to solve the problem is given below.

-u1 ?
d

- g1 -y1

?
6
u2

- g2 -y2

Figure B.2: Block diagram of neutralization process

A block diagram of the process is shown in Figure B.2. It includes one disturbance, two
inputs and two measurements (y1 and y2). The main control objective is to keep y2 ≈ r2. In
addition, we would like to reset input 2 to its nominal value; that is, we want u2 ≈ ru2 at low
frequencies. Note that there is no particular control objective for y1.



550 MULTIVARIABLE FEEDBACK CONTROL

- -

¾

-
w z

P

K

vu

Figure B.3: General control con£guration

(a) De£ne the general control problem: that is, £nd z, w, u, v and P (see Figure B.3).
(b) De£ne an H∞ control problem based on P . Discuss brie¤y what you want the

unweighted transfer functions from d to z to look like, and use this to say a little about
how the performance weights should be selected.

-y1s
+ -

- k1 -u1
+

+?
d

- g1 -y1

6 + +
- g2 -y2

?-
+
¾y2s¾k2

6u2

?- +¾
u2s

¾k3

Figure B.4: Proposed control structure for neutralization process

(c) A simple practical solution based on single loops is shown in Figure B.4. Explain
brie¤y the idea behind this control structure, and £nd the interconnection matrix P and the
generalized controllerK = diag{ k1, k2, k3 }. Note that u and y are different in this case,
while w and z are the same as in (a).

Problem 3 (40%). Various.
Give brief answers to each of the following questions:

(a) Consider the plant

ẋ(t) = a(1 + 1.5δa)x(t) + b(1 + 0.2δb)u(t); y = x

where |δa| ≤ 1 and |δb| ≤ 1. For a feedback controller K(s) derive the interconnection
matrix M for robust stability.

(b) For the above case consider using the condition minD σ̄(DMD−1) < 1 to check for
robust stability (RS). What is D (give as few parameters as possible)? Is the RS condition
tight in this case?

(c) When is the condition ρ(M∆) < 1 necessary and suf£cient for robust stability? Based
on ρ(M∆) < 1, derive the RS condition µ(M) < 1. When is this last condition necessary
and suf£cient?
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(d) Let

Gp(s) =

[
g11 + w1∆1 g12 + w2∆2

g21 + w3∆1 g22

]
, |∆1| ≤ 1, |∆2| ≤ 1

Represent this uncertainty as Gp = G + W1∆W2 where ∆ is diagonal. Determine the
corresponding M∆-structure and derive the RS condition.

(e) Let
Gp(s) =

1− θs
1 + θs

; θ = θ0(1 + w∆), |∆| < 1

and consider the controller K(s) = c/s. Put this into the M∆-structure and £nd the RS
condition.

(f) Show by a counterexample that in general σ̄(AB) is not equal to σ̄(BA). Under what
conditions is µ(AB) = µ(BA)?

(g) The PRGA matrix is de£ned as Γ = GdiagG
−1. What is its relationship to the RGA?
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Acceptable control, 201
Active constraint control, 392
Actuator saturation, see Input constraint
Adjoint

classical, see Adjugate
Hermitian, see Conjugate transpose

Adjugate (classical adjoint), 516
Aero-engine case study, 463, 500–509

model reduction, 463
controller, 466–471
plant, 463–465

Align algorithm, 371
All-pass, 46, 94, 174
All-pass factorization, 541
Analytic function, 173
Angle between vectors, 535
Anti-stable, 462
Anti-windup, 380, 484

deadzone, 486
saturation, 486
synthesis, 488

Augmented plant model, 347

Back-off, 397
Balanced model reduction, 458

residualization, 459
truncation, 458

Balanced realization, 161, 457
Bandwidth, 38

complementary sensitivity (ωBT ), 391

gain crossover (ωc), 33
sensitivity function (ωB), 38, 81

Bezout identity, 122
Bi-proper, see Semi-proper
Bilinear matrix inequality, 481
Blaschke product, 541
Block relative gain, 415, 431
Bode gain–phase relationship, 18
Bode plots, 17, 32
Bode sensitivity integral, 168

MIMO, 223
SISO, 168

Bode’s differential relationship, 22, 246
1 Page numbers in italic refer to de£nitions.

Bode’s stability condition, 27
Break frequency, 19
Buffer tank

concentration disturbance, 217
¤ow rate disturbance, 218

Bumpless transfer, 381

Cake baking process, 389, 394
Canonical form, 120, 126

controllability, 127
diagonalized (Jordan), 126
observability, 126
observer, 126, 127

Cascade control, 217, 420, 422–427
conventional, 416, 420, 422, 423
generalized controller, 111
input resetting, 423, 426
parallel cascade, 423
why use, 421

Case studies
aero-engine, 500–509
distillation process, 509–514
helicopter, 492–500

Cauchy–Schwarz inequality, 535
Causal, 189, 209
Cause-and-effect graph, 233
Centralized controller, 386
Characteristic gain, see Eigenvalue
Characteristic loci, 92, 154
Characteristic polynomial, 151

closed-loop, 151
open-loop, 151

Classical control, 15–65
Closed-loop disturbance gain (CLDG), 448, 452
Combinatorial growth, 405
Command, see Reference (r)
Compatible norm, 534
Compensator, 92
Complementary sensitivity function (T ), 22, 70

bandwidth (ωBT ), 39
maximum peak (MT ), 35
output, 70
peak SISO, 173
RHP-pole, 172, 194

Complex number, 515
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Condition number (γ), 82, 525
computation, 526
disturbance (γd), 238
input uncertainty, 251
minimized, 82, 526
robust performance, 324, 327

Congruence transformation, 481
Conjugate (Ā), 515
Conjugate transpose (AH ), 515
Control con£guration, 11, 384, 420

general, 11
one degree-of-freedom, 11
two degrees-of-freedom, 11

Control error (e), 2
scaling, 5

Control layer, 386
Control signal (u), 13
Control structure design, 2, 383, 502

aero-engine case study, 502
Control system decomposition

horizontal, 388
vertical, 388

Control system design, 1, 491
Control system hierarchy, 387
Controllability

, see Input–output controllability
, see Functional (output) controllability, see

State controllability
Controllability Gramian, 128, 457
Controllability matrix, 128
Controlled output, 384, 388

aero-engine, 395, 502
indirect control, 417
selection, 388–403
self-optimizing control, 391

Controlled variable (CV), 388
Controller (K), 13
Controller design, 40, 341, 381

numerical optimization, 41
shaping of transfer functions, 41
signal-based, 41
trade-offs, 341–344
, see alsoH2 optimal control
, see alsoH∞ optimal control
, see also LQG control
, see also µ-synthesis

Controller parameterization, 148
Convex optimization, 310
Convex set, 301
Convolution, 121
Coprime factor uncertainty, 365

robust stability, 304
Coprime factorization, 122–124

left, 123
Matlab, 124
model reduction, 462

normalized, 123
right, 122
stabilizing controllers, 149
state-space realization, 124
uncertainty, 365

Crossover frequency, 38
gain (ωc), 33, 39
phase (ω180), 32

D-stability, 445
Dead time, see Time delay
Deadzone, 486
Decay rate, 478
Decay ratio, 30
Decentralized control, 91, 248, 420, 429–454

application: distillation process, 452
CLDG, 448
controllability analysis, 449
D-stability, 445
independent design, 430
input uncertainty (RGA), 248
interaction, 438
pairing, 90, 429, 442, 450
performance, 448
PRGA, 438, 448
RDG, 449
RGA, 83–450
sequential design, 417, 430, 447
stability, 438
triangular plant, 441
why use, 421

Decentralized integral controllability (DIC), 443
determinant condition, 445
RGA, 443, 444

Decibel (dB), 17
Decoupling, 92–93

dynamic, 92
partial, 93
steady-state, 92

Decoupling element, 92, 421
Delay, see Time delay
Delta function, see Impulse function (δ)
Derivative action, 126
Derivative kick, 56
Descriptor system, 121, 367
Detectable, 134
Determinant, 517
Deviation variable, 5, 8
Diagonal controller, see Decentralized control
Diagonal dominance

df, 441
iterative RGA, 88
pairing rule, 440

Direction, 73
Direction of plant, 73, see also Output direction
Directionality, 67, 77, 81
Discrete time control
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H∞ loop shaping, 380
Distillation process, 100, 234, 509–514
DV -model, 513

diagonal controller, 314
inverse-based controller, 245
robust stability, 314
sensitivity peak, 245

LV -model, 510–513
CDC benchmark problem, 511
coupling between elements, 292
decentralized control, 452
detailed model, 512
DK-iteration, 330
element-by-element uncertainty, 253
feedforward control, 245
H∞ loop shaping, 103
inverse-based controller, 100, 103, 250, 322
µ-optimal controller, 330
physics and direction, 79
robust performance, 322
robustness problem, 100, 245
sensitivity peak (RGA), 250
SVD analysis, 78
SVD controller, 103

Measurement selection, 418
regulatory control, 406

Disturbance (d), 13
limitation MIMO, 238–240
limitation SISO, 198–199
scaling, 5

Disturbance condition number (γd), 238
Disturbance model (Gd), 122, 148

internal stability, 148
Disturbance process example, 47
H∞ loop shaping, 368
inverse-based controller, 47
loop-shaping design, 49
mixed sensitivity, 64
two degrees-of-freedom design, 52

Disturbance rejection, 48
MIMO system, 94
mixed sensitivity, 496

DK-iteration, 328
Matlab, 330

Dyadic expansion, 120, 518
Dynamic resilience, 166

Effective delay (θ), 57
Eigenvalue (λ), 75, 518

generalized, 138
measure of gain, 75
pole, 135
properties of, 519
spectral radius, see Spectral radius
state matrix (A), 519
transfer function, 520

Eigenvector, 518

left, 518
right, 518

Element uncertainty, 251, 527
RGA, 251

Estimator
general control con£guration, 111
, see also Observer

Euclidean norm, 532
Exogenous input (w), 13
Exogenous output (z), 13
Extra input, 426
Extra measurement, 422
Extremum seeking control, 388

Fan’s theorem, 523
FCC process, 257

controllability analysis, 257
pairings, 444
RGA matrix, 86
RHP-zeros, 257

Feedback
negative, 20, 69
positive, 69
why use, 24

Feedback ampli£er, 25
Feedback rule, 68
Feedforward control, 23, 110

controllability SISO, 209
perfect, 24
uncertainty MIMO, 243

distillation, 245
uncertainty SISO, 203
unstable plant, 145

Feedforward element, 421
Feedforward sensitivity, 23, 203, 242
Fictitious disturbance, 260
Final value theorem, 44
Finsler’s lemma, 483
Fl (lower LFT), 543
Flexible structure, 53
Fourier transform, 122
Frequency response, 15–20, 122

bandwidth, see Bandwidth
break frequency, 18
gain crossover frequency (ωc), 33, 39
magnitude, 16, 17
MIMO system, 71
minimum-phase, 18
phase, 16
phase crossover frequency (ω180), 32
phase shift, 16
physical interpretation, 15
straight-line approximation, 19

Frobenius norm, 532
Fu (upper LFT), 543
Full-authority controller, 494
Functional controllability, 233
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and zeros, 143
uncontrollable output direction, 233

Gain, 17, 73
Gain margin (GM), 32, 36, 279

lower, 33
LQG, 349

Gain scheduling
H∞ loop shaping, 378

Gain–phase relationship, 18
Gap metric, 372
General control con£guration, 104, 353, 383

including weights, 106
Generalized controller, 105
Generalized eigenvalue problem, 138, 477
Generalized inverse, 524
Generalized plant, 13, 105, 110, 353

estimator, 111
feedforward control, 110
H∞ loop shaping, 374, 378
input uncertainty, 298
limitation, 112
Matlab, 106
mixed sensitivity (S/KS), 360
mixed sensitivity (S/T ), 361
one degree-of-freedom controller, 105
two degrees-of-freedom controller, 110
uncertainty, 289

Gershgorin bound, 440
Gershgorin’s theorem, 440, 519
Glover–McFarlane loop shaping, see H∞ loop

shaping
Gramian

controllability, 128
observability, 133

Gramian matrix, 128, 458, 460

H2 norm, 60, 157, 539
computation of, 157
stochastic interpretation, 355
H2 optimal control, 354–356

assumptions, 354
LQG control, 356
H∞ loop shaping, 54, 364–381

aero-engine, 506
anti-windup, 380
bumpless transfer, 381
controller implementation, 371
controller order, 466
design procedure, 368
discrete time control, 380
gain scheduling, 378
generalized plant, 374, 378
implementation, 380
Matlab, 369
observer, 376
servo problem, 372, 376

two degrees-of-freedom controller, 372–376
weight selection, 506
H∞ norm, 60, 158, 539

calculation using LMI, 477
induced 2-norm, 158
MIMO system, 81
multiplicative property, 160
relationship toH2 norm, 159
H∞ optimal control, 354, 357–364

assumptions, 354
γ-iteration, 358
mixed sensitivity, 359, 494
robust performance, 364
signal-based, 362

Hadamard-weightedH∞ problem, 113
Half rule, 58, 87
Hamiltonian matrix, 158
Hankel norm, 160–162, 366, 458, 459

model reduction, 161, 459–461
Hankel singular value, 160, 178, 229, 458, 463

aero-engine, 505
Hanus form, 380
Hardy space, 60
Helicopter case study, 492–500
Hermitian matrix, 516
Hidden mode, 133
Hierarchical control, 418

distillation, 406, 409
Hurwitz, 135

Ideal resting value, 426
Identi£cation, 252

sensitivity to uncertainty, 253
Ill-conditioned, 82
Improper, 4
Impulse function (δ), 121, 345
Impulse response, 31
Impulse response matrix, 121
Indirect control, 417
Induced norm, 533

maximum column sum, 533
maximum row sum, 533
multiplicative property, 534
singular value, 533
spectral norm, 533

Inferential control, 418
Inner product, 535
Inner transfer function, 123
Input constraint, 199, 380

acceptable control, 201, 241
anti-windup, 380, 484
limitation MIMO, 240–241
limitation SISO, 199–203
max-norm, 240
perfect control, 200, 240
two-norm, 241
unstable plant, 201
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Input direction, 76
Input resetting, 423, 428
Input selection, 403
Input uncertainty, 100, 242, 251

condition number, 251
diagonal, 100, 101
generalized plant, 298
magnitude of, 297

, see also Uncertainty
minimized condition number, 251
RGA, 251

Input, manipulated, 13
scaling, 5

Input–output controllability, 164
analysis of, 164
application

aero-engine, 500–509
FCC process, 86, 89, 257
£rst-order delay process, 210
neutralization process, 213
room heating, 211

condition number, 82
controllability rule, 206
decentralized control, 449
exercises, 256
feedforward control, 209
plant design change, 164, 255
plant inversion, 180
remarks de£nition, 166
RGA analysis, 82
scaling MIMO, 222
scaling SISO, 165
summary: MIMO, 253–255
summary: SISO, 206–209

Input–output pairing, 90, 429–450, 506
Input–output selection, 384
Integral absolute error (IAE), 538
Integral action, 29

in LQG controller, 347
Integral control

uncertainty, 252
, see also Decentralized integral controllabil-

ity
Integral square error (ISE), 31

optimal control, 235
Integrator, 152
Integrity, 443

determinant condition, 445
, see also Decentralized integral controllabil-

ity
Interaction, 67, 78

two-way, 89
Internal model control (IMC), 46, 49, 54, 93

block diagram, 149
SIMC PID tuning rule, 57

Internal model principle, 49

Internal stability, 134, 144–148
disturbance model, 148
feedback system, 145
interpolation constraint, 146
two degrees-of-freedom controller, 147

Interpolation constraint, 146, 223
MIMO, 223
RHP-pole, 223
RHP-zero, 223
SISO, 167

Inverse matrix, 515, 524
Inverse Nyquist Array method, 440
Inverse response, 184
Inverse response process, 26, 44

loop-shaping design, 44
LQG design, 347
P control, 27
PI control, 29

Inverse system, 125
Inverse-based controller, 46, 47, 92, 101

input uncertainty and RGA, 249
robust performance, 326
structured singular value (µ), 326
worst-case uncertainty, 246

Irrational transfer function, 127
ISE optimal control, 181

Jordan form, 126, 456, 457

Kalman £lter, 112, 346
generalized plant, 111
robustness, 350

Kalman inequality, 172, 349
Key performance indicators (KPIs), 391

L1 norm, 539
L2 gain, 487
L∞ norm, 455
Lag, 52, 58
Laplace transform, 121

£nal value theorem, 44
Lead–lag, 52
Least squares solution, 524
Left-half plane (LHP) zero, 191
Linear fractional transformation (LFT), 109, 113,

116, 543–546
factorization of S, 116
interconnection, 544
inverse, 545
stabilizing controller, 116

Linear matrix inequalities, 473–490
bilinear matrix inequality, 481
change of variables, 480
congruence transformation, 481
feasibility problems, 476
Finsler’s lemma, 483
generalized eigenvalue problems, 477
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linear objective minimization problems, 477
Matlab, 477, 479
projection lemma, 483
properties, 474
S-procedure, 482
Schur complement, 481
structured singular value, 478
systems of LMIs, 475
tricks, 479

Linear model, 7
Linear objective minimization problems, 477
Linear quadratic Gaussian, see LQG
Linear quadratic regulator (LQR), 345

cheap control, 235
robustness, 349

Linear system, 119
Linear system theory, 119–162
Linearization, 8
Linearizing effect of feedback, 25
LMI, see Linear matrix inequalities
LMI feasibility problems, 476
Local feedback, 199, 216, 217
Loop shaping, 41, 43, 341–344

desired loop shape, 43, 49, 94
disturbance rejection, 48
¤exible structure, 53
robust performance, 283
slope, 43
trade-off, 42
, see alsoH∞ loop shaping

Loop transfer function (L), 22, 69
Loop transfer recovery (LTR), 344, 351–352
LQG control, 41, 260, 344–351

controller, 347
H2 optimal control, 356
inverse response process, 347
Matlab, 348
problem de£nition, 345
robustness, 349, 350

Lyapunov equation, 128, 133, 457
Lyapunov stability, 487
Lyapunov theorem, 487

Main loop theorem, 317
Manipulated input, see Input
Manual control, 388
Matlab £les

acheivable sensitivity peak, 225
coprime uncertainty, 367, 369
distillation con£gurations, 510
DK-iteration, 330
frequency dependent RGA, 86
generalized eigenvalue problems, 479
generalized plant, 106
input performance, 230
linear objective minimization problems, 477
LMI feasibility problems, 477

LQG design, 348
matrix norm, 537
mixed sensitivity, 64
model reduction, 463
µ-analysis, 324
normalized coprime factorization, 124
pole and zero directions, 140
pole vectors, 127
repeated parametric uncertainty, 265
robust performance, 285
robust stability, 278
step response, 37
vector norm, 537

Matrix, 120, 515–529
exponential function, 120
generalized inverse, 524
inverse, 515
norm, 532–537

Matrix inversion lemma, 516
Matrix norm, 75, 532

Frobenius norm, 532
induced norm, 533
inequality, 536
Matlab, 537
max element norm, 533
relationship between norms, 536

Matrix square root (A1/2), 516
Maximum modulus principle, 173
Maximum singular value, 77
McMillan degree, 133, 455
McMillan form, 141
Measurement, 13

cascade control, 416
Measurement noise (n), 13
Measurement selection, 417

distillation column, 418
Mid-ranging, 423, 426, 428
MIMO system, 67
Minimal realization, 133
Minimized condition number, 526, 527

input uncertainty, 251
Minimum singular value, 77, 254

aero-engine, 504
output selection, 395
plant, 233, 241

Minimum-phase, 19
Minor of a matrix, 135
Mixed sensitivity, 62, 282

disturbance rejection, 496
general control con£guration, 107
generalized plant, 107
H∞ optimal control, 359, 494
RP, 282
weight selection, 496

Mixed sensitivity (S/KS), 64
disturbance process, 64
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generalized plant, 360
Matlab, 64
MIMO plant with RHP-zero, 97
MIMO weight selection, 94

Mixed sensitivity (S/T )
generalized plant, 361

Modal truncation, 456
Mode, 120
Model, 13

derivation of, 7
scaling, 6

Model matching, 376, 466
Model predictive control, 42
Model reduction, 455–471

aero-engine model, 463
analytic (half rule), 57
balanced residualization, 459
balanced truncation, 458
coprime, 462
error bound, 460, 462
frequency weight, 471
Hankel norm approximation, 161, 459–461
Matlab, 463
modal truncation, 456
residualization, 456
steady-state gain preservation, 465
truncation, 456
unstable plant, 462

Model uncertainty, see Uncertainty
Moore–Penrose inverse, 524
µ, see Structured singular value
µ-synthesis, 328–335
Multilayer, 388
Multilevel, 388
Multiplicative property, 75, 160, 534
Multiplicative uncertainty, see Uncertainty
Multivariable stability margin, 308
Multivariable zero, see Zero

Neglected dynamics, see Uncertainty
Neutralization process, 213–217, 549

control system design, 216
mixing tank, 213
plant design change

multiple pH adjustments, 216
multiple tanks, 214

Niederlinski index, 445
Noise (n), 13
Nominal performance (NP), 3, 281, 300

Nyquist plot, 281
Nominal stability (NS), 3, 300
Non-causal controller, 189
Non-minimum-phase, 19
Norm, 530–540

, see also Matrix norm
, see also Signal norm
, see also System norm

, see also Vector norm
Normal rank, 138, 233
Notation, 10
Nyquist array, 92
Nyquist D-contour, 153
Nyquist plot, 17, 32
Nyquist stability theorem, 152

argument principle, 154
generalized, MIMO, 152
SISO, 26

Observability, 131
Observability Gramian, 133, 457
Observability matrix, 133
Observer, 376
H∞ loop shaping, 376

Offset, see Control error (e)
One degree-of-freedom controller, 11, 20
Optimization, 386

closed-loop implementation, 389
open-loop implementation, 389

Optimization layer, 386
look-up table, 395

Orthogonal, 76
Orthonormal, 76
Output (y), 13

primary, 13, 427
secondary, 13, 427

Output controllability
, see Functional controllability

Output direction, 76, 221, 222
disturbance, 221, 238
plant, 76, 221
pole, 137, 221
zero, 140, 221

Output scaling, 5
Output uncertainty, see Uncertainty
Overshoot, 30, 193

Padé approximation, 127
Pairing, 90, 429, 442, 450

aero-engine, 506
, see also Decentralized control

Parseval’s theorem, 355
Partial control

FCC process, 257
Partitioned matrix, 516, 517
Perfect control, 180

non-causal controller, 189, 190
unstable controller, 190

Performance, 30
frequency domain, 32
H∞ norm, 81
limitations MIMO, 221–258
limitations SISO, 163–219
time domain, 30
weight selection, 62
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weighted sensitivity, 61, 81
worst-case, 320, 334
, see also Robust performance

Performance relative gain array (PRGA), 438,
448, 453

Permutation matrix, 527
Perron root (ρ (| A |)), 441, 536
Perron–Frobenius theorem, 536
Perturbation, 300

allowed, 300
, see also Real perturbation
, see also Uncertainty

Phase, see Frequency response, phase
Phase lag

limitation SISO, 191
RHP-zero, 169

Phase margin (PM), 33, 36
LQG, 349

Phasor notation, 18
PI controller, 29

Ziegler–Nichols tuning rule, 29
PID controller, 56, 126

cascade form, 56
derivative action, 57, 126
ideal form, 56, 126
practical implementation, 56
SIMC tuning rule, 57, 87, 212

Cascade control, 424
Pinned zero, 142
Plant (G), 13

, see also Generalized plant (P )
Plant design change, 164, 214, 255

neutralization process, 214, 216
Pole, 135, 135–138

direction, 137, 138, 238
effect of feedback, 142, 143
stability, 135
vector, 137, 138
, see also RHP-pole

Pole polynomial, 135
Pole vector, 127

Matlab, 127
stabilization, 137, 412

Polynomial system matrix, 138
Positive de£nite matrix (A > 0), 474, 516, 519
Positive semi-de£nite matrix (A ≥ 0), 474, 516
Post-compensator, 93
Power spectral density, 344, 352
Pre-compensator, 92
Prediction, 181, 189, 211
Pre£lter, 29, 51
Preview control, 189
Principal component regression, 525
Principal gain, 76

, see also Singular value
Process noise, 344

Projection lemma, 483
Proper, 4
Pseudo-inverse, 524

Q-parameterization, 148

Rank, 521
normal rank, 233

Rate feedback, 495
Real perturbation, 336
DGK-iteration, 336
µ, 308, 336
robust stability, 301

Realization, see State-space realization
Reference (r), 13, 390

optimal value, 390
performance requirement SISO, 198–199
scaling, 5, 6

Reference model (Tref ), 52, 373
Regulator problem, 2
Regulatory control, 386

distillation, 406, 409
Relative disturbance gain (RDG), 449
Relative gain array (RGA, Λ), 82, 526

aero-engine, 504
controllability analysis, 82
decentralized control, 431–450
diagonal input uncertainty, 89
DIC, 443, 444
element uncertainty, 90
element-by-element uncertainty, 251
input uncertainty, 249, 251
iterative RGA, 88
Matlab, 86
measure of interaction, 84
non-square, 90, 528
properties of, 527
RGA number, 87, 505
RHP-zero, 446
steady-state, 506

Relative order, 4, 192
Return difference, 151

factorization, 542
RHP-pole, 11, 26, 192, 238

input usage, 178, 229
limitation MIMO, 238
limitation SISO, 192

RHP-pole and RHP-zero
MIMO, 224

angle between pole and zero, 225, 227
SISO, 179
H∞ design, 196
stabilization, 150

RHP-zero, 11, 19, 45, 183, 235
aero-engine, 504
bandwidth limitation, 184
decoupled response, 236
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FCC process, 257
high-gain instability, 184
interaction, 237
inverse response, 184
limitation MIMO, 235
limitation SISO, 45, 183
low or high frequency, 187
move effect of, 97, 236
multivariable, 96
perfect control, 189, 190
phase lag, 19
positive feedback, 187
RGA, 446
weighted sensitivity, 172, 185, 223

performance at high frequency, 187
performance at low frequency, 185

Riccati equation, 124
controller, 358
coprime uncertainty, 366
H∞ loop shaping, 378
H∞ optimal control, 357
Kalman £lter, 346
state feedback, 346

Right-half plane (RHP), 11
Right-half plane pole, see RHP-pole
Right-half plane zero, see RHP-zero
Rise time, 30
Robust performance (RP), 3, 281, 300, 316

condition number, 324, 327
distillation process, 322
graphical derivation, 282
H∞ optimal control, 364
input uncertainty, 320–328
inverse-based controller, 326
loop-shaping, 283
Matlab, 285
mixed sensitivity, 282
µ, 316
Nyquist plot, 282
output uncertainty, 327
relationship to robust stability, 317
relationship to RS, 286
SISO, 281, 285
structured singular value, 283
worst-case, 320

robust performance (RP), 259
Robust stability (RS), 3, 274, 300, 314
M∆-structure, 290, 301
complementary sensitivity, 276
coprime uncertainty, 304, 365
determinant condition, 301
gain margin, 279
graphical derivation, 275
input uncertainty, 304, 314
inverse multiplicative uncertainty, 279, 304
Matlab, 278

multiplicative uncertainty, 275
Nyquist plot, 275
real perturbation, 301
relationship to RP, 286
scaling, 306
sensitivity, 280
SISO, 274
skewed-µ, 316
small-gain theorem, 306
spectral radius condition, 301
spinning satellite, 315
structured singular value (µ), 313–314
unstructured uncertainty, 302, 303

robust stability (RS), 259
Robustness, 98, 104
H∞ norm, 104
LQG control, 349
LTR, 351
motivating examples, 98

Roll-off rate, 43
Room heating process

controllability analysis, 211
deriving model, 8

Routh–Hurwitz stability test, 27, 103

S-procedure, 482
Saturation, see Input constraint
Scaling, 5–7, 165, 222, 370

aero-engine, 503
MIMO controllability analysis, 222
SISO controllability analysis, 165

Schur complement, 481, 516
Schur product, 526
Schur’s complement formula, 481
Schur’s (determinant) formula, 517
Second-order system, 37
Secondary output, 422
Sector boundedness, 487
Selector

auctioneering, 428
override, 428

Self-optimizing control, 391
Null space method, 397

Self-regulation, 198, 207
Semi-norm, 530
Semi-proper, 4
Sensitivity function (S), 22–24, 70

bandwidth (ωB), 38
factorization, 116, 542
output (SO), 70
, see also Mixed sensitivity
, see also Weighted sensitivity

Sensitivity function peak (‖S‖∞), 172
SISO peak (M , MS), 35
SISO RHP-pole and RHP-zero, 172
SISO RHP-zero, 172
uncertainty, 247–251
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Separation theorem, 345, 347
Servo problem, 2
H∞ loop shaping, 372
non-causal controller, 189

Setpoint, see Reference (r)
Settling time, 30
Shaped plant (Gs), 92, 368
Shaping of closed-loop transfer function, 41, see

also Loop shaping
Sign of plant MIMO, 252
Signal, 3
Signal norm, 537
∞-norm, 538
lp norm, 538
1-norm, 538
2-norm, 538
ISE, 538
power-norm, 538

Signal uncertainty, 24
, see also Disturbance (d), see also Noise (n)

Signal-based controller design, 362
SIMC PID tuning rule, see PID controller
Similarity transformation, 519
Singular matrix, 521, 524
Singular perturbational approximation, 457, 459
Singular value, 76, 77
2× 2 matrix, 521
frequency plot, 80
H∞ norm, 81
inequalities, 522

Singular value decomposition (SVD), 75, 520
2× 2 matrix, 76
economy-size, 524
non-square plant, 79
of inverse, 522
pseudo-inverse, 524
SVD controller, 93

Singular vector, 76, 521
Sinusoid, 16
Skewed-µ, 316, 320, 326
Small-gain theorem, 156

robust stability, 306�� , 57
Spatial norm, 530

, see also Matrix norm
, see also Vector norm

Spectral decomposition, 518
Spectral radius (ρ), 518, 535

Perron root (ρ (| A |)), 536
Spectral radius stability condition, 155
Spinning satellite, 98

robust stability, 315
Split-range control, 428
Stability, 26, 134, 135

closed-loop, 26
frequency domain, 150

internal, 134
Lyapunov, 487
, see also Robust stability

Stability margin, 35
coprime uncertainty, 366
multivariable, 308

Stabilizable, 134, 150
strongly stabilizable, 150

Stabilization, 150
input usage, 201
pole vector, 137, 412
unstable controller, 228

Stabilizing controller, 116, 148–150
State controllability, 127, 137, 166

example: tanks in series, 130
State estimator, see Observer
State feedback, 345, 346, 480, 484
State matrix (A), 120
State observability, 131, 137

example: tanks in series, 133
State-space realization, 119, 125

hidden mode, 133
inversion of, 125
minimal (McMillan degree), 133
unstable hidden mode, 134
, see also Canonical form

Steady-state gain, 17
Steady-state offset, 29, 30
Step response, 31
Stochastic, 344, 355, 356
Strictly proper, 4
Strokes, The, 575
Structural property, 233
Structured singular value (µ, SSV), 283, 306, 307

complex perturbations, 309
computational complexity, 336
de£nition, 308
discrete case, 337
DK-iteration, 328

distillation process, 330
LMI, 478
Matlab, 324, 330
µ-synthesis, 328–335
nominal performance, 319
practical use, 339
properties of, 308

complex perturbation, 309–313
real perturbation, 308

real perturbation, 336
relation to condition number, 324
robust performance, 316, 319, 364
robust stability, 319
RP, 283
scalar, 307
skewed-µ, 283, 316, 320
state-space test, 337
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upper bound, 336
worst-case performance, 320

Submatrix (Aij), 516
Sum norm (‖ A ‖sum), 532
Superposition principle, 4, 119
Supervisory control, 386
Supremum (sup), 60
System norm, 156–162, 539
System type, 44
Systems biology, xi

Temporal norm, 530
, see also Signal norm
, see also System norm

Time delay, 45, 127, 182, 233
effective, 57
increased delay, 234
limitation MIMO, 233
limitation SISO, 45, 182
Padé approximation, 127
perfect control, 189
phase lag, 19

Time delay uncertainty, 34
Time response

decay ratio, 30
overshoot, 30
quality, 31
rise time, 30
settling time, 30
speed, 31
steady-state offset, 30
total variation, 31

Time scale separation, 387
Total variation, 31
Transfer function, 3, 21, 121

closed-loop, 21
evaluation MIMO, 68
evaluation SISO, 22
rational, 4
state-space realization, 125

Transmission zero, see Zero, 141
Transpose (AT ), 515
Triangle inequality, 75, 530
Truncation, 456
Two degrees-of-freedom controller, 11, 23, 147
H∞ loop shaping, 372–376
design, 51–52
internal stability, 147
local design, 111, 420

Ultimate gain, 26
Uncertainty, 3, 24, 203, 259, 289, 290

additive, 267, 268, 293
and feedback – bene£ts, 246
and feedback – problems, 247
at crossover, 205
complex SISO, 266–270

convex set, 301
coprime factor, 304, 365
diagonal, 296
element-by-element, 292, 295
feedforward control, 203, 243

distillation process, 245
RGA, 244

frequency domain, 265
generalized plant, 289
in£nite order, 274
input, 293, 294, 298, see also Input uncertainty
input and output, 299
integral control, 252
inverse additive, 294
inverse multiplicative, 262, 294
LFT, 289
limitation MIMO, 242–253
limitation SISO, 203–205
lumped, 294
Matlab, 278
modelling SISO, 259
multiplicative, 262, 268, 269
N∆-structure, 291
neglected dynamics, 261, 271
nominal model, 270
Nyquist plot, 266, 270
output, 242, 293, 294
parametric, 261, 262, 269, 292

gain, 262, 288
gain and delay, 272
pole, 263
time constant, 263
zero, 264

physical origin, 260
pole, 270
RHP-pole, 263
RHP-zero, 264
signal, 24
state space, 264
structured, 262
time-varying, 336
unmodelled, 261, 273
unstable plant, 263
unstructured, 262, 293
weight, 268, 269

Undershoot, 184
Unitary matrix, 520
Unstable hidden mode, 134
Unstable mode, 135
Unstable plant, 192

frequency response, 18
PI control, 30, 34
, see also RHP-pole, see also Stabilizable, see

also Stabilizing controller

Valve position control, 426
Vector norm, 531
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Euclidean norm, 531
Matlab, 537
max norm, 531
p-norm, 531

Waterbed effect, 167
Weight selection, 62, 329
H∞ loop shaping, 370, 506
mixed sensitivity, 496
mixed sensitivity (S/KS), 94
performance, 62, 329

Weighted sensitivity, 60
generalized plant, 112
MIMO system, 81
RHP-zero, 172, 185, 223
typical speci£cation, 60

Weighted sensitivity integral, 170
White noise, 344
Wiener–Hopf design, 362

YALMIP, 490
Youla parameterization, 148

Zero, 138, 138–144
decoupling zero, 141
effect of feedback, 142, 143
from state-space realization, 138
from transfer function, 139
input blocking, 141
invariant zero, 141
non-square system, 139, 142
pinned, 142
, see also RHP-zero

Zero direction, 140
Ziegler–Nichols tuning rule, 29
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